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Topological phases of matter support some of the most fas-
cinating properties for signal transport and wave propaga-
tion, holding the promise of revolutionizing technologies 

from quantum electronics1–7 to photonics8–25 and acoustics26–30. 
In electronics and quantum photonics, they have been open-
ing novel approaches for quantum computing interfaces31,32 and 
lasing33–35, while in classical optics, mechanical and acoustic 
systems, they offer unprecedented robustness to defects and dis-
order10–20,22,24,26–29,36. Most of the topological systems studied so 
far are characterized by topological indexes, such as Chern-class 
numbers, Z2 invariants and winding numbers. More recently, a 
new class of symmetry-protected topological phases, character-
ized by bulk polarization, has been introduced theoretically37. 
One example of such systems is given by quadrupole topological 
insulators38,39, which have been recently implemented in mechani-
cal40 and microwave41 systems, as well as in electrical circuits42. 
However, higher-order topological insulators are not limited to 
the category of quadrupole topological insulators, and our two-
dimensional system exhibits ‘zero-energy’ states localized at the 
corners, with gapped bulk and edge bands, and topological invari-
ants characterized by bulk polarization. All these features meet the 
definition of a higher-order topological insulator43–50 and, more 
specifically, of a Wannier-type second-order topological insula-
tor. A criterion to distinguish topological corner states from trivial 
ones is that they are protected by time reversal or spatial symme-
tries51. In our system, the corner states are pinned to ‘zero energy’ 
and localize at one of the sublattices—a property attributed to the 
conservation of the generalized chiral symmetry introduced here 
for the system with three sublattices.

The class of topological systems with zero Berry curvature 
but nontrivial bulk polarization offers an opportunity to imple-
ment robust, controllable physical responses. Here, we theoreti-
cally analyse and experimentally demonstrate the confinement 
of higher-order corner states and their inherent robustness by  

deliberately introducing disorder. In addition, these corner states 
are transformed into embedded eigenstates within the continuum 
of bulk modes by tuning the hopping parameters without changing 
the bulk polarization and breaking the generalized chiral symme-
try. These findings open opportunities for acoustic and photonic 
devices based on topological bulk polarization and topological 
embedded corner eigenstates.

Acoustic metamaterial design
We explore a two-dimensional acoustic kagome lattice44,52 char-
acterized by bulk polarization (Supplementary Sections 2,3), sup-
porting a topological phase protected by lattice symmetries. The 
lattice is shown schematically in Fig. 1a and is formed by an array of 
acoustic resonator trimers coupled via narrow rectangular channels  
(Fig. 1b, c). Each resonator hosts acoustic pressure modes oscillating 
in the axial direction. We choose to work with the fundamental mode 
(~4.23 kHz), which has its only node at the centre of the resonant 
cavity. The coupling strength is tuned by shifting the channels closer 
to or farther away from the centre node, thus enabling fine control 
over the local coupling strength, which is demonstrated experimen-
tally by the frequency responses of single trimer in Supplementary 
Section 4. Due to the strong confinement of the resonant modes and 
the connectivity of the lattice, the system is approximated well by the 
tight-binding model (TBM) (Supplementary Section 1) except in 
the case when there is an open boundary condition (Supplementary 
Section 11), with nearest-neighbour coupling described by inter-
cell γ and intra-cell κ coupling parameters (Fig. 1a). For the case 
of an ideal kagome lattice, with γ κ= , the band diagram obtained 
with TBM (grey solid lines in Fig. 1d) supports a Dirac-like degen-
eracy at the K and K′​ points. The degeneracy is formed between 
low-frequency monopolar modes, characterized by in-phase  
vibrations in all three cylinders of the trimer, and dipolar modes, 
which are left- and right-hand circularly polarized at the K and K′​ 
points, respectively.
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We stress that the geometry of Fig. 1 can be viewed as the two-
dimensonal counterpart of the well-known one-dimensional  
Su–Schrieffer–Heeger (SSH) model. As the symmetry is reduced by 
detuning inter-cell γ and intra-cell κ couplings between neighbour-
ing trimers, a topological transition emerges in the band diagram. 
Specifically, the trimers in Fig. 1b, c (geometry provided in the sec-
tion ‘Structure design, 3D printing and generic measurements’ in 
Methods) support bandgaps at both K and K′​ valleys with topo-
logically nontrivial (γ κ> ) and trivial (γ κ< ) nature (referred to as 
expanded and shrunken, respectively), implying that a control over 
the coupling parameters can enable ad hoc topological transitions. 
The symmetry reduction from six-fold rotational symmetry (C6) 
to three-fold rotational symmetry (C3) leads to hybridization and 

