
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=gopt20

Optimization
A Journal of Mathematical Programming and Operations Research

ISSN: 0233-1934 (Print) 1029-4945 (Online) Journal homepage: https://www.tandfonline.com/loi/gopt20

Clustering and multifacility location with
constraints via distance function penalty methods
and dc programming

Nguyen Mau Nam, Nguyen Thai An, Sam Reynolds & Tuyen Tran

To cite this article: Nguyen Mau Nam, Nguyen Thai An, Sam Reynolds & Tuyen Tran (2018)
Clustering and multifacility location with constraints via distance function penalty methods and dc
programming, Optimization, 67:11, 1869-1894, DOI: 10.1080/02331934.2018.1510498

To link to this article: https://doi.org/10.1080/02331934.2018.1510498

Published online: 02 Sep 2018.

Submit your article to this journal

Article views: 62

View Crossmark data

https://www.tandfonline.com/action/journalInformation?journalCode=gopt20
https://www.tandfonline.com/loi/gopt20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/02331934.2018.1510498
https://doi.org/10.1080/02331934.2018.1510498
https://www.tandfonline.com/action/authorSubmission?journalCode=gopt20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=gopt20&show=instructions
http://crossmark.crossref.org/dialog/?doi=10.1080/02331934.2018.1510498&domain=pdf&date_stamp=2018-09-02
http://crossmark.crossref.org/dialog/?doi=10.1080/02331934.2018.1510498&domain=pdf&date_stamp=2018-09-02

OPTIMIZATION
2018, VOL. 67, NO. 11, 1869–1894
https://doi.org/10.1080/02331934.2018.1510498

Clustering andmultifacility location with constraints via
distance function penalty methods and dc programming

Nguyen Mau Nama, Nguyen Thai Anb, Sam Reynoldsa and Tuyen Trana

aFariborz Maseeh Department of Mathematics and Statistics, Portland State University, Portland, OR,
USA; bInstitute of Research and Development, Duy Tan University, Danang, Vietnam

ABSTRACT
This paper is a continuation of our effort in using mathemati-
cal optimization involving DC programming in clustering and
multifacility location. We study a penalty method based on
distance functions and apply it particularly to a number of
problems in clustering and multifacility location in which the
centers to be foundmust lie in some given set constraints. We
also provide numerical examples to test our method.

ARTICLE HISTORY
Received 21 April 2018
Accepted 22 July 2018

KEYWORDS
Clustering; DC programming;
Nesterov’s smoothing
techniques; k-mean
algorithm

AMS SUBJECT
CLASSIFICATIONS
49J52; 49J53; 90C31

1. Introduction

In the current time of “big data”, clustering is a very important problem that helps
classify data in many fields such as machine learning, pattern recognition, image
analysis, data compression, and computer graphics. Given a finite number of data
points with a measurement distance, a centroid-based clustering problem seeks
a finite number of cluster centers with each data point assigned to the nearest
cluster center in a way that a certain measurement distance is minimized.

It is well-known that the k−means algorithm is one of the simplest clustering
algorithms, providing an easy way to classify a given data set through a cer-
tain number of clusters. However, it possesses certain drawbacks: the k−mean
algorithm depends heavily on the initial choice of cluster centers; there is no
guarantee that the k−means algorithm converges to a global optimal solution;
the number of clusters k is an input parameter: an inappropriate choice of kmay
yield poor results; the results depend heavily on the measurement distance; the
algorithm may not be applicable for handling effectively constraints imposed on
the cluster centers.

In our recent research, we further the pioneering works by Pham Dinh Tao,
Le Thi Hoai An and others from [1,2] in using the mathematical programming
approach for clustering, aiming at providing an alternative to the k−means

CONTACT Nguyen Mau Nam mau.nam.nguyen@pdx.edu Fariborz Maseeh Department of
Mathematics and Statistics, Portland State University, Portland, OR, 97207, USA

© 2018 Informa UK Limited, trading as Taylor & Francis Group

http://www.tandfonline.com
http://crossmark.crossref.org/dialog/?doi=10.1080/02331934.2018.1510498&domain=pdf
mailto:mau.nam.nguyen@pdx.edu

1870 N. M. NAM ET AL.

algorithm and coping with its drawbacks; see [1,3,4]. The mathematical pro-
gramming approach is very promising as optimization techniques for min-
imizing nonconvex optimization problems have been of great interest with
significant progress over the past few years. In addition, it is possible to use
derivative-free methods for initializations in the DCA and enhance the effective-
ness of gradient/subgradient-based nonconvex algorithms. Our method using
Nesterov’s smoothing techniques and the DCA, an algorithm for minimizing
differences of convex functions, allows us to solve clustering and multifacility
location problems in many different settings involving different norms, bilevel
clustering, and set clustering.

The main focus of this paper is on solving a number of clustering andmultifa-
cility location problems with constraints. We use a penalty method with squared
Euclidean distance functions to convert constrained problems to unconstrained
problems. Then appropriate DC decompositions and the DCA are used to min-
imize the penalized objective functions. In the case where the measurement
distance is defined by the Euclidean norm instead of the squared Euclidean norm,
we use Nesterov’s smoothing techniques for reducing the nonsmoothness of the
model and for providing a DC decomposition that is favorable for applying the
DCA. Our method opens up the possibility of using distance function penalty
methods for other problems of DC programming.

The paper is organized as follows. In Section 2, we present basic tools of convex
analysis and optimization used throughout the paper. The analysis of a penalty
method based on squared distance functions is presented in Section 3. Section 4
is devoted to solving clustering problems with constraints in which the measure-
ment distance is defined by the squared Euclidean norm. In Section 5, we study a
newmodel of clustering with constraints that involves sets. In Section 6, we study
clustering problems with constrained and the measurement distance defined by
the Euclidean norm. These problems belong to the class of continuousmultifacil-
ity location problems with constraints. Finally, numerical examples are presented
in Section 7.

Throughout the paper, we use 〈·, ·〉 to denote the inner product and use ‖ · ‖
to denote the associated Euclidean norm in R

d. For the subset � of R
d, the set

conv(�) is the convex hull of�, i.e. the smallest convex set inR
d that contains�.

2. Preliminaries

In this section, we present basic tools of analysis and optimization used in the
sequel. The readers are referred to [1,5–7] for more details.

Let f : R
d → (−∞,∞] be a convex function. An element v ∈ R

d is called a
subgradient of f at x̄ ∈ dom (f) = {x ∈ R

d|f (x) <∞} if it satisfies

〈v, x− x̄〉 ≤ f (x)− f (x̄) for all x ∈ R
d.

