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Abstract

Brain tissue is not only one of the most important but also the most complex and compliant tissue in the human body. While
long underestimated, increasing evidence confirms that mechanics plays a critical role in modulating brain function and dys-
function. Computational simulations—based on the field equations of nonlinear continuum mechanics—can provide important
insights into the underlying mechanisms of brain injury and disease that go beyond the possibilities of traditional diagnostic
tools. Realistic numerical predictions, however, require mechanical models that are capable of capturing the complex and
unique characteristics of this ultrasoft, heterogeneous, and active tissue. In recent years, contradictory experimental results
have caused confusion and hindered rapid progress. In this review, we carefully assess the challenges associated with brain
tissue testing and modeling, and work out the most important characteristics of brain tissue behavior on different length and
time scales. Depending on the application of interest, we propose appropriate mechanical modeling approaches that are as
complex as necessary but as simple as possible. This comprehensive review will, on the one hand, stimulate the design of
new experiments and, on the other hand, guide the selection of appropriate constitutive models for specific applications.
Mechanical models that capture the complex behavior of nervous tissues and are accurately calibrated with reliable and
comprehensive experimental data are key to performing reliable predictive simulations. Ultimately, mathematical modeling
and computational simulations of the brain are useful for both biomedical and clinical communities, and cover a wide range
of applications ranging from predicting disease progression and estimating injury risk to planning surgical procedures.

1 Introduction

Brain tissue is one of the most complex tissues in the human
body. Neurological disorders, including stroke, encephalitis,
dementias, and epilepsy, have been identified as one of the
major public health concerns by the world health organi-
zation. An additional threat are the consequences of neu-
rotrauma with over 2 million people affected by traumatic
brain injury each year [111]. While over the past several
decades, neuroscience has mostly been limited to electro-
physiological, biochemical, molecular and genetic studies
[162], more recent studies show that mechanics plays a
critical role for neuronal function and dysfunction [9, 68].
External mechanical loads may cause damage of brain tis-
sue during traumatic brain or spinal cord injury [101], but
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mechanical cues may also control developmental processes
and progression of disease through mechanosensation of
nerve cells [96, 162]. For instance, mechanics seem to not
only drive cortical folding during mammalian brain devel-
opment [21, 26, 141, 143], but also tumor cell migration
and cell apoptosis [162]. Unphysiological changes in the
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mechanical environment induce cortical malformations [21,
27] associated with schizophrenia [76], autism [129], and
epilepsy [14], or cell death in Alzheimer’s patients associ-
ated with dementia [15].

Computational modeling and personalized simulations
can provide fundamental insights into the underlying mecha-
nisms during injury and disease. Such predictive models not
only reduce the necessity of experiments on humans and ani-
mals, but also allow for the development of novel treatment
strategies or the detailed planning of surgical procedures
[171]. However, realistic predictions of mechanobiologi-
cal processes in the brain require sophisticated mechanical
models that capture the complex and unique characteristics
of this ultrasoft, highly adaptive and heterogeneous tissue.
While great efforts have been made to mechanically model
the behavior of brain tissue in health and disease [68], con-
tradictory experimental results have constantly hindered pro-
gress [29] and caused confusion and delay [7]. This review
aims to explain these discrepancies and provide a compre-
hensive overview on the mechanics of brain tissue.

After addressing the challenges associated with brain tis-
sue testing and modeling in Sect. 2, we review experimental
observations based on different testing techniques to work
out the diverse characteristics of brain tissue behavior under
different loading conditions in Sect. 3. Subsequently, we pre-
sent mechanical modeling approaches that are capable of
mathematically describing the characteristic tissue behavior
in Sect. 4. Finally, we discuss application-specific features
to propose appropriate modeling approaches together with
the corresponding set of material parameters in Sect. 5. We
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will close this review with a short conclusion and open chal-
lenges in Sect. 6.

2 Challenges
2.1 BrainTissue is Ultrasoft

With a shear modulus on the order of one kilopascal [22],
brain tissue is ultrasoft—softer than any other tissue in the
human body. For comparison, Fig. 1 highlights the stiff-
nesses of various organs in our body. Traditional mechani-
cal test setups have originally been designed for much stiffer
materials, even stiffer than bone. The extreme compliance
of brain tissue pushes mechanical testing and modeling
approaches to their limits. On the one hand, boundary con-
ditions might be inappropriate. On the other hand, force sen-
sors reach their sensitivity limit. As a result, early studies
on the stiffness of brain tissue yielded significantly higher
values than more recent studies [59]—the testing devices
used at that time were merely not capable of recording the
accurate tissue responses reliably.

To complicate matters, brain tissue deforms noticeably
due to gravity—even just under its own weight. This could
have important consequences on testing results, especially
when the height of the specimen is relatively large [99].
It is thus difficult to control specimen geometry and local
deformation states during biomechanical testing, which, in
turn, will affect the forces recorded during testing [138].
This implies that the common assumption of homogene-
ous deformation during uniaxial tension or compression
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Fig. 1 Mechanical properties of different human tissues. Brain tissue is one of the softest tissues in the human body
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Fig.2 Damage evolution and fracture process in a (14 mm/9.5 mm
initial height/edge) prismatic specimen of white matter harvested
from the occipital lobe in the frontal direction. Adapted from [58]

Fig. 3 Illustration of adhesion effects during handling of brain tissue
specimens

[22, 121, 137, 140] is debatable [147]. The only alternative
to circumvent this concern are inverse studies, where finite
element simulations are performed to capture local inho-
mogeneities in the deformation. However, it will always be
difficult to exactly match the specimen geometry of experi-
ment and simulation throughout the entire loading history.
In general, ultrasoft tissues undergo large deformations—even
under their own weight—and it is essential to formulate
mechanical models with the framework of nonlinear con-
tinuum mechanics.

2.2 BrainTissue is Highly Fragile

Due to the fragile nature of brain tissue, it is difficult to
control tissue damage during biomechanical testing, espe-
cially when applying large deformations. In white matter
brain tissue, axons, the long and slender nerve fibers, will
tear when loaded above a certain threshold, as illustrated in
Fig. 2 of [58]. Previously, this threshold has been determined
at approximately 18% tensile strain. Measurements above,
or even close to, this damage threshold are likely to render
meaningless results.

In addition, the effect of adhesion, as illustrated in Fig. 3,
enhances the risk of damaging specimens during preparation
and handling [61]. This demonstrates that biomechanical
tests need to be well-designed and performed with excep-
tional caution.

2.3 Brain Tissue is Biphasic

Unlike other soft tissues, the brain is not only ultrasoft, but
also has an exceptionally high water content, 0.83 g/ml in
gray matter and 0.71 g/ml in white matter [180]. From a
total of about 80% water, approximately 20-40% is free
flowing cerebrospinal fluid, while the rest resides inside
the cells. Due to the biphasic nature of brain tissue, it is
difficult to control drainage conditions during biomechani-
cal testing [58]. As a result, depending on the testing setup,
the incompressible fluid is trapped within the tissue or free
to escape, which will largely affect the recorded response.
This interaction between solid and fluid phases is highly
sensitive to the time and length scales [29]. Depending on
the type of loading and the testing setup, e.g., unconfined
compression/extension versus nanoindentation experiments,
different tissue components control the recorded mechanical
stiffness. Nanoindentation experiments on intact brain tissue
slices [20] closely mimic the nature of confined compression
tests, where the fluid phase is mostly kept within the solid
matrix and contributes to the tissue stiffness. In contrast,
during unconfined compression and tension tests, the fluid
is free to escape, and we primarily probe the elastic proper-
ties of the solid skeleton consisting of cells, intercellular
connections, and extracellular matrix. Naturally, these tests
introduce an additional time scale, the time for the fluid to
escape the solid. Therefore, the results are sensitive to the
type of preconditioning and the recovery time between two
consecutive tests [23].

2.4 BrainTissue is Highly Heterogeneous

Brain tissue displays a high degree of microstructural het-
erogeneity, as shown in Fig. 4. Its cellular and extracellu-
lar structure conforms with regionally varying functional
demands, and so do its mechanical properties [173]. For
most practical purposes, it seems too simplistic to consider
brain tissue as a single homogeneous material.

Figure 5 illustrates the major cell types in white and gray
matter tissue. Gray matter regions contain mainly neuronal
cell bodies, protoplasmic astrocytes providing neurons with
nutrients, and microglia as active immune defense. White
matter regions, on the contrary, contain axons, oligodendro-
cytes which wrap isolating myelin sheath around the axons,
fibrous astrocytes, and microglia [27]. Notably, not only the
cellular composition may be relevant for macroscopic tissue
mechanics but also extracellular matrix components. The
latter may show regional trends that even differ from those
of brain cells.

Notably, the microstructure of brain tissue not only var-
ies in space but also in time. When we learn a new task, for
example juggling, the neurons responsible for fine motor
skills will form further connections with one another and
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Fig.4 Microstructure of dif-
ferent brain regions, the cortex
(C), the basal ganglia (BG), the
corona radiata (CR), and the
corpus callosum (CC). Kliiver-
Barrera (K.B.) staining was
used to color myelin wrapped
around nerve fibers in blue,
neuropil in pink, and nerve cells
in purple. Images are shown

at 20 magnification. Adapted
from [22]
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Fig.5 Cellular organization of brain tissue. In white matter (corona
radiata), myelinated axons allow for rapid nerve impulse conduc-
tion; intermediate oligodendrocytes connect and form several myelin
sheaths. Fibrous astrocytes ensure supply of nutrients and synap-
tic processing. In gray matter (cortex), neurons form synapses with

create new synapses. Brain plasticity, the temporal changes
in the tissue’s microstructure, also affects the mechanical
response. This emphasizes the complexity of brain tissue
behavior and the high demands when aiming to develop
mechanical models for brain tissue.

2.5 BrainTissue is Not Easily Available
One major issue considering the mechanical testing

of brain tissue is that it is exceptionally challenging to
obtain adequate material. While it would be desirable to
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each other and with protoplasmic astrocytes. In both white and gray
matter, microglial cells contribute to clearance of debris and synapse
remodeling. Reprinted from [27] under Creative Commons Attribu-
tion License (CC BY)

test the mechanical properties of brain tissue in vivo—
in its natural environment—there are major issues with
in vivo testing [97]. Firstly, traditional mechanical test-
ing setups, initially developed and used for non-organic
materials, require to prepare specimens of a certain
geometry—optimized to allow for homogeneous defor-
mation states during testing [63]. This is obviously not
possible without removing the material from its natural
environment and destroying its biological functionality.
Secondly, the calibration of mechanical models that are
useful to study injury and disease require a versatile set
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of different loading conditions, including deformations
that go beyond physiological conditions and might induce
tissue damage. Again, those tests can not be performed in
vivo on a healthy individual.

On the other hand, the deformations imposed by com-
mon ex vivo testing techniques such as nanoindentation,
uniaxial compression and extension, or simple shear
will undoubtedly differ from those experienced in vivo.
Recently, a newly established testing technique, magnetic
resonance elastography, has enabled to study the mechani-
cal properties of human brain tissue in vivo [112]. While
magnetic resonance elastography is a powerful tool to per-
form non-invasive longitudinal studies to monitor the stiff-
ness evolution under diseased conditions, for example in
multiple sclerosis [182], it can not yet be immediately used
to derive mechanical models for brain tissue, and fully
replace ex vivo experiments [12]. Magnetic resonance elas-
tography is based on the assumption of linear elasticity or
viscoelasticity [146], and does not offer enough informa-
tion to establish nonlinear, finite strain constitutive mod-
els for realistic computational simulations. Besides, the
mechanical properties obtained from magnetic resonance
elastography are sensitive to positioning, to the method to
extract elastic parameters, and to the excitation frequency
[177]. It is not at all trivial to accurately quantify regional
mechanical properties, especially considering thin struc-
tures such as the cortex and the corpus callosum [131]. In
summary, the better we understand the different “shades”
of brain tissue behavior, the easier it will be to establish
new appropriate testing techniques in the future.

mechanical testing

time scale

[ modulus

length scale

modulus |

Fig.6 Mechanical testing techniques and their range of application.
AFM atomic force microscopy, IND indentation, MMT multiaxial
mechanical testing, OST oscillatory shear testing, MRE magnetic res-
onance elastography, NDG neurodegeneration, NRG neuroregenera-

fluid phase

3 Experimental Observations

From all these challenges, it becomes clear why experimen-
tal studies on the mechanical properties of brain tissue have
been equivocal and why stiffness values in the literature have
varied by an order of magnitude or more [119]. Depending
on the testing techniques different aspects of the complex
mechanics of brain tissue control the recorded response
as illustrated in Fig. 6. In this section, we summarize the
experimentally observed characteristics of brain tissue, dis-
cuss how different mechanical testing techniques may have
resulted in contradictory findings, and critically evaluate
facts that are still under debate. Ultimately, this will allow
us to work out the key characteristics to establish appropriate
constitutive models for brain tissue in Sect. 4.

3.1 Brain Tissue Stiffness Increases with Increasing
Strain

Figure 7 illustrates the loading-mode-specific elastic behav-
ior of brain tissue—the response we expect for very slow
processes such as tissue growth or progress of neurodegen-
erative diseases—here tested during unconfined compres-
sion, tension, and simple shear experiments for four differ-
ent brain regions, the cortex, the basal ganglia, the corona
radiata, and the corpus callosum as introduced in Fig. 4
[22]. Independent of the loading mode, we observe a strain-
stiffening behavior—the stiffness increases with increasing
strain—which highlights the strong nonlinearity of the tissue
response.

applications

time scale

DAl

Iength scale

tion, DAI diffuse axonal injury, 7G tumor growth, NPH normal pres-
sure hydrocephalus, NDV neurodevelopment, NS neurosurgery, TBI
traumatic brain injury

*
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Fig.7 Average elastic response of brain tissue with standard deviations during multiple loading modes, simple shear, compression, and tension,
for different brain regions: cortex, basal ganglia, corona radiata, and corpus callosum. Adapted from [22]
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Fig.8 Combined compression/tension-shear loading: average elastic
shear stress versus amount of shear for sinusoidal simple shear super-
imposed on axial stretch 4 = 1.0, 0.95, 0.9, 0.85, 0.8, 0.75, 1.05, 1.1,
1.15, 1.2, and 1.25. Shear stresses increase with increasing compres-
sive strain but not with increasing tensile strain. Adapted from [22]

3.2 Brain Tissue is Stiffer in Compression Than
in Tension

Figure 7 reveals that stresses are significantly higher in
compression than in tension. This important characteristic
of brain tissue has been consistently observed by several
research groups [22, 58, 85, 120, 121]. A convenient test
to capture the loading-mode-specificity of the mechanical
response of brain tissue is to perform tests under combined
loading conditions, as illustrated in Fig. 8 [22, 133]: For
combined compression/tension-shear experiments, the
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shear stresses increase noticeably with increasing com-
pression, but only marginally with increasing tension [22].
We may attribute this behavior to the biphasic nature of
brain tissue discussed in Sect. 2.3: Cerebrospinal fluid
trapped inside the solid network of cells and extracellular
matrix offers noticeably resistance in compression but only
marginal resistance to tension.

3.3 BrainTissue is Stiffer During Loading Than
During Unloading

Figure 9 demonstrates that even for a relatively slow load-
ing speed of 2mm/min corresponding to strain rates of
approximately 0.0067 1/s, brain tissue exhibits a highly
hysteretic response [22]. We expect this hysteresis to van-
ish for much slower rates, which might occur in vivo dur-
ing brain growth or disease, but are difficult to reproduce
during ex vivo testing.

