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Abstract: Collider events with multi-stage cascade decays fill out the kinematically al-

lowed region in phase space with a density that is enhanced at the boundary. The boundary

encodes all available information about the spectrum and is well populated even with mod-

erate signal statistics due to this enhancement. In previous work, the improvement in the

precision of mass measurements for cascade decays with three visible and one invisible par-

ticles was demonstrated when the full boundary information is used instead of endpoints

of one-dimensional projections. We extend these results to cascade decays with four visible

and one invisible particles. We also comment on how the topology of the cascade decay

can be determined from the differential distribution of events in these scenarios.
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1 Introduction

Naturalness of the Higgs sector as well as the weakly interacting massive particle (WIMP)

paradigm for dark matter provide strong motivations for new physics at the TeV scale.

The most commonly studied extensions of the Standard Model (SM) that attempt to solve

the hierarchy problem do so by positing the existence of partners to the SM particles that

cancel divergent contributions to the Higgs mass. Many of these scenarios also provide a

dark matter candidate since they incorporate a parity symmetry under which the partner

particles are odd, making the lightest partner particle stable. Arguably the best known

example for such scenarios is the minimal supersymmetric extension of the SM, the MSSM.

The collider phenomenology of these scenarios has been studied extensively in the lit-

erature. The most promising discovery channels include production of colored partners,

which then decay, often in multiple stages, until the lightest partner is reached. Since

the lightest partner is assumed to constitute dark matter, it leaves the detector without

interacting. Thus no resonances can be constructed from the visible decay products and

discovery as well as mass measurement prospects often rely on endpoints of one-dimensional

distributions of Lorentz invariant (e.g. edges, endpoints) [1–12] (for a comprehensive re-

view, see [13]) or boost invariant (e.g. mT , mT2) variables [10, 14–38].

The Large Hadron Collider (LHC) has completed its 7 and 8 TeV runs and is currently

running with a center of mass energy of 13 TeV. The LHC experiments currently do not

have significant indications of physics beyond the SM. Considering that the center of mass

energy is already near the design value, one needs to take seriously the possibility that if

new physics is discovered by the LHC experiments, the signal statistics will remain low, or

moderate at best. Therefore, it will be of paramount importance to optimize the methods

by which the signal will be studied for low statistics.

Let us consider mass measurement techniques in particular. For cascade decay chains

with sufficiently many intermediate on-shell stages, polynomial methods [39–59] can be

applied to algebraically solve for all unknown masses based on a small number of events.

However, there exist decay chains which do not have sufficiently many on-shell stages for

these methods to be applicable. For such decay chains, the one-dimensional variables men-

tioned above are commonly accepted as the tool to be used for mass measurements. It was

argued in ref. [60] however that when there are more than two visible particles in the final

state, the kinematically accessible region in phase space is multidimensional and the com-

monly used one-dimensional variables are inefficient at low statistics. It was demonstrated

specifically for final states with three visible particles and one invisible particle that the

density of events near the boundary of the kinematically accessible phase space is enhanced,

and that a determination of this boundary in the multidimensional phase space could yield

significantly higher precision and accuracy for mass measurements at low statistics.

In this paper we will extend the conclusions of ref. [60] to the remaining cascade decay

topologies where polynomial methods are not applicable. If all on-shell decay stages are

2 or 3-body decays with one invisible particle emitted from the last stage of the cascade,

then it is straightforward to show that any cascade decay with more than five final state

particles can be analyzed using polynomial methods, therefore we will restrict ourselves to
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final states with at most five final state particles. We will show that the enhancement in the

density of events near the boundary is in fact even stronger for five-body decays compared

to four-body decays, and in a number of representative cases for decay topologies we will

demonstrate the improvement for mass measurements compared to the more traditional

methods based on kinematic edges or endpoints.

Various techniques involving kinematic variables have also been proposed for the pur-

pose of determining decay topologies [61–67]. We will provide a preliminary assessment of

the sensitivity of the full phase space boundary method to the topology, and suggest an

algorithm by which the topology underlying a signal sample should be determined.

Our goal will be to provide a proof of principle that these improvements can be ob-

tained, and therefore as in ref. [60] we will compare our methods to those based on kine-

matic endpoints under ideal circumstances, without SM or combinatorial backgrounds, spin

correlations or realistic detector effects. While these certainly pose additional challenges

in the construction of a fully realistic analysis, they will deteriorate the results of both our

methods and any method based on kinematic endpoints, with no obvious reason why one

should be more negatively affected than the other. Also, as in [60] we will restrict our study

to “one-sided” events, where the cascade decay takes place on one side of the event, and the

other side is assumed to include only the lightest partner. This corresponds to scenarios

such as gluino-LSP associated production in the MSSM. The reason for this choice is that

our methods use only Lorentz-invariant observables and are therefore used on one decay

chain at a time, with no obvious way to combine the two sides of the event using the missing

transverse energy (MET) for example. Therefore, for reasons of simplicity, we demonstrate

the applicability of our methods in the simplest possible case of one-sided events. The

same methods can of course simply be used twice in a symmetric event, but that comes at

the cost of combinatoric issues such as identifying which side of the event any final state

particle belongs to. We will leave a more realistic study including all these complications

to future work. In fact, in parallel to this work, methods are already being developed to

address some of these complications, and for one decay topology featured in ref. [60] it has

already been demonstrated [68–70] that the improvement for mass measurements based

on the determination of the full phase space boundary over one-dimensional variables can

be maintained in the presence of SM and combinatorial backgrounds, by using Voronoi

tessellations.