avoided crossing of formerly degenerate dipolar and monopolar 
bands, giving rise to the band inversion. The cases of equal detun-
ing for γ κ>  and γ κ<  have identical band structure, shown in Fig. 
1d by solid lines, and therefore cannot be distinguished. However, 
these two cases represent two distinct topological phases, separated 
by the gapless γ κ=  transition point. The topological transition is 
demonstrated by directly calculating the bulk polarization (see 
Supplementary Fig. 1) through a Wilson loop, and also by inves-
tigating the C3-related properties at high-symmetry points in the 
Brillouin zone for the case of ideal symmetries, as we discuss in 
the following. In addition to the results from the TBM, the circu-
lar markers plotted in Fig. 1d illustrate first-principles simulations 
obtained by directly solving the three-dimensional pressure-wave 
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Fig. 1 | Concept and measurement of the bulk polarization transition in the deformed kagome lattice. a, Schematics of the 2D tight-binding kagome 
lattice. b,c, Realistic acoustic trimer for ‘expanded’ (b) and ‘shrunken’ (c) lattice designs, which emulate the effect of nearest-neighbour coupling. d, Band 
structures of the kagome lattice obtained by TBM (solid lines) and first-principles calculation (circular dots), separately. Grey lines are the band structures 
of the undeformed kagome lattice, and blue, red and yellow lines are the band structures of expanded/shrunken kagome lattice. e,f, ϕC3

 normalized to 2π​,  
along the high-symmetry point lines of the expanded (e) and shrunken (f) lattice. Blue, red and yellow lines represent the phases ϕC3

 of the bands with 
corresponding colours in d. The inset colour map describes the acoustic pressure of the sketched structures. g, Schematic relationships between the 
eigenstates of the expanded lattice and the shrunken lattice without a boundary (top) and with a boundary (bottom). GT represents that the relation 
between two eigenstates is gauge tranformative. h, Photograph of the printed acoustic lattice. The array consists of five cells at each edge, with boundary 
cells that have a higher resonance frequency to terminate the array. These boundary cells play a crucial role in emulating the open boundary condition in 
TBM (Supplementary Section 11). A speaker is placed at the yellow spot and phase measurements are taken in the triangular region marked by blue lines. 
i, ϕC3

 of the lowest bulk band for topological nontrivial (dark blue) and trivial geometries (light blue). Both theoretical and experimental results are shown, 
denoted by dashed line and circle-shaped markers, respectively. The red dashed line indicates the position of − ∕1 3.
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equation using the finite element method (FEM). The accurate 
agreement between analytical and numerical results serves as fur-
ther evidence of the applicability of the TBM and the related the-
oretical analysis (simulation details and fitting parameters can be 
seen in the section ‘Numerical methods’ in Methods).

The bulk polarization characterizes the displacement of the 
average position of Wannier states from the sites’ centre of the unit 
cell39,50. In the trivial case, the zero value of bulk polarization indi-
cates modes that are pinned to the sites’ centre, and no modes hang 
at the boundaries. However, in the topological nontrivial case, the 
bulk polarization is nonzero, inducing modes at the boundaries 
away from the bulk, and causing localization at the dangling sites of 
the boundary. Additionally, we have developed the theory of polar-
ization difference to characterize the distinction between shrunken 
and expanded unit cells, which is detailed in Supplementary Section 
5. The shrunken and expanded unit cells, with their hopping κ and γ 
swapped, can be transformed into each other by a series of uniform 
transformations when the lattice is infinitely large; thus their eigen-
states are connected through the gauge transformation. The non-
trivial polarization difference manifests in topological effects only 
when there is a boundary in the lattice. The presence of a boundary 
breaks the gauge transformation and makes it impossible to connect 
the eigenstates of the two systems (Fig. 1g), giving rise to bound-
ary effects in the form of topological edge and corner states when 
the bulk polarization is nontrivial. Thus, as we show here, the bulk 
polarization difference of the three-fold symmetric kagome lattice 
acquires the values ∕ ∕(1 3, 1 3) upon the spatial translation (by a vec-
tor r, as shown in Fig. 1a) and the subsequent rotation substituting 
shrunken and expanded unit cells, and leads to the emergence of 
edge and corner states at the boundaries of the expanded lattice.

