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Abstract This paper continues our recent effort in applying continuous optimization tech-
niques to study optimal multicast communication networks modeled as bilevel hierarchical
clustering problems. Given a finite number of nodes, we consider two different models of
multicast networks by identifying a certain number of nodes as cluster centers, and at the
same time, locating a particular node that serves as a total center so as to minimize the
total transportation cost throughout the network. The fact that the cluster centers and the
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total center have to be among the given nodes makes these problems discrete optimization
problems. Our approach is to reformulate the discrete problems as continuous ones and to
apply Nesterov’s smoothing approximation techniques on the Minkowski gauges that are
used as distance measures. This approach enables us to propose two implementable DCA-
based algorithms for solving the problems. Numerical results and practical applications are
provided to illustrate our approach.

Keywords DC programming - Nesterov’s smoothing techniques - Hierarchical clustering -
Subgradient - Fenchel conjugate

Mathematics Subject Classification 49J52 - 49J53 - 90C31

1 Introduction

The complexity of modern networks such as communication networks, broadcasting net-
works, and distribution networks requires multilevel connectivity. For instance, many
department stores usually get their merchandise delivered to them by a delivery company.
For efficiency purposes, the delivery company wants to identify a certain number of loca-
tions to serve as distribution centers for the delivery of supplies to the stores. At the same
time, the company also wants to identify a location as a main distribution center, known as
the total center, from which the other distribution centers receive their supplies. This is a
typical description of a bilevel multicast communication network, which can also be seen
as a multifacility location problem or as a bilevel hierarchical clustering problem. Borrow-
ing some language from the network optimization literature, the problem can be described
mathematically as follows: Given m nodes al, ..., a™ in R, the objective is to choose k
cluster centroids a1, ..., a® and a total center a**1 from the given nodes in such a way
that the total transportation cost of the tree formed by connecting the cluster centers to the
total center, and the remaining nodes to the nearest cluster centers is minimized. The fact
that the centers and the total center have to be among the existing nodes makes the problem
a discrete optimization problem, which can be shown to be NP-hard.

Many existing algorithms for solving bilevel hierarchical clustering problems are heuristic
in nature, and do not optimize any well-defined objective function. The mathematical opti-
mization approach for solving hierarchical clustering problems was initiated in the pioneering
work from [6]. The authors introduced three models of hierarchical clustering based on the
Euclidean norm and employed the derivative-free method developed in [5] to solve the prob-
lem in two dimensions. Replacing the Euclidean norm by the squared Euclidean norm, the
authors in [3] used the DCA, a well-known algorithm for minimizing differences of convex
functions introduced by Pham Dinh Tao (see [4,16]), to solve the problem in high dimen-
sions. In fact, the DCA provides an effective tool for solving the classical clustering problem
and its variants; see [1-3,6-8,11,12] and the references therein. In our recent work [12], we
proposed a new method based on Nesterov’s smoothing techniques and the DCA to cope with
the original models of hierarchical clustering introduced in [6]. The idea of using Nesterov’s
smoothing techniques overcomes the drawback of the DCA stated in [3] as “the DCA is not
appropriate for these models”. Our current paper continues the effort initiated in [3,6] in
which mathematical optimization techniques for solving optimization problems beyond con-
vexity are used in multifacility location and clustering. This paper can be considered as the
second part of our paper [12] as we propose two other bivelel hierarchical clustering models
and investigate the possibility of considering problems with generalized distance generated
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by Minkowski gauges. We use two new ways to define the total centers compared with the
existing methods from [12]. In [12], Model I defines the total center as the average of the k-
centroids, while in the current paper it is directly determined by optimizing from the existing
m nodes. In the second model of [12], the total center is determined by adding an additional
variable in R" to k cluster centers. On the other hand, in this paper we first model the total
center itself as a cluster center, and then we determine its precise location by solving the
corresponding optimization problem. In addition, using generalized distance measurements
based on the Minkowski gauge allows us to solve clustering problems with different norms.

In this paper, we propose two implementable algorithms based on DC programming com-
bined with Nesterov’s smoothing techniques to solve the resulting constrained minimization
problems for both models. It is important to note that the DCA can only guarantees the con-
vergence to a critical point, so to achieve better results we often run the algorithms multiple
times with different starting points for the two proposed algorithms.

The paper is organized as follows. In Sect. 2, we present the continuous optimization for-
mulations of the two models using Minkowski gauges as distance measurements. In Sect. 3,
we discuss some basic definitions and tools of optimization that are used throughout the
paper. In Sects. 4 and 5, we develop the two algorithms for the two proposed multicast com-
munication networks. In Sect. 6 we present our numerical experiments and results performed
on artificial datasets as well as real datasets.

2 Problems formulation

In this section, we discuss two models of bilevel hierarchical clustering and provide the tools
of optimization used throughout the paper. In order to reformulate the discrete optimization
problem under consideration as a continuous optimization problem, we introduce k artificial
centers which are not necessarily the existing nodes in designing the optimal multicast net-
works. Denote the k artificial cluster centers by x!, ..., x* and the distance measurement
between the artificial center x¢, £ =1, ..., k, and therealnodea’, i =1, ..., m, by a gen-
eralized distance o (x* — a’), where o is the support function associated with a nonempty
closed bounded convex set F' containing the origin in its interior, i.e.,

orp(x) :=sup{{x,y) | y € F}.

Note that if F is the closed unit Euclidean ball in R”, then of(x) defines the Euclidean
norm ||x|| of x € R". In the case where F is the closed unit box of R", i.e., F := {u =
(uiy,...,uy) € R" | —1 <u; <1 fori =1,...,n}, then op(x) defines the ¢! —norm
llx]l1 of x € R".

In the first model, the m nodes are clustered around the k artificial centers by trying to
minimize the minimum sum of the distances from each node to the k cluster centers. A node
with the smallest such sum will serve as the total center. The total connection cost of the tree
that needs to be minimized is given by

i=l,...m

m
(pl(xl,.. Z Inm op(x —a) + min Zap(x

On the other hand, in the second model the m nodes are clustered around k + 1 artificial
centers by trying to minimize the minimum sum of the distances from each artificial center
to the remaining k centers. Such a center will eventually be named as the total center. In this
case, the total connection cost of the tree that needs to be minimized is given by

@ Springer



708 J Glob Optim (2018) 72:705-729

m k+1
ol Xk = Z_lmir}<+1 or(xt —d) + l_lmir}(+1 Z or(xt = x7).
=1 oo Jj=1

The main difference between Model I and Model II is the way in which the total center is
selected. In addition, in Model II the total center also serves as a cluster center.