Figure 10 shows stress relaxation experiments for all
four brain regions [22], which confirm the extreme time-
dependence of brain tissue with a stress relaxation of up to
80% within only 300 s. Interestingly, white matter tissue,
with a stress relaxation of more than 70% after 300 s, is
more viscous and responds more slowly than gray mat-
ter, with a stress relaxation of approximately 65%. Within
white matter, specimens from the corpus callosum relax
faster than specimens from the corona radiata. Within gray
matter, the basal ganglia and the cortex exhibit a simi-
lar relaxation behavior. Stress relaxation percentages are
slightly higher in shear than in compression, but both load-
ing modes show similar regional dependencies.
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Fig.9 Average unconditioned response of brain tissue with standard deviations during multiple loading modes, simple shear, compression, and
tension, for different brain regions: cortex, basal ganglia, corona radiata, and corpus callosum. Adapted from [22]
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Fig. 12 Loading rate sensitivity of gray and white matter. Sensitivity of indentation force versus indentation depth for varying loading rates
reveals the rate-dependent nature of brain tissue. Indentation force and modulus increase with increasing loading rate. Adapted from [20]

3.4 Brain Stiffness Increases with Increasing Strain
Rate

Figures 11 and 12 illustrate that brain tissue not only stiff-
ens with increasing strain but also with increasing strain
rate. Rate-dependence of brain stiffness has consistently
been reported in the literature using different testing tech-
niques: shear testing or oscillatory shear testing [44, 127,
151], uniaxial compression or tension [57, 83, 85, 132,
137, 140], indentation [20, 107, 136, 163], and magnetic
resonance elastography [36, 145]. Figure 11 illustrates uni-
axial compression, tension, and simple shear experiments

@ Springer

performed at strain rates of 0.33 and 0.0067 1/s, respectively.
Figure 12 shows nanoindentation experiments over a load-
ing rate spectrum from 1 to 160 ym/s. Within the analyzed
loading rate regime both gray and white matter double their
maximum forces and corresponding moduli when increas-
ing the loading rate by two orders of magnitude [20]. This
effect becomes particularly important for applications such
as blunt or traumatic brain injury, where even higher strain
rates occur [137, 158].

Our results in Fig. 11 suggest that the effect of strain rate
is more pronounced in white matter regions than in gray
matter regions. This observation agrees well with the stress
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relaxation experiments in Fig. 10, which show that white
matter relaxes faster than gray matter. A possible explana-
tion for this behavior could be the difference in the perme-
ability of gray and white matter. While for slower loadings,
fluid has more time to escape, for faster loadings, it offers
resistance, which leads to higher stresses. As white matter
specimens seem to loose a higher amount of fluid during
unconfined experiments than gray matter specimens [22, 23,
25], their strain rate effect is more pronounced.

3.5 Brain Tissue Softens upon Preconditioning

Figure 13 shows the conditioned tissue response during
the third cycle of cyclic loading in simple shear, uniaxial
compression, and uniaxial tension for four different brain
regions, the cortex, the basal ganglia, the corona radiata,
and the corpus callosum. Notably, during the third loading
cycle, the stresses are significantly lower than during the first
loading cycle, the unconditioned tissue response in Fig. 9.
We conclude that brain tissue softens upon preconditioning.
This observation agrees well with reported results, where
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the equilibrium shear modulus during the fifth cycle was
consistently about 20% lower than during the first cycle [62].

Figure 14 illustrates that a characteristic softening
between the first loading cycle and all subsequent cycles
occurs whenever the tissue is loaded past the previous
maximum strain. We once more attribute this characteris-
tic conditioning to fluid leaking out of the sample: As the
maximum strain increases, more fluid escapes the sample
and no longer offers resistance to loading. In turn, the off-
set at zero strain upon unloading increases.

For simple shear and tension, we observe jagged peaks
during the first loading cycle of each strain level. We sug-
gest two possible explanations for this phenomenon accord-
ing to the challenges introduced in Sects. 2.1-2.4. Firstly, it
is possible that part of the water molecules of the cerebro-
spinal fluid are non-covalently bonded to the highly charged
macromolecules in the extracellular matrix; during initial
loading, those weak interactions break and the water is free
to escape. Secondly, these peaks could result from tissue
that initially adheres to the upper or lower specimen holder,
without being glued, but comes loose during loading.
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Fig. 13 Average conditioned response of brain tissue with standard deviations during multiple loading modes, simple shear, compression, and
tension, for different brain regions: cortex, basal ganglia, corona radiata, and corpus callosum. Adapted from [22]

@ Springer



1196

S.Budday et al.

simple shear
shear stress [kPa]

| | L

0
amount of shear

0.1 0.2 0.3 0.4

compression
nominal stress [kPa]

T

tension
nominal stress [kPa]

1.0 1.02 1.04 1.06 1.08

Fig. 14 Representative stress versus amount of shear/stretch behav-
ior in simple shear, compression, and tension for stepwise increasing
shear/stretch—three cycles per shear/stretch level. The tissue exhibits

3.6 Brain Tissue Recovers from Preconditioning

Figure 15 demonstrates that the characteristic condition-
ing behavior discussed in Sect. 3.5 is fully recoverable.
When we load the same specimen after a recovery period
of one hour, the cyclic response of brain tissue up to 10%
compression follows almost the identical path of the initial
loading—again showing the evident softening after the first
loading cycle. A similar behavior has been observed during
nanoindentation experiments: The tissue continuously sof-
tens throughout multiple indents, but fully recovers within
a few hours of rest [20]. We conclude that the softening
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stretch

substantial pre-conditioning during the first cycle of each level, and
successively softens with increasing maximum shear/stretch

due to conditioning is not associated with tissue damage
but with visco- or poro-elastic effects that recede over time.
This is an important finding towards developing appropri-
ate mechanical models for brain tissue behavior in Sect. 4.
Notably, the tissue only recovers when it is kept hydrated. If
the tissue was left in air, it would dry out and the response
would stiffen over time [44].

3.7 BrainTissue is not Notably Anisotropic

From a mechanics point of view, a fundamental question that
needs to be answered is whether brain tissue is an isotropic
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Fig. 15 Representative nominal stress versus stretch behavior of a
specimen from the corona radiata loaded twice with a set of three
cycles up to 10% compressive strain separated by a 60 min recovery
period. The tissue exhibited a similar pre-conditioning pattern for
both compression tests. Adapted from [22]

or anisotropic material. Due to controversies regarding pre-
vious results in the literature, where some suggested that
brain tissue was isotropic [22, 22, 91, 120, 137], but others
showed that there were significant directional trends [52,
53, 85, 134, 165], we combined biomechanical testing of
the same specimen in three orthogonal loading directions
with antecedent diffusion tensor imaging to carefully ana-
lyze to which extent the fibrous microstructure of axonal
networks in white matter results in an anisotropic macro-
scopic mechanical response [22]. This allows us to minimize

a compression/tension modes in CC

Fig. 16 a Two possible compression and tension modes, along (FF)
and transverse (TT) to the uniaxial nerve fiber direction f in the cor-
pus callosum (CC); b three simple shear modes 1J, for I.J € {T,F},
where I denotes the normal vector of the face that is shifted by sim-
ple shear and J denotes the direction of shear, along (F) or transverse
(T) to the fiber direction f,. ¢ Direction-dependent behavior of brain
tissue. Column plots of shear moduli (mean + SD) averaged over

falsifying effects of non-uniform fiber distributions or
inter-specimen variations that might have affected previous
studies. We determined nerve fiber distributions prior to
specimen extraction and tested the same microstructurally
anisotropic sample in multiple loading directions—the three
possible modes for simple shear (FT, TT, and TF) and the
two possible modes for compression and tension (FF and
TT), as denoted in Fig. 16a.

While diffusion tensor images showed highly anisotropic
diffusion properties, mechanical testing revealed no sig-
nificant directional dependencies, as illustrated in Fig. 16.
According to these results, while structurally anisotropic,
brain tissue can be considered as an isotropic material from
a mechanical point of view. This finding seems reasonable
considering the fact that nerve fibers are primarily functional
elements of our brain that only marginally contribute to its
mechanical strength. We note, however, that mean stresses
along fibers appeared slightly higher than perpendicular to
the fibers under tensile loading and slightly lower under
compressive loading. This could imply that—although
statistically insignificant—nerve fibers contribute to tissue
strength in tension but not in compression.

Our results agree well with an early study on the rheo-
logical shear response of human brain tissue [151], which
showed higher directional variation in gray matter than
in white matter, but neither of the differences appeared
significant. Contradictory to our findings, studies on por-
cine brain tissue found a significantly stiffer shear response
orthogonal to nerve fibers than along fibers in the cor-
pus callosum [134]. In the corona radiata, however, the
trend was opposite. The authors of this study sheared
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three possible modes in simple shear (FT, TT, and TF), and two pos-
sible modes in compression and tension (FF and TT) for all speci-
mens from the corpus callosum. The data indicate a marginally softer
response along nerve fibers in compression and marginally stiffer
response along fibers in tension but the differences appeared to be
statistically not significant (n.s.). Reprinted with permission from [22]
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each specimen in two orthogonal directions similar to our
experiments, but only estimated fiber orientations from
anatomical knowledge and used rectangular specimen
dimensions of 10 X 5 x 1 mm?. Notably, the measured
shear stresses were consistently higher in the direction of
the longer axis corresponding to the direction orthogonal
to fibers in the corpus callosum, and to the fiber direction
in the corona radiata. This could indicate that directional
dependencies are an artifact of the non-cuboidal specimen
dimensions rather than a result of the anisotropic distribu-
tion of nerve fibers, which could explain the contradictory
results. Interestingly, yet other studies on the porcine cor-
pus callosum found opposite trends with a significantly
stiffer response in the fiber direction than perpendicular
to it in dynamic shear [53] and tensile tests [165]. In both
studies, specimens were relatively large with dimensions
of upto16 x 16 x 3mm?and 5 x 5 x 60 mm?. Our diffusion
tensor images showed that even in the much larger human
brain, it would be challenging to extract specimens of that
size that exhibit a sufficiently uniform microstructure. We
therefore interpret the corresponding results with a degree
of caution.

Overall, compared to other soft biological tissues
including muscle, tendon, or arteries with pronounced
directional stiffness differences of an order of magnitude
or more, the directional stiffness of brain tissue only varies
by a few percent and can reasonably well be assumed as
isotropic. Nonetheless, while isotropy seems to be a valid
assumption for the elasticity of brain tissue, diffusion or
permeability properties might still be anisotropic. Further-
more, the role of axons could be decisive for white matter
brain damage, where rupture of axons can lead to loss of
brain function [37, 66].

n
o

—
1
5‘
|
1
1
1
!
1
1
1
!
1
1
1
!
1
1
1
1
1
1
1
1
1
1
i
1
1
1
!
1
1
1

—_
b .

o
o

gray matter modulus [kPa]

| @ at 20um depth
@ at 10um depth

@ at 30um depth

Q at ‘Oum’ depth

1 2 3 4 5 6 7
sample # [-]

o
o

Fig. 17 Regional variation of gray and white matter moduli. Meas-
urements at three different slices and three different locations reveal
that the specimen moduli vary markedly across the brain. Gray
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3.8 Brain Tissue Stiffness is Region-Dependent

Due to its high microstructural heterogeneity, brain tissue
can hardly be considered as a single material with unified
material properties. While early studies on the mechanical
properties of the brain focused on brain tissue as a whole,
more recent experimental studies have distinguished
between different regions, i.e., white and gray matter [20,
57, 114, 163], or, even more refined, cortex, basal ganglia,
corona radiata and corpus callosum, as depicted in Fig. 4
[22, 85]. Others tested the individual properties of the cer-
ebrum, cerebellum, pons, and medulla [109].

Astonishingly, experimental results towards regional
trends in brain tissue properties have been contradictory.
While indentation experiments including those shown in
Fig. 17 yield higher stiffnesses in white matter from the
corona radiata than in the cortex [20, 92, 163], simple shear,
unconfined compression and tension tests in Figs. 7, 8, 9,
10 and 11 show the opposite trend [22]. The origin of these,
at first sight, contradictory results lies in the complexity of
brain tissue behavior, which highly depends on the length
and time scales of the applied loading. Furthermore, not
only the tissue’s elasticity shows local variations but also
other properties such as viscosity and porosity. To disclose
regional differences in brain tissue properties, it is there-
fore indispensable to thoroughly understand the different
“shades” of brain tissue mechanics and their loading-mode
specific effects.

3.8.1 Regional Trends Depend on the Loading Rate
Firstly, the rheological difference discussed in Sect. 3.4 leads

to a rate-dependency of regional trends: White matter stiff-
ens relative to gray matter with increasing loading rate. As a
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matter, left, is softer than white matter, right, and displays smaller
regional variations. Black horizontal lines indicate the mean; gray
zones indicate the standard deviation. Adapted from [20]
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result, shear, compression or tension experiments in the fast
loading regime associated with phenomena on the order of
seconds or milliseconds such as traumatic brain injury have
reported a higher stiffness for white matter from the corona
radiata than for cortical gray matter [85, 114], while experi-
ments in the slow loading regime, as those shown in Fig. 11,
indicate the reversed relationship. The strain-rate depend-
ence of regional trends is also supported by a recent study
showing that inter-regional mechanical properties become
increasingly heterogeneous with increasing strain rate [108].

3.8.2 Regional Trends Depend on Drainage Conditions

To explain differences between nanoindentation and uncon-
fined macroscopic experiments—both performed at rela-
tively low rates—we refer to the biphasic nature of brain
tissue discussed in Sect. 2.3. Nanoindentation of intact
tissue slices can be regarded as a virtually confined test,
where the free flowing fluid is mostly kept within the solid
matrix. During simple shear, unconfined compression and
tension tests, in contrast, the fluid is free to escape. As a
result, unconfined tests reveal a markedly stiffer response for
the unconditioned response, see Fig. 9, than for conditioned
response, see Fig. 13, which emphasizes that the fluid plays
a significant role in the tissue’s mechanical strength: Brain
tissue softens when part of the fluid escapes. In turn, when
tissue samples have time to saturate themselves again after
loading during a recovery period of one hour, in Fig. 15,
they regain their initial stiffness.

When comparing the porous nature of different brain
regions, our experiments indicate that the largest amount
of fluid escapes from white matter specimens of the corpus
callosum, closely followed by the corona radiata, while gray
matter specimens from the cortex loose the least amount
of fluid [23]. This difference in the permeability of gray
and white matter is also reflected in larger hysteresis areas
in white matter than in gray matter during cyclic loading
[22]. We can rationalize these observations with the under-
lying tissue microstructure: the corpus callosum consists
of a sparsely cross-linked network of unidirectional fibers,
whereas the cortex consists of a densely connected network
of dendrites that traps the fluid phase inside the tissue.

With regard to these observations, we suppose that during
unconfined experiments, we primarily probe the “elastic”
properties of the solid skeleton, the cells and the extracel-
lular matrix. Those are stiffer in gray matter from the cortex
than in white matter from the corona radiata, see Fig. 9 [22].
We observe a different behavior for confined compression
experiments during nanoindentation with relatively large
indenters, as shown in Fig. 18: The fluid cannot escape
freely and we probe both solid and fluid phases. Due to the
differences in the porous nature of gray and white matter,

Fig. 18 Experimental nanoindentation setup. A 5 mm-thick coronal
slice of freshly harvested brain tissue is placed in a 100mm-diame-
ter petri dish and mounted underneath the force transducer of the
TriboIndenter™. A 12 mm-diameter washer marks the indentation
region and stabilizes the sample. A circular flat punch of 1.5 mm
diameter ensures a homogenized specimen response. Reprinted with
permission from [20]

we record larger stiffnesses for white matter from the corona
radiata than for cortical gray matter, see Fig. 17.