The layout of the paper is as follows. In section 2 we review the mathematical descrip-

tion of many-body phase space and we quantify the enhancement near the boundary for

five-body final states. In section 3 we focus on mass measurements and we set up an anal-

ysis to compare the results of mass measurement based on our methods to those obtained

from kinematic endpoints. In section 4 we comment on the potential use of our methods

for determining the underlying decay topology. We conclude in section 5. Certain details

of our methods are more fully described in appendices A through C.
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2 Mathematical Description of Many-Body Phase Space

The standard form of the phase space volume element of n final state particles with 4-

momenta pµi and total 4-momentum Pµ

dPSn =

(
n∏
i=1

d4pi
(2π)3

δ(p2i −m2
i )

)
(2π)4δ4

(
n∑
i=1

pµi − P
µ

)

=

(
n∏
i=1

d3pi
(2π)32Ei

)
(2π)4δ4

(
n∑
i=1

pµi − P
µ

)
(2.1)

is expressed as a function of individual components of 4-momenta which are not manifestly

Lorentz invariant. There also exists a less well-known formulation which is expressed purely

in terms of Lorentz scalars [71, 72]. As argued in [60] this form contains important clues

to optimizing the sensitivity of mass measurements, therefore we will review it below.

We start by defining Mn as the n × n matrix with elements pi · pj , and define ∆i as

the coefficients of the characteristic polynomial of Mn as follows:

Det [λ1n×n −Mn] ≡ λn −

(
n∑
i=1

∆iλ
n−i

)
. (2.2)

The kinematically accessible region of phase space corresponds to ∆1,2,3 > 0, ∆4 ≥ 0 and

∆5,...,n = 0, with ∆4 = 0 defining the boundary of this region [72]. For the specific case of

n = 4, the volume element is given by

dPS4 = (const.)×M−2
X

∏
i<j

dm2
ij

∆
−1/2
4 Θ(∆4)δ

∑
i<j

m2
ij − const.

 , (2.3)

where M2
X = PµP

µ and where the δ-function at the end enforces energy conservation. Note

that the volume element scales as ∆
−1/2
4 , diverging near the boundary in an integrable

way. This can be understood as follows: ∆4, which for n = 4 is equal to (−detM4) can be

rewritten as −det(V T gV ) = det2 V , where V is the 4 × 4 matrix whose columns are the

pµi and g = diag(1,−1,−1,−1) is the metric. This makes it clear that the boundary of the

kinematically accessible region corresponds to the final state momenta becoming linearly

dependent. When this happens, the coordinate change from Cartesian coordinates to the

Lorentz-invariant coordinates m2
ij becomes singular and the Jacobian diverges. Note also

that the presence of intermediate on-shell particles in the cascade does not change this

conclusion, since in the narrow width approximation, these contribute δ-functions to the

amplitude squared |M|2, the arguments of which are linear in the m2
ij . Therefore, using

these δ-functions to eliminate some of the integrals over m2
ij never produces nontrivial

Jacobian factors.

Going beyond n = 4, the phase space volume element has the form [72]

dPSn = (const.)×M−2
X

∏
i<j

dm2
ij

∆
(n−5)/2
4 Θ(∆4)δ(∆5) · · · δ(∆n)δ

∑
i<j

m2
ij − const.

 .

(2.4)
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Figure 1. The density of Monte Carlo events arising from a 5-body decay along a direction

perpendicular to the boundary of the kinematically accessible region. The red line visually illustrates

a scaling law of ∆−1
4 .

Naively, this expression seems to imply that the enhancement in the volume element near

the boundary is absent for n > 4. However, a more careful examination reveals that the

arguments of the δ(∆n) factors are non-linear in the m2
ij , and therefore nontrivial Jacobians

arise as those δ-functions are integrated over.

In order to isolate the scaling of the volume element near the boundary, an alternative

expression can be used [72], which locally takes the form:

dPSn = (const.)×M−2
X

∏
i<j

dm2
ij

∆
−(n−3)/2
4

∏
α≤β

δ(eαβ)

 δ

∑
i<j

m2
ij − const.

 .