The algorithms we will develop are expected to solve the continuous optimization models
in a reasonable amount of time and give us approximate solutions to the original discrete
optimization models. Note that each node a' is assigned to its closest center x, but in both
models the centers might not be real nodes. Therefore, for the continuous optimization model
to solve (or approximate) the discrete model, we need to add a constraint that tries to minimize
the difference between the artificial centers and the real centers, i.e.,

k
d)l(xl, .. .,xk) = Z minmaF(xe —ai) =0

i=1,...,

and

.....

=1

Note that we use the generalized distance generated by or in the constraints for convenience
of presentation although it is possible to use different distances such as the Euclidean distance.

Model I was originally proposed in [6] where the authors used the derivative-free discrete
gradient method established in [5] to solve the resulting optimization problem, but this
method is not suitable for large-scale settings in high dimensions. It is also considered in [3]
to solve a similar model where the squared Euclidean distance used as a similarity measure.
Model II was considered in [8] without constraints, and the hyperbolic smoothing technique
was used to solve the problem.

3 Basic definitions and tools of optimization

In this section, we present the main tools of optimization used to solve the proposed bilevel
hierarchical clustering problems: the DCA and Nesterov’s smoothing techniques.
We consider throughout the paper DC programming:

minimize f(x) := g(x) — h(x), x € R", 3.1

where g: R” — R and 4: R" — R are convex functions. The function f in (3.1) is called
a DC function and g — h is called a DC decomposition of f.
Given a convex function g: R" — R, the Fenchel conjugate of g is defined by

g (y) =sup{(y,x) —g(x) | x e R"}, y e R".

Note that g*: R" — (—o0, +00] is also a convex function. In addition, x € 9g*(y) if
and only if y € dg(x), where 0 denotes the subdifferential operator in the sense of convex
analysis; see, e.g., [9,10,15].

We will present below the DCA introduced by Tao and An [4,16] as applied to (3.1).
Although the algorithm is used for nonconvex optimization problems, the convexity of the
functions involved still plays a crucial role.
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Algorithm 1 The DCA
1: Input: xg € R", N e N.
2:fork=1,...,N do

3: Find y; € dh(xg—1)
4: Find x; € 9g* (k)
5: end for

6: Output: x .

Let us discuss below a convergence result of DC programming. A function 7: R” — R
is called y-convex (y > 0) if the function defined by k(x) := h(x) — %||x||2, x € R, is
convex. If there exists y > 0 such that & is y —convex, then 4 is called strongly convex. We
say that an element x € R" is a critical point of the function f defined by (3.1) if

ag(x) N dh(x) # 0.

Obviously, in the case where both g and / are differentiable, x is a critical point of f if and
only if x satisfies the Fermat rule V f(x) = 0. The theorem below provides a convergence
result for the DCA. It can be derived directly from [16, Theorem 3.7].

Theorem 3.1 Consider the function f defined by (3.1) and the sequence {x;} generated by
the Algorithm 1. Then the following properties are valid:
(i) If g is y1-convex and h is y,-convex, then

+ 2

1
F@0 = f@ie) = P22 i — il forallk € N,
(ii) The sequence { f (xx)} is monotone decreasing.
(iii) If f is bounded from below, g is y1-convex and h is y»-convex with y1 + y» > 0, and
{xx} is bounded, then every subsequential limit of the sequence {x\} is a critical point of f.

In the next proposition, we present a direct consequence of Nesterov’s smoothing tech-
niques given in [13], where d (x; ©2) denotes the Euclidean distance and P (x; €2) denotes the
Euclidean projection from a point x to a nonempty closed convex set €2 in R”.

Proposition 3.2 Given any a € R" and v > 0, a Nesterov smoothing approximation of
¢(x) := op(x — a) has the representation

1 My X—a 2
O (x) :=ﬂ||x—a||2—5[d( . )]

Moreover, Vi, (x) = P(%; F) and

0u(x) < 9(x) < @u(x) + %nFnz,

where || F|| :=sup{lqll | ¢ € F}.

4 Hierarchical clustering via continuous optimization techniques: Model I

In this section, we present an approach of using continuous optimization techniques for
hierarchical clustering. As mentioned earlier, our main tools are the DCA and Nesterov’s
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smoothing techniques. Recall that the first model under consideration is formulated as a
constrained optimization problem:

m

minimize Z m1n ap(x —a)+ m1n Zap(x )
i=1

subject to Z min op(x‘ —a’) =0, x',... x* e R
i=1,...m

After the centers x!, x* have been found, a total center is selected from the existing

nodes as follows: For eachi = 1, ..., m, we compute the sum Z’(E:l ap(xe —a'). Then a
total center ¢* is a node a' that yields the smallest sum, i.e.,

k
c* ;= argmin ZO’F(}CZ —ah) | i=1,
=1

Now we convert the constrained optimization problem under consideration to an uncon-
strained optimization problem using the penalty method with a penalty parameter A > 0:

k k

minimize Z m1n op(x —a ) + rlmn ZO’F(_X —a )+ AZ m1n op(x )
i=1 =1 =1
xl,...,xk e R".
Proposition 4.1 The objective function
1
s m —
fx Z o in GF(x a )—|— r{nn Zap(x )

i=1 ” |

k
+AZ min crp(xe—ai)
— i=1,....m

forx', ..., x* € R" and A > 0 can be written as a difference of convex functions.
Proof First note that the minimum of m real numbers «; fori = 1, ..., m has the represen-
tation:

m
mln a, E o; — max E ;.
i= t=1,....,m 4
i=1 i=1

i£t

Hence, we can represent f (x!, ..., x%) as a function defined on (R™)* as follows:

fa! )—(HA)ZZJF(x —a)—Z max ZaF(x

i=1¢=1 i=1

Z;ﬁt
k m m k
- A E max E or(x* —a') — max E E or(xt —
t=1,....m 4 t=1,....m 4
=1 i=1 i=1 =1
it it
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This shows that f has a DC representation f = go — hg, where

m  k
gl ) =@+ Y)Y opGt —ah) @.1)
i=1 t=1
and
m
ho(x],...,xk):=2 max ap(x —a)—i—AZ max Zap(x —a)
i:1 Z;ét z;ét
m k
+ max Y ) or@' —d
i=1 t=1
i#t
are convex functions defined on (R™)*. O

Based on Proposition 3.2, we obtain a Nesterov’s approximation of the generalized dis-
tance function ¢ (x) := op(x — a) for x, a € R" as follows

o= -2

As aresult, the function g¢ defined in (4.1) has a smooth approximation given by

X —a

"