Bulk polarization measurement. To confirm the topological 
transition as we tune the coupling going from the expanded to 
the shrunken lattice, we extract the bulk polarization using both 
the TBM and FEM in a visual way, so that the information about 
the irreducible representation of symmetry groups is revealed in 
momentum space. As shown in Supplementary Section 3, the polar-
ization is directly related to the constraints imposed by the sym-
metry operations on the eigenvectors. In particular, following the 
work of Fang et al.37, when C3 symmetry is preserved we can extract 
the polarization directly from the eigenvalue of C3 symmetry, as 
detailed in Supplementary Section 6. The bulk polarization assumes 
the form

∏ θ
θ

=
Γ

− π
∈

e
(K)
( )

(1)i p
n

n

n

( )
occ

i

where θ = ⟨ ∣ ∣ ⟩u R uk k k( ) ( ) ( )n n n3  is the expectation value of the 
three-fold symmetric operator R3 (rotation by π∕2 3) applied to 
eigenvector u k( )n . The index i represents the reciprocal vector bi in 
the Brillouin zone (Fig. 1a); correspondingly, pi is the bulk polariza-
tion in this direction. Because of the conservation of C3 symmetry, pi 
is identical in different directions. The subscript ‘occ’ in equation (1) 
implies the summation over the bands below the bandgap of inter-
est (as opposed to the occupied bands below the Fermi level in the 
condensed matter). We define the following quantity

ϕ θ= −ik k( ) log( ( )) (2)C n3

which is essential in observing the dependence of the eigenstates’ 
rotational symmetry on the momentum vector k. This quantity, 
plotted in Fig. 1e, f, clearly reveals the difference between expanded 
(γ κ> ) and shrunken (γ κ< ) cases. This approach allows a straight-
forward physical interpretation of topological phase: in the topolog-
ical nontrivial regime, the action of the R3 operator on the eigenstate 

of the lowest band at the K (or K′​) point yields the eigenvalue π∕2 3,  
associated with the rotational dipolar field-profile (blue line in  
Fig. 1e). In the topologically trivial regime, the mode pattern is not 
rotating in the entire Brillouin zone, giving rise to no phase differ-
ence between K and Γ​ points (blue line in Fig. 1f).

Interestingly, this approach enables an alternative way of accu-
rately extracting the bulk polarization by evaluating ϕ k( )C3

 only 
at C3-invariant points of the Brillouin zone. The bulk polarization 
of the band of interest can therefore be defined as the difference 
of ϕ k( )C3

 at different C3-invariant points, K and Γ​ points, respec-
tively—that is, ϕ ϕ= Γ −p ( ) (K)i C C3 3

 for the lowest band of interest. 
For the lower-frequency (blue-coloured) band, the bulk polariza-
tions can be readily seen from Fig. 1e, f as


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which clearly indicate distinct topologically nontrivial and trivial 
phases, respectively.

To extract experimentally the bulk polarization in a finite acous-
tic meta-structure, we exploit the bijective relations between fre-
quency, momentum vector, and phase ϕ k( )C3

 of the bulk mode, 
which is valid for an isolated low-frequency band at C3-invariant 
points. These relations hold true due to the fact that the correspond-
ing bulk band has the lowest frequency at the Γ​ point, and the high-
est frequency at the ′K(K ) point. In addition, the relative direction 
connecting source (speaker) and detector (microphone) can be 
selected so that modes with either positive or negative (relative to 
the positive direction) momentum vectors are probed. Therefore, 
the mode at the Γ​ point can be probed by a low-frequency excita-
tion, whereas the modes at the ′K(K ) point can be probed by driving 
the system with high frequencies (close to the lower-frequency edge 
of the topological bandgap).

The acoustic kagome lattices of Fig. 1 were fabricated using a 
B9Creations stereolithographic 3D printer (see the section ‘Structure 
design, 3D printing and generic measurements’ in Methods). As 
shown in Fig. 1h, the source was placed at the centre of the struc-
ture (indicated by the yellow dot) and two detectors were placed 
inside blue trimers of either topological nontrivial or trivial lattices. 
The relative direction between source and detectors corresponds 
to the case of excitation with either positive or negative momen-
tum. Thus, by sweeping the frequency of the source over the desired 
spectral range, we measured the field profiles of the excited bulk 
mode and obtained the phase differences of the three sites within 
the trimer (for example, φ12 and φ13). Then we constructed the nor-
malized eigenstate of the mode as ∕ φ φ1 3 (1, e , e )i i12 13 , and extracted 
the phase ϕC3