In summary, because of its ultrasoft nature, brain tissue
stiffness recordings are highly sensitive to the fluid content
of the sample. Undrained samples are stiffer than drained
samples, and drainage rates depend critically on the tissue
microstructure. These effects are less pronounced in other
types of tissues with a lower fluid volume fraction. This
explains why the reported stiffness values of brain tissue
vary hugely. Without an explicit mention of loading rates,
drainage conditions, and sample size and geometry, it is
virtually impossible to compare stiffness values recorded
under different test conditions. The concept of a single one
gray or white matter stiffness value simply does not exist for
brain tissue, and it is critical for computational simulations
to understand exactly which situation applies to select the
appropriate model and parameter values.

3.8.3 Regional Trends Depend on the Length Scale

Figure 6 summarizes various testing techniques to probe the
mechanical behavior of brain tissue at different spatial and
temporal scales. A prominent method to probe brain tissue at
small spatial scales is atomic force microscopy [35]. Unlike
nanoindentation on the meso-scale with relatively large
indenter tips shown in Fig. 18, atomic force microscopy has
resulted in yet higher stiffness in gray than in white matter
[94]. In atomic force microscopy, the size of the indenter
tip is on the order of the dimensions of individual cells.
The indenter seems to be small enough not to trap the fluid
beneath the tip which suggests that these tests probe the
solid component of brain tissue similar to unconfined experi-
ments at slow loading rates.

A prominent method to probe brain tissue at large spa-
tial scales, embedded in the skull, is magnetic resonance
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elastography [97]. Its major advantage is that it allows us
to probe the brain tissue in vivo in its natural environment.
Here, we most likely measure additional effects due to
the interaction of brain tissue with surrounding structures
including the meninges and the skull. Because of its limited
spatial resolution, it remains questionable whether in vivo
magnetic resonance elastography can accurately quantify
regional mechanical properties, especially in thin structures
such as the cortex and the corpus callosum [131]. Further-
more, the stiffnesses from magnetic resonance elastogra-
phy are highly sensitive to the actuation frequency [177].
Not surprisingly, some studies found cortical gray matter
to be stiffer than white matter [71], while others reported
the opposite trend [114], or no significant differences [10].

3.8.4 Conclusion Towards Regional Trends

In summary, while it seems important to take the signifi-
cant local variations in tissue properties into account when
mechanically modeling brain tissue, we have to pay cau-
tion with regard to the specific application we have in mind.
There are no right or wrong testing results; depending on the
length and time scales during testing, as well as the bound-
ary conditions, we observe different trends. For instance,
depending on the application of interest, confined or uncon-
fined testing data could be relevant. The former represent the
behavior of brain tissue at intermediate and short time scales
during surgery [171] or impact loading [38], while the latter
might rather represent the behavior for slow processes dur-
ing brain development [26, 143, 157] or tumor growth [90].

In addition to the different regions within the cerebrum,
we can distinguish between the cerebrum, cerebellum, cor-
pus callosum, thalamus, and brain stem, amongst others
[176]. Indentation experiments, for instance, show that the
mouse cerebellum is softer than the mouse cerebrum [108].
This agrees with results on human brain tissue using mag-
netic resonance elastography [115, 123, 176]. Finally, it is
also important to note that, even within the brain regions
we have introduced in Fig. 4, tissue properties may vary
significantly. Indentation experiments, for instance, revealed
noticeable inter-regional variations within the corona radiata
of porcine brain tissue [31] and studies suggest that stiffness
variations in white matter tissue are linearly correlated to
the local myelin content [173]. Understanding the effects
of the tissue microstructure on the macroscopic mechanical
response is critical for the interpretation of the constitutive
behavior of the human brain for computational simulations.

3.9 Open Questions
There is a general agreement that the ultrasoft nature, the

high fluid content, and the biochemical composition make
brain tissue very different from all other soft tissues in our
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body. This implies that factors that have traditionally been
considered irrelevant in soft tissue mechanics could play
an important role when characterizing the material proper-
ties of the brain. In this section, we highlight several open
questions that could point towards new studies with a view
to create a more holistic picture of the behavior of our brain
under healthy and diseased conditions.

3.9.1 Is Brain Stiffness Species-Dependent?

Due to limited availability and ethical considerations, only
a few studies have actually tested human brain tissue [30,
44,50, 51, 58, 59, 85, 134, 151]. Alternatively, researchers
consulted porcine [120, 121, 134, 137, 139, 140, 160, 165]
or bovine brain tissue [13, 20, 40, 163] due to their struc-
tural similarities with the human brain. Others tested the
properties of rat [35, 49, 54] or mouse brains [133]. Since
the primary goal of developing and calibrating mechani-
cal models for the brain is to assist diagnosis and treatment
of human patients, it is important to understand species-
dependent peculiarities. Early compression stress relaxa-
tion experiments suggested that monkey brain tissue was
stiffer than human brain tissue [59]. More recent indentation
experiments show that mouse brain tissue is stiffer than rat
brain tissue, which is again stiffer than porcine brain tis-
sue [109]. Interestingly, these observations imply a nega-
tive correlation between stiffness and total brain volume: the
smaller the brain, the stiffer the response. This hypothesis,
however, contradicts shear relaxation experiments in which
human brain tissue was stiffer than porcine brain tissue
[134]. However, in this study, the specimen thickness of only
Imm might have affected tissue integrity and the obtained
results. To date, there is no general agreement on the spe-
cies-dependence of brain tissue properties and it remains
unclear whether the observed differences are an artifact of
the testing method or the result of a true size effect that we
can observe in microstructural engineering materials.

3.9.2 Is Brain Stiffness Correlated with Cell Density?

One approach to understand and predict regional varia-
tions in brain tissue properties discussed in Sect. 3.8 is to
disclose the correlation between macroscopic mechanics
and the locally varying microstructure. First steps towards
this direction have only been taken recently. Due to the
functionality of nervous tissue, most attention has been
paid to cellular components, while extracellular matrix
components were given less consideration. The composi-
tion of different cell types such as neurons, astrocytes,
oligodendrocytes, or microglia, and even their local mor-
phological changes in response to functional demands is
illustrated in Fig. 5. Independent of those differences, dif-
ferent brain regions, and cell decomposition, however, we
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Fig. 19 Correlation between shear moduli and the number of cell
nuclei in different brain regions: cortex (C), basal ganglia (BG),
corona radiata (CR), and corpus callosum (CC), exemplary shown for
the unconditioned response. Adapted from [24]

find a negative correlation between the shear modulus and
the total number of cell nuclei, as illustrated in Fig. 19.

These preliminary results agree well with a recent
study on live mouse brain tissue [5] and indicate that the
cells might actually be the softest component of brain tis-
sue. Accordingly, extracellular matrix components could
play an important role. In this context, it is interesting
to note that the cells in the central nervous system have
been shown to be very soft compared to cells from other
tissues [106]—as is the overall tissue response. This con-
jecture is supported by another recent study showing that
the stiffness of brain tissue can not be solely determined
by the stiffness of the cells that constitute the tissue [81].
But, it contradicts a previous study on spinal cord tissue,
where the stiffness positively correlated with the rela-
tive tissue area covered by cell nuclei [94, 95]. The latter
finding could be attributed to the fact that those meas-
urements were performed using atomic force microscopy
indentation on a smaller length scale than the experiments
which are the basis for Fig. 19 [22]. On the resolution
of individual cells, it was further shown that glial cells,
including astrocytes, oligodendrocytes, and microglia, are
even softer than neurons [106]. Importantly, however, the
stiffness measured for individual cortical cells changed
depending on the extracellular matrix material used for
coating the dish during experimentation [81]. This empha-
sizes that when aiming to understand tissue mechanics on
the continuum scale, it is insufficient to test the stiffness
of each component individually. Rather, the overall tissue
response and its correlation with the underlying micro-
structure needs to be characterized, when cells are embed-
ded in their natural environment.

3.9.3 Is Brain Stiffness Correlated with Myelin Content?

Neurons in the central nervous system are surrounded and
cross-linked by myelin, a fatty white substance that wraps
around axons to create an electrically insulating layer. Fig. 5
illustrates the microstructural implications of myelin in
white matter tissue. While the electrical function of myelin
is widely recognized, its mechanical importance remains
underestimated.

Figure 20 suggests that white matter stiffness is positively
correlated with the local myelin content. These results were
obtained by combining nanoindentation testing and histolog-
ical staining in immature, pre-natal brains [172] and mature,
post-natal brains [173] and agree well with uniaxial tension
experiments on chick embryo spinal cord tissue, which sug-
gest that myelin and cellular coupling of axons via the glial
matrix in large part dictate the tensile response of the tis-
sue [150]. The positive correlation between myelination and
stiffness is also confirmed by magnetic resonance elastogra-
phy studies showing that demyelination reduces the stiffness
in a murine model of multiple sclerosis [149]. Interestingly,
those processes were shown to be reversible after remyelina-
tion. We may conclude that myelin is not only important to
ensure smooth electrical signal propagation in neurons, but
also to protect neurons against physical forces and provide a
strong microstructural network that stiffens the white matter
tissue as a whole. The strong correlation between the white
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Fig. 20 Stiffness-myelin relation in different regions of cerebral white
matter. Across n=11 samples, the stiffness increased with increasing
myelin content with a Pearson correlation coefficient of 0.92. Dots
indicate mean, ellipses indicate standard deviations in stiffness and
myelin content. Reprinted with permission from [172]
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matter stiffness and the local myelin content points towards
the potential of tissue stiffness as a biomarker for multiple
sclerosis and other forms of demyelinating disorders.

3.9.4 Is Brain Stiffness Correlated with DTI Properties?

Microstructural parameters that require histological staining,
e.g. the number of cell nuclei and the myelin content, can
only be reliably recorded ex vivo. However, it is also desira-
ble to find correlations between mechanical tissue properties
and structural data that can be obtained in vivo. One such
parameter is the fractional anisotropy (FA) obtained from
magnetic resonance imaging and diffusion tensor imaging
(DTD). In white matter, fractional anisotropy illustrates the
alignment of nerve fibre bundles. In cortical gray matter,
it may be interpreted in terms of the orientation and distri-
bution of axonal, dendritic, and glial cell processes [17].
Interestingly, low fractional anisotropy values have recently
been attributed to high neuropil complexity [169], which
strengthens the hypothesis that brain tissue stiffness closely
correlates with interconnections and capillary density [22].

Figure 21 seems to suggest that the value of fractional
anisotropy negatively correlates with the shear modulus,
u=184-217 FA, r=-0.65, p <0.001, during com-
pression loading [22]. Similar correlations can be observed
for shear, u = 1.18 — 1.34 FA, r = —-0.65, p < 0.001, and
tension, u = 1.3-1.55 FA r = —0.69, p < 0.001, and for all
loading modes combined, 4 = 1.57 — 1.96 FA, r = —0.66,
p < 0.001) [22]. Importantly, the observed correlation
between tissue stiffness and fractional anisotropy could point
towards new methods to access regional variations in tissue
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Fig.21 Correlation between the shear modulus y under compression
and the fractional anisotropy (FA) from diffusion tensor magnetic res-
onance imaging. There is a significant decrease of the shear modulus
with increasing fractional anisotropy, 4 = 1.84 — 2.17 FA, r = —-0.65
and p < 0.001. Reprinted with permission from [22]
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properties in vivo using magnetic resonance diffusion tensor
imaging.

3.9.5 Does Our Brain Stiffen During Development?

Closely linked to the observations in the previous subsec-
tions, experimental studies have consistently shown that
brain tissue stiffens during development. Our indentation
experiments revealed that both bovine gray and white mat-
ter tissue stiffened significantly upon maturation: the gray
matter stiffness doubled from 0.31 + 0.20 kPa pre-natally
to 0.68 + 0.20 kPa post-natally; the white matter stiffness
tripled from 0.45 + 0.18 kPa pre-natally to 1.33 + 0.64kPa
post-natally [172]. This is in perfect agreement with a sig-
nificant increase in the indentation moduli of rat [49, 152]
and mouse [109] brain tissue beginning at 10-12 days after
birth and continuing to 180 days. Interestingly, in exactly
this period, myelin basic protein as a measure of the progress
of myelination increases, which confirms the close correla-
tion between developmental brain stiffening and myelination
discussed in the Sect. 3.9.3. Similarly, dynamic shear experi-
ments on 2-3 day old pig brains yielded significantly lower
shear moduli than experiments on adult pig brain samples
[160]. Interestingly, also the strain-stiffenig character of the
tissue samples increased with maturation [160]. According
to magnetic resonance elastography measurements, the adult
human brain appears to be three to four times stiffer than the
brain of young children [30]. Even adolescent brains still
show a softer response than adult brains in certain brain
regions including the cerebellum as well as the parietal and
temporal lobes [115]. Only one group reported the opposite
trend with a decrease in tissue stiffness with age based on
indentation and shear experiments on rat brains [62, 134].

3.9.6 Does Our Brain Soften with Age?

While it seems well established that brain tissue stiffens
during development, the natural next question is whether
brain tissue starts to degrade and soften again after it has
passed a zenith. Interestingly, neither oscillatory shear
tests [51] nor macroscale unconfined experiments [22, 85]
showed strong age-dependent trends of brain tissue stiff-
ness, as illustrated in Fig. 22. The graphs summarize ex
vivo data from ten human brains and indicate that regional
trends, as discussed in Sect. 3.8, are markedly stronger
than age- or inter-subject-dependent effects—specimens
from a specific region yielded moduli in a similar range
independent of age or subject [22]. In contrast to these
findings, in vivo measurements using magnetic resonance
elastography on human subjects indeed yielded a linear
decline in whole-brain elasticity within an age range from
18 to 72 years [77, 146]. We attribute this observation
to changes in the fluid balance of the human brain and a
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Fig.22 Age-dependent shear modulus in different brain regions:
cortex (C), basal ganglia (BG), corpus callosum (CC), and corona
radiata (CR), and for different loading conditions, simple shear, com-
pression, and tension. Interestingly, independent of age or subject,

decrease in total brain volume, which would affect mag-
netic resonance elastography but not ex vivo measure-
ments on small tissue samples that primarily probe the
elastic properties of the solid phase. This hypothesis is
supported by the fact that the relative viscous-to-elastic
behavior during magnetic resonance elastography did not
differ between age groups, suggesting a preservation of
the organization of the tissue’s microstructure, which is
responsible for elastic tissue properties [77].