¢ 2

(2+A)M xt—d

> |

1¢=1

Ms

1 ky .
gou(x', ..., x") =
i

m 2

T )

i=1{=1

Thus, the function f has the following DC approximation convenient for applying the DCA:

k in2 m k i 2
Q2+ 1Mu " xt =4 (2+A)u xt—at
ful!s o ay = = Y Y >  F
2 i=1 t=1 H i=1 t=1 s
m k k m
. € iy 0 i
2 B, 2 or( —a) =i ) max ) or(! —a)
i=1 (=1 (=1 i=1
[t it
k
— max ZZop(x —a)
""" i=1 (=1
i#t

Instead of minimizing the function f, we minimize its DC approximation
fM(xl, .. .,xk) = gM(xl, .. .,xk) - hu(xl, x5, X ern,
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In this formulation, g, and &, are convex functions given by

m k
gu(xl,.. )= 2+AZZ|IXZ

i=1¢=1
hM(xl,...,xk) =hi,(x ,...,xk)—l—hz(xl,...,xk)+h3(x1,...,xk)
+hatx', b,

where

2 A m k e i 2
Bl k) m EERE [d(x Ma ;F)] (el x)
=1¢=1

,,,,,

i=1 (=1
(£t
h3(x xk) = Z max Zap(x —a) h4(x k)
l;ét
m k
— e _ i
=, 2 orl —a
i=1¢=1
i#t

The proposition below is a direct consequence of Proposition 3.2.

Proposition 4.2 Given any A > 0 and v > 0, the functions f and f,, satisfy
1 k 1 k 1 k A 2
SuG X)) S fe, o xD) S fulxh, oo xT) +mk 1+7 Wl F~.

forallxl,...,xk e R".

In what follows we will prove that each of the functions f and f,, admits an absolute
minimum in (R").

Theorem 4.3 Given any A > 0 and ju > 0, each of the functions f and f,, has an absolute
minimum in (R™)*.

Proof Let us show that for any y € R, the sublevel set

Ly ={(" et =)

is bounded in (R™)X. Since 0 € int(F), there exists r > 0 such that B(0; r) C F. Conse-
quently,

rllx|l = sup{{x, u) | u € B(O; r)} < sup{{x,u) |u € F} =op(x) forall x € R".
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From the definition of the function f, we have

(e ®) e, ) <yl {(xl,...,xk)

k
e Rn k H l_ i <
(R | i:q}}f_{m;frp(x ay<y

,,,,,

k
1 k nyk . ¢ i 4
C S, e (R min — < =
{(x x") e (R") o m;_l |x a'l r}

m
1 k 1 k 14
C Sy i Sy < —1,
Ufet b reed b < 2
i=1
where ¢; (xl, R xk) = lezl ||x€ —at ||. Observe that for eachi = 1, ..., m, one has the
inclusion
14 a 14
fo o et = D et Y = L ke,
=1

Thus, £, is a bounded set as it is contained in the union of a finite number of bounded sets
in (R")k. As f is a continuous function, it has an absolute minimum in (R™M*.
Let yy, := mk (1 4+ %) | F||. It follows from Proposition 4.2 that for any y € R,

{(xl,...,xk) e R | fuxh ... xb 5)/}
C {(xl,...,xk)e(R”)k | fixt, . xh fyﬂ—i—y}.

It follows that the sublevel set {(x?, . .., x¥) € (R")¥ | fu(xl, xR < y }is also bounded,
and hence f;, has an absolute minimum in (RM. (]

To facilitate the gradient and subgradient calculations for the DCA, we will introduce a
data matrix A and a variable matrix X. The data matrix A is formed by putting each a’,
i=1,...,m,inthe i'" row, i.e.,

ary apz di3 ... dip
azy a2 4z ... dzp

Aml Am2 Am3 ... Amn
Similarly, if x!, ..., x* are the k cluster centers, then the variable X is formed by putting
each x¢, ¢ =1,...,k, in the ¢ row, i.c.,

X11 X12 X13 - .- X1n
X21 X22 X23 ... X2p

Xkl Xk2 Xk3 - -+ Xkn

With these notations, the decision variable X of the optimization problem belongs to R¥*",
the linear space of k x n real matrices. Hence, we will assume that R¥*" is equipped with
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the inner product (X, Y) := trace(X” Y). The Frobenius norm on R**" is defined by

k k
IXIF = VX X) = | Y (xbxt)= | D lxt)2
=1

=1

Let us start by computing the gradient of the first part of the DC decomposition, i.e.,

gu(X) = —Zan —a'|*.

i=1¢=1

Using the Frobenius norm, the function g, can be written as

gu(X) = Z Z Ix*

i=1 {=1

- ZHZZD 9P -2 ) + )]

i=1¢=1

242
= 5 [mIXIF = 2(X. BA) +KIA|Z].

where E is a k x m matrix whose entries are all ones. Hence, g, is differentiable and its
gradient is given by

24+ A
Ve (X) =~ X — EA].
I

Our goal now is to find X € 9g*(Y), which can be accomplished by employing the relation
X € 9g*(Y) if and only if Y € 9g(X).
This can equivalently be written as Z:r—f [mX —EA] =Y, and we solve for X as follows:

2+ ) [mX — EA] =
2+ 1X = 2 + VEA + uY
2+ MEA + uY
T Q+am

Next, we will demonstrate in more detail the techniques we used to compute a subgradient
for the convex function

4
hy=hy+ Y hj.
j=2

Since each function in this sum is convex, we will compute a subgradient of &, applying the
subdifferential sum rule (see, e.g., [10, Corollary 2.46]) and maximum rule (see, e.g., [10,
Proposition 2.54]) well known in convex analysis. We will begin our demonstration with /1,
given by

2+ M+ t—d
hlu(X)Z#ZZ[d(x a;F):|.

i=1 {=1 K
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From its representation one can see that /11, is differentiable. Thus, its gradient at X can be

computed by computing the partial derivatives with respect to x', ..., x¥, ie.,
9 morol_ i e i
L)y =+nY | (L F) | fore=1 k@)
axt = n w

Hence, Vh1,(X)) is a k x n matrix H; whose 2" row is a:;f X)).