OPTIMIZATION 1871

The set of all such elements v is called the subdifferential of f at x̄ and is denoted
by ∂f (x̄). If x̄ 	∈ dom (f), we set ∂f (x̄) = ∅. This subdifferential concept pos-
sesses many calculus rules that are important for applications. In particular, for
a finite number of convex functions fi : R

d → (−∞,∞], i = 1, . . . ,m, we have
the following sum rule:

∂(f1 + · · · + fm)(x̄) = ∂f1(x̄)+ · · · + ∂fm(x̄) for all x̄ ∈ R
d

provided that
⋂m

i=1 ri(dom (fi)) 	= ∅. Here ri(�) stands for the relative interior
of�; see, e.g [6, Definition 1.68].

If f = maxi=1,...,m fi, and fi is continuous at x̄ for every i = 1, . . . ,m, then for
any x̄ ∈ R

d we have the following maximal rule:

∂f (x̄) = conv
(⋃
i∈I(x̄)

∂fi(x̄)
)
, (1)

where I(x̄) = {i|fi(x̄) = f (x̄)}.
Given a nonempty closed convex subset� of R

d with x̄ ∈ �, the normal cone
to� at x̄ is defined by

N(x̄;�) = {v ∈ R
d∣∣ 〈v, x− x̄〉 ≤ 0 for all x ∈ �}.

If x̄ 	∈ �, we set N(x̄,�) = ∅. It is well-known that an element x̄ ∈ R
d is an

absolute minimizer of a convex function f : R
d → R on � if and only if x̄ is a

local minimizer of f on �. Moreover, this happens if and only if the following
optimality condition holds: 0 ∈ ∂f (x̄)+ N(x̄;�).

Let� ⊂ R
d be a nonempty set (not necessarily convex). The distance function

to� is defined by

d(x;�) = inf
{‖x− w‖ ∣∣ w ∈ �}, x ∈ R

d.

The Euclidean project from x ∈ R
d to� is the set

P(x;�) = {w ∈ �∣∣d(x;�) = ‖x− w‖}.
We can show that if� is a nonempty closed set, then P(x;�) is nonempty, and it
is a singleton if we assume in addition that� is convex. We can also show that if
� is a convex set and w ∈ P(x;�), then x− w ∈ N(w;�).

Another tool we will use in the paper is the notion of Fenchel conjugates. Let
f : R

d → R be a function. The Fenchel conjugate of f is defined by

f ∗(y) = sup
{〈y, x〉 − f (x)

∣∣x ∈ R
d}, y ∈ R

d.

Note that f ∗ : R
d → (−∞,∞] is an extended-real-valued convex function.

Suppose further that f is convex, then the Felchel-Moreau theorem states that

1872 N. M. NAM ET AL.

(f ∗)∗ = f . Based on this theorem, we have the following relation between the
subgradients of f and its Fenchel conjugate:

x ∈ ∂f ∗(y) ⇐⇒ y ∈ ∂f (x). (2)

The notions of subgradients and Fenchel conjugates provide mathematical
foundation for the DCA introduced below. Given a function f : R

d → R with
the DC decomposition f = g−h, where g, h : R

d → R are convex functions, the
DCA introduced by Pham Dinh Tao described in what follows is a simple but
effective algorithm for minimizing the function f ; see [8,9].

Algorithm 1 The DCA
INPUT: x1,N ∈ N

for p = 1, . . . ,N do
Find yp ∈ ∂h(xp)
Find xp+1 ∈ ∂g∗(yp)

end for
OUTPUT: xN+1

For convenience, define the datamatrixA ∈ R
m×d as thematrix whose ith row

is ai ∈ R
d for i = 1, . . . ,m. Similarly, we define the variable matrix X ∈ R

k×d as
the matrix whose �th row is x� ∈ R

d for � = 1, . . . , k. We equip the linear space
R
k×d with the inner product 〈X,Y〉 = trace (XTY). Recall that the Frobenius

norm on R
k×d is defined by

∥∥X∥∥F = 〈X,X〉1/2 =
(k∑
�=1
〈x�, x�〉

)1/2

=
(k∑
�=1
‖x�‖2

)1/2

.

Observe that the square of the Frobenius norm is differentiable with

∇ ‖X‖2F = 2X for X ∈ R
k×d.

Let�� ⊂ R
d for l = 1, . . . , k be nonempty closed convex sets and let � = �1 ×

�2 × . . .×�k. ForX ∈ R
k×d, the projection fromX to� is the matrix Ywhose

�th row is y� = P(x�;��). We thus have

[d(X;�)]2 = ‖X− Y‖2F =
k∑
�=1
‖x� − y�‖2 =

k∑
�=1

d(x�;��)2. (3)

3. A penalty method via distance functions

In this section, we study a penalty method using distance functions for solving
constrained optimization problems and apply them specifically to DC program-
ming. This method is based on the quadratic penalty method; see [10,11]. Let

OPTIMIZATION 1873

f : R
d → R be a function and let�i for i = 1, . . . , q be nonempty closed subsets

of R
d with

⋂q
i=1�i 	= ∅. Consider the optimization problem:

min f (x)
subject to x ∈⋂q

i=1�i.
(4)

Let us first study the relation between this problem and the unconstrained
problem given by

min fλ(x) = f (x)+ λ
2

q∑
i=1

[d(x;�i)]2, x ∈ R
d. (5)

The theorem below provides a relation between optimal solutions of the con-
strained optimization problem (4) and the unconstrained optimization prob-
lem (5) obtained by a penalty method based on distance functions. The proof
follows [11, Theorem 17.1].

Theorem 3.1: Consider (4) in which f : R
d → R is a l.s.c. function. Suppose

that (4) has an optimal solution. If limn→∞ λn = ∞ and xn ∈ R
d is an absolute

minimizer of the function fλn defined in (5) for all n ∈ N, then every subsequential
limit of {xn} is a solution of (4).

Proof: Let x̄ ∈ R
d be an optimal solution of (4). That means x̄ ∈ �i for i =

1, . . . , q and

f (x̄) ≤ f (x) whenever x ∈ �i for all i = 1, . . . , q.

Since xn ∈ R
d is an absolute minimizer of the function fλn ,

fλn(xn) ≤ fλn(x̄).

This implies, with the observation that d(x̄;�i) = 0 for i = 1, . . . , q, that

f (xn)+ λn2
q∑

i=1
[d(xn;�i)]2 ≤ f (x̄). (6)

Then
q∑

i=1
[d(xn;�i)]2 ≤ 2

λn

(
f (x̄)− f (xn)

)
for all n ∈ N.

