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Observation of higher-order topological acoustic
states protected by generalized chiral symmetry
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Topological systems are inherently robust to disorder and continuous perturbations, resulting in dissipation-free edge trans-
port of electrons in quantum solids, or reflectionless guiding of photons and phonons in classical wave systems characterized
by topological invariants. Recently, a new class of topological materials characterized by bulk polarization has been intro-
duced, and was shown to host higher-order topological corner states. Here, we demonstrate theoretically and experimentally
that 3D-printed two-dimensional acoustic meta-structures can possess nontrivial bulk topological polarization and host one-
dimensional edge and Wannier-type second-order zero-dimensional corner states with unique acoustic properties. We observe
second-order topological states protected by a generalized chiral symmetry of the meta-structure, which are localized at the
corners and are pinned to ‘zero energy'. Interestingly, unlike the ‘zero energy’ states protected by conventional chiral sym-
metry, the generalized chiral symmetry of our three-atom sublattice enables their spectral overlap with the continuum of bulk
states without leakage. Our findings offer possibilities for advanced control of the propagation and manipulation of sound,

including within the radiative continuum.

cinating properties for signal transport and wave propaga-

tion, holding the promise of revolutionizing technologies
from quantum electronics'”” to photonics®* and acoustics®.
In electronics and quantum photonics, they have been open-
ing novel approaches for quantum computing interfaces’*? and
lasing™~*, while in classical optics, mechanical and acoustic
systems, they offer unprecedented robustness to defects and dis-
order!0-20222426-2%36 - Most of the topological systems studied so
far are characterized by topological indexes, such as Chern-class
numbers, Z2 invariants and winding numbers. More recently, a
new class of symmetry-protected topological phases, character-
ized by bulk polarization, has been introduced theoretically”.
One example of such systems is given by quadrupole topological
insulators®*, which have been recently implemented in mechani-
cal’ and microwave'' systems, as well as in electrical circuits®.
However, higher-order topological insulators are not limited to
the category of quadrupole topological insulators, and our two-
dimensional system exhibits ‘zero-energy’ states localized at the
corners, with gapped bulk and edge bands, and topological invari-
ants characterized by bulk polarization. All these features meet the
definition of a higher-order topological insulator*-"" and, more
specifically, of a Wannier-type second-order topological insula-
tor. A criterion to distinguish topological corner states from trivial
ones is that they are protected by time reversal or spatial symme-
tries®’. In our system, the corner states are pinned to ‘zero energy’
and localize at one of the sublattices—a property attributed to the
conservation of the generalized chiral symmetry introduced here
for the system with three sublattices.

The class of topological systems with zero Berry curvature
but nontrivial bulk polarization offers an opportunity to imple-
ment robust, controllable physical responses. Here, we theoreti-
cally analyse and experimentally demonstrate the confinement
of higher-order corner states and their inherent robustness by

Topological phases of matter support some of the most fas-

deliberately introducing disorder. In addition, these corner states
are transformed into embedded eigenstates within the continuum
of bulk modes by tuning the hopping parameters without changing
the bulk polarization and breaking the generalized chiral symme-
try. These findings open opportunities for acoustic and photonic
devices based on topological bulk polarization and topological
embedded corner eigenstates.