Note that the convex functions 4 for j = 2, 3, 4 are not differentiable in general. However,
we can compute a subgradient for each function at X by applying the subdifferential sum
rule and maximum rule for convex functions. The following is an illustration of how one

can compute subgradients of such functions using 4, as an example. Fort = 1, ..., k and
i=1,...,m,define
k k
yiX) = Y or(x' —a) =Y orx' —d) —op(x' —a') and y;(X)
O=1,05#t =1
= max y(X)

Thus, hy can be represented as the sum of m convex functions as follows:

m k m
hy(X) = ' max Z or(x' —ad') = ZV:‘(X)-

i=1 0=1,0t i=1

Note that y; is the maximum of k convex functions yy; for t = 1,..., k. Based on the
subdifferential maximum rule, for eachi = 1, ..., m, we will find a k x n matrix Hy; €
dy; (X). Then, by the subdifferential sum rule H, := sz= 1 Hp; is a subgradient of /1, at X. To
accomplish this goal, we first choose an index * € {1, ..., k} such that y; (X) = y;(X) :=
lef:l,é;ét* op(xt — a'). The £th row wi; of the matrix Hy; for £ # ¢* can be computed as
described in Proposition 4.4 below, which follows from [10, Theorem 2.93]. The ¢* row of
the matrix Hy; is set to zero, as y;+ is independent of x' *. The procedures for computing a
subgradient for i3 and &4 are very similar to the procedure we have illustrated.

Proposition 4.4 Given a € R", the function ¢(x) := op(x — a) is convex with its subdif-
ferential at x € R" given by
dp(x) = co F(X),
where F(x) :={q € F | (x,q) =or(x)}.
In particular, if F is the Euclidean closed unit ball in R", then
X—a ;=
do(F) = | Tema1 ¥* # 4.
() {IB% i3 =a.

At this point, we have demonstrated all the necessary steps in calculating the gradients and
subgradients needed for our first DCA-based algorithm for solving the bilevel hierarchical
clustering problem formulated in Model 1.

Example 4.5 (£>—clustering with Algorithm 2). In this example, we illustrate our method
to study the problem of ¢>—clustering. The key point in Algorithm 2 is the computation
of Y € 0h,(X) for the case where F is the Euclidean closed unit ball B in R". By the
subdifferential sum rule,

hy(X) = Vi, (X) + 0ha(X) + 9h3(X) + 0h4(X).
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Algorithm 2 Model I

1: Input: A, Xg, A9, 1o, 01,02,& N € N.
2: while stopping criteria (1, i, €) = false do
fork=1,...,N do
Find Yy € 0hy, (Xg—1)
2+1)EA+1Y,
X = : +(2)+)~)+ml :
end for
update A and p©
8: end while
9: Output: x .

IAN AN

Define

0 i . .
o Ir=y Bl

Up; ‘= .
0 otherwise.

Now, we illustrate the way to find the gradient of /| and a subgradient of ; fori = 2, 3,4
at X.

The gradient of h1: The gradient Y| := Vh(X) is the k x n matrix whose £¢h row is a(hxlf X)
given in (4.2). Note that in this case, the Euclidean projection P(z; F) from z € R" to F is
given by

P
P Fy = |1 IR
z otherwise.
A subgradient of hy: In this case,
m k m k
hy(X) = max xt—d|| = max xt—d| = |Ixt =4 ).
2(X) lel,_”kz I I Zml,.i.,k DI =1 [
i=1 £=1 i=1 (=1
04
Foreachi =1, ..., m, choose an index ¢ (i) such that

k k
_max (Z Ix* —a'|l — | - a"||) =Y It =l — 1D —al|.
T \e=1 =1

Let us now form a k x mn block matrix U = (ug;), where uy; is considered as a row vector.
We also use U’ to denote the ith block column of the matrix U. Equivalently, U; is the
k x n matrix formed by placing the row vectors uy; in its £th row for £ = 1, ..., k. Then a
subgradient of /i, at X is given by

m

Y2 = Z (U = eiyusiini)s

i=1

where e;(;) is the column vector of k components with 1 at the # (i)th position and 0 at other
positions.
A subgradient of h3: In this case,

k m k m
h3(X) = A § max §:||x@—a’||=)\ § max (§ :||x@—al||—||x‘—a’||>.
t=1,...m “ t=1,...m \ 4
=1 i=1 =1 i=1
it
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Foreach ¢ =1, ..., k, we choose an index ¢ (£) such that

m
(Z Ix* —a'| - |x* —a ||) = lxt =a'| = |x* =" .
i=1

Let V be the k x n matrix whose £th row is Zf"zl ug; — U (e)- Then a subgradient of i3 at
X is given by

,,,,,

Y3 :=AV.
A subgradient of h4: In this case,

ha(X) = max Zan

""" o1 =1
i#t

_max (Zinx —a'll - gnx‘—a’n).

""" i=1t=1

Again, we choose an index ¢ such that

k m k k
i e e i e
_max (Zan all =y llx —a’u) Y xt—a =) Ikt -
""" i=1{=1 =1 i=1 (=1 =1

Let Z be the k x n matrix whose £th row is > ;- | us;. Then a subgradient of h4 is given by
Y4 =7 — Zr,
where Z; is the k x n matrix whose £th row is ug;.

Example 4.6 (£' —clustering with Algorithm 2). In this example, we illustrate our method
to study the problem of ¢! —clustering. We will find a subgradient Y € d4,,(X) for the case
where F is the closed unit box in R”" given by

Fi={(,...,up) eR"| —1<u; <1 fori =1,...,n}.

Fort € R, define

1 t >0,

sign() := 40 =0,

-1 t<0.
Then we define sign(x) := ( sign(xy), ..., sign(x,)) forx = (x1, ..., x,) € R". Note that
for the function p(x) := ||x||1, a subgradient of p at x € R” is simply sign(x). Now, we

illustrate the way to find the gradient of 4 and a subgradient of i; fori = 2, 3,4 at X.
The gradient of hy: Slmﬂar to Example 4.5, the gradient of Y| := VA (X) is the k x n matrix

1#-

whose £th row is (X) given in (4.2). Note that in this case, the Euclidean projection
P(z; F) fromz € R* to F is given by

P(z; F) := max(—e, min(z, ¢)) componentwise,

where e € R” is the vector consisting of 1 in each component.
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A subgradient of hy: In this case,

m

k
h(X) =) max an —a ||1—Z max (an“—alnl—||x’—a’||1>.
" i\ &

i—l l—l L.