3.9.7 Does Our Brain Stiffness Change During Disease?

Neurodegenerative diseases involve remodeling of the
brain’s microstructure. Expectedly, this also leads to
changes in the mechanical properties of the tissue. Most
insightful in this respect are studies that compare healthy
and diseased brain tissue properties in vivo. A limitation
of in vivo measurements via magnetic resonance elastogra-
phy, as already discussed in Sect. 3.9.6, is that they do not
necessarily reflect changes in the local stiffness of the solid
phase, including cells and extracellular matrix, but rather
changes in the overall integrity of brain tissue, including
changes in fluid transport and wave propagation. Magnetic
resonance elastography shows that brain tissue softens in
multiple sclerosis [156, 182], Alzheimer’s disease [65,
124], and demyelination in general [149]. Interestingly,
these softening effects scale with disease stage [86]. This
points towards an exciting new application of magnetic
resonance elastography as a diagnostic tool to diagnose
and quantify disease progression. Interestingly, however,
while the stiffness seems to be a sensitive marker for tau-
pathology, neuronal loss, and inflammation, this is not the
case for amyloid-pathology [65].

age [years]

age [years]

specimens extracted from the same brain region yield a shear modu-
lus in the same range. All three ex vivo tests display no significant
age-dependency

3.9.8 Does Our Brain Stiffness Change After Death?

An important unanswered question remains how brain tissue
properties measured ex vivo compare to the tissue response
in vivo. Several experimental setups have been designed
to tackle this issue. Indentation experiments on rats, for
instance, showed that the shear modulus obtained in vivo is
about 31% higher than that obtained in vitro [118, 152]. Sim-
ilarly, in situ indentation yielded approximately 30 to 50%
higher shear moduli than ex vivo indentation [63]. These
observations agree well with measurements using ultrasound
elastography, where the shear modulus in vivo was about
47% higher than that given by ex vivo measurements [105].
A recent study using magnetic resonance elastography con-
firms that porcine brain tissue appears stiffer in vivo than
ex vivo at frequencies of 100 and 125 Hz [72]. At lower
frequencies, however, they found closer agreement between
ex vivo and in vivo measurements. Contrary to these find-
ing, other magnetic resonance elastography studies found
an increase in shear moduli immediately after death [164],
by up to 58% within only three minutes [176]. The origin
of this rapid change within such a short period of time is
likely of biochemical nature, but has not yet been explored
to full extent.

3.9.9 Does Brain Stiffness Change Post Mortem?

Besides death itself, the post mortem storage time could
potentially affect experimental results on brain tissue prop-
erties. Fig. 23 shows that, when kept intact and hydrated,
bovine brain slices maintained their mechanical character-
istics from nanoindentation throughout the entire testing
period of five days post mortem. Also, in the time window
of human brain experiments in Figs. 7, 8, 9, 10 and 11,
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Fig.23 Temporal variation of gray and white matter moduli. The
consistent moduli within five days post mortem reveal that brain
slices are virtually insensitive to the time of preservation. The stiff-
ness increases moderately with indentation depth, from black dots to

we could not observe a notable change in tissue stiffness
between samples that were tested first and last. This agrees
well with a recent study using ultrasound elastography on
Japanese big-ear rabbits, which reported that the change in
mechanical properties is negligible at least within 1 hour
after death [105]. In contrast, previous studies on porcine
brain tissue have revealed a slight increase in tissue stiffness
beginning 6h post mortem [61, 126]. This may be attributed
to the fact that these studies were performed upon contin-
ued mechanical loading. During the experiments in Fig. 23,
however, we minimized exposure to mechanical testing to
clearly separate the effects of mechanical history discussed
in Sects. 3.3-3.5 and post-mortem time. We conclude that
if the experimental conditions are carefully chosen and the
tissue is kept hydrated at all times, the degeneration process
of post mortem brains is rather negligible. If brain tissue is
stored without any liquid medium, however, the bio-molec-
ular interactions and the mechanical strength of brain tissue
deteriorate with prolonged storage duration, for instance due
to the degeneration of myelin sheaths and the vacuolization
of cristae [183].

3.9.10 Is Brain Stiffness Temperature-Dependent?

Most ex vivo experiments have been performed at room tem-
perature. It is important to understand, how a rise in temper-
ature from room to body temperature in the in vivo situation
will affect the mechanical response of brain tissue. A recent
study using ultrasound shear wave elastography on rabbit
brains indicates that brain tissue stiffness decreases approxi-
mately linearly when the temperature increases from room
temperature to body temperature, stays relatively constant in
the range from 35 to 42 °C, and then rises again [104]. This
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is an interesting finding as according to those results, the
stiffness of brain tissue seems to be constant exactly for the
range of temperatures that may occur in vivo. It agrees well
with dynamic shear tests on murine brain tissue in which
brain tissue was stiffer at 22 °C than at 37 °C [133]. Uniaxial
compression experiments on porcine brain tissue, on the
contrary, show a slight but insignificant increase in stiff-
ness from room temperature at 22 °C to body temperature
at37°C[138].

4 Modeling Aspects

Computational modeling allows us to analyze and predict
the behavior of human brain tissue under a variety of load-
ing conditions. However, the value of a numerical predic-
tion critically depends on the adequate choice of constitutive
models. In the following, we will systematically propose
mathematical formulations to capture the specific character-
istics of brain tissue behavior discussed in Sect. 3.

The complexity of the tissue response depends on the
loading conditions and so does the appropriate modeling
approach. Different constitutive relations may be needed for
the same material depending on the particular application.
In this section, we will introduce constitutive relations of
increasing complexity to capture the elastic, viscoelastic,
and poroelastic behavior of brain tissue. We will then make
application-specific suggestions towards selecting an appro-
priate model in the subsequent Sect. 5.

Due to the high compliance of brain tissue and the dis-
tinct nonlinearity of the tissue response, even for strains
of only 1% as discussed in Sect. 3.1, we limit ourselves
to constitutive models using the nonlinear field theory of
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mechanics. To characterize the kinematics of finite defor-
mation, we introduce the deformation map ¢, which maps
position X from the undeformed, unloaded configuration,
B, € R3, to its new position x = @ (X, ¢) in the deformed,
loaded configuration—the current placement of the body at
time 7, B, [78]. We further introduce the deformation gradi-
ent F(X, 1) = Vy@(X, t) to map undeformed line elements to
deformed line elements, where X and x denote the position
vectors in the unloaded reference and loaded spatial configu-
rations, respectively. The principal stretches 4,,a = {1,2,3}
are the square roots of the eigenvalues of the left and right
Cauchy—Green tensors definedbyb = F - F'andC = F' - F,
respectively.

4.1 Hyperelasticity of Brain Tissue

In a first step, we focus on the time-independent response
of brain tissue, neglecting viscous or porous contributions,
namely the experimental findings presented in Sects. 3.1 and
3.2 . The main time-independent characteristics are nonlin-
earity and compression-tension asymmetry. We postulate the
existence of a strain-energy function y(F), which is defined
per unit reference volume and only depends on the defor-
mation gradient F. We note that several previous studies
proposed fiber-reinforced material models for brain tissue,
where the strain energy not only depends on the deforma-
tion gradient F but also on the fiber direction f, [6, 37, 52,
60, 66, 128, 181]. Based on our experimental findings in
Sect. 3.7, however, we suggest that the elastic behavior of
brain tissue is, to a first approximation, isotropic. Nonethe-
less, the anisotropy induced by the orientation of nerve fibers
may be important for other mechanical processes including
damage or diffusion [175].

4.1.1 Hyperelastic Constitutive Modeling

Several phenomenological, isotropic strain-energy functions
have been proposed to describe the constitutive behavior of
brain tissue [22, 41, 92, 108, 137]. Most of these models
were originally developed for much stiffer materials such
as polymers [130] and calibrated using a single loading
mode only [92, 108, 137]. Here, we evaluate the capability
of previously proposed isotropic hyperelastic constitutive
models to capture the time-independent response of human
brain tissue under multiple loading conditions. We consider
three special cases of the generalized Ogden model with the
strain-energy function [130], i.e.,

2

c Hi a; a a;
W:Z;;[ﬂ]'+/12'+/13‘—3], (1)

where the constitutive parameters ; correspond to the strain-
magnitude-sensitive nonlinear characteristics of the tissue.

The classical shear modulus, known from the linear theory,
is given by u=1/23"  p; a; [78]. Firstly, we adopt the
neo-Hookean model with a; =2 and y; = p, i.e.,

2 1
u/Nﬂzzy[,ﬁ+/l§+/1§—3]. )
Secondly, we use the Mooney-Rivlin model with a; = 2,
H,=C, =pu—-C, a,=-2and u, = C, according to

®_[1
WMR:[Eﬂ—CQ][,1§+/1§+A§—3] 5
+ G A2+ A7 + 452 =31

and thirdly we reformulate the one-term Ogden model in
terms of the classical shear modulus y = a, 4, /2 and the
parameter a = «/, i.e.,

WO =2 [AT + A3 + 4§ = 3]/a’. 4)

In addition, we consider an exponential strain-energy func-
tion proposed by Demiray [42] as

WDmr=%M[exp(ﬁ[/lf+,1§+ﬂg—3])—1]/ﬁ, )]

and a rapidly strain-stiffening material model proposed by
Gent [64],

1
wOnt = —5#J, In(l = [A2+ 25+ 43 = 31/J,). (6)

Following standard arguments of continuum thermodynam-
ics, we can express the Piola stress tensor P as the derivative
of the strain-energy function y with respect to the deforma-
tion gradient F [78]. Assuming that brain tissue deforms
homogeneously and isochorically with the incompressibility
constraint det F = 1, we may provide an analytical prediction
of the Piola stresses

3
oy — oy ¢
P=——pF " = _— N, — pF—,
oF P = X g m @ @

where n, and N, are the eigenvectors of the left and right
Cauchy—Green strain tensors and p serves as a Lagrange
multiplier [78]. We can then compare the stresses predicted
by the model to experimentally observed responses.

4.1.2 Parameter Identification

Figure 24 illustrates the performance of the hyperelastic con-
stitutive models (2) to (6) to represent the conditioned brain
tissue response in different regions, including the cortex,
basal ganglia, corona radiata, and corpus callosum during
multiple loading conditions, uniaxial compression, uniaxial
tension, and simple shear, simultaneously. Table 1 summa-
rizes the resulting region-specific material parameters.
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Fig. 24 Different hyperelastic strain-energy functions (neo-Hooke,
Mooney-Rivlin, Demiray, Gent, and Ogden) calibrated with the aver-
age conditioned experimental data of brain tissue under multiple

Table 1 Constitutive parameters and corresponding coefficients of
determination R? obtained by calibrating five hyperelastic constitutive
models (neo-Hookean, Mooney-Rivlin, Demiray, Gent, and modified
one-term Ogden model) with the averaged ‘elastic’ behavior in differ-

loading modes, simple shear, compression, and tension, from four dif-
ferent brain regions: cortex, basal ganglia, corona radiata, and corpus
callosum. Adapted from [22]

ent regions, the corpus callosum (CC), the corona radiata (CR), the
basal ganglia (BG), and the cortex (C), for each loading mode sepa-
rately, and all loading modes simultaneously. Adapted from [22]

| H simple shear l compression l tension l simultaneous fit ]
neo-Hookean model

I R? I R? I R? p RZ R? R}
cC 0.53 0.966 | 0.99 0.877 | 0.29 0.988 | 0.65 0.920 0.608  -5.44
CR 0.96 0.955 1.75 0.900 | 0.52 0.986 1.15 0.918 0.627 -4.83
BG 0.89 0.970 1.37 0.944 0.57 0.984 0.99 0.957 0.738 -1.07
C 1.95 0.952 2.80 0.935 1.22 0.945 2.07 0.948 0.763 -0.66

Mooney-Rivlin model

12 CQ R 12 CQ R 12 CQ R 12 CQ RS RC Rf
CcC 0.53 0.13 0.966 | 0.92 0.00 0.897 | 0.29 0.13 0.988 | 0.65 0.00 0.912 0.712 -4.20
CR 0.96 0.24 0.955 1.62 0.00 0.919 | 0.52 0.26 0.986 1.16 0.00 0.911 0.733  -3.69
BG 0.89 0.22 0.970 1.27 0.00 0.959 | 0.57 0.29 0.984 1.00 0.00 0.956 0.834  -0.50
C 1.95 0.49 0.952 2.59 0.00 0.951 1.22 0.61 0.945 2.08 0.00 0.948 0.851 -0.21

Demiray model

T B R? T B R? T B R T B R? R; Ry
CcC 0.33 18.1 0.999 | 0.55 28.4 0.999 | 0.28 1.29 0.988 | 0.42 20.5 0.883 0.680 -4.26
CR 0.56 20.8 0.999 1.05 24.6 0.998 | 0.48 4.37 0.990 | 0.74 20.3 0.905 0.688 -3.71
BG 0.58 16.6 0.999 | 0.97 17.1 0.999 | 0.52 6.03 0.992 | 0.71 15.8 0.962 0.774 -0.65
C 1.17 21.9 1.000 1.90 18.8 0.999 0.91 16.7 0.992 1.35 20.0 0.975 0.809 -0.15

Gent model

n Jm R? n Jm R? n Jm RZ n Jm R? R R?
CcC 0.36 0.08 1.000 | 0.62 0.06 0.995 | 0.29 85.0 0.988 | 0.46 0.08 0.887 0.671 -4.27
CR 0.62 0.08 0.999 1.16 0.06 0.995 | 0.48 0.23 0.990 | 0.82 0.08 0.907 0.680 -3.72
BG 0.62 0.09 0.999 1.01 0.08 0.998 | 0.52 0.18 0.992 | 0.75 0.09 0.962 0.771 -0.63
(@] 1.23 0.07 1.000 | 2.01 0.08 0.998 | 0.92 0.08 0.994 1.47 0.08 0.975 0.804 -0.14

modified one-term Ogden mode

w a R? o « RZ °w « RZ °w @ Ri Rﬁ Rf
CcC 0.32 -22.8 0999 | 0.43 -22.8 1.000 | 0.35 -26.6 0.995 | 0.35 -25.3 0.947 0.988 0.994
CR 0.54 -24.8 0999 | 0.85 -20.5 1.000 | 0.61 -30.5 0.996 | 0.66 -24.3 0.962 0.986 0.986
BG 0.57 -21.7 0998 | 0.83 -15.5 1.000 | 0.65 -32.5 0.997 | 0.70 -18.7 0.989 0.993 0.980
C 1.06 -25.6 0.999 1.61 -16.6 1.000 1.20 -43.6 0.996 1.43 -19.0 0.991 0.998 0.928

As the shear response of brain tissue deviates from lin-
earity, even for small amounts of shear, neither the neo-
Hookean nor the Mooney-Rivlin material model are able
to satisfactorily represent the experimental data, which is
clearly visible in Fig. 24. Only the one-term Ogden model
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is able to represent all loading modes simultaneously. It not
only predicts the nonlinearity but also inherently captures
the compression-tension asymmetry with a notably softer
response in tension than in compression. These characteris-
tics are controlled by the material parameter a: the higher the
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absolute value of a, the higher the degree of nonlinearity; if
a > 2, tensile stresses are stiffer than compressive stresses,
if @ < 2, we observe the opposite. We note that in simple
shear, shear stresses predicted by the constitutive model are
independent of the sign of a. This implies that we have to be
cautious when calibrating the constitutive model exclusively
with simple shear data [22].

Figure 25 further demonstrates that the modified one-
term Ogden model is able to capture the inherent character-
istic of brain tissue that shear stresses increase significantly
with increasing superimposed axial compression but only
slightly with increasing axial tension, with coefficients of
determination R? > 0.91. This behavior is a logical outcome
of the compression-tension asymmetry of brain tissue and
can only be captured by one of the strain-energy functions
compared in Fig. 24: the modified one-term Ogden model
with a negative nonlinearity parameter a.

Calibrating the constitutive model with combined com-
pression/tension-shear data yields a similar value for the
shear modulus p as simultaneously calibrating the model
with the data from multiple uniaxial loading modes in
Table 1, bottom. However, the absolute value of a is much
lower. A high absolute value of @ with a % —20 yields
unrealistically high shear stresses for high compressive
or tensile pre-strain in the combined loading case. In con-
trast, a low absolute value of @ with @ &~ —7 is not capable
of representing the nonlinearity of the shear stress versus
amount of shear curve reasonably well. For the sequence
of multiple uniaxial loading modes in Fig. 24, the load
is limited to 10% strain in compression and tension, and
20% in shear, to not damage the tissue during the course
of the experiment. Due to the distinct nonlinearity of the
stress-strain curve, even for those relatively small strains,
the value a obtained from uniaxial experiments would pre-
dict unrealistically high stresses for larger strains. This

demonstrates that the one-term Ogden model, a phenom-
enological model in nature, can easily predict an unrealis-
tic behavior when exceeding the deformation range used
for parameter identification.