Let x∗ ∈ R
d be a subsequential limit of {xn}. Without loss of generality, we can

assume that limn→∞ xn = x∗. By the continuity of the distance function and the

1874 N. M. NAM ET AL.

lower semicontinuity of f,
q∑

i=1
[d(x∗;�i)]2 = lim

n→∞

q∑
i=1

[d(xn;�i)]2 ≤ lim inf
n→∞

2
λn

(
f (x̄)− f (xn)

)
≤ 0.

It follows that d(x∗;�i) = 0, and so x∗ ∈ �i for i = 1, . . . , q. In addition, by (6)
and the lower semicontinity of f we have

f (x∗) ≤ lim inf
n→∞ f (xn) ≤ lim inf

n→∞

(
f (xn)+ λn2

q∑
i=1

[d(xn;�i)]2
)
≤ f (x̄).

Therefore, x∗ is an optimal solution of (4). �

Now we discuss a direct consequence of Theorem 3.1 that will be used in
the sequel. Let F : R

k×d → R be a function and let ��i for � = 1, . . . , k and
i = 1, . . . , q be nonempty closed subsets of R

d. Consider the problem

min F(x1, . . . , xk)
subject to x� ∈⋂q

i=1�
�
i for � = 1, . . . , k.

(7)

We now clarify the relation between this problem and the unconstrained problem
given by

min Fλ(x1, . . . , xk) = F(x1, . . . , xk)+ λ
2

k∑
�=1

q∑
i=1

[d(x�;��i)]
2

x� ∈ R
d for � = 1, . . . , k.

(8)

In what follows, we identifyX = (x1, . . . , xk) ∈ R
k×d with the matrixX ∈ R

k×d,
whose �th row is x� for � = 1, . . . , k.

Corollary 3.2: Consider (7) in which F : R
k×d → R is a l.s.c. function. Suppose

that (7) has an optimal solution. If limn→∞ λn = ∞ and Xn = (x1n, . . . , xkn) ∈
R
k×d is an absolute minimizer of the function Fλn , then every subsequential limit

of {Xn} is a solution of (7).

Proof: Let X = (x1, . . . , xk) ∈ R
k×d and let �i = �1

i × . . .×�k
i ⊂ R

k×d for
i = 1, . . . , q. Note that

q⋂
i=1

�i =
q⋂

i=1

k∏
�=1

��i =
k∏
�=1

q⋂
i=1
��i .

It follows that x� ∈⋂q
i=1�

�
i for � = 1, . . . , k if and only if X ∈⋂q

i=1 �i, and
thus (7) reduces to the following optimization problem:

min F(X)
subject to X ∈⋂q

i=1 �i.

OPTIMIZATION 1875

Based on (3), we can rewrite the objective function Fλ in (8) as follows

Fλ(X) = F(X)+ λ
2

q∑
i=1

[d(X;�i)]2.

The conclusion now follows directly from Theorem 3.1. �

Let us continue with a known result on DC decompositions of squared dis-
tance functions. The proof of the following result can be found in [4, Proposition
5.1].

Proposition 3.3: Let � be a nonempty closed set in R
d (not necessarily convex).

Define the function

ϕ�(x) = sup
{〈2x,w〉 − ‖w‖2∣∣w ∈ �} = 2 sup

{〈x,w〉 − 1
2
‖w‖2∣∣w ∈ �}.

Then we have the following conclusions:

(i) The function ϕ� is always convex. If we assume in addition that � is convex,
then ϕ� is differentiable with ∇ϕ�(x) = 2P(x;�).

(ii) The function f (x) = [d(x;�)]2 is a DC function with f (x) = ‖x‖2 − ϕ�(x)
for all x ∈ R

d.

We now consider (4) in which f (x) = g(x)− h(x) is a DC function where
g, h : R

d → R are convex functions. We also assume additionally that all con-
straint sets are convex and satisfy

⋂q
i=1 ri(�i) 	= ∅. By [12, Theorem 5.3], this

condition ensures that

N(x̄;
q⋂

i=1
�i) =

q∑
i=1

N(x̄;�i) for every x̄ ∈
q⋂

i=1
�i. (9)

Recall from [9] that an element x̄ ∈ R
d is a critical point of a DC function f

with DC decomposition f = g−h if ∂g(x̄) ∩ ∂h(x̄) 	= ∅. Observe that (4) can be
written as an unconstrained optimization problem using the indicator function
as follows:

min
(
g(x)+ δ(x,

q⋂
i=1
�i)
)
− h(x), x ∈ R

d.

Define v(x) = g(x)+ δ(x,⋂q
i=1�i) for x ∈ R

d. By (9),

∂v(x̄) = ∂g(x̄)+ N(x̄;
q⋂

i=1
�i) = ∂g(x̄)+

q∑
i=1

N(x̄;�i) for all x̄ ∈ R
d.

1876 N. M. NAM ET AL.

Thus, we call an element x̄ ∈ R
d a critical point of (4) if

(
∂g(x̄)+

q∑
i=1

N(x̄;�i)
)
∩ ∂h(x̄) 	= ∅. (10)

The objective function of (5) now becomes

fλ(x) = g(x)+ λ
2

q∑
i=1

d(x;�i)
2 − h(x).

Using Proposition 3.3, we have

fλ(x) =
(
g(x)+ λq

2
‖x‖2

)
−
(
h(x)+ λ

2

q∑
i=1

ϕ�i(x)
)
= g̃λ(x)− h̃λ(x), (11)

where g̃λ and h̃λ are functions defined on R
d by

g̃λ(x) = g(x)+ λq
2
‖x‖2 and h̃λ(x) = h(x)+ λ

2

q∑
i=1

ϕ�i(x), x ∈ R
d.

Proposition 3.4: Suppose that limn→∞ λn = ∞ and xn is a critical point of the
DC function fλn = g̃λn − h̃λn given in (11). Then every subsequential limit of the
sequence {xn} is a critical point of (4).

Proof: Since xn is a critical point of fλn and by Proposition 3.3, there exist vn ∈
∂g(xn) and wn ∈ ∂h(xn) such that

vn + λnqxn = wn + λn
q∑

i=1
P(xn;�i). (12)

Let x̄ be a subsequential limit of {xn}. Without loss of generality, we can assume
that {xn} converges to x̄. Since any finite convex function is locally Lipschitz con-
tinuous, we can assume that both g and h are locally Lipschitz continuous around
x̄ with Lipschitz constant L>0. Then

‖vn‖ ≤ L and ‖wn‖ ≤ L for sufficiently large n. (13)

By (12), (13) and the assumption that λn→∞ as n→∞,

q∑
i=1

(
xn − P(xn;�i)

)
= 1
λn
(wn − vn)→ 0 as n→∞.