Acoustic metamaterial design

We explore a two-dimensional acoustic kagome lattice**** char-
acterized by bulk polarization (Supplementary Sections 2,3), sup-
porting a topological phase protected by lattice symmetries. The
lattice is shown schematically in Fig. 1a and is formed by an array of
acoustic resonator trimers coupled via narrow rectangular channels
(Fig. 1b, c). Each resonator hosts acoustic pressure modes oscillating
in the axial direction. We choose to work with the fundamental mode
(~4.23kHz), which has its only node at the centre of the resonant
cavity. The coupling strength is tuned by shifting the channels closer
to or farther away from the centre node, thus enabling fine control
over the local coupling strength, which is demonstrated experimen-
tally by the frequency responses of single trimer in Supplementary
Section 4. Due to the strong confinement of the resonant modes and
the connectivity of the lattice, the system is approximated well by the
tight-binding model (TBM) (Supplementary Section 1) except in
the case when there is an open boundary condition (Supplementary
Section 11), with nearest-neighbour coupling described by inter-
cell y and intra-cell x coupling parameters (Fig. 1a). For the case
of an ideal kagome lattice, with y=«, the band diagram obtained
with TBM (grey solid lines in Fig. 1d) supports a Dirac-like degen-
eracy at the K and K’ points. The degeneracy is formed between
low-frequency monopolar modes, characterized by in-phase
vibrations in all three cylinders of the trimer, and dipolar modes,
which are left- and right-hand circularly polarized at the K and K’
points, respectively.
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Fig. 1| Concept and measurement of the bulk polarization transition in the deformed kagome lattice. a, Schematics of the 2D tight-binding kagome
lattice. b,¢, Realistic acoustic trimer for ‘expanded’ (b) and ‘shrunken’ (¢) lattice designs, which emulate the effect of nearest-neighbour coupling. d, Band
structures of the kagome lattice obtained by TBM (solid lines) and first-principles calculation (circular dots), separately. Grey lines are the band structures
of the undeformed kagome lattice, and blue, red and yellow lines are the band structures of expanded/shrunken kagome lattice. e f, ¢c3 normalized to 2x,
along the high-symmetry point lines of the expanded (e) and shrunken (f) lattice. Blue, red and yellow lines represent the phases ¢C3 of the bands with
corresponding colours in d. The inset colour map describes the acoustic pressure of the sketched structures. g, Schematic relationships between the
eigenstates of the expanded lattice and the shrunken lattice without a boundary (top) and with a boundary (bottom). GT represents that the relation
between two eigenstates is gauge tranformative. h, Photograph of the printed acoustic lattice. The array consists of five cells at each edge, with boundary
cells that have a higher resonance frequency to terminate the array. These boundary cells play a crucial role in emulating the open boundary condition in
TBM (Supplementary Section 11). A speaker is placed at the yellow spot and phase measurements are taken in the triangular region marked by blue lines.
i, ¢>C3 of the lowest bulk band for topological nontrivial (dark blue) and trivial geometries (light blue). Both theoretical and experimental results are shown,
denoted by dashed line and circle-shaped markers, respectively. The red dashed line indicates the position of —173.

We stress that the geometry of Fig. 1 can be viewed as the two-
dimensonal counterpart of the well-known one-dimensional
Su-Schrieffer-Heeger (SSH) model. As the symmetry is reduced by
detuning inter-cell y and intra-cell x couplings between neighbour-
ing trimers, a topological transition emerges in the band diagram.
Specifically, the trimers in Fig. 1b, ¢ (geometry provided in the sec-
tion ‘Structure design, 3D printing and generic measurements’ in
Methods) support bandgaps at both K and K’ valleys with topo-
logically nontrivial (y > «) and trivial (y < «) nature (referred to as
expanded and shrunken, respectively), implying that a control over

avoided crossing of formerly degenerate dipolar and monopolar
bands, giving rise to the band inversion. The cases of equal detun-
ing for y >k and y < k have identical band structure, shown in Fig.
1d by solid lines, and therefore cannot be distinguished. However,
these two cases represent two distinct topological phases, separated
by the gapless y =« transition point. The topological transition is
demonstrated by directly calculating the bulk polarization (see
Supplementary Fig. 1) through a Wilson loop, and also by inves-
tigating the Cj-related properties at high-symmetry points in the
Brillouin zone for the case of ideal symmetries, as we discuss in

the coupling parameters can enable ad hoc topological transitions.
The symmetry reduction from six-fold rotational symmetry (Cg)
to three-fold rotational symmetry (C,) leads to hybridization and

the following. In addition to the results from the TBM, the circu-
lar markers plotted in Fig. 1d illustrate first-principles simulations
obtained by directly solving the three-dimensional pressure-wave
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equation using the finite element method (FEM). The accurate
agreement between analytical and numerical results serves as fur-
ther evidence of the applicability of the TBM and the related the-
oretical analysis (simulation details and fitting parameters can be
seen in the section ‘Numerical methods’ in Methods).