Consistent with these findings, all studies in the litera-
ture that considered both compression and tension experi-
ments, reported that only the one or two-term Ogden mod-
els could satisfactorily represent the material response [58,
121, 165]. These studies proposed u = 1.0 kPa for cyclic
compression-tension experiments on human white matter
tissue [58], # = 0.8 kPa and @« = —4.7 for mixed porcine
brain tissue [121], and 4 = 0.3-0.7 kPa and @« = —7.0 when
extrapolating tensile porcine white matter data to com-
pression [165]. The lower absolute values for @ can be
attributed to strains of 30% and more.

In contrast, Studies considering each loading mode
individually found excellent agreement between experi-
mental data of mixed porcine brain tissue and the Demiray,
Gent, and Ogden strain-energy functions [22, 137, 139,
140]. Similarly, a study based on indentation data reported
that polynomial, Yeoh, and one-term Ogden models
agreed well with experimental data using an inverse finite
elements analysis [92]. A more recent study on nanoin-
dentation experiments, in contrast, suggests that the neo-
Hookean model best represents indentation data [108].

This emphasizes that, due to the highly complex
mechanical response of brain tissue, constitutive models
derived from a single loading mode are not necessarily
valid for different loading conditions. We conclude that the
one-term Ogden model is able to capture the mechanical
response of human brain tissue under multiaxial loading
modes. However, particular caution is necessary when
determining the parameter a: The compression-tension
asymmetry pre-supposes a negative sign for a and high
absolute values yield unrealistically high stresses for large
strains and multiaxial loading cases.

experimental analytical numerical
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Fig.25 Combined compression/tension-shear loadings: sinusoidal
simple shear superimposed on axial stretch 4 = 1.0, 0.95, 0.9, 0.85,
0.8, 0.75, 1.05, 1.1, 1.15, 1.2, and 1.25. Average experimental ‘elas-

amount of shear

amount of shear

tic’ shear stress versus amount of shear for white matter brain tissue
(left) compared to analytical (center) and numerical (right) prediction
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4.1.3 (In)homogeneous Deformation

The results presented in Figs. 24 and 25, as well as in
Table 1, are based on the assumption that brain tissue
deforms homogeneously during uniaxial compression
and tension as well as in simple shear. However, due to
the high compliance of brain tissue and the fact that the
upper and lower faces of the specimens are glued to the
specimen holders during testing, the deformation actually
displays certain inhomogeneities. Figure 26 contrasts the
actual deformation of the specimens during simple shear,
compression, and tension loadings with finite element
simulations using the analytically determined parameters
in Table 1.

simple shear
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Fig. 26 Effects of inhomogeneous deformation. Finite element simu-
lations reveal the inhomogeneous deformation and stress states during
simple shear as well as uniaxial compression and tension loadings,
which can be observed during experiments (a). Analytically deter-
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Figure 26 indicates that material parameters calibrated
for a homogeneous response tend to underestimate the
shear stresses and overestimate the compressive and tensile
stresses compared to using inhomogeneous finite element
simulations, here exemplary shown for the neo-Hookean and
the one-term Ogden model. Especially regarding the one-
term Ogden model, however, the model predictions mostly
remain within the standard deviations of the experiments.

Figure 25 demonstrates another effect resulting from the
inhomogeneous deformation state. Using the analytically
calibrated material parameters to numerically simulate com-
bined loading conditions yields lower shear stresses than
those predicted analytically, which is in accordance with
the results in Fig. 24. However, the simulations capture the
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mined material parameters lead to an overestimation of compressive
and tensile stresses and an underestimation of shear stresses when
used in finite element simulations (b)
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Fig. 27 Numerical study on the influence of specimen geometry and
specimen height / on the recorded tissue response. Stresses show a
significant increase for small specimen heights. A rectangular cross-

qualitative effect that shear stresses not only increase with
superimposed compressive strains, but also slightly increase
with superimposed tensile strains in accordance with the
experimental results in Fig. 25. Taken together, the numeri-
cal results in Figs. 25 and 26 emphasize the importance of
using an inverse parameter identification scheme to deter-
mine appropriate material parameters for computational
simulations of brain tissue behavior in the future [167].

In addition to an inverse parameter identification, numeri-
cal simulations are valuable to optimize experimental proce-
dures or testing protocols. They allow us—in advance—to
evaluate the sensitivity of material parameters towards cer-
tain loading conditions, which will help to explicitly design
experiments that are suitable for accurate and unambiguous
parameter identification.

One effect that can not be captured analytically is the
effect of specimen geometry. Figure 27 illustrates how the
specimen geometry, height and cross-sectional area, affect
the recorded stresses. Stresses significantly increase when
specimens become too thin as the deformation inhomogenei-
ties at the fixed faces gain in influence. For compression and
tension loadings, a specimen height of approximately 5 mm
seems optimal to ensure a consistent response. For simple
shear loadings, the effect of specimen height is notice-
able independent of the height; however, with increasing
height the effect of the cross-sectional area becomes more
prominent.

4.1.4 (In)compressibility

The results presented in Fig. 24 and Table 1 are based on the
assumption that brain tissue is incompressible, motivated by
the high water content of approximately 80%. This assump-
tion may be adequate for impact situations [88, 99]; however,
especially when considering the time-independent, quasi-
static response of brain tissue relevant for extremely slow
processes such as brain development, cerebrospinal fluid

sectional area leads to a direction-dependent response in simple shear,
which vanishes when the specimen height approaches zero

may escape through the ventricular system, as discussed in
Sect. 3.5. This will lead to a slight compressibility, which
we can model by adding a volumetric contribution to the
modified one-term Ogden model [78, 130],

Ogd _ ,, Ogd Ogd
poe = Viso + L
2 Ta Ta Ta K (8)
= a—’;ul A =314 S - 1 -2,
Ogd

where lpi?fd describes the isochoric response, y 7
describes the purely volumetric response, A, = J~'/31, with
a = {1,2,3} are the volume-preserving parts of the principal
stretches, and k denotes the bulk modulus.

To demonstrate the influence of compressibility on the
brain tissue response during unconfined experiments, we
used the material parameters calibrated analytically under
the assumption of incompressibility in Table 1 in a finite ele-
ment setting and varied the Poisson’s ratio v from 0.3 to 0.49.
We ensured that the results for v = 0.49 were not affected by
locking effects when using linear finite elements through a
comparison with the results using mixed finite elements to
deal with quasi-incompressibility. Figure 28 shows how tis-
sue compressibility affects the response during unconfined
compression, tension, and simple shear. Expectedly, inde-
pendent of the loading mode, a decrease in the Poisson’s
ratio also leads to a decrease in tissue stresses. Interestingly,
arecent study argues that a different compressibility in com-
pression than in tension leads to the experimentally observed
compression-tension asymmetry [167]. From a physical per-
spective, such an effect could be attributed to poro-elastic
effects, which will be discussed in more detail in Sect. 4.3.

4.1.5 Conclusions and Future Perspectives

The one-term Ogden model inherently captures the main
characteristics of the time-independent response of brain
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Fig. 28 Effect of tissue compressibility: average experimental data for tissue from the corona radiata with standard deviation compared to the
numerically predicted response under simple shear, compression, and tension for different Poisson’s ratios v

tissue, the nonlinearity and compression-tension asymme-
try. It is capable of representing multiple loading modes
simultaneously. However, material parameters calibrated
analytically assuming incompressibility and a homogeneous
deformation will tend to overestimate compressive and ten-
sile stresses and underestimate shear stresses when used in
finite element simulations. To address these limitations, we
recommend calibrating the model parameters with sophis-
ticated inverse identification schemes, which capture inho-
mogeneous deformation states and several loading modes
simultaneously. A remaining open challenge is to identify a
single model that captures a wide range of strains.
Depending on the loading conditions, it may be appropriate
to model human brain tissue as an incompressible or com-
pressible solid [88, 99]. If movement of free flowing cerebro-
spinal fluid into the ventricles and the subarachnoid space
is possible, for instance during slow processes such as brain
development, brain tissue effectively changes its local volume
[148]. Therefore a slight compressibility with a Poisson’s ratio
of 0.45 to 0.49 seems appropriate [26]. In addition, param-
eters should be calibrated using the conditioned, drained tis-
sue response. In impact situations, in contrast, the fluid offers
resistance and contributes to tissue stiffness. In these case, the
tissue may behave incompressibly and parameters should be
calibrated using the unconditioned tissue response.

4.2 Finite Viscoelasticity

While hyperelasticity can describe the nonlinearity and
compression-tension asymmetry as outlined in Sects. 3.1
and 3.2, it cannot capture the characteristic time-dependent
effects, the highly hysteretic behavior of Sect. 3.3 [22, 58,
121], the significant strain-rate-dependence of Sect. 3.4, and
the characteristic conditioning as pointed out in Sect. 3.5.
The time-dependent nature of brain tissue is associated with
various physical mechanisms and time scales: The motion
of fluid within the solid network of cells and extracellular
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matrix introduces a poroelastic behavior [48, 58], whereas
intracellular interactions between the cytoplasm, nucleus,
and the cell membrane trigger a viscoelastic response [84].
Importantly, when tested below a critical threshold, the con-
ditioning behavior of brain tissue is fully recoverable, as we
conclude from Fig. 15: No damage or permanent softening
occurs, which justifies to model the time-dependent response
of brain tissue using visco- or poro-viscoelasticity instead of
irreversible damage or the Mullin’s effect [58].

In this section, we will extend the hyperelastic model
presented in Sect. 4.1 to account for time-dependent, vis-
coelastic effects. The simplest and most popular approach
to characterize the time-dependent behavior of brain tis-
sue is to use a Prony series [20, 57, 100, 120, 121, 134,
139]. A Prony series approach is equivalent to a generalized
Maxwell model for linear viscoelasticity in relaxation type
loading [89]. However, the Prony series approach has two
major limitations: it is restricted to linear elasticity and is
computationally expensive [41]. To account for the large
deformability of brain tissue discussed in Sect. 2.1, instead,
we consider a class of viscoelastic models within the gen-
eral setting of finite deformation continuum mechanics. We
multiplicatively decompose the deformation gradient into
elastic and inelastic parts [153], additively decompose the
free-energy function into an equilibrium and non-equilib-
rium parts [154], and introduce internal variables to account
for the rate-dependent behavior [142].

4.2.1 Kinematics of Finite Viscoelasticity

To model the viscoelastic nature of brain tissue, we decom-
pose the deformation gradient F into elastic and viscous
parts,

F=F;-F] V i=1,...,m, 9)

where i denotes the parallel arrangement of m viscoelastic
elements [153], as exemplary shown for two viscoelastic
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Fig.29 Multiplicative decomposition model, where F is associ-
ated with the main elastic network characterized by material param-
eters y,, and a, F) is the viscous damper associated with fluid flow
inside the cell characterized by the viscosity #, with the correspond-
ing hyperelastic spring F? with parameters y; and «,;, and F; is the
viscous damper associated with fluid flow within the solid network
of cells and extracellular matrix characterized by the viscosity #, with
the corresponding hyperelastic spring F; with parameters u, and a,.
Adapted from [23]

elements in Fig. 29. We can then introduce the spatial veloc-
ity gradient as

I=Vy=F F'=[+1I, (10)

and decompose it additively into elastic parts, I; = F ¢ (F f)‘l,
and viscous parts, Il = F} FlV (F))™' - (F)™'. From the
deformation gradient, we determine the left Cauchy—Green
tensor b and its spectral representation in terms of the prin-
cipal stretches 4, and the Eulerian eigenvectors n,,

3
b=F-F'=) i’n,®n,. a1

a=lI

It is convenient to introduce the elastic left Cauchy—Green
tensor for each mode, i.e.

3
by = F; - (FD)' = Y05 ni, @i, (12)
a=1
with eigenvalues (Afa)2 and eigenvectors n:?a, which are, in
general, not identical to the eigenvectors of the total left
Cauchy—Green tensor, nfa # n,. The material time derivative
of the elastic left Cauchy—Green tensor b is

bS =201 - bS1Y™ =2[1-BS 1™ =2[L-bS1Y™, (13)
which introduces its Lie-derivative, i.e.

2,67 = =201 - b7 1™, (14)

along the velocity field of the material motion.
4.2.2 Viscoelastic Constitutive Modeling

Motivated by the experimental findings discussed in Sect. 3.7,
we assume an isotropic, incompressible material response for
both the elastic and the viscoelastic behavior. We introduce
the viscoelastic free-energy function y as the sum of three
terms, an equilibrium part w®? in terms of the total princi-
pal stretches 4,, a non-equilibrium part "4 = z:’; LW in
terms of the i = 1, ..., m elastic principal stretches A:?a, and a
term p [J — 1] that enforces the incompressibility constraint
J — 1 = 0 via the Lagrange multiplier p [78], i.e.

m

y=y ™ —p[J— 1] with y™ =Yy, (15)

i=1

Similarly, we introduce the stress power P as the sum of
an equilibrium part P** = 7% : [ in terms of the equi-
librium Kirchoff stress 7% and a non-equilibrium part
P4 = g4 : [ in terms of the non-equilibrium Kirchoff

stress 74 = Y 7, i.e.

P=P9+P=[rM47"] ] with "= Zri.
i=1
(16)
We can then evaluate the dissipation inequality
D =P —y > 0in terms of the individual equilibrium and
non-equlibrium contributions as

D=[P9+ P ] = [y +y™] 2 0. (17
With the assumption of isotropy, we can
rewrite the non-equilibrium stress power,
P =" [T - )™ %[l)e — Z,b% ], in terms of the Lie
derivative of the elastic left Cauchy—Green tensor (14), and
obtain the following explicit representation of the dissipa-
tion inequality

eq
p=| 2% 1
ob
- 1 e\— al//i . Le
+;[§Ti-(bi) - ab?] : bi (18)
- i[lr- . (b?)—l] D Lb>0.
2 1 i L A

The first term of (18) vanishes when we define the equilib-
rium Kirchhoff stress tensor as

.Qn,, (19)
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and the second term vanishes for non-equilibrium Kirchhoff
stresses, i.e.

T.=2

i 0be : (20)

3

2 ®n .

l la la ia
=1

la

This leaves the reduced dissipation inequalities for each indi-
vidual mode i, which is

o=, % [Z,b5- B> 0. 1)
It remains to specify the equilibrium and non-equilibrium
parts of the free energy, w® and y"®, and the evolution
of the internal variables b;. For the equilibrium energy, we
adopt a modified one-term Ogden model parameterized in
terms of the total stretches 4, [130], which best represented
the hyperelastic response of human brain tissue in Sect. 4.1,
ie.