 based on this constructed eigenstate. Details of phase 
measurement, data acquisition and data processing are described in 
the section ‘Phase difference measurement’ in Methods. As shown 
in Fig. 1i, the measurement results (circular markers) and first-
principles simulations (dashed lines) clearly show that the phase ϕC3sweeps 1/3 of 2π​ for the case of the topological lattice and remains 
at 0 for the topologically trivial lattice. These results unambiguously 
confirm and experimentally verify the topological polarization of 
1/3 of the corresponding low-frequency bulk band for the expanded 
lattice. We also measured the phase differences and extracted the 
phase ϕC3

 of the topological case in the expanded and shrunken 
lattices, respectively (Supplementary Section 7). These results con-
firm the essential features of nontrivial bulk polarization difference, 
namely, the eigenstates of infinite expanded and shrunken lattices 
are gauge transformative.

Zero-energy corner states protected by Γ3 symmetry
A prominent distinction between topological and trivial phases of 
matter consists in the robust emergence of topological edge states 
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exponentially confined to the boundaries52. As seen from the 
blue region of Fig. 2a, the triangular kagome lattice in the topo-
logical regime supports topological edge states, which emerge 
from the non-vanishing bulk polarization (the proof is detailed in 
Supplementary Section 8a), in contrast to the edge states due to 
nontrivial Berry curvature in quantum spin Hall effect and valley 
Hall effect systems.

In addition to the edge states, the energy spectrum (red line in 
Fig. 2a) suggests another class of totally dispersionless states with 
their analytic solutions obtained in Supplementary Section 8b, and 
their field profile reveals their zero-dimensional nature. These states 
indeed represent a class of higher-order (D-2) topological states, 
which are confined to corners of the system when the angle of the 
corner equals 60° and only one of the sublattice sites is located at the 
corner (the proof can be found in Supplementary Section 9). For 
all values of parameter κ γ<  (with fixed γ), these states are pinned 
to ‘zero-energy’, which, for this acoustic system, represents the fre-
quency of the isolated acoustic resonator. The ‘zero-energy’ corner 
modes we observe are protected by the generalized chiral symmetry 
Γ​3 specific for the structure with three sublattices. The generalized 
chiral symmetry Γ​3 transforms Hamiltonian H0 in the following 
way, if H0 respects this symmetry,

Γ Γ =

Γ Γ =

−

−

H H

H H

3 0 3
1

1

3 1 3
1

2

+ + =H H H 0 (4)0 1 2

where H1 and H2 are isomorphic to H0. Based on the definitions in 
equation (4), we prove the following: if the chiral symmetry Γ​3 is 
preserved, the sum of the three eigenenergies of H0 is zero; if the 
triple degenerate zero-energy states exist, these states localize only 
at one of the sublattices. The comprehensive proofs of these state-
ments and other properties related to generalized chiral symmetry 
operators Γ​3 are detailed in Supplementary Section 10. Using these 
properties of operator Γ​3, we can judge whether the system pos-
sesses the generalized chiral symmetry and the corner states appear 
due to the conservation of this symmetry.

We emphasize that the edge state in one-dimensional SSH 
modes, as well as midgap corner modes reported recently in the 
work of Noh et al.53, are protected by chiral symmetry due to the 
presence of two sublattices, which ensures that the states ϵ = 00D  
always appear in the centre of the bulk gap between ϵ ϵ= − k( )1 bulk  
and ϵ ϵ= k( )2 bulk  bands. In our case, however, because the general-
ized chiral symmetry implies ϵ ϵ ϵ+ + = 01 2 3 , the zero-energy corner 
state ϵ = 00D  may appear not only in the bandgap but also can coexist 
with the bulk continuum.

Apart from their nontrivial bulk polarization, the corner states 
protected by Γ​3 symmetry exist in two distinct regimes. In the first 
regime, when the symmetry reduction is large, and κ γ∕ < .0 5, these 
states are embedded in the bandgap induced by the topological 
transition (white region on the right side of Fig. 2a). In the second 
regime, when κ γ> ∕ > .1 0 5, symmetry reduction due to the expan-
sion effect is not sufficient to lift a bulk gap wide enough and, as a 
result, the corner states pinned to ‘zero energy’ are embedded in the 
bulk continuum, becoming embedded eigenstates54–58. Our numeri-
cal calculations of the supercell demonstrate that these 0D topo-
logical eigenstates do not interact with bulk states, despite being 
compatible with radiation in the bulk in terms of momentum, and 
multiple degeneracies (crossings) between bulk and corner spectra 
are observed. In all regimes, the corner states exhibit an exponential 
decay with plane-wave-like modulation in the direction bisecting 
the corner.

