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Abstract
Chronic traumatic encephalopathy is a progressive neurodegenerative disorder that results from repetitive impacts to the head.
Its distinguishing feature is an accumulation of abnormal tau proteins in characteristic regions within the brain. Histopatholog-
ical studies reveal that tau consistently localizes at the depth of cerebral sulci; yet, themechanistic origin of this pattern remains
unclear. Here we show that a continuum damage model, enhanced with nonlocal gradients, can explain the initial distribution
of abnormal tau proteins. We hypothesize that tau aggregation is associated with neuronal death, which we represent as tissue
softening and stiffness degradation. Our simulations correctly identify the initial locations of tau deposition, at the depth of
cerebral sulci, from where damage spreads within the cortical layer and then across the entire brain. Our computational model
has the potential to provide a mechanistic explanation of the stereotypic histopathology of chronic traumatic encephalopathy
and predict the cumulative effects of repeated mild traumatic brain injuries.

Keywords Chronic traumatic encephalopathy · Mild traumatic brain injury · Continuum damage mechanics · Gradient
damage · Finite element modeling

1 Motivation

Traumatic brain injuries constitute a growing health issue
worldwide [30]. Following extensive media coverage of
sport-related head injuries, traumatic brain injuries gained
an increased attention in the scientific community over the
past few years [21,40]. Chronic traumatic encephalopathy is
a progressive neurodegenerative disease that affects patients
at an early age and is caused by repetitivemild traumatic brain
injuries. Chronic traumatic encephalopathy shares many fea-
tures with other pathologies, but is specific in the sense that it
results from a combination of both short-term biomechanical
damage and long-term biochemical damage [43]. The early
stages of the disease are characterized by highly localized
impaired areas, potentially presenting axonal failure, simi-
lar to acute traumatic brain injury [21], while the later stages
appearmore similar to long-term neurodegenerative patholo-
gies such as Alzheimer’s disease [5].
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From a histopathological point of view, chronic traumatic
encephalopathymanifests itself by an accumulation of abnor-
mally phosphorylated tau proteins within the brain [29]. In
the healthy brain, tau proteins interact and help stabilizing
axonal microtubules, which are responsible for the struc-
tural stability and the intracellular transport in the axons [11].
High strains and strain rates cause tau proteins to loose part
of their ability to link to microtubules and to misfold into
so-called neurofibrillary tangles [41]. The loss of stabilizing
tau proteins triggers the depolymerization of microtubules,
destabilization of axons, loss of axonal transport, and, even-
tually, cell death [10].

Figure 1 shows post-mortem immunostaining of brain tis-
sues affected by chronic traumatic encephalopathy, where
tau protein tangles have accumulated at the depth of corti-
cal sulci and around blood vessels [28]. Chronic traumatic
encephalopathy is a progressive pathology that develops over
a long-time span. In the early stage, tau protein tangles accu-
mulate in localized areas. Then,misfolded proteins propagate
to connected regions and gradually spreads across the whole
brain [46]. The last stage of the disease is associated with
structural degradation and brain atrophy [19]. Figure 2 high-
lights the successive stereotypic stages of chronic traumatic
encephalopathy [28].
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Fig. 1 Characteristic histopathological features of chronic traumatic
encephalopathy. Damage, indicated through the aggregation of mis-
folded tau proteins, is first visible at the depth of cerebral sulci, left, and
around small blood vessels, right; adapted with permission [28]

Stage 1 Stage 2 Stage 3 Stage 4

Fig. 2 Characteristic progressive stages of chronic traumatic
encephalopathy. Damage begins through the focal accumulation of tau
protein tangles at the depth of cerebral sulci (Stage 1); then protein
misfolding propagates from the initial punctual locations to the closely
surrounding cortex (Stage 2); until misfolded tau proteins are broadly
spread across the brain (Stage 3); ultimately tau pathology affects the
entire cerebral cortex and triggers brain atrophy (Stage4); adapted with
permission [28]

Since the accumulation of tau is associated with cogni-
tive impairment, tau holds promise as an early biomarker
for neurodegeneration. Current research efforts are under-
way to selectively image tau in vivo and develop tau tracers
for positron emission tomography [44]. While the in vivo
detection of misfolded tau proteins remains challenging, the
technique should enable early diagnosis of the disease and
close monitoring of its progression. Yet, to date, the only
reliable tool to diagnose chronic traumatic encephalopathy
is post-mortem histopathology [29], similar to Fig. 1. Com-
putational simulations could help address this challenge and
provide insight into the complex initiation and propagation
of neurodegeneration across the brain.