[/1 + /l + /1 ~-3],

ol = (22)

(12

with the equilibrium shear modulus y_, and the equilibrium
compression-tension asymmetry parameter a, [22]. The
derivative in (19) then becomes

a,—1
a

oy
=2
ey Heo

a (o9

(23)

For the non-equilibrium energy, we adopt the same Ogden
strain-energy function

~ 2u
l//,»(ﬂ,‘?a)—0[—[(/1 )%+ (A" + (A% =31,

L

(24)

elastic principal stretches /le.’a = (Jf)‘l/ 3 A7, the square roots
of the eigenvalues of the isochoric part of theelastic left
Cauchy—Green tensor Ef = (Jf)‘z/ 3B, with J¢ = det . The
derivatives in (20) then become

oy; e 2
a)(lecl

e LR R AR TR L] )
wherea,b,c = {1,2,3}anda # b, a # c, and b # c. Finally,
we need to specify the temporal evolution of the viscoelas-
tic kinematics. To a priori satisfy the reduced dissipation
inequality (21) [142, 154, 170], and motivated by the linear
relation between hysteresis and maximum stress during our
experiments, as illustrated in Fig. 30, we choose the evolu-
tion equations for the internal variables b as linear functions
of the Kirchhoff stresses 7, [18, 79], i.e.
e ey—1 1

—-Zb b)) =—1

i

i (26)

This introduces one additional parameter for each mode i,
the viscosity #; > 0, or, when scaled with the corresponding
shear modulus y;, the associated relaxation time, 7; = #;/ ;
[23, 142]. Since the internal variables bf are a linear func-
tion of the deviatoric Kirchhoff stress tensors 7;, the elastic
deformation always remains volume preserving, J; = 1, and
thus J = J/J? = 1. To advance the internal variables in time
[70, 80, 142], we may adopt an implicit or explicit time inte-
gration scheme [23]. Finally, we calculate the Piola stress
P as the right-sided pull back of the Kirchhoff stress z, i.e.

P=t-F'=[194+1"—pI]-F". 27)
We note that we may decompose the viscous parts of the
spatial velocity gradient, I = F; F V. (F ")‘1 (Fe)‘1 into
their symmetric and skew- symmetrlc parts Il = dV +wl,

terms of the viscous stretch rates, d; = [lv + (lv)t] and the

which introduces two additional parameters y; and o, for each ~ Viscous spin rates, w [lV @ )t I If we now reformulate
mode i, and is now parameterized in terms of the deviatoric
shear compression tension
3005 1 100 30 . O
— . ) oyee - & |+ 1%cycle S le |- 1%cycle %
£ 250} * 3" cycle L7 | E gol » 3% cycle . £ 25| . 34 cycle R
E.200 * s 7 ’ - i . -, g i 4
- o /
8 - 7 7 P < 8 60 7 8 20 * . 7, P
E e 4 _ a . /./ a 0 P
o 150 w L R e e »7 | @15 ‘ // e .
2 el @ 40 e - 2 - o
® 100 SNy 2 , e S0 slrr . 7
Q “. 7 Q AP N o o0t ¢
£ gwd 220 i 2 | X
© 1 YN, e Y s
c S ‘:xvu' = 5 (:-;,}% "‘../.
% 05 1 T5 05 1 15 2 25 O -

maximum stress [kPa]

maximum stress [kPa]
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Fig.30 Hysteresis versus maximum stress during the first and third loading cycles for all specimens tested in shear, compression, and tension.
The data indicate that the dissipated energy increases linearly with the maximum recorded stress. Adapted from [23]
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the reduced dissipation inequalities (21) using the symmetry
of 7;, we obtain

d Ly
Df =t =1, :d.

l

(28)

A comparison with equation (21) yields an alternative
expression for the evolution equations for the internal vari-
ables (26), expressed in terms of the viscous stretch rates
die.

4 =1

i =2_,1ifi’ (29)

which has been proposed by [80]. If all the rheological ele-
ments in the model were linear, it would reduce to the gen-
eralized Maxwell model, which is equivalent to the Prony
series in a classical relaxation experiment [41, 155].
Figure 31 demonstrates that the proposed viscoelastic
constitutive model is capable of capturing the experimen-
tally observed pronounced pre-conditioning during the
first loading cycle and the moderate conditioning effects
during all subsequent cycles [23]. The model also predicts
the experimentally observed successive softening when
increasing the strain in a step-wise fashion [23], as dis-
cussed in Sect. 3.5. In simple shear, however, the model
predictions deviate from the experimental data, espe-
cially for the initial loading segment. Furthermore, the

model predicts larger residual stresses upon completing
the first loading cycle of each stretch level than observed
in the experiment. This difference is likely caused by the
pore fluid that squeezes out of the sample when it is first
loaded [58]. Our monophasic viscoelastic model can only
implicitly capture these porous effects [11]. To accurately
model the fluid flow within the tissue, we will introduce
a biphasic poro-viscoelastic model [33, 48, 68] in the
next section to further contrast and compare viscous and
porous effects in human brain tissue.

Figure 32 demonstrates the effect of the strain rate on
the observed stress response. The viscoelastic model nicely
captures the experimentally observed increase in the maxi-
mum stresses with increasing strain rate, as discussed in
Sect. 3.4. At both ends of the time scale spectrum—for
extremely slow and extremely fast loadings—the hysteresis
closes and the loading and unloading paths are almost identi-
cal. For intermediate time scales, as those performed during
the experiments shown in Figs. 9 and 13, the response is
notably hysteretic.

4.2.3 Parameter Identification
We have shown that the finite viscoelastic model can

qualitatively capture the most important time-depend-
ent characteristics of brain tissue including hysteresis,

simple shear compression tension
©
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Fig.31 Representative conditioning behavior for cyclic loading with
step-wise increasing maximum strain. Shear/nominal stress ver-
sus amount of shear/stretch behavior for specimens from the corona
radiata; experiment (top row) and model prediction (bottom row).
At a stretch level of 0.9, the difference between the first and sec-
ond cycles indicates pronounced pre-conditioning. When increasing

the stretch level to 0.8, the first curve initially follows the pre-con-
ditioned behavior up until 0.9; beyond 0.9, the curve again displays
pronounced pre-conditioning between the first and second cycles. The
model is capable of predicting this history-dependence at different
load levels. For simple shear loading, the qualitative model prediction
slightly deviates from the experimental observations
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Fig.32 Numerical study on the influence of the strain rate ¢ on the
model predicted tissue response during cyclic simple shear, compres-
sion and tension experiments. The maximum stresses increase with

strain-rate-dependence, and conditioning. In order to use
the proposed model in finite element simulations, we need
to provide material parameters that also quantitatively cap-
ture the tissue response. Instead of following the common
approach of previous studies [57, 120, 137] and calibrat-
ing the elastic parameters using only the initial loading path
during quasi-static experiments and the viscous parameters
using only the stress relaxation behavior, we integrate data
from simple shear, unconfined compression, tension, shear
relaxation, and compression relaxation experiments [22] to
holistically characterize the overall behavior of brain tis-
sue [23]. Notably, all tests were performed on one and the
same samples to avoid that inter-specimen variations affect
the results. By simultaneously considering the data of all
five tests, we identified material parameters that characterize
the behavior of the exact same tissue samples under all five
loading modes. We further use the entire loading history
for parameter identification—including unloading during
cyclic experiments and the loading ramp for stress relaxa-
tion experiments [23].

Figures 33 and 34 demonstrate that the finite viscoelastic
constitutive model with two viscoelastic elements is capable
of representing the average experimental data during the
first and third loading cycles associated with the uncondi-
tioned and conditioned response, respectively, for the four
different brain regions, the cortex, the basal ganglia, the
corona radiata, and the corpus callosum [23]. Tables 2 and
3 summarize the corresponding region-specific material
parameters. The model slightly underestimates the shear
response, especially during the initial loading segment, and
slightly overestimates the stresses under tensile loading but
nicely captures the relaxation behavior over the entire load-
ing history.

Figure 35 contrasts the shear moduli of the unconditioned
and conditioned tissue responses in four brain regions [23].
Table 4 summarizes the corresponding characteristic time
constants 7; = #; / p,; near thermodynamic equilibrium. Shear

@ Springer

increasing strain rate. For intermediate strain rates, the response
is highly hysterestic; for extremely fast or slow rates, the hysteresis
closes

moduli are generally lower for the conditioned than for the
unconditioned response, which may be attributed to the con-
tribution of free flowing fluid, which only offers resistance
during initial loading but not during subsequent cycles.

The equilibrium shear modulus p displays similar
regional trends for the unconditioned and conditioned
responses. It is highest in the cortex, lowest in the corpus
callosum, and comparable in basal ganglia and corpus cal-
losum. Interestingly, we observe the same regional trends
for the shear modulus y, of the conditioned response in the
Maxwell element with particularly high time constants 7,.
In contrast, the shear moduli y, corresponding to lower time
constants 7, are generally higher than y_ and u,, and show
slightly different regional trends: White matter regions,
corona radiata and corpus callosum, have stiffened relative
to gray matter regions, cortex and basal ganglia.

It is interesting to note that the conditioned response
displays higher time constants 7, than the unconditioned
response, although we have calibrated both parameter sets
with exactly the same stress relaxation experiments. This
indicates that the cyclic experiments have a pronounced
effect on the viscoelastic parameter identification. Compar-
ing the unconditioned and conditioned behavior suggests
that we can attribute the lower time scale 7, to the viscous
component of the solid phase, and the higher time scale z,,
to porous effects of the fluid phase: At short time scales,
fluid moves inside the cell; at intermediate time scales, fluid
moves through the porous solid skeleton of cells and extra-
cellular matrix, as sketched in Fig. 29 [19]. When using the
conditioned response of the third cycle for our calibration,
we intentionally neglect the porous effect and, accordingly,
the higher time constant adopts significantly larger values
than for the unconditioned response. This agrees well with
a previous study that has reported a pre-conditioned viscos-
ity of 60 kPas in unconfined compression tests of porcine
brain [135].
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Fig. 33 Simultaneous identification of viscoelastic material parame-
ters for the finite viscoelastic constitutive model with two generalized
Maxwell elements and a single nonlinearity parameter a = o; = a,
for all five loading conditions. Average experimental data (solid lines)
during the first loading cycle associated with the unconditioned

4.2.4 Conclusions and Future Perspectives

We have proposed a finite viscoelastic model that combines
the hyperelastic Ogden model with two viscoelastic elements
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response with standard deviations in four regions, cortex, basal gan-
glia, corona radiata, and corpus callosum with corresponding con-
stitutive model (dashed lines) calibrated using data from all loading
modes simultaneously, see Table 2. Adapted from [25]

and can, in addition to the experimentally observed com-
pression-tension asymmetry and nonlinearity, capture time-
dependent effects including hysteresis according to Sect. 3.3,
and the successive softening for stepwise loading according

@ Springer



1216 S.Budday et al.
cortex basal ganglia corona radiata corpus callosum
= 1.0
o
=,
g d‘!—-----iiﬁﬂ e | el
©
(]
PO =
g8 “-10
o -0.2 0.0 0.2-0.2 0.0 0.2 -0.2 0.0 0.2 -0.2 0.0 0.2
%_ amount of shear amount of shear amount of shear amount of shear
£
»©
o
=,
[)]
]
g
'27; Pﬁ
: — e
[}
P - i
[
0 100 200 300 0 100 200 300 O 100 200 300 0 100 200 300
time [s] time [s] time [s] time [s]

3
)l

nominal stress [kPa]
o

05
c
0 0.0
§ 1.0 0.95 09 1.0 0.95
a stretch stretch
£
o
(3]

1
—_
o

o
o

nominal stress [kPa]
o

©
o2

©
206
@
§ goe
n n
8 T0.2
IS
2 0.0==
1.0 1.05 1.1 1.0 1.05
stretch stretch

Fig.34 Simultaneous identification of viscoelastic material parame-
ters for the finite viscoelastic constitutive model with two generalized
Maxwell elements and a single nonlinearity parameter a« = @; = a,
for all five loading conditions. Average experimental data (solid
lines) during the third loading cycle associated with the conditioned

to Sect. 3.5. Importantly, we have shown that we can provide
a single set of material parameters that simultaneously fits
cyclic loadings and the early and late relaxation behavior of
brain tissue. We have provided separate parameter sets for
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response with standard deviations in four regions, cortex, basal gan-
glia, corona radiata, and corpus callosum with corresponding con-
stitutive model (dashed lines) calibrated using data from all loading
modes simultaneously, see Table 3. Adapted from [25]

the unconditioned response using the first loading cycle and
for the conditioned response using the third loading cycle.
Expectedly, the unconditioned tissue response is markedly
stiffer than the conditioned response. We would like to
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Table 2 Viscoelastic parameters and coefficients of determination
for the viscoelastic constitutive model with a single nonlinearity
parameter a = a,, = a; calibrated with the averaged unconditioned
response in four brain regions, the cortex (C), the basal ganglia (BG),

the corona radiata (CR), and the corpus callosum (CC), for different
loading modes simultaneously, simple shear, compression, tension,
shear relaxation, and compression relaxation, see Fig. 33. Adapted
from [25]

unconditioned H s a w1 01 Ko N2 ‘ R? RZ, R? RZ, R}
response [kPa] -] [kPa] [kPa-s] [kPa] [kPa-s] -] -] -] -] -]
C 0.36 -16.07 1.78 10.18 0.82 697.88 0.922 0.963 0.954 0.861 0.308
BG 0.33 -17.23 0.79 2.89 0.29 48.71 0.915 0.882 0.945 0.895 0.318
CR 0.35 -20.80 1.18 2.51 0.41 40.72 0.936 0.915 0915 0.897 -0.71
CC 0.17 -21.41 0.78 1.91 0.30 22.85 0.907 0.678 0.894  0.905 -1.77

Table 3 Viscoelastic parameters and coefficients of determination for
the viscoelastic constitutive model with a single nonlinearity param-
eter @ = a,, = «a; calibrated with the averaged conditioned response
in four brain regions, the cortex (C), the basal ganglia (BG), the

corona radiata (CR), and the corpus callosum (CC), for different load-
ing modes simultaneously, simple shear, compression, tension, shear
relaxation, and compression relaxation, see Fig. 34. Adapted from
[25]

conditioned Moo a w1 1 2 Rf Rfr Rf Rgr Rf
response [kPal] = [kPa] [kPa-s] = [kPa] [kPa-s] [-] [-] [-] -] -]
C 0.52 -20.47 1.35 2.92 0.62 144.67 0.804 0.935 0.879 0.962 0.371
BG 0.22 -21.27 0.61 2.44 0.25 128.48 0.890 0.946 0.890 0.954 -0.40
CR 0.18 -27.53 0.87 2.45 0.24 151.78 0.872 0.963 0.827  0.948 -0.90
CC 0.05 -30.64 0.54 1.92 0.14 141.71 0.760 0.897  0.748 0.972 -1.82

3 unconditioned response
I C
I BG

I CR
I CC

shear modulus [kPa]

Mo M1 M2

conditioned response

I C
I BG
I CR
| I CC |

shear modulus [kPa]

He M1 M2

Fig. 35 Shear moduli calibrated with the unconditioned and condi-
tioned tissue response in four brain regions: the cortex (C), the basal
ganglia (BG), the corona radiata (CR), and the corpus callosum (CC).
Adapted from [23]

Table 4 Characteristic time constants z; = #; / y;, i = 1,2, near ther-
modynamic equilibrium calibrated with the unconditioned and condi-
tioned tissue response in four brain regions, the cortex (C), the basal
ganglia (BG), the corona radiata (CR), and the corpus callosum (CC).
Adapted from [23]

unconditioned conditioned
T1 T2 T1 T2
[s] [s] [s] [s
C 1.63 | 20.28 2.18 516.73
BG 2.37 | 98.52 3.34 | 889.52
CR 1.27 | 60.96 2.26 | 1199.16
CC 1.26 31.62 2.57 | 1453.31

point out that there is no right or wrong set of parameters:
Depending on the application of interest—for example the
interpretation of an ex vivo test or the prediction of an in vivo
response—either the unconditioned or conditioned parameter
set seems to be more physiological.