The bulk polarization characterizes the displacement of the
average position of Wannier states from the sites’ centre of the unit
cell™. In the trivial case, the zero value of bulk polarization indi-
cates modes that are pinned to the sites’ centre, and no modes hang
at the boundaries. However, in the topological nontrivial case, the
bulk polarization is nonzero, inducing modes at the boundaries
away from the bulk, and causing localization at the dangling sites of
the boundary. Additionally, we have developed the theory of polar-
ization difference to characterize the distinction between shrunken
and expanded unit cells, which is detailed in Supplementary Section
5. The shrunken and expanded unit cells, with their hopping x and y
swapped, can be transformed into each other by a series of uniform
transformations when the lattice is infinitely large; thus their eigen-
states are connected through the gauge transformation. The non-
trivial polarization difference manifests in topological effects only
when there is a boundary in the lattice. The presence of a boundary
breaks the gauge transformation and makes it impossible to connect
the eigenstates of the two systems (Fig. 1g), giving rise to bound-
ary effects in the form of topological edge and corner states when
the bulk polarization is nontrivial. Thus, as we show here, the bulk
polarization difference of the three-fold symmetric kagome lattice
acquires the values (1/3, 1/3) upon the spatial translation (by a vec-
tor r, as shown in Fig. 1a) and the subsequent rotation substituting
shrunken and expanded unit cells, and leads to the emergence of
edge and corner states at the boundaries of the expanded lattice.

Bulk polarization measurement. To confirm the topological
transition as we tune the coupling going from the expanded to
the shrunken lattice, we extract the bulk polarization using both
the TBM and FEM in a visual way, so that the information about
the irreducible representation of symmetry groups is revealed in
momentum space. As shown in Supplementary Section 3, the polar-
ization is directly related to the constraints imposed by the sym-
metry operations on the eigenvectors. In particular, following the
work of Fang et al.”’, when C, symmetry is preserved we can extract
the polarization directly from the eigenvalue of C, symmetry, as
detailed in Supplementary Section 6. The bulk polarization assumes
the form

i 6, (K)
zn(p[) — n
€ Hneocc 0” (l") (1)

where 0, (k) = (u,, (k) |R5|u,(k)) is the expectation value of the
three-fold symmetric operator R, (rotation by 27 /3) applied to
eigenvector u,(k). The index i represents the reciprocal vector b; in
the Brillouin zone (Fig. 1a); correspondingly, p; is the bulk polariza-
tion in this direction. Because of the conservation of C, symmetry, p,
is identical in different directions. The subscript ‘occ’ in equation (1)
implies the summation over the bands below the bandgap of inter-
est (as opposed to the occupied bands below the Fermi level in the
condensed matter). We define the following quantity

b, (k) =—ilog (6, (k) )

which is essential in observing the dependence of the eigenstates’
rotational symmetry on the momentum vector k. This quantity,
plotted in Fig. le, f, clearly reveals the difference between expanded
(y>«) and shrunken (y <«) cases. This approach allows a straight-

forward physical interpretation of topological phase: in the topolog-
ical nontrivial regime, the action of the R; operator on the eigenstate

of the lowest band at the K (or K’) point yields the eigenvalue 27/3,
associated with the rotational dipolar field-profile (blue line in
Fig. 1e). In the topologically trivial regime, the mode pattern is not
rotating in the entire Brillouin zone, giving rise to no phase differ-
ence between K and I points (blue line in Fig. 1f).

Interestingly, this approach enables an alternative way of accu-
rately extracting the bulk polarization by evaluating ¢ (k) only
at C,-invariant points of the Brillouin zone. The bulk poiarlzatlon
of the band of interest can therefore be defined as the difference
of ¢, (k) at different C,-invariant points, K and I" points, respec-
tlvely—that is, p = ¢c (=g (K) for the lowest band of interest.
For the lower- frequency (blue coloured) band, the bulk polariza-
tions can be readily seen from Fig. le, fas

(=1/3,-1/3), k<y

(2p,) ={ 0.0, k57 3)

which clearly indicate distinct topologically nontrivial and trivial
phases, respectively.

To extract experimentally the bulk polarization in a finite acous-
tic meta-structure, we exploit the bijective relations between fre-
quency, momentum vector, and phase ¢ (k) of the bulk mode,
which is valid for an isolated low- frequency band at C;-invariant
points. These relations hold true due to the fact that the correspond-
ing bulk band has the lowest frequency at the I point, and the high-
est frequency at the K(K’) point. In addition, the relative direction
connecting source (speaker) and detector (microphone) can be
selected so that modes with either positive or negative (relative to
the positive direction) momentum vectors are probed. Therefore,
the mode at the I" point can be probed by a low-frequency excita-
tion, whereas the modes at the K(K’) point can be probed by driving
the system with high frequencies (close to the lower-frequency edge
of the topological bandgap).