Initially focusing on acute traumatic brain injury, compu-
tational simulations aimed at determining damage predictors
and injury level thresholds for brain tissue impairment.
These thresholds were correlated with experimental data
from animal models [49]. Strain and strain rate levels were
identified to predict brain tissue degradation. To calibrate
a widely used head injury criterion, studies characterized
the effects of impact loading on two-dimensional transver-
sal brain slices [32]. The highly localized initiation of tissue
impairment in traumatic brain injury supported the hypoth-
esis that the brain convoluted geometry played an important

role in damage accumulation. By accounting for brain mor-
phology, numerical simulations confirmed that the brain
mechanical response to various loading scenarios was max-
imal in specific locations, as observed in practice. While
initial studies investigated the influence of brain morphol-
ogy on its mechanical response to head rotations in idealized
two-dimensional brain slices [7], more sophisticated anal-
yses used three-dimensional brain models extracted from
magnetic resonance images [20]. Recent studies predicted
the initial location of damage using high fidelity three-
dimensional brain models exposed to high impact loading
[16].

Most brain injurymodels focus on the immediate response
using elastic or viscoelastic constitutive models [8]. While
elasticity and viscoelasticity seem reasonable to explore
injury level thresholds in response to a single severe traumatic
brain injury, they cannot account for the progressive degener-
ation in response to several moderate traumatic brain injuries
during which the tissue might be irreversibly impaired [19].
As Fig. 2 suggests, degradation starts spreading from these
initial damaged locations, which are strongly degraded in the
final stage of the pathology [28]. There is a general agree-
ment that the functional degradation of brain tissue is closely
related to its structural degradation and, ultimately, to cere-
bral softening [18]. Encephalomalacia is one formof cerebral
softening that can result from cerebral infarction, cerebral
ischemia, or traumatic brain injury [23]. Previous studies
have measured brain tissue softening in response to brain
tissue damage ex vivo [13] and visualized encephalomalacia
with magnetic resonance imaging in vivo [37]. Magnetic res-
onance elastography now allows us to quantify brain tissue
softening in response to brain damage non-invasively in vivo
[47] and could serve as a biomarker to monitor the progres-
sion of injury-induced cerebral softening both in space and
time.

Herewemodel the irreversible behavior of the brain tissue
using continuum damage mechanics [26] to better under-
stand the initiation and propagation of chronic traumatic
encephalopathy. Recent studies have shown that continuum
damage mechanics is a powerful tool to explain the gradual
structural degeneration on the axonal level [9] and on the tis-
sue level [15]. We focus on the early stages of damage, the
initiation of neurodegeneration within the brain, and on the
biomechanical aspects of tissue degradation [18]. First, we
confirm previous results related to the location of the initial
degeneration [29]. Then, we simulate the gradual accumula-
tion of misfolded tau proteins using the standard concepts of
continuum damage mechanics [39] enhanced by local gradi-
ent terms [33]. Since neurofibrillary tangles have a disruptive
effect on axonal stability and eventually lead to cell death, we
assume that the deposition ofmisfolded proteins is associated
with a softening behavior of the tissues. Inspired by classi-
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cal damage mechanics, we model this structural degradation
through a single scalar-valued damage variable.

The remainder of his manuscript is organized as fol-
lows. Section 2 briefly describes the continuum damage
model used to describe the irreversible brain tissue behav-
ior. As damage is a strain softening phenomenon, a gradient
enhanced approach is exploited to regularize the problem
and its numerical implementation is recalled. Section 3
focuses on the brain model. Idealized two-dimensional brain
slices are considered and their geometries and properties are
detailed. Section 4 first illustrates the damage model and the
effect of the associated regularization, then gathers numerical
results obtained from linear acceleration loading scenarios
on two-dimensional brain slices. Finally, the limitations and
perspectives offered by the proposed damage framework are
discussed in Sect. 5.