Letting n→∞ yields
∑q

i=1(x̄− P(x̄;�i)) = 0, due to the continuity of pro-
jection operators onto convex sets. Note also that λn

∑q
i=1(xn − P(xn;�i)) ∈

OPTIMIZATION 1877

∑q
i=1N(xn;�i). This implies

wn − vn ∈
q∑

i=1
N(xn;�i) = N(xn;

q⋂
i=1
�i).

By (13), we can assume without loss of generality that vn→ v̄ and wn→ w̄ as
n→∞. Then by passing to a limit, we have

w̄− v̄ ∈ N(x̄;
q⋂

i=1
�i) =

q∑
i=1

N(x̄;�i).

Observe also that v̄ ∈ ∂g(x̄) and w̄ ∈ ∂h(x̄). Therefore, (10) is satisfied and thus
x̄ is a critical point of (4). �

We continue by considering (7) in which

F(x1, . . . , xk) = G(x1, . . . , xk)−H(x1, . . . , xk)

is a DC function, where G,H : R
k×d → R are convex functions. From the proof

of Corollary 3.2, we can rewrite (7) as

min F(X) = G(X)−H(X)
subject to X ∈⋂q

i=1 �i.

Recall that a point X = (x̄1, . . . , x̄k) is called a critical point of this problem if

(
∂G(X)+

q∑
i=1

N(X;�i)
) ∩ ∂H(X) 	= ∅,

where N(X;�i) = N(x̄1;�1
i)× . . .× N(x̄k;�k

i).
For � ⊂ R

k×d, based on Frobenious norm, we define

ϕ�(X) = ‖X‖2F − d(X;�)2 = 2 sup
{
〈X,Y〉 − ‖Y‖

2
F

2
∣∣ Y ∈ �

}
, X ∈ R

k×d.

Observe that if �i = �1
i ×�2

i . . .×�k
i and X = (x1, . . . , xk) ∈ R

k×d, then

d(X;�i)
2 =

k∑
�=1

d(x�;��i)
2 =

k∑
�=1

(
‖x�‖2 − ϕ��i (x

�)
)
= ‖X‖2F −

k∑
�=1

ϕ��i
(x�).

Therefore, ϕ�i(X) =
∑k
�=1 ϕ��i (x

�).

1878 N. M. NAM ET AL.

In this new notation, the function Fλ in (8) can be rewritten as

Fλ(X) =
(
G(X)+ λq

2
‖X‖2F

)
−
(
H(X)+

q∑
i=1

ϕ�i(X)
)
= G1(X)−H1(X),

where

G1(X) = G(X)+ λq
2
‖X‖2F and H1(X) = H(X)+

q∑
i=1

ϕ�i(X), X ∈ R
k×d.

We also recall that X ∈ R
k×d is a critical point of (8) if

∂G1(X) ∩ ∂H1(X) 	= ∅.
The proof of the following result is similar to that of Proposition 3.4.

Proposition 3.5: Suppose that limn→∞ λn = ∞ and Xn = (x1n, . . . , xkn) ∈ R
k×d

is a critical point of the function Fλn . Then every subsequential limit of {Xn} is a
critical point of (7).

4. Clustering with constraints

In this section, we study problems of clustering with constraints in which the
measurement distance is defined by the squared Euclidean norm.We seek k cen-
ters x1, . . . , xk ∈ R

d ofm data nodes a1, . . . , am ∈ R
d and impose the restriction

that each x� ∈⋂q
i=1�

�
i for some nonempty closed convex set ��i ⊂ R

d with
� = 1, . . . , k and i = 1, . . . , q. Here, without loss of generality, we assume that
the numbers of constraints for each center is equal to each other. The problem
we are concerned with is given by

min ψ(x1, . . . , xk) =∑m
i=1 min�=1,...,k ‖x� − ai‖2

subject to x� ∈⋂q
j=1�

�
j for � = 1, . . . , k. (14)

This problem can be converted to an unconstrained minimization problem:

min f (x1, . . . , xk) = 1
2

m∑
i=1

min
�=1,...,k

‖x� − ai‖2

+ τ
2

k∑
�=1

q∑
i=1

[d(x�;��i)]
2, x1, . . . , xk ∈ R

d, (15)

where τ > 0 is a penalty parameter.
Recall from Proposition 3.3 that for any nonempty closed convex set� in R

d,

[d(x;�)]2 = ‖x‖2 − ϕ�(x),
where ϕ�(x) = 2 sup{〈x,w〉 − 1

2‖w‖2|w ∈ �} is a differentiable function with
∇ϕ�(x) = 2P(x;�). Let us use the minimum-sum principle for k real numbers

OPTIMIZATION 1879

α� for � = 1, . . . , k:

min
�=1,...,k

α� =
k∑
�=1

α� − max
r=1,...,k

k∑
�=1,� 	=r

α�

to obtain a DC decomposition of f as follows

f (x1, . . . , xk) =
(1
2

m∑
i=1

k∑
�=1
‖x� − ai‖2 + τq

2

k∑
�=1
‖x�‖2

)

−
(1
2

m∑
i=1

max
r=1,...,k

k∑
�=1,� 	=r

(‖x� − ai‖)2 + τ
2

k∑
�=1

q∑
i=1

ϕ��i
(x�)

)
.

We see that f = g−h by defining

g1(x1, . . . , xk) = 1
2

m∑
i=1

k∑
�=1
‖x� − ai‖2, g2(x1, . . . , xk) = τq

2

k∑
�=1
‖x�‖2,

h1(x1, . . . , xk) = 1
2

m∑
i=1

max
r=1,...,k

k∑
�=1,� 	=r

‖x� − ai‖2, h2(x1, . . . , xk)

= τ

2

k∑
�=1

q∑
i=1

ϕ��i
(x�),

and setting g = g1 + g2 and h = h1 + h2.
As discussed in the introduction, we may collect xj into the variable matrix

X and denote �i = �1
i ×�2

i × . . .×�k
i ∈ R

k×d for i = 1, . . . , q. Then (14)
becomes

minψ(X) subject to X ∈
q⋂

i=1
�i.

We also collect ai into the data matrix A, and upon doing so we may express g
in terms of the Frobenius norm, namely,

g1(X) = 1
2

m∑
i=1

k∑
�=1
‖x� − ai‖2 = 1

2

m∑
i=1

k∑
�=1

(
‖x�‖2 − 2〈x�, ai〉 + ‖ai‖2

)

= m
2

k∑
�=1
‖x�‖2 −

m∑
i=1

k∑
�=1
〈x�, ai〉 + k

2

m∑
i=1
‖ai‖2

= m
2
‖X‖2F − 〈X,EA〉 +

k
2
‖A‖2F ,

1880 N. M. NAM ET AL.

where E ∈ R
k×m is the matrix of ones. In this form, it is easily seen that

∇g1(X) = mX− EA.