E;ér
Foreachi =1, ..., m, choose an index r (i) such that
k
max (Z Ix —a'lly = Ix" —a ||1> =Y It =d' = 1D —a' .
=1
Now we form the k x mn signed block matrix S = (s¢;) given by sp; = sign(xZ —a') as

a row vector. We also use S’ to denote the ith column block matrix of the signed matrix S.
Then a subgradient of 4, at X is given by

m

Yo = Z (Si — er(i)Sr(i)i )

i=1
where ¢, ;) is the column vector of k components with 1 at the 7 (i)th position and 0 at other

positions.
A subgradient of h3: In this case,

k m k m
ha(X) = A e iy — A ATETIN A )
3X) =0 ) max Yo —ah) =2} max (Z Ix* —a'lls = lIx* = a'lly
=1 i=1 =1 i=1
it
Foreach ¢ =1, ..., k, we choose an index ¢ (£) such that

m
4 t I 1 J4 (¢
_max <§ xt =l =[x —a ||1>=§,‘||x —ad'lly — Ix* = a' ;.

i=1
Let V be the k x n matrix whose £th row is Zl’-":l Sei — Ser(¢)- Then a subgradient of i3 at X
is given by

Y3 = AV.

A subgradient of hy4: In this case,

max ZZHX —a ||1

et i=14{¢=1
i#t

m k
= max (Z:X:II)CIZ —ad'|y —Z”x —a ||1>

i=1£=1

h4(X)

Again, we choose an index ¢ such that

mmax (Zan —a'lli — i||xf—af||1>=22nx —a'lli — an —a'll1.

i=1 (=1 i=1 =1
Let T be the k x n matrix whose £th row is Y i, s¢;. Then a subgradient of /4 is given by
Yy =T -1,

where T; is the k x n matrix whose £th row is s¢;.
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5 Hierarchical clustering via continuous optimization techniques:
Model II

In this section, we focus on developing nonconvex optimization techniques based on the
DCA and Nesterov’s smoothing techniques for the second model. Similar to Model I, we
will solve the following constrained optimization problem:

k+1
minimize Z mln ap(x —a)+ mln Zap(x —x/)
+

k+1
subject to Z min op(x —a') =0, x!, ... T e R
m

.....

The total center is determined by

k+1
¢* ;= argmin ZUF(XZ —xhyje=1,..k+1
j=1
This constrained optimization problem can be solved by the following unconstrained opti-
mization problem by the penalty method with a penalty parameter A > 0:

m k+1
mmlmlzez mln JF(X —a ) + mln ZO‘F(X — xf)
— =l k+1 (=l 4
k+1
+AZ mln UF(x —ahHx!, . e R,
=1

With Nesterov’s smoothing techniques, the objective function has the following approxima-
tion that is convenient for implementing the DCA:

(1 + 1+ m k+1 i Hk+1 SRR
fuX) 1= PIPME Y
i=1 =1 24 j=1
k+1 ¢ i 2 m k+1
1+« xt—d .
_ — ZZ d "  F — Zrzﬁ?§€+120p(x —a')
i=1t=1 i=1 =1
L#r
k+1 k1 k+1 2
23 e, Sorte e = § 33 [a ()]
""" =1 j=I1
l#t
k+1k+1
R T D) DI
= gy
L#r

As in the previous section, we use a variable matrix X of size (k + 1) x n to store the row
vector x¢ in its £throw for £ = 1, ..., k+ 1. Now we solve the following DC programming:

minimize fM(X) = gM(X) — hM(X)v X e R(k+l)xn’
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where g, and h,, are convex functions by
gu(X) = g1u(X) + £2,(X)
and
hp(X) = h1,(X) + hop (X) + h3(X) + hapy (X) + hsp (X)),
where their respective components are defined as follows:

m k+1 k+1 k+1

glu(X): (1 +)L)M ZZ 7” s gZu(X) ZZ

i=1{=1

C_ i

and

1 2 m k+1 _ 2
o SR )
i =1

i=1

oon -5

(=1 j=1

2

k+1 k+1

5.1

h3(X) —Z max ZGF(x —a'), ha(X) == A Z max ZO’F()C —ah),

K;ét z;ﬁt
k+1 k+1

hs(X) = -~ max ZZO‘F(X —x7).

""" et
E;ét]

Lemma 5.1 Let E be square matrix with size (k 4+ 1) whose entries are all ones and let 1 be

the identity matrix of size (k + 1).

(i) Given any real numbers a and b witha # 0 and a # —(k+ 1)b, the matrix M := all+ bE

is invertible with
M =xI + yE,

b

1
wherex = —andy = —————.
a ala + bk +1)]

(ii) Let E:= (k + 1)I — E. Given any real numbers c and d with ¢ # 0 and ¢ # —d(k + 1),

the matrix N .= cl + dE is invertible with

N~! = ol + BE,

d
et 4B = T

where o =
Proof (i) Observe that

(al + bE)(xI + yE) = axI + (bx + ay)E + byE?
=axl + (bx + ay)E + by(k + 1)E.

Thus, (al + bE)(x1 4 yE) = [ if and only if
ax =1 and bx + [a + b(k + 1)]y = 0.
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1 b
Equivalently, x = —andy = —————.
a ala + bk + 1)]
(i) We have
N =cl+dE = [c +d(k + DI] — dE.
It remains to apply the result from (i). (]

The proposition below provides a formula for computing V g;i required for applying the
DCA.

Proposition 5.2 Given any A > 0 and v > 0O, the Fenchel conjugate g; of the function g,
defined in (5.1) is continuously differentiable with

Vgl (Y) = (@l + E) ((1 + MEA + MY) forY e RF*",

where E is defined in Lemma 5.1 and

! nd B := 2 .
m@ + DimQ + 1) +2(k + 1)]

TG+ D2+ 1)

(5.2)

Proof We have

1+ A

Vg X) = T[mX—EA],
2

Vg (X) = ;[(k-l-l)H—E]X.

Recall that X € ag;; (Y) if and only if ¥ = Vg, (X). The equation Vg, (X) = Y can be
written as

144 2.
LA X — A+ SEX =Y
w w
(1+ 1) [mX — EA] 4+ 2EX = nY
(m(1 + M1+ 2E)X = (1 + 1)EA + nY.

Solving this equation using Lemma 5.1(ii) yields
X = (al + BE) ((1 + )EA + MY), (5.3)

where « and B are givenin (5.2). It follows that dg}; (Y) is a singleton forevery Y € R¥>7 and
s0 g}, is continuously differentiable and Vg7 (Y) is given by the expression on the right-hand
side of (5.3); see [10, Theorem 3.3]. J

To implement the DCA, it remains to find a subgradient of /,. From their representations,
one can see that 21, and hy,, are differentiable. Their respective subgradients coincides with
their gradients, that can be computed by the partial derivatives with respect to x!, ..., x*+!
given by

ohyy
oxt

moe g ¢ i
X) = (1+A)Z[x M“ —P(x M“ ;F)] for6=1,....k+1.(54)
i=1

)

Thus, Vi1, (X)) is the (k 4 1) x n matrix H; whose £¢h row is Z;l/‘ X).
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Similarly,

k+1 4 P ¢ P
ah xJ — i
2"(X) Sk (2 F) | fore=1.... . k+1. (55
=l ow n

Hence, Vi, (X) is the (k + 1) x n matrix Hy whose €rh row is 52 (X).