2 Methods

2.1 Continuum damagemodel

We characterize brain tissue through an isotropic continuum
damage model in terms of the strain energy per unit unde-
formed volume [38,39],

Ψ = [ 1 − d ] W , (1)

where d is a scalar damage value and W is the elastic strain
energy.Damage evolves gradually from the undamaged state,
d = 0, towards the fully damaged state, d = 1. We select an
exponential type damage evolution law [18],

d = exp (− exp [η (κ1 − κ)]) , (2)

where the internal variable κ keeps track of the maximum
nonlocal elastic strain energy W̄ throughout the loading his-
tory,

κ = max−∞<τ<t

{
W̄ (τ ), κ0

}
, (3)

the parameter η defines the slope of the damage evolution
and κ0 and κ1 are damage thresholds beyond which dam-
age occurs. This damage law closely mimics the available
experimental data [2], and can account for an initial baseline
damage d > 0 at W̄ = 0, that is not mechanically induced,
but, for example, age-related.We further specify themeaning
and values of these parameters in Sect. 3. In the discrete finite
element setting, strain softening behavior generally leads to
strain localization and a spurious mesh sensitivity [4]. To
avoid these issues, different regularization approaches, rely-
ing on the introduction of an internal length scale, have been
proposed [25]. Here we adopt an implicit definition of the
nonlocal strain energy W̄ ,

W − l20 Div(∇W )
.= W , (4)

by averaging the local strain energy W over a domain char-
acterized by a length l0 in the reference domain B0 [42]. We
assume a strain energy function W of neo-Hookean type,

W = 1

2
λ ln2(J ) + 1

2
μ [F : F − ndim − 2 ln(J )] . (5)

Here,

F = ∇ϕ and J = det(F) , (6)

are the deformation gradient and the Jacobian, ndim is the
number of spatial dimensions, and λ and μ are the Lamé
coefficients, which, in the limit case of small deformations,
translate into Young’s modulus E and Poisson ratio ν as,

λ = Eν

[1 + ν][1 − 2ν] and μ = E

2[1 + ν] . (7)

Throughout the entire loading history, we solve the balance
of linear momentum,

Div(P)
.= f (8)

the equilibrium between the internal forces, the divergence
of the Piola stress, Div(P), and the external forces, f . The
total Piola stress, P = ∂Ψ /∂F, and its elastic counterpart,
Pe = ∂W/∂F, follow as

P = [ 1− d ]Pe with Pe = μ F + [ λ ln(J ) − μ ]F−t. (9)

2.2 Computational damagemodel

To solve the mechanical equilibrium equation (8) and the
nonlocal strain energy equation (4), we translate them into
their residual forms,

Rϕ = Div(P) − f
.= 0 ,

RW = l20Div(∇W ) − W + W
.= 0 .

(10)

We discretize the domain of interest, B0 = Unel
e=1Be

0 by nel
finite elements and we interpolate the deformation ϕ, the
nonlocal energy W , and their test functions δϕ and δW by
their nodal values ϕk , Wl , δϕi and δW j with the element
shape functions Nϕ and NW ,

δϕ =
∑

i

Nϕ
i δϕi and ϕ =

∑

k

Nϕ
k ϕk ,

δW =
∑

j

NW
j δW j and W =

∑

l

NW
l Wl ,

(11)

where i, j, k, l are the local element nodes. To avoid stress
oscillations, we choose quadratic interpolation functions for
the displacement field and linear interpolation functions for
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Fig. 3 Discretization fields and associated degrees of freedom on a
quadrangular element

the nonlocal strain energy field, i.e., i, k = 1, . . . , 8 and
j, l = 1, . . . , 4 as in Peerlings et al. [34]. Figure 3 illustrates
the resulting degrees of freedom for one element. We assume
a plane strain state [17] and perform a full integration with 3
× 3 integration points per element.

We apply Dirichlet boundary conditions for the mechan-
ical equilibrium problem (10.1), ϕ = ϕ, and homogeneous
Neumann boundary conditions for the nonlocal energy prob-
lem (10.2),∇W ·N = 0, where N is the outward unit normal
vector in the reference domain. Integrating the residuals (10)
over the domain of interestB0, multiplying themwith the test
functions δϕ and δW (11), and integrating their first terms
by parts, yields the weak form of the governing equations,

Rϕ
I =

nel
A
e=1

∫

Be
0

∇Nϕ
I · P + Nϕ

I f dVe =̇ 0 ,

RW
J =

nel
A
e=1

∫

Be
0

∇NW
J · l20 ∇W + NW

J [W − W ] dVe =̇ 0.

(12)

Here, the operatorAnel
e=1 denotes the assembly of all local ele-

ment nodes i and j to the global nodes I and J . To solve the
coupled nonlinear set of equations (12), we adopt an incre-
mental iterative scheme and linearize the equations,

Rϕ
I +

∑

K

Kϕϕ
I K dϕK +

∑

L

KϕW

I L dWL =̇ 0,

RW
J +

∑

K

KWϕ
J K dϕK +

∑

L

KWW
J L dWL =̇ 0.

