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that infiltrate into the brain parenchyma 
can have deleterious effects on neuronal 
health and function9,12–15. Such findings have 
been especially prevalent in T cell-mediated 
autoimmune disease such as multiple 
sclerosis12. However, there is still limited 
understanding of how peripheral immune 
cells interact with or regulate glial cell 
function. Garber et al. have identified  
an active and deleterious role of CD8+ 
T cells in flaviviruses infection. Similarly,  
a recent report by Liberto et al. uncovered 
the importance of CD8+ T cell-derived 
IFN-γ in a mouse model of encephalitis9. 
They found T cell-derived IFNγ induced 
neuronal changes, which in turn lead to 
glial cell phagocytosis of synapses. Both 
Garber et al. and Liberto et al. find these 
interactions to be integral to synapse 
integrity and behavioral outcomes.  

These recent studies highlight the importance 
of understanding the interactions between 
peripheral immune cells, glia and neurons in 
order to identify novel therapeutic pathways 
to prevent cognitive decline. ❐
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NEURODEGENERATION

Connectomics of neurodegeneration
Misfolded protein aggregates are a classical hallmark of many neurodegenerative diseases. By combining a  
mouse model of misfolded protein injection and a brain network model of misfolded protein diffusion, a study now 
finds a strong link between the stereotypical spreading patterns of neurodegeneration, protein expression and 
anatomical connectivity.

Ellen Kuhl

Why does neurodegeneration 
progress so slowly but, at the 
same time, generate such 

remarkably consistent and predictable 
patterns? This question has kept scientists 
busy for over a century, and its answer could 
hold the key to treating neurodegenerative 
disease. Many neurodegenerative disorders, 
including Alzheimer’s disease, Parkinsons’s 
disease and amyotrophic lateral sclerosis, 
are associated with the accumulation of 
misfolded proteins in the brain1. While 
their clinical symptoms may vary, at the 
molecular level, these disorders share the 
common biophysical features of pathogenic 
protein nucleation, templating, aggregation 
and spread2. A growing body of evidence 
suggests that the connectome, the wiring 
diagram of the brain, could play a major role 
in spreading misfolded proteins across the 
brain and explain the stereotypical patterns 
of neurodegeneration3. However, there 
is currently no technology to interrogate 
connectome-based spreading in the living 
human brain in vivo.

In this issue of Nature Neuroscience, 
Henderson et al.4 combined quantitative 
pathology mapping of mouse brains—
injected with misfolded α-synuclein 
(α-syn)—with network diffusion modeling 
to understand the spatiotemporal 
progression of pathological α-syn in 
Parkinson’s disease. They found that the 
pattern of misfolded α-syn is correlated 
with two intrinsic features of the brain: 
anatomical connectivity and α-syn 
expression (Fig. 1). These results are 
an important step toward quantitative, 
predictive brain network modeling in 
Parkinson’s disease.

Parkinson’s disease is a progressive 
neurodegenerative disorder associated 
with a gradual decline of motor function 
that affects more than six million people 
worldwide. Its clinical manifestations—
shaking, rigidity and slowness of 
movement—are a reflection of the death 
of neurons in the substantia nigra, a basal 
ganglia structure in the ventral midbrain5. 
This cell death is associated with the 

build-up of Lewy bodies, abnormal 
aggregates of the presynaptic protein α-syn 
(ref. 6). From histopathological observations 
of hundreds of Parkinson’s brains, we know 
that Lewy body pathology is not restricted 
to the substantia nigra but spreads across 
the brain in highly stereotypical patterns: 
pathological α-syn accumulates first in 
the dorsal motor nucleus and the anterior 
olfactory nucleus from where the pathology 
spreads to the brainstem and ultimately 
to the entire neocortex7. Understanding 
how misfolded α-syn proteins multiply, 
aggregate and spread could point toward 
new strategies to slow down or stop  
disease progression8.

To experimentally quantify the 
spatiotemporal pattern of α-syn pathology, 
Henderson et al.4 injected three-month-old 
mice with α-syn preformed fibrils, waited 
one, three and six months after injection, 
and then quantified α-syn pathology using 
a survey approach. At an unprecedented 
spatial resolution, they characterized the 
degree of pathology in 172 regions across 
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Fig. 1 | Network modeling of neurodegeneration. Neurodegenerative diseases are characterized by 
the aggregation of misfolded protein in the brain. At the molecular level (left), protein misfolding is 
associated with nucleation, templating and aggregation into progressively larger aggregates. At the 
whole-brain level (right), misfolded proteins spread across the brain in consistent and predictable 
patterns that follow the brain’s connectome. Brain network models can integrate protein expression and 
anatomical connectivity to predict the stereotypical spreading pattern of misfolded α-syn in Parkinson’s 
disease (bottom).

five coronal slices and created concentration 
maps to illustrate the spreading pattern. 
Each brain region displayed a distinct and 
dynamic spreading profile with its own 
characteristic timeline of initiation and 
progression. Strikingly, regions with a direct 
anatomical connection to the injection site 
displayed a higher degree of pathology than 
remotely connected regions.