When the ratio κ γ∕  is equal to 0.252, as shown by the blue 
dashed line in Fig. 2a, bulk, edge and corner modes are well sepa-
rated from each other. To verify the localization of edge states and 
corner states, the spatially resolved eigenstate distributions ψ ω∣ ∣( ) 2 
integrated over the corresponding frequencies (indexed by I to IV) 
are plotted in Fig. 2b. To reveal all the states hosted by both the 
topological and trivial structures, we measured the local density 
of states, as shown in Fig. 2c, d, respectively (refer to the section 
‘Density of states measurement’ in Methods for details). The density 
of states was extracted by studying the local response through excit-
ing and probing pressure fields at the same location at each lattice 
site. The measurement was performed over a broad frequency range 
that enclosed both low- and high-frequency bulk bands. In agree-
ment with the results in Fig. 2b, the measured field profiles corre-
sponding to the excitation of the low-frequency bulk, edge, corner 
and high-frequency bulk states of the expanded lattice (Fig. 2e) 
clearly highlight the different nature of the different bands (for com-
parison, the measured field profiles of the shrunken lattice are pre-
sented in Supplementary Fig. 9). As expected, the spatially resolved 
power distribution integrated over the respective frequency ranges 
is directly related to the peaks in the measured density of states dis-
tribution in Fig. 2c, and the spatial power distributions in Fig. 2e 
panels II and III correspond to the excitation of edge (blue shaded 
region) and corner (red shaded region) states, which arise only in 
the topological lattice. As seen from the field profiles of the corner 
states in Fig. 2e panel III, only one of the three sublattice sites at each 
corner is excited, which is due to the conservation of the generalized 
chiral symmetry.

The observed small overlap of the corner states with upper 
bulk modes is explained as the result of inhomogeneous broaden-
ing caused by the finite lifetime of the modes in the experimental 
set-up. We found that the main mechanisms contributing to the 
broadening were the geometrical deviations due to limited fabrica-
tion precision, as well as radiative loss through the probe (excita-
tion) channels. Nonetheless, as seen from the comparison with the  
theoretical data shown in red circles on the horizontal axis of  
Fig. 2c, d, the experimental data are in very good agreement with 
first-principles results, indicating that neither factor affects the 
topological nature of the modes, confirming their robustness, or 
alters their spectral position.

Robustness of the corner states
The strong localization of the corner state in one of the sublattices 
due to Γ​3 symmetry implies that that this state should be insensi-
tive against disorder in other sublattices. To confirm this prop-
erty, we selected again the case when κ γ∕ = .0 252 and performed 
TBM studies of disordered systems with the cylinders inside the 
yellow dashed regions (Fig. 3b) having their resonant frequencies 
randomly distributed around the frequency of the corner cylin-
der. In this case, the generalized chiral symmetry is globally pre-
served because the feature of Γ​3-symmetry-protected corner states 
is unchanged, although the local generalized chiral symmetry at 
the corners is broken. As predicted, we found that the corner state 
remains pinned to the same frequency (Fig. 3a). On the other hand, 
the frequency of the corner state is sensitive to the perturbation of 
the resonator heights it was pinned to. In this case, the frequency 
of the corner state deviates from ‘zero energy’ as the degree of per-
turbation increases (Fig. 3d). Such insensitivity to the disorder of 
sublattice corner states not pinned to, suggests possible applications 
for sensing where the mode can be well confined.

We experimentally investigated the robustness properties of 
the corner states. As suggested by theoretical results, these modes 
should exhibit robustness against disorder as long as the sublattice 
sites of the corner states are unperturbed. To test this, we fabricated 
several trimers (yellow dashed regions in Fig. 3b) with deliber-
ately introduced random deviations of up to 10% in their height, 
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and placed them next to the corner trimer, in which all sites except 
sublattice sites of the corner states were randomly perturbed to the 
same degree. As a result of the perturbation introduced, the resonant 
frequency of the individual cylinders next to the corner fluctuated 
randomly by up to 400 Hz, which is about 40% of the spectral width 
of the topological bandgap. The acoustic pressure field distribution 
integrated over the corner spectral range (Fig. 3b) confirms that the 
corner states retain their strong confinement, and do not leak into 
either the bulk or edge states. The measured density of states con-
firms that the corner states remain well defined and pinned to ‘zero 
energy’ in the spectrum, and overlap with the corner states for the 
unperturbed lattice, indicating their robustness against disorder in 
adjacent sublattices (Fig. 3c).