(13)

with the following contributions to the global tangent matrix,

Kϕϕ
I K = dRϕ

I

dϕK
=

nel
A
e=1

∫

Be
0

∇Nϕ
I · dP

dF
· ∇Nϕ

K dVe ,

KϕW

I L = dRϕ
I

dWL
=

nel
A
e=1

∫

Be
0

−∇Nϕ
I · dd

dW
Pe NW

L dVe ,

KWϕ
J K = dRW

J

dϕK
=

nel
A
e=1

∫

Be
0

−NW
J Pe · ∇Nϕ

K dVe ,

KWW
J L = dRW

J

dWL
=

nel
A
e=1

∫

Be
0

NW
J NW

L + ∇NW
J · l20 ∇NW

L dVe.

(14)

Fig. 4 Head rotations as injury mechanisms in chronic traumatic
encephalopathy: modeling the mechanical response of a brain slice

The fourth order tensor of the damage moduli is

dP
dF

= [ 1 − d ] [ λ F−t ⊗ F−t + μ I ⊗ I

+[ μ − λ ln(J ) ] F−t⊗F−1
]
,

(15)

where the components of the following fourth-order products
are {•⊗ ◦}i jkl = {•}ik{◦} jl and {•⊗ ◦}i jkl = {•}il{◦} jk . The
derivative of the damage value with respect to the nonlocal
strain energy is

dd

dW
= η d exp(η [κ1 − κ ]) . (16)

3 Brain model

In this study, we focus on head rotations as loading scenarios
since rotational accelerations are considered a major injury
mechanism in traumatic brain injury and chronic traumatic
encephalopathy [21].

Figure 4 illustrates our idealized model problem to sys-
tematically investigate the effect of head rotations [7]. We
model a two-dimensional representative section of the brain
that is 30mm long and 20mm high and includes both gray
matter, represented as a 2.5mm thick upper layer and white
matter as the underlying substrate.

Figure 5 illustrates our loading conditions. We focus on
linear acceleration loadings. For simplicity, we restrict our-
selves to a quasi-static analysis and apply accelerations as
equivalent forces, f I = ρ0

∑
i N

ϕ
i ϕ̈i , which we interpolate

from the prescribed nodal accelerations ϕ̈ using the interpo-
lation functions Nϕ

i and the density ρ0. For the deformation
field, we apply periodic Dirichlet boundary conditions at the
left and right boundaries, enforce zero Dirichlet boundary
conditions at the bottom, and apply zero Neumann bound-
ary conditions along the folds at the top. For the nonlocal
energy field, we apply vanishing Neumann boundary condi-
tions along the entire boundary.
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Fig. 5 Two-dimensional brain
model with two sulci and three
gyri. Dimensions, left, and
boundary and loading
conditions, right

l
=

20
m

m

L = 30 mm

tc = 2.5 mm

ϕ̈max

ϕ̈min

Fig. 6 Two-dimensional brain model, geometries, and meshes. Smooth surface, left, two equivalent sulci, center, and one deep and one shallow
sulcus, right

Figure 6 shows our two model systems: one with two
equivalent sulci and onewith a deep and a shallow sulcus.We
discretize the first system with 11,500 and the second with
11,699 quadrilateral finite elements, corresponding to 3438
and 2941 elements for the gray matter layer and 8062 and
8758 elements for the white matter substrate. This results in
discretizations with 93,612 and 95,084 degrees of freedom,
of which 70,074 and 71,188 are associated with the defor-
mation and 23,538 and 23,896 with the nonlocal energy.

3.1 Model parameters

We model gray and white matters as neo-Hookean materi-
als, as expressed in Eq. (5). Table 1 summarizes the material
parameters of our brain model [6]. The subscripts w and g
indicate the white and gray matter. We calibrate our dam-
age law using in vivo experiments on guinea pigs optical
nerves [2]. The study reports three injury thresholds in terms
of the Green-Lagrange strain, the conservative threshold of
0.14 at which all axons are still intact, the liberal thresh-
old of 0.34 at which all axons are fully damaged, and the
optimal threshold of 0.21 at which axons transition between
intact and damaged. Figure 7 illustrates our exponential
damage law, as defined in Eq. (2), calibrated to interpolate
these three data points [18]. Since gray and white matter
tissues present different microstructures, they might exhibit
a different damage behavior and, with it, different damage
parameters. Unfortunately, as experimental results on dam-
age are only available for white matter in the literature, we
assume that both gray and white matters are characterized by
the same damage threshold values. Table 2 summarizes the
corresponding damage parameters.