The procedures for computing a subgradient of i; fori = 3, 4, 5 are similar to those from
the previous section. Therefore, we are ready to give a new DCA-based algorithm for the
bilevel hierarchical clustering problem in Model II.

Algorithm 3 Model II

1: Input: A, X, X9, 1o, 01, 02,6, N € N.
2: while stopping criteria (1, u, €) = false do
1

3 o= perre D

4: B = 2
m()»+1)[m()»+1)+2(k+l)]

5: fork =1, do

6: Find Yk € 3/’1“ Xk—1)

7: X; = (@l + BE) ((1 1 3)EA + qu)

8: end for

9: update A and w©

10: end while
11: Output: Xy .

Example 5.3 (Ez-clustering with Algorithm 3). In this example, we consider the hierarchical
clustering problem in Model II for the case where F is the Euclidean closed unit ball in R”.
To implement Algorithm 3, it remains to find a subgradient Y € 94, (X). Recall that

By (X) = h1,(X) + hou (X) + h3(X) + ha(X) + hs(X) for X € REFD>n,

The functions Ay, and hj, are continuously differentiable. The gradients Vi, (X) and
Vhy,,(X) can be determined by their partial derivatives from (5.4) and (5.5), respectively.
We can find subgradients Y3 € dh3(X) and Y4 € 0h4(X) by the procedure developed in
Example 4.5. Now, we focus on finding a subgradient Ys € d/5(X). In this case,

k+1 k+1 k+1 k+1 k+1
hs(X) = _max 303t == max |30t =l =D I = x]
t=1,..., [ 1] 1 t=1,..., == =

To find such a subgradient, we will apply the subdifferential sum rule and maximum rule.
Choose an index ¢* such that

k+1 k+1 k+1 k+1 k+1 k+1
max | D> Ik —xfn—an AN —xfn—an — x|
""" =1 j=1 =1 j=1

. C_xi
v[j = [lx*=xJ1l .
0 otherwise.

e :
{x X ifxt £ x,
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Cost = 12.999923

12.9999232798495

12.999923279849

12.999923279848

12.9999232798475

(a) (b)

Fig. 1 Performance of Algorithm 2. a Artificial test dataset for Model I, b 100% convergence to a global
optimal solution

Then Y5 can be determined by the (k 4+ 1) x n matrix whose £th row is given by

k+1
Yy = ZZWJ’ — vy forl=1,..., k+1.
=1

By the procedure developed in Example 4.6 with the use of a signed matrix, we can
similarly provide another example for hierarchical clustering for Model II in the case where
F is the closed unit box in R”. The detail is left for the reader.

6 Numerical experiments

We conducted our numerical experiments on a MacBook Pro with 2.2 GHz Intel Core i7
Processor, 16 GB 1600 MHz DDR3 Memory (for the MATLAB code), and on a computer
having 20 Intel(R) Xeon(R) CPU E5-2640 v4 @ 2.40GHz cores and 250 GB RAM (for
the C++ code). Even though the two continuous optimization formulations we consider
are nonsmooth and nonconvex, Nesterov’s smoothing techniques allowed us to design two
implementable DCA-based algorithms.

For the implementation of the algorithms, we wrote the codes in MATLAB and C++.
Since our algorithms are adaptations of the DCA, there is no guarantee that our algorithms
converge to a global optimal solution. However, for the artificial test dataset we created to test
the performance of Algorithm 2 with 11 nodes, 2 clearly identifiable cluster centers, and a
total center (see Fig. 1), the algorithm converges 100% of the time to a global optimal solution
for all 55 different pairs of starting centers selected from the 11 points, i.e., (121) =55.

On the other hand, for the artificial test dataset we created to test the performance of
Algorithm 2 with 15 nodes, 2 clearly identifiable cluster centers, and a total center (see
Fig. 2), the algorithm converges to a global optimal solution 85% of the time, which means
that for all 455 different starting centers selected from the 15 points, i.e., (135) = 455, the
algorithm converges to a global optimal solution 85% of the time.

Further numerical experiments were performed on datasets EIL76 (The 76 City Problem)
and PR1002 (The 1002 City Problem) both taken from the Traveling Salesman Problem
Library [14], and on datasets 10000RND, 10000RND3D, 1000RND6D, and 100000RND2D
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Cost = 15.000303

4
» oo o - oo . cume e @

0 1 2 3 4 5 6 7 8 9 0 50 100 150 200 250 300 350 400 450 500

Fig.2 Performance of Algorithm 3 on the test dataset. a Artificial test dataset for Model I1, b 85% convergence
to a global optimal solution

Minimum Cost = 1179.757231 Minimum Cost = 1035.292504
Clock = 25.585749 Clock = 325.715760

80

70

60 [

50

40

30+

(a) (b)

Fig. 3 Optimal solutions for Model I and Model II on EIL76. a Model I on EIL76, b Model 1I on EIL76

of several sizes and dimensions generated by a uniform random numbers generator. For
instance, Figure 3a, b show optimal solutions for Model I and Model 11, respectively, for three
cluster centers and a total center. The optimal solutions were calculated by the brute-force
search method in which we exhaustively generated all the four possible candidates, 3 cluster
centers and 1 total center, and then computed the corresponding cost to take the minimum.
In this case, we have (736) = 70,300 combinations for Model I and (746) = 1,282,975
combinations of cluster centers and a total center to check for Model II. For instance, the
optimal value for Model I tested on EIL76 with 3 cluster centers and 1 total center is 1179.76,
while for Model II with 3 cluster centers and 1 total center, it is 1035.29.

In the two MATLAB codes we wrote to implement the two algorithms, we updated the
penalty parameter A and the smoothing parameter p in every iteration by the relations A; 41 =
o1Ai, o1 > l,and ujy1 = oo, oo € (0, 1), respectively. The two parameters were updated
until & < 107 (Tables 1, 2,3,4,5,6,7,8,9, 10, 11).

