that infiltrate into the brain parenchyma
can have deleterious effects on neuronal
health and function®'*""°. Such findings have
been especially prevalent in T cell-mediated
autoimmune disease such as multiple
sclerosis'>. However, there is still limited
understanding of how peripheral immune
cells interact with or regulate glial cell
function. Garber et al. have identified

an active and deleterious role of CD8*

T cells in flaviviruses infection. Similarly,

a recent report by Liberto et al. uncovered
the importance of CD8* T cell-derived
IFN-y in a mouse model of encephalitis’.
They found T cell-derived IFNy induced
neuronal changes, which in turn lead to
glial cell phagocytosis of synapses. Both
Garber et al. and Liberto et al. find these
interactions to be integral to synapse
integrity and behavioral outcomes.

These recent studies highlight the importance
of understanding the interactions between
peripheral immune cells, glia and neurons in
order to identify novel therapeutic pathways
to prevent cognitive decline.
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NEURODEGENERATION

Connectomics of neurodegeneration

Misfolded protein aggregates are a classical hallmark of many neurodegenerative diseases. By combining a
mouse model of misfolded protein injection and a brain network model of misfolded protein diffusion, a study now
finds a strong link between the stereotypical spreading patterns of neurodegeneration, protein expression and

anatomical connectivity.

Ellen Kuhl

hy does neurodegeneration

progress so slowly but, at the

same time, generate such
remarkably consistent and predictable
patterns? This question has kept scientists
busy for over a century, and its answer could
hold the key to treating neurodegenerative
disease. Many neurodegenerative disorders,
including Alzheimer’s disease, Parkinsons’s
disease and amyotrophic lateral sclerosis,
are associated with the accumulation of
misfolded proteins in the brain'. While
their clinical symptoms may vary, at the
molecular level, these disorders share the
common biophysical features of pathogenic
protein nucleation, templating, aggregation
and spread”. A growing body of evidence
suggests that the connectome, the wiring
diagram of the brain, could play a major role
in spreading misfolded proteins across the
brain and explain the stereotypical patterns
of neurodegeneration’. However, there
is currently no technology to interrogate
connectome-based spreading in the living
human brain in vivo.

1200

In this issue of Nature Neuroscience,
Henderson et al.* combined quantitative
pathology mapping of mouse brains—
injected with misfolded a-synuclein
(a-syn)—with network diffusion modeling
to understand the spatiotemporal
progression of pathological a-syn in
Parkinson’s disease. They found that the
pattern of misfolded a-syn is correlated
with two intrinsic features of the brain:
anatomical connectivity and a-syn
expression (Fig. 1). These results are
an important step toward quantitative,
predictive brain network modeling in
Parkinson’s disease.

Parkinson’s disease is a progressive
neurodegenerative disorder associated
with a gradual decline of motor function
that affects more than six million people
worldwide. Its clinical manifestations—
shaking, rigidity and slowness of
movement—are a reflection of the death
of neurons in the substantia nigra, a basal
ganglia structure in the ventral midbrain®.
This cell death is associated with the

build-up of Lewy bodies, abnormal
aggregates of the presynaptic protein a-syn
(ref. ©). From histopathological observations
of hundreds of Parkinson’s brains, we know
that Lewy body pathology is not restricted
to the substantia nigra but spreads across
the brain in highly stereotypical patterns:
pathological a-syn accumulates first in

the dorsal motor nucleus and the anterior
olfactory nucleus from where the pathology
spreads to the brainstem and ultimately

to the entire neocortex’. Understanding
how misfolded a-syn proteins multiply,
aggregate and spread could point toward
new strategies to slow down or stop

disease progression®.

To experimentally quantify the
spatiotemporal pattern of a-syn pathology,
Henderson et al.* injected three-month-old
mice with a-syn preformed fibrils, waited
one, three and six months after injection,
and then quantified a-syn pathology using
a survey approach. At an unprecedented
spatial resolution, they characterized the
degree of pathology in 172 regions across
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Protein expression

Anatomical connectivity

Fig. 1| Network modeling of neurodegeneration. Neurodegenerative diseases are characterized by

the aggregation of misfolded protein in the brain. At the molecular level (left), protein misfolding is
associated with nucleation, templating and aggregation into progressively larger aggregates. At the
whole-brain level (right), misfolded proteins spread across the brain in consistent and predictable
patterns that follow the brain’s connectome. Brain network models can integrate protein expression and
anatomical connectivity to predict the stereotypical spreading pattern of misfolded a-syn in Parkinson's

disease (bottom).

five coronal slices and created concentration
maps to illustrate the spreading pattern.
Each brain region displayed a distinct and
dynamic spreading profile with its own
characteristic timeline of initiation and
progression. Strikingly, regions with a direct
anatomical connection to the injection site
displayed a higher degree of pathology than
remotely connected regions.