Table 1 Brain model—elastic material parameters

Parameters Values Units References

Stiffness

μw 1.15 kPa [6]

νw 0.45 –

μg 2.07 kPa

νg 0.45 –

Density

ρg 1040 kg/m3 [3]

ρw 1040 kg/m3

0 0.2 0.4 0.6 0.8
0

0.25

0.5

0.75

1

Strain energy W [kPa]

D
am

ag
e
d
[−

]

Fig. 7 Damage model parameterized in terms of the strain energy. The
three crosses represent three strain-based damage thresholds [2], the
solid line their interpolation using an exponential damage law [18]

4 Results

4.1 Model illustration and sensitivity analyses

First, we illustrate the damage model and the effects of its
nonlocal regularization. Figure 8 shows our idealized two-
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Table 2 Brain model—damage material parameters

Parameters Values Units References

Damage thresholds

κ0 0.0 kPa [2]

κ1 0.2 kPa

Damage slope

η 10 kPa−1
l
=

15
m

m

L = 10 mm

u
=

2.
75

m
m

Fig. 8 Two-dimensional model system with one sulcus and two gyri
to demonstrate the nonlocal effects and calibrate the damage model.
Dimensions, left, and loading conditions, right

dimensional model system, 10mm long and 15mm high,
made of white matter only. Motivated by similar studies in
the literature [7], we fix the horizontal and the vertical dis-
placements of the model at its left and bottom boundaries,
respectively, and prescribe the horizontal displacements on
the right boundary, see Fig. 8.We solve the linearized system
of equations (13) using a displacement-controlled Newton-
Raphson scheme. We define the convergence threshold as a
residual norm of 10−5 relative to its initial value.

4.1.1 Example 1: sensitivity with respect to mesh size

This first example demonstrates the ability of the regular-
ization to achieve mesh-independent results. We discretize
the slice in Fig. 8 with 716, 2735 and 10562 quadrilateral
finite elements, corresponding to mesh sizes of h=0.5mm,
0.25mm, and 0.125mm, respectively. For this example, we
select a constant internal length of l0 = 1.5mm. Figure 9
shows the local strain energy, the nonlocal strain energy,
and the damage fields for the three different discretizations
on the deformed configuration. Figure 10 summarizes the
corresponding force-displacement curves for the three sim-
ulations. The reaction forces are normalized with respect to
the maximum value reached during the loading history for
each simulation. These results confirm the efficiency of the
nonlocal regularization as the structural response is indepen-
dent of the mesh size. For each mesh, the maximal nonlocal
strain values as well as the damage areas are similar. The
force-displacement curves for the three discretizations are
virtually overlapping.

4.1.2 Example 2: sensitivity with respect to internal length
scale

This second example investigates the influence of the inter-
nal length parameter l0. We consider three internal lengths,
l0 = 1.5mm, 2mm, and 2.5mm, while keeping the mesh
size fixed at h = 0.25mm. Choosing the internal length
scale has been a matter of ongoing debate in nonlocal and
gradient continuum theories. In theory, we could determine
the internal length scale through inverse analysis and param-
eter identification [27]. In practice, the internal length scale
is likely related to a microstructural length, for example,
the size of a neuron [14]. Unfortunately, up to date, there
are no experimental data that characterize this length scale.
Here, we select an internal length that is smaller than the
cortical thickness. This provides physiologically realistic
results in accordance with histological observations, which
have shown that damage develops in and is initially con-
strained to the cortical layer. Figure 11 shows the local strain
energy, the nonlocal strain energy, and the damage fields
for the three internal lengths on the deformed configuration.
Figure 12 provides the corresponding force-displacement
curves. These results show that the structural response is
highly dependent on the selected internal length value [1].
Working with larger internal lengths, the areas affected by
damage are wider, while the maximal damage value reached
drops. The force-displacement curves become steeper and
steeper as the internal length value is decreased.