Similarly, g2 can be equivalently written as

g2(X) = τq
2

k∑
�=1
‖x�‖2 = τq

2
∥∥X∥∥2F .

Hence, g2 is differentiable and its gradient is given by ∇g2(X) = τqX.
Therefore,

∇g(X) = ∇g1(X)+ ∇g2(X) = (m+ τq)X− EA.

Based on the relation (2), finding X ∈ ∂g∗(Y) is equivalent to solving the
equation

Y = (m+ τq)X− EA.

It follows that

X = Y+ EA
m+ τq ∈ ∂g

∗(Y).

Our goal, then, is to find Yp ∈ ∂h(Xp) from which we will obtain Xp+1 and
thereby compute the first N terms of the sequence {Xp} via Algorithm 1. Toward
this end we will find subgradients of the convex function h.

For each i = 1, . . . ,m, let r(i) ∈ {1, . . . , k} be an index for which

k∑
�=1,� 	=r(i)

‖x� − ai‖2 = max
r=1,...,k

k∑
�=1,� 	=r

‖x� − ai‖2,

in which case we see that a subgradientW ∈ ∂h1(X) is given by

W =
m∑
i=1

(
X− Ai − er(i)(xr(i) − ai)

)
= mX− EA−

m∑
i=1

er(i)(xr(i) − ai), (16)

where Ai ∈ R
k×d is the matrix whose all rows are ai and er is the k× 1 column

vector with a one in the rth position and zeros elsewhere.
Now for h2(X) = τ

2
∑k
�=1
∑q

i=1 ϕ��i (x
�), we have

∂h2
∂xj

(X) = τ

2

k∑
�=1

q∑
i=1

∂

∂xj
ϕ��i

(x�) = τ
q∑

i=1
P(xj;�j

i)

with j = 1, . . . , k. Then U = 1/τ∇h2(X) is the k× d matrix whose rows are
uj =∑q

i=1 P(xj;�
j
i).

OPTIMIZATION 1881

The form of the DCA instructs us to find Yp ∈ ∂h(Xp) at the pth iteration, so
we set Yp =W+ τU. Combining the above results gives Xp+1 = (W+ τU+
EA)/(m+ τq). Substituting (16) forW, we obtain the recursive relation

Xp+1 = 1
m+ τq

(
mXp + τU−

m∑
i=1

er(i)
(
xr(i)p − ai

))
,

where x�p denotes the �th row of Xp. The following algorithm summarizes the
DCA-based procedure we just derived.

Algorithm 2 DC program for (15)

INPUT: A,X0, {��j }�=1,...,kj=1,...,q ,N, τ
for p = 1, . . . ,N do

for i = 1, . . . ,m do
Find r(i) s.t. ‖xr(i)p−1 − ai‖2 = min{‖x�p−1 − ai‖2| � = 1, . . . , k}
SetWi := er(i)(x

r(i)
p−1 − ai)

end
for � = 1, . . . , k do

Find u� :=∑q
j=1 P(x

�
p−1;�

�
j)

end
Set Xp := 1

m+τq(mXp−1 + τU−
∑m

i=1Wi)

end
OUTPUT: XN

Inspecting (15), we see that for small τ our problem begins to resemble the
associated unconstrained problem. For solving the clustering (14), wemay gradu-
ally increase the value of the penalty parameter τ > 0 by periodicallymultiplying
by some σ > 1 and terminate whenever τ > τf . This may be accomplished by
Algorithm 3. Notice that for the initial choice of τ , the maximum number of
overall iterations of Algorithm 3 isN�logσ (τf /τ)�, where � · � denotes the ceiling
function.

Algorithm 3 Penalty DC program for (14)

INPUT: A,X0, {��j }�=1,...,kj=1,...,q ,N, τ , σ , τf
while τ < τf do

Find XN by executing Algorithm 2 with A,X0, {��j }�=1,...,kj=1,...,q ,N, τ

Reassign X0 := XN
Reassign τ := στ

end
OUTPUT: XN

1882 N. M. NAM ET AL.

Remark 4.1: Assume that in problem (14) the constraintQ� = ∩qj=1��j for each
center x� for � = 1, . . . , k is simple enough. Then we can use the projected k-
means algorithm which is similar to the k-means algorithm as follows. After
assigning each data point to its nearest centroid, we update each centroid by

x�←− P

(∑
i∈A(x�) ai

|A(x�)| ;Q�

)
,

whereA(x�) = {i ∈ {1, . . . ,m} | ‖ai − x�‖ = minj=1,...,k ‖ai − xj‖} is the cluster
associatedwith x�. In this case, to get a good starting pointX0 for Algorithm 3, we
perform the projected k-means algorithm in several initial steps. This procedure
has shown its efficiency in clustering without constraint; see [1].

5. Set clustering with constraints

In this section, we turn our attention to a model of set clustering with constraints,
i.e. for givenm subsets
1, . . . ,
m ⊂ R

d, we seek k cluster centers x� ∈⋂q
j=1�

�
j

for � = 1, . . . , k, where each ��j is a subset of R
d. The measurement distance is

defined by the squared distance functions to the sets involved. The optimization
modeling of the problem to be solved is given by

min ψ(x1, . . . , xk) =∑m
i=1 min�=1,...,k[d(x�;
i)]2

subject to x� ∈⋂q
j=1�

�
j for � = 1, . . . , k. (17)

Throughout this section, we assume that
i for i = 1, . . . ,m and ��j for j =
1, . . . , q and � = 1, . . . , k are nonempty, closed and convex.

Using the penaltymethod based ondistance functionswith a parameter τ > 0,
we consider the constrained set clustering model:

min f (x1, . . . , xk) = 1
2

m∑
i=1

min
�=1,...,k

[d(x�;
i)]2 + τ2
k∑
�=1

q∑
j=1

[d(x�;��j)]
2,

x1, . . . , xk ∈ R
d.

(18)
We will now find a DC decomposition of f = g−h as follows. For each i =
1, . . . ,m, we have

min
�=1,...,k

[d(x�;
i)]2 =
k∑
�=1

[d(x�;
i)]2 − max
r=1,...,k

k∑
�=1,� 	=r

[d(x�;
i)]2

OPTIMIZATION 1883

=
k∑
�=1

(
‖x�‖2 − ϕ
i(x

�)
)
− max

r=1,...,k

k∑
�=1,� 	=r

[d(x�;
i)]2

= ‖X‖2F −
(k∑
�=1

ϕ
i(x
�)+ max

r=1,...,k

k∑
�=1,� 	=r

[d(x�;
i)]2
)
.