To computationally quantify the 
correlation between anatomic connectivity 
and pathological spreading, Henderson et al.4 
created a network diffusion model based 
on connectivity maps of the Allen Brain 
Institute mouse brain. This model represents 
the individual brain regions through 116 
nodes and their connections through 
connectivity-weighted directed edges. In 
the initial model, pathological α-syn was 
hypothesized to travel retrogradely within 
the network, proportional to the density 
of axonal connections. Notably, with only 
one mechanism, anatomical connectivity, 
and one free parameter, timing of spread, 
this model already explained much of the 
experimentally observed pathological  
α-syn spread. To explain the remaining 
difference between experiment and 
simulation, the authors consulted the 
local α-syn expression levels. In a clever 
improvement of the model, they  
weighted diffusion by α-syn expression  

and created the first brain network model 
that directly correlates spreading of 
misfolded protein to two intrinsic features 
of the brain, anatomical connectivity and 
protein expression.

The most innovative aspect of this 
study is that it establishes, calibrates and 
validates a new technology, protein-
expression-weighted brain network 
modeling, to understand, explain and 
predict pathological protein spreading in 
neurodegenerative disease (Fig. 1). Properly 
calibrated and validated, such models 
are powerful tools to quickly elaborate 
what-if scenarios and answer fundamental 
questions of pathological spread9: What 
are the underlying mechanisms of protein 
pathogenesis? Is spreading driven by 
extracellular diffusion or intracellular 
transport? Do misfolded proteins propagate 
retrogradely or anterogradely? How 
do protein expression levels modulate 
pathogenesis? Brain network modeling 
encodes the answers to these questions 
in the adjacency matrix, a matrix with 
116 rows and columns, one for each brain 
region. Its diagonal terms tell us how well 
a region is connected, and its off-diagonal 
terms characterize its connectivity to all 
other regions10. We can virtually probe 
potential spreading mechanisms—quickly 
and efficiently—by weighting the entries 

of this matrix, by distance, by connectivity 
or both11, by matrix transposition, or by 
weighting by individual protein expression 
levels4. Or we can identify vulnerable 
brain regions by virtually probing different 
seeding locations to identify central 
spreading hubs12. In essence, brain network 
models can rapidly test different hypotheses 
of spreading patterns, timing, directionality 
and vulnerability.

A wave of recent research has begun to 
validate network diffusion models using 
patterns of tissue atrophy rather than  
protein pathology since atrophy patterns  
are readily available from magnetic 
resonance imaging13. Yet what is truly  
new and notable about the study by 
Henderson et al.4 —and unique to studying 
pathogenic protein spreading in mice—is 
the direct assessment of the pathogenic 
protein itself, the availability of directional 
connectivity, and the precise control of the 
injection site and timing. However, in view 
of the fast developments in neuroimaging 
and the rapid growth of public databases 
like the Human Connectome Project or 
the Alzheimer’s Disease Neuroimaging 
Initiative, it seems reasonable to expect that 
we will soon have access to longitudinal 
human disease data to validate network 
diffusion models for neurodegeneration  
in humans.

The concept of linear network diffusion 
is compelling and powerful, but, at the 
same time, oversimplifies a disease process 
as complex as that of Parkinson’s disease. 
Indeed, Henderson et al.4 acknowledge 
this limitation, and improve the fit of their 
model by weighting diffusivity by protein 
expression levels. However, selectively 
increasing or decreasing network diffusion 
is a rather ad hoc and phenomenological 
approach. Instead, we could combine  
global modeling of network diffusion13 
with local modeling of aggregation 
kinetics14. In fact, this would result in a 
mechanistic multiscale model in which 
the concentrations and aggregate sizes 
of misfolded proteins emerge naturally, 
dynamically and independently at each node 
and propagate across the network through 
its connectivity-weighted edges15.

What is most compelling about 
Henderson et al.’s network analysis of 
pathological α-syn spread in mice is 
that the underlying paradigm naturally 
generalizes to other pathological proteins 
and to humans. For example, a recent study 
used a similar network model to simulate 
amyloid-β pathology and found a good 
agreement with the amyloid-β patterns in 
positron emission tomography scans from 
hundreds of brains at different stages of 
Alzheimer’s disease12. Undoubtedly, network 
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modeling of neurodegeneration is quick 
and easy: simulating the spatiotemporal 
evolution of aggregate size distributions, 
biomarker curves and infection times across 
the human brain throughout a period of 
30 years takes less than ten seconds on a 
standard laptop computer. This 30-year 
interval between the first evidence of 
protein aggregation, neuronal death, tissue 
atrophy and clinical symptoms presents 
a window of opportunity for therapeutic 
intervention. Computational simulations 
can provide mechanistic insight into the 
precise interplay, sequence and timeline of 
these neurodegenerative events9.

At present, there is no cure for 
neurodegenerative disease. Current 
treatment strategies focus primarily on 
managing symptoms: active immunization 
or injection of monoclonal antibodies 
that target α-syn can decrease pathogenic 
α-syn spread, increase neuronal protection 
and slow disease progression in mice, 
and the first immunotherapies that target 

α-syn have passed stage I clinical trials 
in humans8. At a practical level, testable, 
quantitative, predictive network models 
of protein spreading can guide these new 
therapeutic approaches, for example, by 
promoting protein clearance and blocking 
protein aggregation at the network nodes or 
by modulating intercellular spreading and 
synaptic transport along the network edges. 
Fueled by the growing availability of public 
databases for healthy and diseased human 
brains, new in vivo imaging techniques, 
and new analysis tools inspired by machine 
learning, there is hope that pre-symptomatic 
therapies to slow down neurodegeneration 
could become a reality in the near future. 
Combining longitudinal experimental and 
computational analyses of pathological 
protein spread is an important first step in 
this direction. ❐
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