4.1.3 Example 3: sensitivity with respect to stiffness and
nonlocal averaging

This example emphasizes the importance of brain tissue
material properties and their influence on the mechanical
response to external loadings. In the case of nonlocal dam-
age, stiffness heterogeneities have additional implications,
which we investigate based on the averaging of the nonlocal
degrees of freedom and its impact on the overall response.
Since the stiffness values of gray and white matter remain a
controversial issue, we consider both, a system in which gray
and white matter are equally stiff, μg = μw = 1.15 kPa,
and a system in which gray matter is 1.8 times stiffer than
white matter, μg = 2.07 kPa and μw = 1.15 kPa [6]. First,
we consider a single nonlocal field for the entire domain
regardless of the material subdomains. Then we introduce
separate nonlocal fields for each material subdomain. For
each cases, we use a mesh size fixed at h = 0.25mm. We
study three cases: a homogeneous system in which gray and
white matter are equally stiff with a single nonlocal field, a
heterogeneous system with a stiffer gray matter layer rest-
ing on a softer white matter substrate with a single nonlocal
field for both subdomains, and a similar heterogeneous sys-
tem but now with separate nonlocal fields for each material
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Mesh Local strain energy Nonlocal strain
energy
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W [Pa]
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W [Pa]

0 0.1 0.2 0.3 0.4 0.5
d [-]

Fig. 9 Influence of the mesh size: local strain energy, nonlocal strain energy, and damage fields on the deformed configuration for three different
discretizations with h = 0.5mm, 0.25mm, and 0.125mm
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Fig. 10 Influence of the mesh size: force versus displacement curves
for three different discretizations h = 0.5mm, 0.25mm, and 0.125mm

subdomain. In practice, the first and second case allow dam-
age to propagate from onematerial to another, while the third

case prevents this propagation and confines the strain energy,
and with it the damage, to evolve independently in each sub-
domain. For all three cases we select an internal length of
l0 = 1mm. Figure 13 shows the local strain energy, the
nonlocal strain energy, and the damage fields of the three
cases described above on the deformed configuration. The
first and second cases with a single nonlocal field exhibit
similar patterns for the nonlocal strain energy and damage
fields. Damage can propagate smoothly from one material to
the other. The second and third cases with pronounced stiff-
ness differences have quasi-similar local strain energy fields.
They present a similar nonlocal strain energy pattern, but a
rather different behavior at the material interface. In fact, the
third case is characterized by a discontinuity in the nonlocal
strain energy field and generates a confinement of the non-
local strain energy to each material subdomain and thereby
confines damage mainly to the gray matter upper layer. This
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Internal length Local strain energy Nonlocal strain
energy

Damage

0 500 1000 1500 2000
W [Pa]

0 50 100 150 200 250
W [Pa]

0 0.1 0.2 0.3 0.4 0.5
d [-]

Fig. 11 Influence of the internal length l0: local strain energy, nonlocal strain energy, and damage fields on the deformed configuration for three
different internal length values l0 = 1.5mm, 2mm, and 2.5mm
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Fig. 12 Influence of the internal length l0: force versus displacement
curves for three different internal length values l0 = 1.5mm, 2mm, and
2.5mm and for the elastic case

situation most closely mimics the observed damage pattern
in chronic traumatic encephalopathy, especially in the initial
stages where damage initiates at the depth of the cerebral

sulci as in Fig. 1. We therefore adopt the third setup in the
following examples.

4.2 Brainmodel examples

This last example focuses on the brain geometry and its influ-
ence on the mechanical response to external loadings. We
consider three geometries: a system with a smooth surface,
a system with two equivalent deep sulci, and a system with
one deep and one shallow sulcus, as shown in Fig. 6. In
all three cases, we introduce a material interface between
gray and white matter and discretize it using a conforming
mesh with different material properties in each material. In
all three cases, we select an internal length of l0 = 1mm.We
apply acceleration loadings, imposed through static equiva-
lent acceleration forces, and periodic boundary conditions as
illustrated in Fig. 5. Since we now prescribe forces instead of
displacements, and the damaged brain tissues can exhibit a
snap-through or snap-back behavior, we solve the linearized
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Configuration Local strain energy Nonlocal strain
energy

Damage

Ew = Eg

Ww = W g

Ew �= Eg

Ww = W g
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Ww �= W g
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W [Pa]
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0 0.1 0.2 0.3 0.4 0.5
d [-]

Fig. 13 Influence of a material interface between the upper gray matter
layer and the white matter substrate: local strain energy, nonlocal strain
energy, and damage fields on the deformed configuration for homo-

geneous stiffness with a single nonlocal field, heterogeneous stiffness
with a single nonlocal field, and heterogeneous stiffness with separate
nonlocal fields for each material subdomain

0 2 4 6
0

0.2

0.4

0.6

0.8

1
·10−6

Displacement [mm]