In a second measurement, the three corner trimers of the printed 
structure were perturbed by a deviation of up to 10% in their height 
(yellow dashed region in Fig. 3e), except at the corner site, which 
was left unperturbed. We found that the corner states no longer 
localized at one of the sublattices, and spurious modes are present 
and dominate over these corner modes, as can be seen from the 

spatially resolved power distribution integrated over the frequency 
range of the corner states Fig. 3e. The mismatch of corner states 
spectra between the perturbed and unperturbed lattices confirms 
the prediction that these corner states are no longer protected by 
the generalized chiral symmetry and are not pinned to ‘zero energy’.

Topological corner states embedded in the continuum
Next, we studied the case of corner states embedded in the con-
tinuum of bulk states, a unique feature enabled by the presence of 
the three sublattices and the generalized chiral symmetry, which 
ensures that ϵ ϵ ϵ+ + = 01 2 3 , for bulk modes (as opposed to ϵ ϵ+ = 01 2  
for the conventional chiral symmetry of a bipartite lattice), while the 
corner state remains pinned to ‘zero energy’. To this aim, we fabri-
cated another topological sample with detuning between inter-cell 
and intra-cell channels such that the corner states would spectrally 
overlap with high-frequency bulk modes, corresponding to the ratio 
κ γ∕ = .0 52 in Fig. 2a. The corner states were probed by placing a 
source at the three corner sites of the topological structure, which 
were driven at 5,250 Hz. Bulk states at such a frequency are mostly 

κ/γ

F
re

qu
en

cy
 (

H
z)

3,789

4,713

5,175

5,637

0.00.51.01.5

I

II

III

IV

Frequency (kHz)

a

c d

4.0 4.2 4.4 4.6 4.8 5.0 5.2 5.4 5.6 5.8 6.0
0

0.01

0.02

0.03

0.04

N
or

m
ai

liz
ed

 d
en

si
ty

 o
f s

ta
te

s

4.0 4.2 4.4 4.6 4.8 5.0 5.2 5.4 5.6 5.8 6.0

Frequency (kHz)

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

N
or

m
ai

liz
ed

 d
en

si
ty

 o
f s

ta
te

s

4,251

3,327

2,865

6,099

6,561

I

0

1

II III IV

e

I II

III IV

0

1

b

I II IVIII

Fig. 2 | Theoretical prediction and experimental demonstration of acoustic edge and corner states. a, Energy spectrum calculated from TBM for the 
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shrunken lattice obtained from the acoustic power measured at the top of the trimer. Results from numerical calculations are marked in red circles in both 
c and d. e, Spatial distributions of the acoustic power integrated over the respective frequency regions indexed by Roman numerals (from I to IV).
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distributed over the central region of the lattice, leading to negli-
gible coupling with the source at the corner sites. Results shown in 
Fig. 4a–c prove that the corner states remain localized to the corners 
and do not radiate into the bulk. At the same time, the source, at 
the same frequency, excited predominantly bulk states when placed 
inside the structure. Only one corner state was excited weakly in 
this case, due to some spatial overlap of the pressure field pro-
duced by the source with that of the exponentially localized corner  
states. These results show that, despite their spectral overlap  
and momentum compatibility, the discrete corner states remain 