The acoustic kagome lattices of Fig. 1 were fabricated using a
B9Creations stereolithographic 3D printer (see the section ‘Structure
design, 3D printing and generic measurements’ in Methods). As
shown in Fig. 1h, the source was placed at the centre of the struc-
ture (indicated by the yellow dot) and two detectors were placed
inside blue trimers of either topological nontrivial or trivial lattices.
The relative direction between source and detectors corresponds
to the case of excitation with either positive or negative momen-
tum. Thus, by sweeping the frequency of the source over the desired
spectral range, we measured the field profiles of the excited bulk
mode and obtained the phase differences of the three sites within
the trimer (for example, ¢ , and ¢, ,). Then we constructed the nor-
malized eigenstate of the mode as 1/~/3 (1,2, ¢'"3), and extracted
the phase ¢, based on this constructed eigenstate. Details of phase
measuremen’t data acquisition and data processing are described in
the section ‘Phase difference measurement’ in Methods. As shown
in Fig. 1i, the measurement results (circular markers) and first-
principles simulations (dashed lines) clearly show that the phase ¢ .
sweeps 1/3 of 2x for the case of the topological lattice and remain3
at 0 for the topologically trivial lattice. These results unambiguously
confirm and experimentally verify the topological polarization of
1/3 of the corresponding low-frequency bulk band for the expanded
lattice. We also measured the phase differences and extracted the
phase ¢ of the topological case in the expanded and shrunken
lattices, respectlvely (Supplementary Section 7). These results con-
firm the essential features of nontrivial bulk polarization difference,
namely, the eigenstates of infinite expanded and shrunken lattices
are gauge transformative.

Zero-energy corner states protected by I'; symmetry
A prominent distinction between topological and trivial phases of
matter consists in the robust emergence of topological edge states
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exponentially confined to the boundaries®. As seen from the
blue region of Fig. 2a, the triangular kagome lattice in the topo-
logical regime supports topological edge states, which emerge
from the non-vanishing bulk polarization (the proof is detailed in
Supplementary Section 8a), in contrast to the edge states due to
nontrivial Berry curvature in quantum spin Hall effect and valley
Hall effect systems.

In addition to the edge states, the energy spectrum (red line in
Fig. 2a) suggests another class of totally dispersionless states with
their analytic solutions obtained in Supplementary Section 8b, and
their field profile reveals their zero-dimensional nature. These states
indeed represent a class of higher-order (D-2) topological states,
which are confined to corners of the system when the angle of the
corner equals 60° and only one of the sublattice sites is located at the
corner (the proof can be found in Supplementary Section 9). For
all values of parameter x <y (with fixed y), these states are pinned
to ‘zero-energy, which, for this acoustic system, represents the fre-
quency of the isolated acoustic resonator. The ‘zero-energy’ corner
modes we observe are protected by the generalized chiral symmetry
I, specific for the structure with three sublattices. The generalized
chiral symmetry I'; transforms Hamiltonian H, in the following
way, if H, respects this symmetry,

F3HOF;1= H,
LHT;'= H,
Hy+H,+H,=0 (4)

where H, and H, are isomorphic to H,. Based on the definitions in
equation (4), we prove the following: if the chiral symmetry I, is
preserved, the sum of the three eigenenergies of H, is zero; if the
triple degenerate zero-energy states exist, these states localize only
at one of the sublattices. The comprehensive proofs of these state-
ments and other properties related to generalized chiral symmetry
operators I'; are detailed in Supplementary Section 10. Using these
properties of operator I';, we can judge whether the system pos-
sesses the generalized chiral symmetry and the corner states appear
due to the conservation of this symmetry.

We emphasize that the edge state in one-dimensional SSH
modes, as well as midgap corner modes reported recently in the
work of Noh et al.”*, are protected by chiral symmetry due to the
presence of two sublattices, which ensures that the states ¢, =0
always appear in the centre of the bulk gap between ¢, = —¢y (k)
and e, =€, (k) bands. In our case, however, because the general-
ized chiral symmetry implies €, + €, + €;= 0, the zero-energy corner
state ¢, = 0 may appear not only in the bandgap but also can coexist
with the bulk continuum.