For the choice of the starting centers, we used three different methods:

o Random We used the “datasample” (a MATLAB built in function) to randomly select
starting centers from the existing nodes without replacement.
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Table 1 Starting centers selected randomly, MATLAB code

COST1 COST2 Timel Time2 Tterl ITter2 k m n
no =16, 1o = 0.01, o1 =160, oo = 0.5

EIL76 1194.29 1048.41 8.04 10.55 1058 1361 3 76 2
EIL76 1201.97 1048.62 6.84 7.84 918 1006 3 76 2
EIL76 1179.76 1041.53 7.31 10.93 986 1413 3 76 2
EIL76 1181.02 1057.87 7.99 7.50 1030 929 3 76 2
EIL76 1208.39 1057.87 6.40 7.57 832 925 3 76 2
EIL76 1179.76 1057.87 8.16 6.77 1030 876 3 76 2
EIL76 1194.29 1091.57 7.89 6.81 1056 881 3 76 2
EIL76 1179.76 1057.87 7.36 7.19 987 927 3 76 2
EIL76 1204.35 1119.50 9.97 9.62 1337 1238 3 76 2
EIL76 1201.97 1054.90 6.98 6.42 928 820 3 76 2
Table 2 Starting centers selected by the k-means, MATLAB code

COST!1 COST2 Timel Time2 Iterl Iter2 k m n

no =16, Ao = 0.01, o1 =160, oo =0.5
EIL76 1204.35 1059.01 9.91 6.62 1320 853 3 76 2
EIL76 1179.76 1045.90 7.23 9.29 969 1195 3 76 2
EIL76 1194.29 1049.53 7.84 5.75 1051 738 3 76 2
EIL76 1179.76 1059.01 7.47 6.61 994 853 3 76 2
EIL76 1204.35 1059.01 9.89 6.59 1320 846 3 76 2
EIL76 1179.76 1059.01 7.42 6.64 994 853 3 76 2
EIL76 1181.02 1041.29 7.21 6.18 965 797 3 76 2
EIL76 1201.97 1059.01 6.99 6.57 931 846 3 76 2
EIL76 1181.02 1059.01 7.39 6.62 988 853 3 76 2
EIL76 1201.97 1048.62 6.49 6.67 870 860 3 76 2
Table 3 Starting centers selected randomly, C++ code

COST1 COST2 Iterl Iter2 Timel Time2 k m n

no =16, Ao = 0.01, o1 =160, oo =0.5
EIL76 1224.04 1064.91 952 829 0.09 0.05 3 76 2
EIL76 1195.55 1053.38 1051 874 0.07 0.05 3 76 2
EIL76 1206.92 1041.52 1045 1091 0.07 0.07 3 76 2
EIL76 1206.92 1057.86 1008 855 0.06 0.06 3 76 2
EIL76 1215.56 1065.79 1165 887 0.07 0.05 3 76 2
EIL76 1218.48 1057.86 1263 829 0.07 0.04 3 76 2
EIL76 1197.42 1067.6 988 884 0.04 0.04 3 76 2
EIL76 1206.92 1048.6 1045 1020 0.05 0.04 3 76 2
EIL76 1215.56 1057.86 1148 843 0.05 0.04 3 76 2
EIL76 1215.56 1165.62 1206 920 0.05 0.04 3 76 2
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Table 4 Starting centers selected randomly, C++ code