Fo
rc
e
[ N

]

0 2 4 6
0

0.2

0.4

0.6

0.8

1
·10−6

Displacement [mm]

Fo
rc
e
[N

]

0 2 4 6
0

0.2

0.4

0.6

0.8

1
·10−6

Displacement [mm]

Fo
rc
e
[N

]

Fig. 14 Influence of brain geometry: force-displacement curves of the upper right corner node of the brain slices for a smooth surface, left, for the
two equivalent sulci, center, and the deep and shallow sulcus, right. The cross and circle show the force levels of the snapshots in Figs. 15 and 16
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Configuration Local strain energy Nonlocal strain energy Damage

0 250 500 750
W [Pa]

0 50 100 150
W [Pa]

0 0.02 0.04 0.06 0.08 0.1
d [-]

Fig. 15 Influence of brain geometry: local strain energy, nonlocal strain energy, and damage fields for a smooth surface, for two equivalent sulci
and for deep and shallow sulci during loading

problem in Eq. (13) using a Riks-Crisfield iteration scheme
[36]. At the beginning of the simulation, we compute the
equivalent static forces that represent the acceleration pattern
in Fig. 5 and then apply those forces incrementally through-
out the simulation. We define the convergence threshold as a
residual norm of 10−5 relative to its initial value. Figures 15
and 16 provide snapshots of the local strain energy, the non-
local strain energy, and the damage fields for each case at a
given force level during both the loading and the unloading
stages, as illustrated in Fig. 14. In the first case, strain max-
ima localize at the bottom of the slice where it is fixed. As
a natural consequence of the applied boundary conditions, a
distinct damaged layer develops at the bottom of the spec-
imen. In the second case with two equivalent sulci, strain
maxima localize at the bottom of the sulci. Damage devel-
ops in these localized areas and ismainly confined to the gray
cortical layer. Both sulci seem to equally support the load. In
the third case with different sulci, strain maxima occur at the
depth of the deep sulcus. The deep sulcus undergoes large
deformations and the cortex is drastically affected by damage
in this location. The deep sulcus shields the shallow sulcus,
and both the strain energy and the damage are rather low
within that region. For these simulations, we conclude that
geometric effects are extremely important in the case of brain
damage. The brain’s convoluted geometry is not only key for
its function, but also influences its mechanical behavior.

5 Discussion

Chronic traumatic encephalopathy is a progressive neurode-
generative disease that develops following repetitive mild
traumatic brain injury. The pathology is characterized by an
accumulation of tau protein tangles within the brain. Here
we use continuum damage mechanics to represent tau inclu-
sions and the subsequent neurodegeneration of the tissues.
The main interest of this approach resides in introducing a
history dependence in the model to represent the chronic,
accumulative, and irreversible nature of neurodegeneration
observed under these conditions.

We exploit classical continuumdamagemechanics, where
damage is represented by a single scalar-valued variable that
evolves from zero to one, to represent the gradual degrada-
tion of the brain tissue properties. Since damage induces a
strain softening behavior, its implementation within numer-
ical methods is associated with strain localization and a
spurious mesh dependency [45]. We regularize the prob-
lem by introducing a length scale using a gradient enhanced
approach [24]. This regularization is particularly well suited
to deal with the complex and convoluted geometry of the
brain. In contrast to other nonlocal approaches including inte-
gral methods, gradient methods avoid spurious interaction
between neighboring but disconnected regions [35], which
is especially important to avoid averaging across neighbor-
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Configuration Local strain energy Nonlocal strain energy Damage

0 500 1000 1500
W [Pa]

0 100 200 300 400
W [Pa]

0 0.2 0.4 0.6 0.8 1
d [-]

Fig. 16 Influence of brain geometry: local strain energy, nonlocal strain energy, and damage fields for a smooth surface, for two equivalent sulci
and for deep and shallow sulci during unloading

ing gyri and sulci. We calibrate the damage law based on the
experimental results from the literature [2].We focus on head
acceleration loadings and studywith two-dimensional model
systems that mimic the characteristic convoluted geometry
of the brain.

As in previous studies [16], the continuum damage frame-
work predicts that neurodegeneration first develops in highly
localized regions of the brain, see Figs. 15 and 16. In fact,
driven by the convoluted geometry, the mechanical response
of the brain tissue, the strain energy, is maximal at the bot-
tom of the cerebral sulci and damage is initiated in these
specific areas. These results are in accordance with post-
mortemhistopathology studies and could explain the location
of tau aggregates and subsequent neurodegeneration during
the early stages of chronic traumatic encephalopathy. We
would like to note that this example focuses on the initial
sites of damage, which could have been assessed equally
well with existing hyperelastic models [7]. In a follow up
study, we are currently using the model to explore the irre-
versible accumulative nature of damage by investigating the
effects of multiple repeated injuries.