Apart from their nontrivial bulk polarization, the corner states
protected by I'; symmetry exist in two distinct regimes. In the first
regime, when the symmetry reduction is large, and x /y < 0.5, these
states are embedded in the bandgap induced by the topological
transition (white region on the right side of Fig. 2a). In the second
regime, when 1>k /y > 0.5, symmetry reduction due to the expan-
sion effect is not sufficient to lift a bulk gap wide enough and, as a
result, the corner states pinned to ‘zero energy’ are embedded in the
bulk continuum, becoming embedded eigenstates™ . Our numeri-
cal calculations of the supercell demonstrate that these 0D topo-
logical eigenstates do not interact with bulk states, despite being
compatible with radiation in the bulk in terms of momentum, and
multiple degeneracies (crossings) between bulk and corner spectra
are observed. In all regimes, the corner states exhibit an exponential
decay with plane-wave-like modulation in the direction bisecting
the corner.

When the ratio x/y is equal to 0.252, as shown by the blue
dashed line in Fig. 2a, bulk, edge and corner modes are well sepa-
rated from each other. To verify the localization of edge states and
corner states, the spatially resolved eigenstate distributions |y ()|
integrated over the corresponding frequencies (indexed by I to IV)
are plotted in Fig. 2b. To reveal all the states hosted by both the
topological and trivial structures, we measured the local density
of states, as shown in Fig. 2¢, d, respectively (refer to the section
‘Density of states measurement’ in Methods for details). The density
of states was extracted by studying the local response through excit-
ing and probing pressure fields at the same location at each lattice
site. The measurement was performed over a broad frequency range
that enclosed both low- and high-frequency bulk bands. In agree-
ment with the results in Fig. 2b, the measured field profiles corre-
sponding to the excitation of the low-frequency bulk, edge, corner
and high-frequency bulk states of the expanded lattice (Fig. 2e)
clearly highlight the different nature of the different bands (for com-
parison, the measured field profiles of the shrunken lattice are pre-
sented in Supplementary Fig. 9). As expected, the spatially resolved
power distribution integrated over the respective frequency ranges
is directly related to the peaks in the measured density of states dis-
tribution in Fig. 2¢, and the spatial power distributions in Fig. 2e
panels II and III correspond to the excitation of edge (blue shaded
region) and corner (red shaded region) states, which arise only in
the topological lattice. As seen from the field profiles of the corner
states in Fig. 2e panel III, only one of the three sublattice sites at each
corner is excited, which is due to the conservation of the generalized
chiral symmetry.

The observed small overlap of the corner states with upper
bulk modes is explained as the result of inhomogeneous broaden-
ing caused by the finite lifetime of the modes in the experimental
set-up. We found that the main mechanisms contributing to the
broadening were the geometrical deviations due to limited fabrica-
tion precision, as well as radiative loss through the probe (excita-
tion) channels. Nonetheless, as seen from the comparison with the
theoretical data shown in red circles on the horizontal axis of
Fig. 2¢, d, the experimental data are in very good agreement with
first-principles results, indicating that neither factor affects the
topological nature of the modes, confirming their robustness, or
alters their spectral position.

Robustness of the corner states

The strong localization of the corner state in one of the sublattices
due to I'; symmetry implies that that this state should be insensi-
tive against disorder in other sublattices. To confirm this prop-
erty, we selected again the case when x/y=0.252 and performed
TBM studies of disordered systems with the cylinders inside the
yellow dashed regions (Fig. 3b) having their resonant frequencies
randomly distributed around the frequency of the corner cylin-
der. In this case, the generalized chiral symmetry is globally pre-
served because the feature of I';-symmetry-protected corner states
is unchanged, although the local generalized chiral symmetry at
the corners is broken. As predicted, we found that the corner state
remains pinned to the same frequency (Fig. 3a). On the other hand,
the frequency of the corner state is sensitive to the perturbation of
the resonator heights it was pinned to. In this case, the frequency
of the corner state deviates from ‘zero energy’ as the degree of per-
turbation increases (Fig. 3d). Such insensitivity to the disorder of
sublattice corner states not pinned to, suggests possible applications
for sensing where the mode can be well confined.