To computationally quantify the
correlation between anatomic connectivity
and pathological spreading, Henderson et al.*
created a network diffusion model based
on connectivity maps of the Allen Brain
Institute mouse brain. This model represents
the individual brain regions through 116
nodes and their connections through
connectivity-weighted directed edges. In
the initial model, pathological a-syn was
hypothesized to travel retrogradely within
the network, proportional to the density
of axonal connections. Notably, with only
one mechanism, anatomical connectivity,
and one free parameter, timing of spread,
this model already explained much of the
experimentally observed pathological
a-syn spread. To explain the remaining
difference between experiment and
simulation, the authors consulted the
local a-syn expression levels. In a clever
improvement of the model, they
weighted diffusion by a-syn expression

and created the first brain network model
that directly correlates spreading of
misfolded protein to two intrinsic features
of the brain, anatomical connectivity and
protein expression.

The most innovative aspect of this
study is that it establishes, calibrates and
validates a new technology, protein-
expression-weighted brain network
modeling, to understand, explain and
predict pathological protein spreading in
neurodegenerative disease (Fig. 1). Properly
calibrated and validated, such models
are powerful tools to quickly elaborate
what-if scenarios and answer fundamental
questions of pathological spread’: What
are the underlying mechanisms of protein
pathogenesis? Is spreading driven by
extracellular diffusion or intracellular
transport? Do misfolded proteins propagate
retrogradely or anterogradely? How
do protein expression levels modulate
pathogenesis? Brain network modeling
encodes the answers to these questions
in the adjacency matrix, a matrix with
116 rows and columns, one for each brain
region. Its diagonal terms tell us how well
a region is connected, and its off-diagonal
terms characterize its connectivity to all
other regions'’. We can virtually probe
potential spreading mechanisms—quickly
and efficiently—by weighting the entries
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of this matrix, by distance, by connectivity
or both"!, by matrix transposition, or by
weighting by individual protein expression
levels®. Or we can identify vulnerable

brain regions by virtually probing different
seeding locations to identify central
spreading hubs'. In essence, brain network
models can rapidly test different hypotheses
of spreading patterns, timing, directionality
and vulnerability.

A wave of recent research has begun to
validate network diffusion models using
patterns of tissue atrophy rather than
protein pathology since atrophy patterns
are readily available from magnetic
resonance imaging". Yet what is truly
new and notable about the study by
Henderson et al." —and unique to studying
pathogenic protein spreading in mice—is
the direct assessment of the pathogenic
protein itself, the availability of directional
connectivity, and the precise control of the
injection site and timing. However, in view
of the fast developments in neuroimaging
and the rapid growth of public databases
like the Human Connectome Project or
the Alzheimer’s Disease Neuroimaging
Initiative, it seems reasonable to expect that
we will soon have access to longitudinal
human disease data to validate network
diffusion models for neurodegeneration
in humans.

The concept of linear network diffusion
is compelling and powerful, but, at the
same time, oversimplifies a disease process
as complex as that of Parkinson’s disease.
Indeed, Henderson et al.* acknowledge
this limitation, and improve the fit of their
model by weighting diffusivity by protein
expression levels. However, selectively
increasing or decreasing network diffusion
is a rather ad hoc and phenomenological
approach. Instead, we could combine
global modeling of network diffusion"
with local modeling of aggregation
kinetics'*. In fact, this would result in a
mechanistic multiscale model in which
the concentrations and aggregate sizes
of misfolded proteins emerge naturally,
dynamically and independently at each node
and propagate across the network through
its connectivity-weighted edges".

What is most compelling about
Henderson et al’s network analysis of
pathological a-syn spread in mice is
that the underlying paradigm naturally
generalizes to other pathological proteins
and to humans. For example, a recent study
used a similar network model to simulate
amyloid-p pathology and found a good
agreement with the amyloid-p patterns in
positron emission tomography scans from
hundreds of brains at different stages of
Alzheimer’s disease'?. Undoubtedly, network
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modeling of neurodegeneration is quick
and easy: simulating the spatiotemporal
evolution of aggregate size distributions,
biomarker curves and infection times across
the human brain throughout a period of
30 years takes less than ten seconds on a
standard laptop computer. This 30-year
interval between the first evidence of
protein aggregation, neuronal death, tissue
atrophy and clinical symptoms presents

a window of opportunity for therapeutic
intervention. Computational simulations
can provide mechanistic insight into the
precise interplay, sequence and timeline of
these neurodegenerative events’.

At present, there is no cure for
neurodegenerative disease. Current
treatment strategies focus primarily on
managing symptoms: active immunization
or injection of monoclonal antibodies
that target a-syn can decrease pathogenic
a-syn spread, increase neuronal protection
and slow disease progression in mice,
and the first immunotherapies that target

1202

a-syn have passed stage I clinical trials

in humans®. At a practical level, testable,
quantitative, predictive network models

of protein spreading can guide these new
therapeutic approaches, for example, by
promoting protein clearance and blocking
protein aggregation at the network nodes or
by modulating intercellular spreading and
synaptic transport along the network edges.
Fueled by the growing availability of public
databases for healthy and diseased human
brains, new in vivo imaging techniques,

and new analysis tools inspired by machine
learning, there is hope that pre-symptomatic
therapies to slow down neurodegeneration
could become a reality in the near future.
Combining longitudinal experimental and
computational analyses of pathological
protein spread is an important first step in
this direction. a
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