Furthermore, we have
k∑
�=1

q∑
j=1

[d(x�;��j)]
2 =

k∑
�=1

q∑
j=1

(
‖x�‖2 − ϕ��j (x

�)
)

= q ‖X‖2F −
k∑
�=1

q∑
j=1

ϕ��j
(x�).

Let

g1(X) = m
2
‖X‖2F , g2(X) =

τq
2
‖XF‖2,

h1(X) =
m∑
i=1

(1
2

k∑
�=1

ϕ
i(x
�)+ 1

2
max

r=1,...,k

k∑
�=1,� 	=r

[d(x�;
i)]2
)
, h2(X)

= τ

2

k∑
�=1

q∑
j=1

ϕ��j
(x�),

in which case we have the DC decomposition f = g−h, where g = g1 + g2 and
h = h1 + h2 are convex.

Using the relation (2), we can easily see that X = 1/(m+ τq)Y ∈ ∂g∗(Y). To
apply the DCA fromAlgorithm 1, we also need to findY ∈ ∂h(X) asY = V+ U,
where V ∈ ∂h1(X) and U ∈ ∂h2(X).

Now, we focus on finding V ∈ ∂h1(X). Define

Di(X) = 1
2

k∑
�=1

ϕ
i(x
�),

and

Fi(X) = 1
2

max
r=1,...,k

k∑
�=1,� 	=r

[d(x�;
i)]2, i = 1, . . . ,m.

Then h1(X) =
∑m

i=1[Di(X)+ Fi(X)]. Based on Proposition 3.3, we see that
∇Di(X) is the k× dmatrix given by

∇Di(X) =

⎡
⎢⎣
P(x1;
i)

...
P(xk;
i)

⎤
⎥⎦ .

1884 N. M. NAM ET AL.

For each i = 1, . . . ,m, choose an index r(i) such that

max
r=1,...,k

k∑
�=1,� 	=r

[d(x�;
i)]2 =
k∑

�=1,� 	=r(i)
[d(x�;
i)]2.

Now, for j = 1, . . . , k, define

v
j
i =

{
xj − P(xj;
i) if j 	= r(i),
0 if j = r(i).

By (1) and the fact that∇[d(x;
)]2 = 2(x− P(x;
)) for a nonempty closed con-
vex set
, the matrix Vi whose jth row is vji defines a subgradient of Fi at X. It
follows that such a subgradient V is

V = mX−
m∑
i=1

er(i)
(
xr(i) − P(xr(i);
i)

)
.

As computed in the previous section, ∇h2(X) = τU, where U is the k× d
matrix whose �th row is

∑k
j=1 P(x�;�

�
j) for � = 1, . . . , k. Consequently, the k× d

matrix

Y = mX−
m∑
i=1

er(i)
(
xr(i) − P(xr(i);
i)

)
+ τU = mX+ τU

−
m∑
i=1

er(i)
(
xr(i) − P(xr(i);
i)

)

belongs to ∂h(X).
Now, for p ∈ N such that Xp−1 is given, one has

Yp−1 = mXp−1 + τUp −
m∑
i=1

er(i)
(
xr(i)p−1 − P(xr(i)p−1;
i)

)
∈ ∂H(Xp−1),

where x�p is the �th row of Xp and Up is the k× d matrix whose �th row is∑k
j=1 P(x�p;�

�
j) for l = 1, . . . , k. It follows that Xp from the DCA in Algorithm 1

can be determined by

Xp = 1
τq+m

(
mXp−1 + τUp −

m∑
i=1

er(i)
(
xr(i)p−1 − P(xr(i)p−1;
i)

))
.

We now adapt Algorithm 4 to solve our set clustering problem. Just as in the
previous section, we gradually increase the value of the penalty parameter τ > 0
by periodically multiplying it by some σ > 1 and stopping when τ > τf > 0.
This may be accomplished by Algorithm 5. We again see that for an initial
choice of τ = τ0, the maximum number of overall iterations of Algorithm 5 is
N�logσ (τf /τ0)�.

OPTIMIZATION 1885

Algorithm 4 DC program for (18)

INPUT: X0,
i, {��j }�=1,...,kj=1,...,q ,N, τ
for p = 1, . . . ,N do

for i = 1, . . . ,m do
for � = 1, . . . , k do

Set w�i := P(x�p−1;
i)

end
Find r(i) s.t. ‖xr(i)p−1 − wr(i)

i ‖2 = min�=1,...,k ‖x�p−1 − w�i ‖2
end
for � = 1, . . . , k do

Find u� :=∑q
j=1 P(x

�
p−1;�

�
j)

end
Xp := 1

τq+m(mXp−1 + τUp −
∑m

i=1 er(i)(x
r(i)
p−1 − wr(i)

i))

end
OUTPUT: XN

Algorithm 5 Penalty DC program for (17)

INPUT: X0, {
i}mi=1, {��j }�=1,...,kj=1,...,q ,N, τ , τf , σ
while τ < τf do

Find XN by executing Algorithm 4 with X0, {
i}mi=1, {��j }�=1,...,kj=1,...,q , τ ,N
Reassign X0 := XN
Reassign τ := στ

end
OUTPUT: XN

6. Multifacility location with constraints

Given a set ofm points (nodes) a1, a2, . . . , am in R
d, our goal is find k centers x�

for � = 1, . . . , k, which must be in constraint sets
⋂q

i=1�
�
i for l=1,..,k, such that

the transportation cost to the nodes is minimized. The same setting in Section 4
gives us the constrained minimization problem:

min ψ(X) subject to X ∈
q⋂

i=1
�i, (19)

where the total cost now is given by

ψ(X) = ψ(x1, . . . , xk) =
m∑
i=1

min
�=1,...,k

‖x� − ai‖.

1886 N. M. NAM ET AL.

This problem can be converted to an unconstrained minimization problem:

min fτ (x1, . . . , xk) =
m∑
i=1

min
�=1,...,k

‖x� − ai‖

+ τ
2

k∑
�=1

q∑
i=1

[d(x�;��i)]
2, x1, . . . , xk ∈ R

d. (20)

where τ > 0 is a parameter.
We apply Nesterov’s smoothing techniques from [4] to approximate the objec-

tive function fτ by a new DC function which is favorable for applying the
DCA.

fτ ,μ(x1, . . . , xk) =
(
μ

2

m∑
i=1

k∑
�=1

∥∥∥∥x� − ai

μ

∥∥∥∥
2

+ τq
2

k∑
�=1
‖x�‖2

)

−
(
μ

2

m∑
i=1

k∑
�=1

[
d
(
x� − ai

μ
;B
)]2

+
m∑
i=1

max
r=1,...,k

k∑
�=1,� 	=r

‖x� − ai‖ + τ
2

k∑
�=1

q∑
i=1

ϕ��i
(x�)

⎞
⎠ .