We experimentally investigated the robustness properties of
the corner states. As suggested by theoretical results, these modes
should exhibit robustness against disorder as long as the sublattice
sites of the corner states are unperturbed. To test this, we fabricated
several trimers (yellow dashed regions in Fig. 3b) with deliber-
ately introduced random deviations of up to 10% in their height,
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Fig. 2 | Theoretical prediction and experimental demonstration of acoustic edge and corner states. a, Energy spectrum calculated from TBM for the
triangular kagome lattice. Yellow, blue and red bands are for bulk, edge and corner states, respectively. b, Normalized spatial distribution of |u/(w)|2
integrated over the frequencies of lower bulk, edge, corner and upper bulk regions, respectively, where x4 = 0.252 is denoted by blue dashed line in a.
y(w) is the eigenstate of the triangular kagome lattice. ¢, Normalized density of states for the expanded lattice obtained from the measurements of
acoustic power at the top of the trimer. Red, blue and yellow regions are colour-coded to represent corner, edge and bulk modes dominating in these
regions. Red, blue and yellow dashed vertical lines show the lower and upper bounds of the integrations used in e. d, Normalized density of states for the
shrunken lattice obtained from the acoustic power measured at the top of the trimer. Results from numerical calculations are marked in red circles in both
c and d. e, Spatial distributions of the acoustic power integrated over the respective frequency regions indexed by Roman numerals (from | to V).

and placed them next to the corner trimer, in which all sites except
sublattice sites of the corner states were randomly perturbed to the
same degree. As a result of the perturbation introduced, the resonant
frequency of the individual cylinders next to the corner fluctuated
randomly by up to 400 Hz, which is about 40% of the spectral width
of the topological bandgap. The acoustic pressure field distribution
integrated over the corner spectral range (Fig. 3b) confirms that the
corner states retain their strong confinement, and do not leak into
either the bulk or edge states. The measured density of states con-
firms that the corner states remain well defined and pinned to ‘zero
energy’ in the spectrum, and overlap with the corner states for the
unperturbed lattice, indicating their robustness against disorder in
adjacent sublattices (Fig. 3¢).

In a second measurement, the three corner trimers of the printed
structure were perturbed by a deviation of up to 10% in their height
(yellow dashed region in Fig. 3e), except at the corner site, which
was left unperturbed. We found that the corner states no longer
localized at one of the sublattices, and spurious modes are present
and dominate over these corner modes, as can be seen from the

spatially resolved power distribution integrated over the frequency
range of the corner states Fig. 3e. The mismatch of corner states
spectra between the perturbed and unperturbed lattices confirms
the prediction that these corner states are no longer protected by
the generalized chiral symmetry and are not pinned to ‘zero energy’.

Topological corner states embedded in the continuum

Next, we studied the case of corner states embedded in the con-
tinuum of bulk states, a unique feature enabled by the presence of
the three sublattices and the generalized chiral symmetry, which
ensures thate, + €, + ¢;=0, for bulk modes (as opposed toe, + €,=0
for the conventional chiral symmetry of a bipartite lattice), while the
corner state remains pinned to zero energy. To this aim, we fabri-
cated another topological sample with detuning between inter-cell
and intra-cell channels such that the corner states would spectrally
overlap with high-frequency bulk modes, corresponding to the ratio
k/y=0.52 in Fig. 2a. The corner states were probed by placing a
source at the three corner sites of the topological structure, which
were driven at 5,250 Hz. Bulk states at such a frequency are mostly
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Fig. 3 | Effect of disorder and robustness of the corner states. a,d, TBM results demonstrating the pinned (a) and deviated (d) character of the corner state
in the presence of disorder inside yellow dashed regions in b and e, respectively. Triangular kagome lattice consisting of 20 trimers at each site, disordered
sites are perturbed by small deviations in their height, and the disorder parameters are randomly generated. The disorder intensity represents the ratio of
the deviation over the unperturbed height. b,e, Field distribution integrated over the frequency range of corner states. ¢ f, Normalized density of states for
the lattice in b and e, respectively, marked by the blue shaded curve, and the density of states for the non-disordered lattice also plotted in as the yellow
shaded curve for comparison. The red dashed lines indicate the range of the corner spectrum. The specific disorder parameters can be found in the section

‘Disorder parameters’ in Methods.
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Fig. 4 | Experimental demonstration of corner states coexisting with continuum of bulk modes. a-d, Field distribution in the lattice caused by the source
located (as indicated by the yellow star) at the bottom left corner (a), top corner (b), bottom right corner (¢), or in the bulk (d). The excitation frequency
is ~5,250 Hz. Due to the narrower topological bandgap and weaker localization of the corner states, the size of the fabricated structure was increased to

eight trimers for each edge.