Through our viscoelastic parameter identification, we
have obtained insights that help us to better understand the
individual time-dependent contributions of the solid and
fluid phases [58]. The first viscoelastic element corresponds
to time constants on the order of 1 to 3 seconds and can
be associated with the viscoelasticity of individual cells,
while the second viscoelastic element corresponds to time
constants between 20 and 100 seconds and can represent
the movement of fluid within the solid skeleton of cells and
extracellular matrix. Such insights become especially impor-
tant when we attempt to interpret and model brain tissue as
a biphasic material [33, 48, 57], which will be the subject
of the next section.

While our simultaneous analysis of multiple loading
conditions has significantly improved the parameterization
compared to previous viscoelastic models based on a single
loading mode [13, 80, 135], the asymmetry predicted by our
model is still less pronounced than observed in our experi-
ments. Furthermore, the parameters are based on the assump-
tion of a homogeneous deformation state. To improve the fit
of the model, an inverse parameter identification scheme could
be used in the future to potentially address these concerns.
Further open challenges regarding the viscoelastic modeling
of brain tissue remain the discrepancies between model and
experiment under shear loading and the overestimation of the
tensile stresses.
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4.3 Finite Poro-viscoelasticity

To explicitly model the biphasic nature of brain tissue, we
can combine the finite viscoelastic model for brain tissue
introduced in Sect. 4.2 with the theory of porous media [47].
Importantly, a poro-elastic model alone would not be sufficient
to model the hysteretic behavior of brain tissue [39].

4.3.1 Kinematics of Poro-viscoelasticity

We assimilate brain tissue to a biphasic material consisting
of an immiscible aggregate of a solid skeleton (S) fully satu-
rated with pore fluid (). Both components are assumed to
be incompressible. The solid phase represents the network
of cells and extracellular matrix—including the fluid trapped
inside the cells and within the extracellular matrix—while the
pore fluid exclusively represents the free-flowing fluid in brain
tissue. Figure 36 illustrates that, at a given time ¢, the con-
stituents simultaneously occupy the same spatial position x in
the current configuration 13,. The primary unknowns of finite
poro-viscoelasticity are the solid deformation x = ¢(Xj, r) and
the fluid pore pressure p. The strong form of the governing
equations in the reference configuration reads

DivgP+B, =0 and DivgW +J;=0, (30)
where the Piola stress P(F, p) and the seepage velocity in
the reference configuration W(Fg, p) are functions of the
solid deformation gradient Fy = dx/0Xj, and the fluid pore
pressure p, B is the body force vector in the reference con-
figuration, and J; = detFy is the solid Jacobian. The seep-
age velocity describes the velocity of the fluid phase with
respect to the deforming solid. Following the considerations
in the previous section, we involve finite viscoelasticity by
decomposing the solid deformation gradient into elastic and
viscous parts, Fy = FSe -FSV, and introduce the elastic left
Cauchy-Green tensor b° = F - (F¢)' = 22:1(/12)2”2 ®n,
with eigenvalues (/lz)2 and eigenvectors n,a=1,23.

Fig. 36 Kinematics of the tO
material configuration 5, and
the spatial configurations B3, and
B, of a biphasic material body
within the context of finite poro-
elasticity [39]
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4.3.2 Constitutive Modeling—Solid Component

We further additively split the strain-energy function of the
solid skeleton into an equilibrium part y°? and a non-equi-
librium part y"™9, yo = w1 4+ "4, The total free-energy
function then reads y = y®I(4,) + y"4(47) + U(Js), where
U(Jy) is an extension function that describes the compress-
ibility effects of the poroelastic material, including the
concept of a compaction point. We select a function that
introduces the Lamé parameter A of the solid component,
Uy = All - ”50]2[[‘15 = 11/[1 = ng] = In([Jg — ngyl/[1 — ngeD}
where ng, is the initial porosity of the biphasic material, i.e.,
the volume fraction of the solid component in the reference
configuration at time t, [47]. The overall Piola stress that rep-
resents the stress state in the solid is

P=1-F/'=[t+ 7+ 7" —JpI]-Fy' 31

where I is the wunit tensor, and the volu-
metric part of the extension function is
v = A[1 — ngoI*[Jg/[1 — ngyl — Jg/[Jg — ngol] 1.

4.3.3 Constitutive Modeling—Fluid Component

In addition to the constitutive equations for the solid, we
need to specify a material model for the fluid defined by the
seepage velocity W = w - cof F. Standard approaches have
used Darcy’s law to describe the motion of the pore fluid
with respect to the deforming solid component in terms of
the changing pressure gradients in the biphasic material and
its deformation-dependent permeability [47, 113]. In this
case, the seepage velocity is defined as

w=—[1/urlKg-[Vp — prgl, (32)
where pp and pj are the effective fluid viscosity and fluid
density, K is the intrinsic permeability tensor, and g is the
vector of gravity acceleration. For example, we can assume
an isotropic, deformation-dependent intrinsic permeability
tensor K = ([Jg — ngyl/[1 — ngl)*K gy, where the initial
intrinsic permeability tensor K¢, = K, I would reduce to the
weighted identity tensor when the material permeability is

t >




Fifty Shades of Brain: A Review on the Mechanical Testing and Modeling of Brain Tissue 1219

isotropic [113]. Unfortunately, our current experimental data
are not sufficient to adequately calibrate the poro-viscoelas-
tic constitutive model. To truly calibrate a poro-viscoelastic
model, we would have to perform experiments with drained
and undrained conditions [58] to quantify the—potentially
region- and loading-mode-dependent—permeability of
brain tissue and to clearly differentiate between viscous and
porous effects.

4.3.4 Conclusions and Future Perspectives

While the finite viscoelastic constitutive model introduced in
Sect. 4.2 can implicitly capture poro-elastic effects through
its two independent time scales, a poro-elastic model alone
is insufficient to describe the hysteretic behavior of brain
tissue [99]. The advantage of using a more complex bipha-
sic poro-viscoelastic model is that it allows us to explic-
itly control the physics of the fluid as it moves within the
solid skeleton of cells and extracellular matrix. Notably, we
could even further advance the poro-viscoelastic constitu-
tive model by adding components such as the blood, which
flows inside the small brain capillaries [48]. In this case,
brain tissue is permeated by two viscous pore liquids, the
interstitial fluid and the blood. An important drawback con-
cerning the poro-viscoelasticity of brain tissue is that, to
date, the poro-elasticity of brain tissue has not yet been well
characterized experimentally. Consolidation tests performed
on human white matter brain tissue have shown that brain
tissue behaves similiarly to filled elastomers [58]. However,
the data available in the literature are not sufficient to ade-
quately calibrate the poro-viscoelastic model presented in
Sect. 4.3. Well designed experiments will be essential to
quantify region-specific permeability of brain tissue and to
differentiate between viscous and porous effects. This will
be critical when choosing the appropriate constitutive model
for a different biomedical application.

5 Application-Specific Considerations

Computational modeling can form a cornerstone in improv-
ing diagnostics and treatment of brain tissue injury and dis-
ease. However, reliable, clinically relevant predictions of
brain tissue behavior critically depend on the appropriate
choice of constitutive models and material parameters for
the numerical simulations. Importantly, the required model
complexity depends on the application of interest and the
corresponding length- and time-scales. Brain deforms differ-
ently during trauma at high rates, surgery at medium rates,
and brain development at low rates. To save computational
cost, we should evaluate efficiency versus accuracy, and
choose a model that is as complex as necessary but as simple
as possible. In the following, we present selected examples

in which numerical simulations can valuably assist medi-
cal diagnostics and treatment of neurological disorders. We
discuss the relevant length- and time-scales and propose an
appropriate modeling approach. We intend to demonstrate
how the evaluation of relevant scales, as summarized in
Fig. 6, can help to choose the appropriate mechanical model
for a certain application.

5.1 Brain Development

Cortical folding is a classical hallmark of most mammalian
brains and closely correlates with brain function and dys-
function. During development, the initially smooth surface
evolves into an elaborately convoluted pattern. Growing evi-
dence suggests that mechanical instabilities emerging from
differential growth between a faster growing outer gray mat-
ter, the cortex, and a slower growing inner white matter, the
subcortex, play a major role in brain morphogenesis. We
can model brain growth by complementing the kinematics
of finite deformation introduced in Sect. 4 by the kinematics
of finite growth [144]. We multiplicatively decompose the
deformation gradient F into an elastic part F© and a growth
part F& [144], F = Vy@ = F° - F®. A key challenge is to
prescribe the growth tensor F2 and its evolution in time to
realistically mimic the underlying biological processes [3] in
the developing brain. In the simplest case, growth is purely
morphogenetic, evolving in time irrespective of the mechan-
ical environment [117]. In more complex cases, growth is
mechanically driven, for instance by hypertension in arteries
[98] or by hyperstretch in skin [159].

Inspired by cellular mechanisms during brain develop-
ment [27], we assume that both cortex and subcortex grow
isotropically with F& =9I, where & is a scalar-valued
growth multiplier. The grown volume J¢ = det F® = §°
is identical to the growth multiplier cubed 8°. We further
assume that cortical growth is purely morphogenetic [2]—
independent of mechanical stress or strain [4]—growing
linearly in time at the growth rate G, = const, and that sub-
cortical growth is stretch-dependent at a growth rate G, as
illustrated in Fig. 37 [21, 26]. This yields the evolution of
the cortical growth multiplier, 9. = G, and the subcortical
growth multiplier, 9, = G, (J*—J°) = G, (J /9> - J°).
The term in the Macaulay brackets (Je - J()) activates
growth only if the elastic volume stretch J¢ exceeds the
threshold value J9, i.e., when axons are stretched beyond
their physiological limit [43]. Taken together, the mechani-
cal model of brain growth enables us to bridge the scales
from accumulation and growth of individual cells into the
growth kinematics of cortex and subcortex, and ultimately
cortical folding [67].

Figure 38 demonstrates that the model explains why
the surface-to-volume ratio in different mammalian brains
increases disproportionally with brain size and why brains
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Fig.37 Continuum model for cortical and subcortical growth. The
cortex, the gray matter, grows morphogenetically at a constant rate
G,. Cortical growth induces subcortical deformation, which trig-
gers subcortical growth. The subcortex, the white matter, grows at
a stretch-dependent rate as G, <Je - J°>, where G, mimics the axon
elongation rate and (Je - J°> activates growth only, if the elastic vol-
ume stretch J¢ exceeds its baseline value J°. Adapted from [28]

Squirrel Capybara
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5cm

Fig. 38 Variety of mammalian brains. Mammalian brains hugely vary
in size, shape, and convolutional complexity but only little in cortical
thickness (top row), adapted from [179]. Numerical simulation of a
growing shell on a spheroidal substrate for increasing ratio of ellipti-
cal radius to cortical thickness R / ¢ (bottom row). Folding complexity
increases with absolute size

of larger mammals tend to be more folded than brains of
smaller animals [179]. From a mechanics point of view,
this phenomenon is a merely geometric effect and inde-
pendent of phylogenetic effects—contrary to the com-
mon notion in developmental biology [179]. The results
in Fig. 38 demonstrate the great opportunities of using
mechanical models to understand brain development.
However, the emerging folding pattern is the result of an
instability problem, which, by its very nature, is highly
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material nonlinearity

<<

Fig. 39 Sensitivity of the evolving surface morphology during brain
development towards the constitutive model used for brain tissue.
With increasing absolute value of the nonlinearity parameter a from
top to bottom, as introduced in Sect. 4.1, the wavelength increases
and the primary pattern transitions from sinusoidal wrinkles to
cusped sulci

sensitive to the constitutive model and material parameters
of finite element simulations.

Concerning the choice of the appropriate modeling
approach, brain folding occurs over weeks and months of
gestation and we can safely assume that the cerebrospinal
fluid has time to escape through the ventricular system and
that its contributions to the tissue stiffness do not change
markedly during the simulation period. Consequently, we
propose to use an isotropic hyperelastic constitutive model
calibrated with the conditioned experimental response. How-
ever, we need to pay caution with regard to the material
parameters since extremely large deformations will occur in
the bottom of sulci—the valleys of cortical folds. If we use
the material parameters calibrated using experimental data
up to 10% compressive and tensile strains, and 20% shear
strains from Table 1, the model will predict unrealistically
high stresses in the valleys of emerging folds and unrealistic
folding patterns as evident in the bottom row of Fig. 39.
This is a natural result of the corresponding nonlinearity
parameter « = —20. Even for a slightly reduced material
nonlinearity with « = —7 in the center row, according to the
parameters identified using combined compression/tension-
shear experiments, the folding pattern still deviates from the
one observed in the real brain. Surprisingly, we obtain the
most realistic patterns for the neo-Hookean material model
with @ = 2 in the top row of Fig. 39. These results empha-
size that we need to be careful when using material param-
eters for deformation states that exceed the experimentally
investigated ranges of strains. For the application of cortical
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folding, where high compression occurs locally in the devel-
oping sulci, the neo-Hookean model indeed seems to be the
best choice. Alternatively, in a more physiological model,
we could account for the continuous adaption of the living
brain tissue to mechanical loading—for example, motivated
by the accumulated cell death in the bottom of the sulci—
which gradually reduces the tissue stresses in these regions.

5.2 Neurodegenerative Diseases

Because of demographic changes worldwide, neurodegen-
eration will, without a doubt, become a major challenge in
medicine and public health. More than 45 million people are
living with dementia today and this number is expected to tri-
ple by 2050 [1]. A major challenge of neurodegenerative dis-
eases is that the initial symptoms of cognitive decline become
noticeable only one or two decades after the first pathological
abnormalities have started to affect the brain [166]. For several
decades, researchers have tried to establish early predictive
indicators of neurodegeneration and identify common patho-
logical themes of neurodegenerative disorders. Computational
simulations are now increasingly recognized as a powerful tool
to correlate biochemical and biomechanical events and provide
early biomarkers for neurodegenerative disorders [175].
Figure 40 shows how we can use a physics-based reaction-
diffusion model to identify common underlying schemes in
the pathogenesis of Alzheimer’s disease, Parkinson’s dis-
ease, and amyotrophic lateral sclerosis [174]. The underly-
ing simulation combines the classical Fisher-Kolmogorov
equation [55], ¢ = Div(D - V) +ac[1 — c] for the toxic
protein concentration ¢ with an anisotropic diffusion model,
D = d**'I + d™" n ® n, with a pronounced diffusion along
the axonal direction n. Here a is the growth rate of toxic pro-
tein, and d*** and d**" are the diffusion parameters associated
with extracellular diffusion and axonal transport, respectively.
The model correctly predicts amyloid-f deposits and tau
inclusions in Alzheimer’s disease, a-synuclein inclusions in
Parkinson’s disease, and TDP-43 inclusions in amyotrophic
lateral sclerosis and displays excellent agreement with the
histological patterns observed in diseased human brains [87].
When integrated across the brain, the concentration profiles
result in biomarker curves that display a striking similarity
with the sigmoid shape and qualitative timeline of clinical
biomarker models [82]. Regions of high toxic protein con-
centration in Fig. 40 are likely correlated with neuronal death
and tissue atrophy, which we can model as negative tissue
growth, F = F° - F*. To model the biochemical effects of
neurodegeneration, we could introduce the atrophy tensor F*
as a function of the toxic protein concentration ¢ [175]. To
model the biomechanical effects of neurodegeneration, we
recommend using a finite hyperelastic model and assume that
viscoelastic and poro-elastic effects are negligible on the rel-
evant time scales on the order of several decades [75]. While

amyloid-p deposits in Alzheimer’s disease
3

tau inclusions in Alzheimer’s disease
o S

Fig.40 Spatio-temporal progression of toxic protein across the brain
for different initial seeding regions associated with a, b Alzheimer’s
disease, ¢ Parkinson’s disease, and d amyotrophic lateral sclerosis.
Adapted from [175]

the computational modeling of neurodegeneration is still in
its infancy, there seems to be a general agreement that a more
quantitative understanding of the spatio-temporal spreading
of neurodegenerative diseases is necessary to establish a
prognostic timeframe of disease progression. This could have
important clinical implications, ranging from more accurate
estimates of the socioeconomic burden of neurodegeneration
to a more informed design of clinical trials and pharmaco-
logical intervention.