In what follows, we use f instead of fτ ,μ for the simplicity of notations. The
original clustering problem now can be solved using a DC programming:

min f (x1, . . . , xk) = g(x1, . . . , xk)− h(x1, . . . , xk), x1, . . . , xk ∈ R
d.

In this formulation, g and h are convex functions on (Rd)k defined by

g(x1, . . . , xk) = g1(x1, . . . , xk)+ g2(x1, . . . , xk),

h(x1, . . . , xk) = h1(x1, . . . , xk)+ h2(x1, . . . , xk)+ h3(x1, . . . , xk),

with their respective components defined as

g1 = μ

2

m∑
i=1

k∑
�=1

∥∥∥∥x� − ai

μ

∥∥∥∥
2

, g2 = τq
2

k∑
�=1
‖x�‖2,

h1 = μ

2

m∑
i=1

k∑
�=1

[
d
(
x� − ai

μ
;B
)]2

, h2 =
m∑
i=1

max
r=1,...,k

k∑
�=1,� 	=r

‖x� − ai‖,

h3 = τ

2

k∑
�=1

q∑
i=1

ϕ��i
(x�).

OPTIMIZATION 1887

The function g1 can be equivalently written as

g1(X) = 1
2μ

m∑
i=1

k∑
�=1
‖x� − ai‖2

= 1
2μ

m∑
i=1

k∑
�=1

(
‖x�‖2 − 2〈x�, ai〉 + ‖ai‖2

)

= 1
2μ

(
m
∥∥X∥∥2F − 2

〈
X,EA

〉
+ k
∥∥A∥∥2F).

Note that g1 is differentiable and its gradient is given by

∇g1(X) = 1
μ
[mX− EA] .

The function g2 is the same as before so its gradient is given by

∇g2(X) = τqX.

Since g(X) = g1(X)+ g2(X), its gradient can be computed by

∇g(X) = ∇g1(X)+ ∇g2(X)

= 1
μ

(
mX− EA

)
+ τqX

= (m
μ
+ τq)X− 1

μ
S,

where S = EA. The latter can equivalently be written as

Y = (m
μ
+ τq)X− 1

μ
S.

Our goal now is to compute ∇g∗(Y), which can be accomplished by the rela-
tion (2). Then with some algebraic manipulations, we can show that

∇g∗(Y) = X = μY+ S
m+ μτq .

Next, we will demonstrate in more details the techniques we used in finding a
subgradient for the convex function h. Recall that h is defined by

h(X) =
3∑

i=1
hi(X).

1888 N. M. NAM ET AL.

We will start with the function h1 given by

h1(X) = μ

2

m∑
i=1

k∑
�=1

[
d
(
x� − ai

μ
;B
)]2

.

Similar to the situation in [4], we get

∂h1
∂x�

(X) =
m∑
i=1

(
x� − ai

μ
− P
(x� − ai

μ
;B
))

.

Thus, for � = 1, 2, . . . , k, ∇h1(X) = Z is the k× d matrix whose �th row is
∂h1/∂x�(X).

Let us compute a subgradient of h2 as in [4]

h2(X) =
m∑
i=1

max
�=1,...,k

k∑
j=1,j	=�

‖xj − ai‖ =
m∑
i=1

γi(X),

where γi(X) = max�=1,...,k
∑k

j=1,j	=� ‖xj − ai‖. For each i = 1, . . . ,m, define

γi�(X) =
k∑

j=1,j	=�
‖xj − ai‖, � = 1, . . . , k.

Then γi(X) = max�=1,...,k γi�(X).
Based on the subdifferential formula for maximum functions, for each i =

1, . . . ,m, we findWi ∈ ∂γi(X). Then defineW =∑m
i=1Wi to get a subgradient

of the function h2 atX by the subdifferential sum rule. To accomplish this goal, we
first choose an index �∗ = 1, . . . , k such that γi(X) = γi�∗(X) =

∑k
j=1,j	=�∗ ‖xj −

ai‖. Using the familiar subdifferential formula of the Euclidean norm function,
the jth row wj

i for j 	= �∗ of the matrixWi is determined as follows

wj
i =
{

xj−ai
‖xj−ai‖ ifxj 	= ai,

0 ifxj = ai.

The �∗th row of the matrixWi is w�
∗
i = 0.

The procedure for computing ∂h3(X) is the same in Section 4. Let U be the
matrix whose rows are

∑q
i=1 P(x�;�

�
i), for � = 1, . . . , k, then ∇h3(X) = τU.

At this point, we are ready to give a new DCA-based algorithm for our
problem.

OPTIMIZATION 1889

Algorithm 6 DC program for (20)

INPUT: A,X0, {��j }�=1,...,kj=1,...,q , τ ,μ,N ∈ N.
for p = 1, 2, . . . ,N do

Find Yp := Zp +Wp + τUp where
Zp := ∇h1(Xp)

Wp ∈ ∂h2(Xp)

Up := ∇h3(Xp)

Find Xp+1 := μ(Zp+Wp+τUp)+S
m+μτq

end
OUTPUT: XN

We also present below an adapted version of Algorithm 6 for solving (19). We
may improve Algorithm 6 by gradually increasing and decreasing the value of the
penalty parameter τ and the smoothing parameter μ respectively. This can be
done by periodically multiplying them by some σ > 1, 0 < δ < 1 and stopping
when τ > τf , μ < μf .

Algorithm 7 Penalty DC program for (19)

INPUT: A,X0, {��j }�=1,...,kj=1,...,q ,N, τ , σ , τf ,μ, δ,μf
while τ < τf and μ > μf do

Find XN by executing Algorithm 6 with A,X0, {��j }�=1,...,kj=1,...,q ,N, τ ,μ
Reassign X0 := XN
Reassign τ := στ
Reassign μ := δμ

end
OUTPUT: XN

7. Numerical experiments

Example 7.1: We now consider the dataset EIL76 taken from the Traveling
Salesman Problem Library [13]. We impose the following constraints on the
solution:

(1) The first center is a common point of a box whose vertices are (40, 40);
(40, 60); (20, 60); (20, 40) and a ball of radius r=7 centered at (20, 60).