distributed over the central region of the lattice, leading to negli-
gible coupling with the source at the corner sites. Results shown in
Fig. 4a—c prove that the corner states remain localized to the corners
and do not radiate into the bulk. At the same time, the source, at
the same frequency, excited predominantly bulk states when placed
inside the structure. Only one corner state was excited weakly in
this case, due to some spatial overlap of the pressure field pro-
duced by the source with that of the exponentially localized corner
states. These results show that, despite their spectral overlap
and momentum compatibility, the discrete corner states remain

embedded in the bulk continuum without coupling to it, opening
a door for studying ultrasharp Fano resonances with topological
discrete states, when coupling with the continuum is controllably
introduced by deliberate symmetry reduction. It is interesting that
the confinement of the corner state to the sublattice allows us to
predict which of the three corner states will lift up due to the bulk
excitation. For the case of Fig. 4d, the bulk excitation is in the upper
site of a trimer in the central bulk, which ensures that the corner
state at the upper corner will be excited. This indeed can be seen
from the field distribution in Fig. 4d.
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Discussion

The topological states induced by bulk polarization introduced in
this paper, as well as in the recent work®, have great potential for
applications over a broad range of disciplines, from photonics to
acoustics and mechanical vibrations. We have shown that the syn-
thetic degrees of freedom enabled by tuning the neighbour hopping
in the crystalline lattice can be beneficial for generating nontriv-
ial bulk polarization states, for the design of systems supporting
unconventional edge and corner states. Unique features, such as
pinning to ‘zero energy, robustness and the non-radiative charac-
ter of higher-order topological embedded eigenstates significantly
expand our ability to control, trap, and steer waves, enabling a pleth-
ora of applications, from robust tunable waveguides to a generation
of high-fidelity topological sensors. We believe that our work opens
important directions in acoustics and beyond, offering possibilities
to control waves in unprecedented ways.
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Methods

Structure design, 3D printing, and generic measurements. The unit cell

designs of the topological lattice and trivial lattice are plotted in Fig. 1b, c,
where the lattice constant of the structure is a;=39.75 mm, and the height of
cylinder is chosen as Hy=40.52 mm, with the radius R;=5.77mm, such that the
frequencies of the desired mode are in the probing range of the microphone.
The connectors between the cylinders consist of blocks, with their dimensional
sizes L, =8.34 mm, L,=7.95 mm and L =2.64 mm, respectively. The coupling
strength of the modes is maximal when the connectors are at the top or bottom
of the cylinders, and minimum at the centre of the cylinders. To make the intra-
cell and inter-cell coupling of the trimers inequivalent, the outer connectors

of the topological trimer shown in Fig. 1b are placed at the top and bottom of
the cylinders, while the inner connectors are shifted towards the centre by a
distance H,=10.23 mm. The trivial trimer, in Fig. 1c, is the opposite way around.
The boundary cells, shown in the photograph of the fabricated structure

(Fig. 1h), have the same parameters as the trimers, except their heights are

half the trimers’ height.

The trimers and boundary cells were fabricated using a B9Creator v1.2 3D
printer. All cells were made with acrylic-based light-activated resin, a type of
plastic that hardens when exposed to ultraviolet light. Each cell was printed with
a sufficient thickness to ensure a hard wall boundary condition and narrow probe
channels were intentionally introduced on the top and bottom sides of each of the
cylinders to excite and measure the local pressure field at each site. The diameter
of the port is Dy=3.73mm, and the upper port has a height H;=3.97mm, while
the height of lower port is 2H,. When not in use, the probe channels were closed
with 3D-printed cups. The trimers and boundary cells were printed one at a time
and the models were designed specifically to interlock tightly with each other. The
non-trivial and trivial structures shown in Fig. 1 both consist of 15 trimers and 18
boundary cells. For the studying lattice corner states in the continuum in Fig. 4,
36 trimers and 27 boundary cells are used. For all measurements, a frequency
generator and FFT spectrum analyser scripted in LabVIEW were used. The FFT
spectrum analyser is also capable of extracting phase differences between
two channels.

Numerical methods. The finite element solver Multiphysics Comsol 5.2a and

the acoustic module were used to perform full-wave simulation. In the acoustic
propagation wave equation, the speed of sound was set as 343.2 m s~ and density
of air as1.225 kg m ™. Other dimensional parameters of the structure are the same
as the fabricated parameters. For bulk (edge) band structure calculations, periodic
boundary conditions were imposed along the edges of the unit cell (supercell).
Large-scale simulations were performed with hard-wall boundary conditions
applied on the boundary cells. To extract the bulk polarization from simulation
results, we took the average value of the acoustic pressure field on the top or
bottom of the cylinders for the mode of interest (lowest frequency bulk mode for
bulk polarization and lower edge mode for edge polarization); the acoustic pressure
field was used to construct the eigenstates of the mode, and we evaluated the phase
¢, based on the normalized eigenstates.