We investigate the influence of the mechanical properties
of gray and white matters, as material interfaces are associ-
ated with a discontinuity in the strain field and might have
an important effect on the mechanical response. By includ-
ing a material interface between the gray matter cortex and
the underlying white matter substrate, we show that dam-

age develops and is initially restricted to the cortex, as in
Figs. 13, 15 and 16. These results are also in agreement with
the histopatology of chronic traumatic encephalopathy brains
and could explain why tau deposition is initially constrained
to the cortical layer. Although the proposed damage frame-
work allows us to further understand and model the initial
stages of chronic traumatic encephalopathy, several limita-
tions should be addressed in future works.

A more extensive set of experimental data would help to
more reliably calibrate the damage parameters. In this work,
the calibration of the damage law is based on tensile tests on
guinea pigs optical nerves [2]. The authors detected structural
impairments of the optical nerves through staining of dead
cells in the tissue. First, although we expect brain tissues to
behave similarly within species, it remains to be proven that
the evaluated strain thresholds are valid for human brain.
Moreover, the identification of the damage thresholds was
based on cell death detection, which happens later as a con-
sequence of tau deposition [43]. Therefore, we expect lower
damage thresholds for the initiation of tau aggregation in
chronic traumatic encephalopathy. However, since biomark-
ers for chronic traumatic encephalopathy remain difficult to
identify and track and since only a few experimental data sets
are available so far, this parameter calibration can be viewed
as a reasonable first estimation.

So far, we have considered damage to be isotropic.
However, experimental results provided by diffusion tensor
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imaging [31] or magnetic resonance elastography [48] show
that the brain tissue microstructure is highly anisotropic. The
assumption of isotropy might remain valid at the initiation
stage of chronic traumatic encephalopathy, as neurodegen-
eration appears in highly localized and confined areas.
However, the anisotropy of brain tissues, especially in the
white matter regions, will certainly have a drastic impact on
the transport of misfolded tau proteins [22] and should there-
fore be included in the model.

We assumed damage to be symmetric with respect to ten-
sion and compression.Mechanical testing suggests that brain
tissue is softer in tension than in compression [6] and more
likely to damage under tensile loading. Along the same lines,
it is still an open question whether damage is energy driven,
as we assume here, or driven by volumetric or shear deforma-
tions [12]. Studying different damage criteriawould certainly
allow us to further identify the type and the magnitude of
loading necessary to trigger neurodegeneration.

6 Conclusion

Our proposed framework to model neurodegeneration using
continuum damage mechanics can pave the way to fur-
ther understand the initiation phase of chronic traumatic
encephalopathy.Our simulations correctly predict the regions
of initial neurofibrillary tangle deposition and brain damage
located at the depth of the cerebral sulci. Our nonlocal gra-
dient approach provides unique mesh-independent solutions
with similar damage profiles and load-displacement curves
irrespective of the underlying mesh size. Through indepen-
dent nonlocal fields for gray and white matter tissue, damage
remaines initially constrained to the cortical layer, where it
gradually increases, spreads, and propagates. Our model has
the potential to predict the cumulative effects of repeated
mild to moderate head injuries and allows us to illustrate and
investigate how chronic traumatic encephalopathy gradually
affects the brain. The damage model inherently introduces
irreversibility, a feature that captures the accumulating path-
way of chronic neurodegeneration. Ultimately, our goal is to
build on these simple model problems and generate a whole
brain model to simulate the full progression of neurodegen-
eration. Towards this goal, a natural next step would be to
couple our phenomenological damagemodel to amoremech-
anistic interpretation of damage as the result of the build-up
and spreading of pathogenic tau proteins across the brain.
A coupled biochemo-mechanical damage model with the
biochemical concentration of pathogenic proteins and the
mechanical deformation as primary unknowns could provide
insight into the spatio-temporal origin and propagation of
chronic traumatic encephalopathy. A better understanding of
these emerging disease patterns could help identify common
mechanisms of neurodegeneration in repetitive mild trau-

matic brain injury and dementia, and, eventually, provide
new insight into the correlation between chronic traumatic
encephalopathy and early aging.
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