embedded in the bulk continuum without coupling to it, opening 
a door for studying ultrasharp Fano resonances with topological 
discrete states, when coupling with the continuum is controllably 
introduced by deliberate symmetry reduction. It is interesting that 
the confinement of the corner state to the sublattice allows us to 
predict which of the three corner states will lift up due to the bulk 
excitation. For the case of Fig. 4d, the bulk excitation is in the upper 
site of a trimer in the central bulk, which ensures that the corner 
state at the upper corner will be excited. This indeed can be seen 
from the field distribution in Fig. 4d.
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Fig. 3 | Effect of disorder and robustness of the corner states. a,d, TBM results demonstrating the pinned (a) and deviated (d) character of the corner state 
in the presence of disorder inside yellow dashed regions in b and e, respectively. Triangular kagome lattice consisting of 20 trimers at each site, disordered 
sites are perturbed by small deviations in their height, and the disorder parameters are randomly generated. The disorder intensity represents the ratio of 
the deviation over the unperturbed height. b,e, Field distribution integrated over the frequency range of corner states. c,f, Normalized density of states for 
the lattice in b and e, respectively, marked by the blue shaded curve, and the density of states for the non-disordered lattice also plotted in as the yellow 
shaded curve for comparison. The red dashed lines indicate the range of the corner spectrum. The specific disorder parameters can be found in the section 
‘Disorder parameters’ in Methods.
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Discussion
The topological states induced by bulk polarization introduced in 
this paper, as well as in the recent work59, have great potential for 
applications over a broad range of disciplines, from photonics to 
acoustics and mechanical vibrations. We have shown that the syn-
thetic degrees of freedom enabled by tuning the neighbour hopping 
in the crystalline lattice can be beneficial for generating nontriv-
ial bulk polarization states, for the design of systems supporting 
unconventional edge and corner states. Unique features, such as 
pinning to ‘zero energy’, robustness and the non-radiative charac-
ter of higher-order topological embedded eigenstates significantly 
expand our ability to control, trap, and steer waves, enabling a pleth-
ora of applications, from robust tunable waveguides to a generation 
of high-fidelity topological sensors. We believe that our work opens 
important directions in acoustics and beyond, offering possibilities 
to control waves in unprecedented ways.
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Methods
Structure design, 3D printing, and generic measurements. The unit cell 
designs of the topological lattice and trivial lattice are plotted in Fig. 1b, c, 
where the lattice constant of the structure is = .a m39 75 m0 , and the height of 
cylinder is chosen as = .H m40 52 m0 , with the radius = .R 5 770 mm, such that the 
frequencies of the desired mode are in the probing range of the microphone. 
The connectors between the cylinders consist of blocks, with their dimensional 
sizes = . = .L m L m8 34 m , 7 95 ma b  and = .L m2 64 mc , respectively. The coupling 
strength of the modes is maximal when the connectors are at the top or bottom 
of the cylinders, and minimum at the centre of the cylinders. To make the intra-
cell and inter-cell coupling of the trimers inequivalent, the outer connectors  
of the topological trimer shown in Fig. 1b are placed at the top and bottom of 
the cylinders, while the inner connectors are shifted towards the centre by a 
distance = .H m10 23 ma . The trivial trimer, in Fig. 1c, is the opposite way around.  
The boundary cells, shown in the photograph of the fabricated structure  
(Fig. 1h), have the same parameters as the trimers, except their heights are  
half the trimers’ height.

The trimers and boundary cells were fabricated using a B9Creator v1.2 3D 
printer. All cells were made with acrylic-based light-activated resin, a type of 
plastic that hardens when exposed to ultraviolet light. Each cell was printed with 
a sufficient thickness to ensure a hard wall boundary condition and narrow probe 
channels were intentionally introduced on the top and bottom sides of each of the 
cylinders to excite and measure the local pressure field at each site. The diameter 
of the port is = .D 3 730  mm, and the upper port has a height = .H 3 97d mm, while 
the height of lower port is H2 d. When not in use, the probe channels were closed 
with 3D-printed cups. The trimers and boundary cells were printed one at a time 
and the models were designed specifically to interlock tightly with each other. The 
non-trivial and trivial structures shown in Fig. 1 both consist of 15 trimers and 18 
boundary cells. For the studying lattice corner states in the continuum in Fig. 4,  
36 trimers and 27 boundary cells are used. For all measurements, a frequency 
generator and FFT spectrum analyser scripted in LabVIEW were used. The FFT 
spectrum analyser is also capable of extracting phase differences between  
two channels.

Numerical methods. The finite element solver Multiphysics Comsol 5.2a and 
the acoustic module were used to perform full-wave simulation. In the acoustic 
propagation wave equation, the speed of sound was set as . −343 2 m s 1 and density 
of air as . −g1 225 k m 3. Other dimensional parameters of the structure are the same 
as the fabricated parameters. For bulk (edge) band structure calculations, periodic 
boundary conditions were imposed along the edges of the unit cell (supercell). 
Large-scale simulations were performed with hard-wall boundary conditions 
applied on the boundary cells. To extract the bulk polarization from simulation 
results, we took the average value of the acoustic pressure field on the top or 
bottom of the cylinders for the mode of interest (lowest frequency bulk mode for 
bulk polarization and lower edge mode for edge polarization); the acoustic pressure 
field was used to construct the eigenstates of the mode, and we evaluated the phase 
ϕC3