* The TBM is used to fit the band diagram of the topological and trivial
structures and also to verify the correctness of ¢ graph based on the eigenstates
calculation. For the gapless band diagram, the onsite frequency is fitted as
®,=5,182.5Hz, and the coupling strength as k = y = —310 Hz. For the topological
band diagram, these fitted parameters are w, =5, 133 Hz, k= 115.5Hz and
y=462Hz and for trivial band diagram, the onsite frequency is the same as the
topological band diagram with the magnitudes of x and y flipped. For the acoustic

NATURE MATERIALS | www.nature.com/naturematerials

spectra, the fitted onsite energy w, =5, 175Hz and the other parameters are the
same as the ones in the band diagram.

Phase difference measurement. A set of two compact magnetic transducers

was used to excite local pressure fields and two directional microphones

(Model: EMM-6) were connected to an external two-port digital data acquisition
device (AUBIO BOX USB 96), enabling excitation of the desirable phase profiles
and measurements of the phase across the structure. For the phase differences,

all the upper ports were open to allow the modes to propagate with vast loss, thus
minimizing the wave reflection at the boundary. The speaker was placed at the
site in the centre of the structure, and two microphones were placed at the two
sites within a bulk trimer near to the speaker, as shown in Fig. 1h. The frequency
generator was used to run a sweep of monochromatic frequencies from 4,000 Hz
to 4,550 Hz in 25 Hz intervals, with a dwell time of 4 s (to allow for stability of

the profile) and determine the phase differences between the two channels at

each frequency; for example, the phase difference between site 1 and site 2 was
measured as ¢ . One of the microphones was also switched to the third site (from
site 2 to site 3) in the same trimer to measure the second phase difference ¢ . Since
the detected modes near the source behave like bulk modes of the infinite structure
because of the loss in the system and its relatively large size (when all upper and
lower ports—the probe holes—are open and leak), it is legitimate to construct the
normalized eigenvectors of the bulk modes by these measured phase differences as
1/~/3(1,e%12,¢13). Finally, with the information about the eigenvectors, the phase
? e is extracted, as shown by Fig. 1i.

Density of states measurement. The speaker was placed at the bottom port and
the microphone at the top port of the same site. A tiny gap was left between the
speaker and the port to allow for the presence of reflection channels, while the
microphone was touched closely to the port to achieve the maximum absorption.
The frequency generator was used to run a sweep from 3,600 Hz to 6,000 Hz in
25Hz intervals with a dwell time of 4 s while the FFT spectrum analyser obtained
the amplitude responses @(w) at each frequency. Field distributions ¢(i, ) are
obtained by repeating this process for each site i. Since it is difficult to guarantee
the tiny gap is exactly the same for every site, and the amplitude response is highly
sensitive to this tiny gap, we normalized the data for each site based on the total
spectra summed over frequencies as well as on the free-space amplitude response
between the microphone and the speaker, @ (i, w) = (i, )/ ¥ ¢(i, )/ ¢, (@).
After that, we squared the signal &, (i, w) and averaged the power spectrum for
an array of N resonators P,(w) = Zt, | (i, w) |*/N to get the normalized spectra,
P(w) =P(w)/ ¥ P(w), the equivalent to the density of states of the kagome
lattice. For the field profiles excited by a single frequency, the speaker was fixed at
the port of the site of interest and the microphone was placed over each site of the
lattice to measure the magnitude response at the desired frequency (for example,
5,250 Hz for the corner state in Fig. 4).

Disorder parameter. In the first disorder configuration shown in Fig. 4a, the
disorder parameters are generated by the random function in a MATLAB script,
and converted to small deviations of the height H,; the ratios of the perturbed
height over H, were 1.00, 0.9076, 1.05, 0.9607, 0.9820, 1.0340, 0.9961, 0.9220,
1.0182. In the second disorder configuration in Fig. 4b, the disorder parameters are
1.00, 0.9076, 1.05; 1.00, 0.9744, 1.0273, 1.00, 0.9348, 1.043.

Data availability
Data that are not already included in the paper and/or in the Supplementary
Information are available on request from the authors.
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