5.3 Hydrocephalus

Hydrocephalus is a medical condition in which excess cer-
ebrospinal fluid builds up in the ventricles of the brain.
The excess fluid can increase the size of the ventricles and,
with it, the intracranial pressure. Normal pressure hydro-
cephalus develops gradually in time and manifests itself in
enlarged ventricles, while the intracranial pressure remains
at normal physiological levels [73]. The common treatment
strategy is cerebrospinal fluid flow diversion and surgical
placement of a shunt to drain excess fluid into the abdo-
men. The improvement after such a neurosurgical shunt
procedure varies greatly with a morbidity of about 40-50%
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[102]. Therefore, there is an urgent need for numerical simu-
lations that assist the design of better diagnostic and treat-
ment protocols.

Efforts towards this direction have employed mostly two-
dimensional finite element models using poro-elasticity with
a linear elastic solid skeleton [88, 103, 125], or the multiple-
network poroelastic theory [161]. Regarding the conclusions
in Sect. 4.3, we infer that it may be important to also take
viscoelastic effects into account, which has been done in [34].
Most recent works even propose a triphasic mechano-elec-
trochemical theory [45]. This model additionally accounts
for a change in the ionic concentrations of the ventricular
cerebrospinal fluid in the absence of an elevated intracranial
pressure as a possible cause for the onset of normal pressure
hydrocephalus. Interestingly, a three-dimensional finite ele-
ment study found no major advantage by using a biphasic
instead of a single phase model for brain tissue [46].

Based on the different time scales—rather rapid in hydro-
cephalus in young children versus gradual in normal pressure
hydrocephalus in the elderly—either a poro-viscoelastic or a
purely poro-elastic model could be more appropriate versus
more efficient. It remains to carefully evaluate the influence
of viscous and porous effects to decide which model to use.
Intracranial pressure monitoring is critical in many neuro-
logical conditions. The current gold standard is to monitor
the intracranial pressure via catheter transducer systems that
are inserted into the cranium. This process is highly invasive
and there is hope that computational simulations can help
estimate the intracranial pressure less invasively.

5.4 Drug Delivery

A promising treatment approach for neurological disorders
is the infusion of therapeutic agents, generally known as
convection-enhanced drug delivery [16]. Infusion catheters
are placed through small holes in the skull directly into the
extra-vascular space of the brain parenchyma. The pressure
gradient generated by external medical pumps initiates an
interstitial fluid flow and, therewith, the distribution of the
therapeutic agents. Various poro-elastic mechanical models
have been developed to simulate this problem analytically
[122] or numerically [32, 48, 155]. Drug delivery is a typi-
cal example where it seems indispensible to model the fluid
phase of brain tissue explicitly by using a biphasic constitu-
tive model based on the findings in Sect. 4.3 and due to the
fact that infusion of therapeutic agents occurs at intermedi-
ate time scales, it might also be important to include viscous
effects by using a poro-viscoelastic model.
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5.5 Neurosurgery

During neurosurgical procedures, brain tissue can tempo-
rarily experience strains and stresses that are high enough
to induce tissue damage. In this respect, simulation tools
capable of predicting the level of stress and strain can be
highly valuable to optimize surgical procedures [99]. A
typical example is decompressive craniectomy, a traditional
but controversial surgical procedure that removes part of
the skull to allow an injured and swollen brain to expand
outward and release an elevated intracranial pressure [93].
Despite a marked increase in popularity, a decompressive
craniectomy remains a compromise between maximizing
control of the intracranial pressure and minimizing side
effects to the surrounding tissue [69]. To date, the precise
criteria when to perform a decompressive craniectomy, the
optimal timing of treatment, the optimal location and size
of the skull opening, and the long-term functional outcome
remain unclear [171]. Studies suggest that mechanical
strains beyond the physiological level are associated with
its undesired, high failure rates. However, the precise strain
fields induced by the craniectomy are unknown.

Figure 41 shows finite element simulations of a decom-
pressive craniectomy performed on a personalized head
model from magnetic resonance images [178]. The simula-
tions compare the two most common types of craniectomy,
a unilateral flap and a frontal flap. For each case, either both
hemispheres or the left or right hemisphere of the brain
are swollen and part of the skull is removed to allow the
brain to bulge outward and release the intracranical swelling
pressure. Clearly, the underlying swelling is a biochemi-
cal process associated with the absorption of fluid, and we
can best model this phenomenon using a poro-viscoelastic
approach. While swelling takes place on the order of hours,
the clinical procedure of skull opening takes place on the
order of minutes on which both porous and viscous effects
can become relevant. The simulations in Fig. 41 reveal three
potential failure mechanisms associated with the procedure:
axonal stretch in the center of the bulge, axonal compres-
sion at the edge of the opening, and axonal shear around
the opening [171]. Strikingly, for a swelling of only 10%,
axonal strain, compression, and shear reach local maxima
of up to 30%, and exceed the reported functional and mor-
phological damage thresholds on the order of 20% [8].
Computational simulations of surgical procedures can help
quantify brain deformation, tissue strain, axonal stretch, and
shear with the goal to identify high-risk regions for brain
damage on a personalized basis [56]. While computational
modeling is beyond clinical practice in neurosurgery today,
simulations of neurosurgical procedures have the potential
to rationalize surgical process parameters including timing,
location, and size, and provide standardized guidelines for
clinical decision making and neurosurgical planning.
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Fig.41 Decompressive craniectomy. Displacements and maxi-

mum principal strains for unilateral and frontal flaps with left and

right, left, and right hemispherical swelling. Swelling causes maxi-
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Fig.42 Cumulative maximum principal strains during high-rate impact using different material models for brain tissue (top). Radial-circumfer-
ential shear strains resulting from in vivo head rotation (bottom). Reprinted with permission from [184]

5.6 Traumatic Brain Injury

A major public health concern are the consequences of neu-
rotrauma with over 2 million people affected by traumatic
brain injury each year [111]. During traumatic brain injury,
external mechanical load leads to damage of the highly
delicate brain tissue and ultimately loss of brain function
[116]. Clinically, traumatic brain injury can be classified into
mild, moderate, and severe, and repetitive mild traumatic
brain injuries are now more commonly referred to as chronic
traumatic encephalopathy [75]. While computational models
can help estimate injury risk and advance injury preven-
tion [38], correct predictions of the deformation field during
impact critically depends on the accurate representation of
the nonlinear, loading-mode-, and region-dependent stress-
strain relationship of brain tissue. This is especially chal-
lenging since impact loading involves extremely high strain
rates. It is not surprising that previous studies have shown

that simulation results largely depend on both the choice
of boundary conditions, for instance concerning the brain-
skull-interface, and the choice of the constitutive model for
brain tissue, as illustrated in Fig. 42 [184]. If only interested
in the instant of the impact, which can occur at strain rates
as high as 100/s, we can assume that the hysteresis loop
closes, as shown in Fig. 32, and use a finite hyperelastic
model. Importantly, however, the corresponding parameters
should be calibrated using the unconditioned tissue response
at equally high rates. Contrary to slow processes such as
brain development or neurodegeneration, during traumatic
brain injury, the fluid will not drain and will contribute to
the tissue stiffness. In accordance with the considerations in
Sect. 4.1.2, the Ogden hyperelastic constitutive model has
shown best agreement with experimental results [74, 168].
Interestingly, numerical studies further indicate that using a
linear viscoelastic model may overestimate the deformations
within the brain and, consequently, overestimate the injury
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risk if strain-based injury criteria are used [168]. In turn, a
study investigating traumatic spinal cord injury in rats found
that the compressible Ogden model with a two-term Prony
series [110] achieved good agreement with impactor weight-
drop experiments.

Taken together, time-dependent effects are critically
important, especially on the small time scales of moderate
to severe traumatic brain injury. More important than choos-
ing between an elastic, a viscoelastic, or a poro-viscoelastic
model is the use of appropriate high strain rate experiments
to accurately calibrate the model. In addition to the correct
prediction of tissue strains and stresses through numerical
simulations, a major research effort in the coming years will
be to accurately determine reliable tolerance criteria for cell
death and tissue damage to improve injury diagnosis and
advance injury prevention. Another major direction in the
coming years will be the exploration of the effects of multi-
ple mild repeated injuries to the head with a quest to better
understand how tissue damage accumulates over time and
how we can best prevent neurodegeneration in chronic trau-
matic encephalopathy.

6 Conclusions and Future Perspectives
6.1 Recommendations

The response of brain tissue—more than any other tissue in
our body—is hugely sensitive to the length and time scales
during loading. This is mainly a result of the ultrasoft, gel-
like nature of brain tissue, which implies that biochemical
effects on very small length and time scales can have tre-
mendous effects on the overall behavior. At first glance, it
appears that previous experimental findings are largely con-
tradictory; in reality, these studies tested different “shades”
of brain, as illustrated in Fig. 6.

To capture the highly complex mechanical response of
brain tissue, several hyper-, visco-, poro-, or poro-viscoelas-
tic constitutive models have been proposed. In this review,
we have systematically introduced and discussed models of
different level of complexity. Our goal was to show that the
selection of an appropriate model, and with it an appropriate
set of material parameters, hugely depends on the applica-
tion of interest: Slow processes such as brain development
may be modeled using finite hyperelasticity, moderately fast
processes such as brain surgery are predominated by visco-
and poro-elastic effects, and extremely fast processes such
as brain injury are dominated by the behavior at very high
rates.

Concerning material parameters, we have to keep in
mind that parameters calibrated from a single experimen-
tal loading mode will likely not represent the physiological
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response of the brain under complex deformation states
occurring in vivo. Similarly, parameters for the simulation
of slow processes should be calibrated using the condi-
tioned tissue response, while parameters for fast processes
should be based on the unconditioned response, ideally
probed at equally high rates. Using the appropriate set of
material parameters for a particular application is critical
because simulated strains outside the calibrated strain range
can easily under- or over-estimate the mechanical effect on
the brain, and, with it, safety criteria and injury risk. We
conclude that due to the inherent bio-chemo-mechanical
complexity of the brain, it is critically important to design
experiments hand in hand with the modeling approach, and,
ideally, even with the clinical application in mind.

6.2 Challenges and Perspectives

We conclude by listing our top ten most important steps that
we consider critical to push the frontiers in understanding
the mechanics of the human brain:

e To date, there is not a single constitutive model with a
single set of material parameters capable of correctly pre-
dicting the response of brain tissue for small and large
strains, as well as fast and slow loading rates. Especially
for extreme loading situations, associated with the appli-
cations in Sect. 5, this drawback should be tackled in the
future, through a combination of well-designed experi-
ments and careful modeling.

e A challenge in characterizing the constitutive behavior of
the brain is its pronounced microstructural heterogeneity.
First steps towards capturing local variations in tissue
stiffness have been made by using phenomenological
models and calibrating regional material parameters. A
true step forward would be to design microstructurally
motivated constitutive models, which would inherently
capture regional heterogeneities at a finer resolution.

e C(Closely related to the previous point, to date, it is not
clear, which microstructural components control mac-
roscopic tissue mechanics. While most microstructural
investigations have focused on the cellular components—
the functional elements of brain tissue—from a mechan-
ics point of view, the role of the extracellular matrix
should be investigated more thoroughly. Notably, how-
ever, load bearing elements in the extracellular matrix
of other soft tissues such as collagen do not play a major
role in the brain, which explains its incredible compli-
ance compared to other tissues.

¢ Another open question remains, how the in vivo properties
of brain tissue compare to the reported ex vivo param-
eters. Hard tissues have been extensively studied because
their mechanical properties change very slowly and only
marginally from live to dead. Soft tissues like tendons,
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ligaments, or arteries, change more drastically but over
the past decade, we have learned how to preserve them
appropriately post mortem. Ultrasoft tissues like the brain
can undergo drastic and rapid changes, both biochemi-
cally and biomechanically. To fully understand their in
vivo behavior, it will be key to intelligently combine in
vivo and ex vivo experiments to develop and calibrate reli-
able mechanical models for brain tissue in the future.

e In addition to the appropriate choice of the constitutive
model and the appropriate evaluation of strains, it is
essential to accurately capture the boundary conditions
during finite element simulations of brain tissue behavior.
Especially in the context of high impact loading, dur-
ing moderate to severe traumatic brain injury, the brain-
skull interface and internal structures like the falx will
significantly affect the deformation profile, and, with it
the strains and stresses across the brain. The appropri-
ate choice of boundary conditions needs to be carefully
addressed in the future.

e Once we understand the constitutive behavior of healthy
brain tissue, a next critical step is to predict the risk of
axonal injury and tissue damage, and, ultimately, the pro-
gression of neurodegenerative disease. It will be essen-
tial to perform well-designed experiments to quantify the
time course of events during neurodegeneration, and to
identify reliable failure criteria under multiaxial loading
conditions. Again, these failure criteria will likely depend
on the loading mode, as well as the time and length scale
of loading.

e An important phenomenon that has not been widely
considered yet is the fact that brain tissue is not pas-
sive but that it contains living cells that actively respond
to mechanical stimuli. Brain cells sense and respond to
their mechanical environment. Understanding the role of
mechanosensing and mechanotransduction is critical in
directing migration paths of nervous cells or tumor cells
within nervous tissue and in guiding the remodeling of
the tissue microstructure.

e Understanding the mechanobiology of brain tissue
requires a deep biochemical knowledge of the mechani-
cal stimuli that can modulate the response of the brain.
Recent studies have highlighted the importance of
mechanical stiffness as a guiding principle in neurode-
velopment and neurodegeneration. Manipulating the
mechanical microenvironment and recreating develop-
mental conditions could hold the key to enhance axonal
sprouting, trigger axonal regrowth, and simulate remy-
elination and provide a new path towards new treatment
strategies for neuronal regeneration.

e To achieve the long-term goal of using mechanical
models for clinical applications, a major challenge is the
numerical implementation of sophisticated, highly cou-
pled multiscale and multiphysics problems. When simu-

lating whole brain phenomena, the design of efficient and
robust algorithms will be critical to make these models
applicable and useful for the community at large.

e Finally, validating the models, parameters, and simula-
tions is the most critical step in building confidence in the
computational modeling of the brain. A validation across
the scales, both in space and time, will require concerted
efforts of biologists, engineers, and clinical research-
ers. Large data sets of healthy and diseased brains have
already been collected and are being made available to
the broad public. Extracting valuable information from
these data sets will likely require tools of machine learn-
ing to extract valuable features and correlations in space
and time. Rather than using machine learning tools as a
black box, without any prior information, our mechani-
cal understanding of the brain can define important con-
straints for these tools to reduce the parameter space and
ensure that the results are physically and physiologically
meaningful.

With the immense progress in biomedicine, imaging, and
computation, we now have the tools to address these fron-
tiers. If we succeed in tackling these challenges, mechanical
modeling and computational simulation of the brain will
be highly valuable to advance everyday clinical practice by
assisting diagnosis and treatment of neurological diseases.
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