 based on the normalized eigenstates.
The TBM is used to fit the band diagram of the topological and trivial 

structures and also to verify the correctness of ϕC3
 graph based on the eigenstates 

calculation. For the gapless band diagram, the onsite frequency is fitted as 
ω = .5, 182 50  Hz, and the coupling strength as κ γ= = −310 Hz. For the topological 
band diagram, these fitted parameters are ω = 5, 1330  Hz, κ = .115 5 Hz and 
γ = 462 Hz and for trivial band diagram, the onsite frequency is the same as the 
topological band diagram with the magnitudes of κ and γ flipped. For the acoustic 

spectra, the fitted onsite energy ω = 5, 1750  Hz and the other parameters are the 
same as the ones in the band diagram.

Phase difference measurement. A set of two compact magnetic transducers 
was used to excite local pressure fields and two directional microphones 
(Model:EMM-6) were connected to an external two-port digital data acquisition 
device (AUBIO BOX USB 96), enabling excitation of the desirable phase profiles 
and measurements of the phase across the structure. For the phase differences, 
all the upper ports were open to allow the modes to propagate with vast loss, thus 
minimizing the wave reflection at the boundary. The speaker was placed at the 
site in the centre of the structure, and two microphones were placed at the two 
sites within a bulk trimer near to the speaker, as shown in Fig. 1h. The frequency 
generator was used to run a sweep of monochromatic frequencies from 4,000 Hz 
to 4,550 Hz in 25 Hz intervals, with a dwell time of 4 s (to allow for stability of 
the profile) and determine the phase differences between the two channels at 
each frequency; for example, the phase difference between site 1 and site 2 was 
measured as φ12

. One of the microphones was also switched to the third site (from 
site 2 to site 3) in the same trimer to measure the second phase difference φ13

. Since 
the detected modes near the source behave like bulk modes of the infinite structure 
because of the loss in the system and its relatively large size (when all upper and 
lower ports—the probe holes—are open and leak), it is legitimate to construct the 
normalized eigenvectors of the bulk modes by these measured phase differences as 
∕ φ φ1 3 (1, e , e )i i12 13 . Finally, with the information about the eigenvectors, the phase 

ϕC3
 is extracted, as shown by Fig. 1i.

Density of states measurement. The speaker was placed at the bottom port and 
the microphone at the top port of the same site. A tiny gap was left between the 
speaker and the port to allow for the presence of reflection channels, while the 
microphone was touched closely to the port to achieve the maximum absorption. 
The frequency generator was used to run a sweep from 3,600 Hz to 6,000 Hz in 
25 Hz intervals with a dwell time of 4 s while the FFT spectrum analyser obtained 
the amplitude responses φ ω( ) at each frequency. Field distributions φ ωi( , ) are 
obtained by repeating this process for each site i. Since it is difficult to guarantee 
the tiny gap is exactly the same for every site, and the amplitude response is highly 
sensitive to this tiny gap, we normalized the data for each site based on the total 
spectra summed over frequencies as well as on the free-space amplitude response 
between the microphone and the speaker, Φ ω φ ω φ ω φ ω= ∕ ∑ ∕ωi i i( , ) ( , ) ( , ) ( )air

.  
After that, we squared the signal Φ ωi( , )n  and averaged the power spectrum for 
an array of N resonators ω Φ ω= ∑ ∣ ∣ ∕P i N( ) ( , )a i

2  to get the normalized spectra, 
ω ω ω= ∕ ∑ωP P P( ) ( ) ( )n a a , the equivalent to the density of states of the kagome 

lattice. For the field profiles excited by a single frequency, the speaker was fixed at 
the port of the site of interest and the microphone was placed over each site of the 
lattice to measure the magnitude response at the desired frequency (for example, 
5,250 Hz for the corner state in Fig. 4).

Disorder parameter. In the first disorder configuration shown in Fig. 4a, the 
disorder parameters are generated by the random function in a MATLAB script, 
and converted to small deviations of the height H0; the ratios of the perturbed 
height over H0 were 1.00, 0.9076, 1.05, 0.9607, 0.9820, 1.0340, 0.9961, 0.9220, 
1.0182. In the second disorder configuration in Fig. 4b, the disorder parameters are 
1.00, 0.9076, 1.05; 1.00, 0.9744, 1.0273, 1.00, 0.9348, 1.043.

Data availability
Data that are not already included in the paper and/or in the Supplementary 
Information are available on request from the authors.
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