COST1 COST2 Iterl Iter2 Timel Time2 k m n
o =16, 19 =0.01, o1 =160, oo = 0.5
PR1002 2.56341e+06 2.24537e+06 1023 1023 1.31 1 6 1002 2
PR1002 2.16241e+06 1.79317e+06 1023 1023 1.09 1 6 1002 2
PR1002 2.55508e+-06 2.25252e+06 1023 1023 1.1 0.99 6 1002 2
PR1002 2.29283e4-06 2.12459e+-06 1023 1023 1.1 0.99 6 1002 2
PR1002 2.28579e4-06 2.02933e+4-06 1023 1023 1.1 1 6 1002 2
PR1002 2.02867e+-06 1.84531e+06 1023 1023 1.1 0.99 6 1002 2
PR1002 2.49236e4-06 2.43734e+06 1023 1023 1.1 0.99 6 1002 2
PR1002 3.02324e+-06 2.42825e+06 1023 1023 1.1 0.99 6 1002 2
PR1002 2.33796e+06 2.1374e+06 1023 1023 1.1 1 6 1002 2
PR1002 2.37677e+06 1.85446e+-06 1023 1023 1.09 1 6 1002 2
Table 5 Starting centers selected randomly, C++ code
COST!1 COST2 Iterl Iter2 Timel Time2 k m n
no =16, 1o = 0.01, o1 =160, oo = 0.5
10000RND  1.94933e+407  1.8097e+07 1023 1023 11.36 10.1 6 10,000 2
10000RND  2.44543e+4-07  2.07372e+07 1023 1023 11.15 10.1 6 10,000 2
10000RND  2.36188e+07  1.90255e+07 1023 1023 11.18 10.07 6 10,000 2
10000RND  2.13395e+07  1.81326e+07 1023 1023 11.16 10.09 6 10,000 2
10000RND  1.97625e+07  1.74163e+07 1023 1023 11.17 10.09 6 10,000 2
10000RND  1.9848e+07 1.79588e+07 1023 1023 11.18 10.11 6 10,000 2
10000RND  2.4502e+07 2.0164e+07 1023 1023 11.17 10.08 6 10,000 2
10000RND  2.38836e+07  2.09025e+07 1023 1023 11.16 10.09 6 10,000 2
10000RND  1.81975e4+07  1.68355e+07 1023 1023 11.17 10.09 6 10,000 2
10000RND  2.05324e407  1.68926e+07 1023 1023 11.16 10.1 6 10,000 2
Table 6 Starting centers selected randomly, C++ code
COST1 COST2 Iter] Iter2  Timel Time2 k m n
no =16, Ao =0.01, o1 =160, oo =0.5
10000RND  5.17176e+06  5.10097e+06 1023 1023  218.72 166.85 100 10,000 2
10000RND  5.32321e+06  5.2011le+06 1023 1023  218.1 164.76 100 10,000 2
10000RND  5.32893e+06  5.21018e+06 1023 1023  215.79 16691 100 10,000 2
10000RND  5.45463e+06  5.34531e+06 1023 1023  217.58 16692 100 10,000 2
10000RND  5.59697e+06  5.42149e+06 1023 1023  217.25 16493 100 10,000 2
10000RND  5.57053e+06  5.39613e+06 1023 1023 21523 169.07 100 10,000 2
10000RND  5.67843e+06  5.55442e+06 1023 1023  217.15 166.78 100 10,000 2
10000RND  5.7148e+-06 5.57767e+06 1023 1023  215.6 165.05 100 10,000 2
10000RND  5.37335e+06  5.28977e+06 1023 1023  219.63 164.81 100 10,000 2
10000RND  5.73865e+06  5.61554e+06 1023 1023  217.23 166.87 100 10,000 2
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Table 7 Starting centers selected randomly, C++ code
COST1 COST2 Iterl  Iter2 Timel Time2 k m n
no =16, g =0.01, o =160, oo = 0.5
10000RND3D  2.83948e+07  2.63213e+07 1023 1023  24.79 19.71 10 10,000 3
10000RND3D  2.74404e+07  2.65681e+07 1023 1023  24.6 19.7 10 10,000 3
10000RND3D  2.9869e+07 2.85641e+07 1023 1023  24.59 19.7 10 10,000 3
10000RND3D  3.44097e+07  3.07609e+-07 1023 1023  24.6 19.7 10 10,000 3
10000RND3D  3.05076e+07  2.89047¢4+07 1023 1023  24.6 19.7 10 10,000 3
10000RND3D  2.72841e+07  2.61452¢+07 1023 1023  24.61 19.7 10 10,000 3
10000RND3D  2.94171e+07  2.81767e+07 1023 1023  24.6 22.25 10 10,000 3
10000RND3D  3.15467e+07  2.72963e+07 1023 1023  24.6 19.69 10 10,000 3
10000RND3D  2.78719e+07 = 2.64644e+07 1023 1023  24.61 21.48 10 10,000 3
10000RND3D  2.80267e+07  2.64164e4+07 1023 1023  24.59 19.7 10 10,000 3
Table 8 Starting centers selected randomly, C++ code
COST!1 COST2 Iterl Iter2  Timel Time2 k m n
no =16, Ao = 0.01, o1 =160, oo =0.5
1000RND6D  5.68343e+06  5.49334e+06 1023 1023  2.72 2.16 10 1000 6
1000RND6D  6.15169e+06  5.94648e+06 1023 1023 2.5 2.15 10 1000 6
1000RND6D  5.95467e+06  5.87668e+06 1023 1023  2.51 2.15 10 1000 6
1000RND6D  5.848e+06 5.67641e4+06 1023 1023 2.5 2.16 10 1000 6
1000RND6D  5.82286e4+06  5.73382e+06 1023 1023 2.5 2.15 10 1000 6
1000RND6D  5.81637e+06  5.49823e+06 1023 1023  2.51 2.15 10 1000 6
1000RND6D  6.00205e+06  5.84304e+06 1023 1023 2.5 2.15 10 1000 6
1000RND6D  5.9963e+06 5.86284e4+06 1023 1023 2.5 2.17 10 1000 6
1000RND6D  6.16517e4+06  6.03364e+06 1023 1023 2.5 2.14 10 1000 6
1000RND6D  5.71309e+06  5.60686e+06 1023 1023  2.51 2.15 10 1000 6
Table 9 Starting centers selected randomly, C++ code
COST1 COST2 Tter]l Tter2 Timel Time2 k m n
no =16, Ao =0.01, o1 =160, oo =0.5
100000RND2D  1.40282e+4-08 1.33498e+08 1023 1023 198.3 16535 10 100,000 2
100000RND2D  1.83297e4-08  1.54512e+08 1023 1023 197.06 168.74 10 100,000 2
100000RND2D  1.5134e+4-08 1.41451e+08 1023 1023 198.74 16534 10 100,000 2
100000RND2D  1.59333e408  1.4203e+08 1023 1023  199.65 16496 10 100,000 2
100000RND2D  1.53366e4+-08  1.35764e+08 1023 1023 199.08 167.07 10 100,000 2
100000RND2D  1.55465e+08  1.45342e+08 1023 1023 199.99 166.82 10 100,000 2
100000RND2D  1.39211e408  1.32843e+08 1023 1023 197.37 165.71 10 100,000 2
100000RND2D  1.60153e+4-08  1.4911e+4-08 1023 1023 199.78 167.28 10 100,000 2
100000RND2D  1.52469e4-08  1.38242e+08 1023 1023 200.14 167.13 10 100,000 2
100000RND2D  1.46638e4+08  1.38241e+08 1023 1023 197.63 165.07 10 100,000 2
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Table 10 ¢'-norm, Starting
centers selected randomly, C++
code, 17 nodes, in 2 dimensions

Table 11 ¢! -norm, Starting
centers selected randomly, C++
code

COSTL1 Iterl Timel k m n
no =1, Ag =0.001, o1 =160, oo = 0.5

17NODES 31.0543 100 0 2 17 2
17NODES 33.9313 100 0 2 17 2
17NODES 50.906 100 0.01 2 17 2
17NODES 29.9189 100 0 2 17 2
17NODES 31.5767 100 0 2 17 2
17NODES 29.8145 100 0.01 2 17 2
17NODES 39.6129 100 0 2 17 2
17NODES 28.9086 100 0 2 17 2
17NODES 31.5767 100 0 2 17 2
17NODES 50.906 100 0 2 17 2

COSTL1 Iter]  Timel k m n

no =1, A9 =0.001, o1 =160, 0p =0.5
10000RND  2.3109e+-07 46 1.15 10 10,000 2
10000RND  1.86801e+07 46 0.95 10 10,000 2
10000RND  2.02004e+07 46 0.94 10 10,000 2
10000RND  1.78291e+07 55 1.12 10 10,000 2
10000RND  2.02704e+07 46 0.95 10 10,000 2
10000RND  2.32961e+07 46 0.95 10 10,000 2
10000RND  1.97015e+07 55 1.12 10 10,000 2
10000RND  2.18099e+07 55 1.15 10 10,000 2
10000RND  2.51168e+07 55 1.13 10 10,000 2
10000RND  2.16445¢+07 46 0.94 10 10,000 2

e K-means clustering We used the “kmeans” (a MATLAB built in function) to partition
the nodes into k clusters first, and then we selected the k cluster centroid locations as

starting centers.

e C++ implementation We implemented the model 1 and model 2 algorithms in C++
and used uniform random numbers generator to generate starting centers. The code was
developed using Armadillo library and run on a computer having 20 Intel(R) Xeon(R)
CPU E5-2640 v4 @ 2.40GHz cores and 250 GB RAM.

7 Conclusion and future research

In this study, we presented two DCA-based algorithms for solving two different bilevel hier-
archical clustering problems where the similarity(dissimilarity) measure between two data
points (nodes) is given by generalized distances. As special cases of generalized distances,
we provided two detailed examples for the £! and ¢> norms. We implemented the algorithms
with MATLAB and C++ and tested them on different datasets of various sizes and dimen-
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sions. We expect that our method used in this paper for solving bilevel hierarchical clustering
problems are applicable to solving other nonsmooth nonconvex optimization problems.
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