(2) The second center is in the intersection of two balls of the same radius r=7,
centered at (35, 20) and (45, 22), respectively.

Choosing τ = 1, σ = 10, τf = 108, Algorithm 3 yields an approximate
solution:

1890 N. M. NAM ET AL.

Figure 1. A 2-center constrained clustering problem for dataset EIL76.

X =
(
26.69959 57.97125
41.06910 23.48799

)
, with the costψ(X) = 33576.25387; see Figure 1.

7.1. Set clusteringwith constraints

Example 7.2: We now use Algorithm 5 to solve a set clustering problem with
constraints. We consider the latitude and longitude of the 50 most populous US
cities taken from 2014United States Census Bureau data 1, and approximate each
city by a ball with radius 0.1

√
A/π where A is the city’s reported area in square

miles.
We use Algorithm 5 for solving 3-center problem generated by this 50-set

dataset with requirement that each center must belong to the intersection of two
balls. The centers of these constrained balls are the columns of the matrix below

(−80 −80 −92 −90 −115 −110
34 38 37 40 45 40

)

with corresponding radii given by
(
2 3 4 3 4 4

)
. The result is plotted in

Figure 2 using a plate Carrée projection2.

OPTIMIZATION 1891

Figure 2. A 3-center set clustering problems with 50 most populous US cities. Each city is
approximated by a ball proportional to its area.

We again choose τ = 1, σ = 10, τf = 108, Algorithm 5 yields an approximate
optimal value ψ(X) = 2271.09657 at an approximate solution given by

X =
⎛
⎝ −79.32172 35.88148
−91.93134 37.70436
−113.82289 41.17711

⎞
⎠ .

7.2. Multifacility location with constraints

Example 7.3: Wenow test Algorithm7 on a data setA containing randompoints
in 4 balls of radius r=0.3 centered at (2, 2), (4, 2), (4, 4) and (2, 4). Let k=4
and the constraint be the ball with the same radius, centered at (3, 3). We use
the kmeans (a MATLAB built in function) to partition the nodes into 4 clus-
ters first, and then we selected the 4 cluster centroid locations as starting centers.
We choose τ = 1, σ = 10, τf = 108, μ = 1, δ = 0.75, μf = 10−6. Typical cen-
ters are the intersections of the constraint ball boundary and the line connecting
centers of each ball to the center of the constraint one. A visualization is shown
in Figure 3.

Example 7.4: Next we consider the latitude and longitude data of the m=988
most-populated cities in the contiguous 48 United States [14]. We impose the
following constraints on the solution:

(1) One center is to lie west of−115◦ longitude and within 4◦ latitude/longitude
of Caldwell, Idaho.

(2) One center is to lie within the state of Colorado and within 6◦ lati-
tude/longitude of Oklahoma City, Oklahoma.

1892 N. M. NAM ET AL.

(3) One center is to lie within 2◦ latitude/longitude of Skokie, Illinois and the
triangle with vertices at Cleveland, Ohio; Atlanta, Georgia; and Des Moine,
Iowa.

(4) One center is to lie within 4◦ latitude/longitude of New York, NY and
Washington,DC.

Figure 3. A 4-center multifacility location with one ball constraint.

Figure 4. A 4-center constrained multifacility location problem with US cities dataset.

OPTIMIZATION 1893

Employing Algorithms 6 and 7 with τ = 1, σ = 100, τf = 108, μ = 1, δ =
0.85, μf = 10−6, we terminate when ‖Xp+1 − Xp‖F < 10−6 and find final cen-
ters at

X =

⎛
⎜⎜⎝
−118.03185 39.89550
−102.04996 36.99996
−87.93854 40.90443
−76.63980 38.67968

⎞
⎟⎟⎠

with an objective value ψ(X) = 42586.65060; see Figure 4.

Notes

1. https://en.wikipedia.org/wiki/List_of_United_States_cities_by_population
2. https://www.mathworks.com/help/map/pcarree.html

Disclosure statement

No potential conflict of interest was reported by the authors.

Funding

Research of Nguyen Mau Nam (Mau Nguyen) was partly supported by the National Science
Foundation under grant DMS-1716057. Research of Nguyen Thai An was supported by the
VietnamNational Foundation for Science andTechnologyDevelopment under grant #101.01-
2017.325

References

[1] An LTH, Belghiti MT, Tao PD. A new efficient algorithm based on DC programming
and DCA for clustering. J Glob Optim. 2007;27:503–608.

[2] An LTH, Minh LH, Tao PD. New and efficient DCA based algorithms for minimum
sum-of-squares clustering. Pattern Recognit. 2014;47:388–401.

[3] Nam NM, Geremew W, Reynolds S, et al. The nesterov smoothing technique and
minimizing differences of convex functions for hierarchical clustering. Optim Lett.
2018;12:455–473. submitted.

[4] Nam NM, Rector RB, Giles D. Minimizing differences of convex functions with appli-
cations to facility location and clustering. J Optim Theory Appl. 2017;173:255–278.
submitted.

[5] Hiriart-Urruty JB, Lemaréchal C. Funndamental of convex analysis. Berlin: Springer-
Verlag; 2001.

[6] Mordukhovich BS, Nam NM. An easy path to convex analysis and applications. San
Rafael, CA: Morgan & Claypool Publishers; 2014.

[7] Rockafellar RT. Convex analysis. Princeton, NJ: Princeton University Press; 1970.
[8] Tao PD, An LTH. Convex analysis approach to D.C. programming: theory algorithms

and applications. Acta Math Vietnam. 1997;22:289–355.
[9] Tao PD, An LTH. A D.C. optimization algorithm for solving the trust-region subprob-

lem. SIAM J Optim. 1998;8:476–505.
[10] Chi E, Zhou H, Lange K. Distance majorization and its applications. Math Program

Series A. 2014;146:409–436.

1894 N. M. NAM ET AL.

[11] Nocedal J, Wright SJ. Numerical optimization. 2nd Edition. New York: Springer; 2006.
[12] Mordukhovich BS, Nam NM. Geometric approach to convex subdifferential calculus.

Optim. 2017;66:839–873.
[13] Reinelt G. TSPLIB: A traveling salesman problem library. ORSA J Comput. 1991;3:

376–384.
[14] United States Cities Database. Simple Maps: Geographic Data Products, 2017,

http://simplemaps.com/data/us-cities.

	1. Introduction
	2. Preliminaries
	3. A penalty method via distance functions
	4. Clustering with constraints
	5. Set clustering with constraints
	6. Multifacility location with constraints
	7. Numerical experiments
	7.1. Set clustering with constraints
	7.2. Multifacility location with constraints

	Notes
	Disclosure statement
	Funding
	References