(2.5)

Here the eαβ, where 1 ≤ α ≤ β ≤ n − 4, are a set of (n − 4)(n − 3)/2 constraints that

are linear in all m2
ij to first order. The form of the eαβ are complicated, which makes

this expression less useful for practical purposes. However since no nontrivial Jacobians

arise, the correct scaling ∆
−(n−3)/2
4 is revealed, which results in a stronger and stronger

enhancement near the boundary with increasing n. In particular, for n = 5 the volume

element scales as ∆−1
4 . This can be understood in a similar way to our argument above for

n = 4: as we approach the three dimensional boundary of phase space, a larger number

of 4-vectors must become linearly dependent, and the coordinate change from Cartesian

coordinates to the m2
ij becomes more singular.

We have also verified the scaling for n = 5 numerically by generating Monte Carlo

data for 5-body decays. Specifically, after restricting ourselves to the physical hypersurface

specified by the ∆5 = 0 constraint, we have sampled the density of Monte Carlo events in a

narrow tube perpendicular to the boundary near randomly chosen points on the boundary.

Our results are shown in figure 1 and they confirm the ∆−1
4 scaling, demonstrated visually

by the red line.
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3 Mass Determination

In this section we will compare the results of mass measurements obtained by using the

multi-dimensional nature of the kinematically accessible region in phase space to those

obtained from the traditional kinematic edges and endpoints. In order to perform this

comparison, we introduce quality-of-fit functions, to be described below, for the two meth-

ods, and we search for the spectrum that results in the best fit, using Monte Carlo samples

of 100 events each for several decay topologies. By finding the best fit spectrum over many

samples, and studying the distribution of the best fit masses, we can evaluate the precision

and accuracy of the two techniques. We do this by studying representative benchmark

spectra in the decay topologies of interest. Our setup is similar to the analysis performed

in ref. [60], where final states with three visible particles and one invisible particle were

considered. In this paper we extend this to final states with four visible particles and one

invisible particle. We use a shorthand notation to classify the topologies of interest by

using the multiplicity of final states in each stage of the cascade: for instance “2+2+3” de-

notes a decay topology where the initial state decays through a 2-body decay, the resulting

intermediate particle decays through another 2-body decay, and the intermediate particle

resulting from the second stage decays through a 3-body decay, where the final state of the

last decay stage includes the lightest partner particle.

We do not consider the 2+2+2+2 topology since it has sufficiently many on-shell

intermediate particles to be analyzed by polynomial methods. The four on-shell constraints

for the intermediate particles together with the 5-body constraint ∆5 = 0 are sufficient to

restrict the likelihood function to have support on a set of measure zero in the space of

mass spectra. Therefore, the true spectrum can be determined with a finite number of

events. The 2+2+3, 2+3+2 and 3+2+2 topologies are very similar, and therefore we

will study the 2+2+3 topology as a representative case. We also study the 3+3 topology

which is inequivalent to those. We do not consider decay topologies involving a direct

4-body decay. The endpoint formulas in certain topologies have different analytical forms

in different regions of the space of spectra (see appendix A). Some forms are functions

of mass differences only and cannot contribute to a determination of the overall mass

scale, while others do contain some absolute scale dependence. In order to gauge the

performance of the endpoint method in a more representative way, we pick two benchmark

mass spectra for the 2+2+3 topology. The benchmark mass spectra are listed in table 1.

In particular, benchmark spectrum 2 is expected to be less sensitive to the overall mass

scale, as both the m2
1234 and m2

234 endpoints depend only on mass differences (see the last

lines of equations A.5 and A.6), while the endpoint formulas for benchmark spectrum 1 do

have some dependence on the overall mass scale (line 2 of equations A.5 and the first line

of equation A.6).

The Monte Carlo events are generated using the phase space routines in ROOT [73].

We also use the optimization routines in ROOT to find the best fit spectrum. We assume

that the underlying decay topology is known; we will comment on the question of deter-

mining the decay topology in the next section. We start the optimization procedure within

a rectangular box in the space of spectra where each mass is varied by ±25% of its correct
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Decay mX (GeV) mY (GeV) mZ (GeV) m5 (GeV) m1,2,3,4 (GeV)

2+2+3 (1) 500 400 150 100 5

2+2+3 (2) 400 350 300 100 5

3+3 (3) 500 300 – 100 5

Table 1. Benchmark mass spectra used in our analysis. For the labeling of the masses in the

spectra, see figures 7 and 8 in appendix A.

value (for the multidimensional phase space method) or up to several TeV (for the endpoint

method). We perform a random scan inside this box to find the best fit spectrum. We

then refine the best fit spectrum using the simulated annealing algorithm.

As mentioned in the introduction, an important caveat in our methods is that all spin

correlations are ignored, in other words we use isotropic decays in our Monte Carlo events,

and in the quality-of-fit variables described below. Therefore, in the presence of spin corre-

lations, the specific quality-of-fit variable described below for the multidimensional phase

space method may develop biases. However, we reiterate that the main purpose of our

study in this paper is to provide a proof of principle that multidimensional phase space

methods can provide an improvement over kinematic endpoints for mass measurements.

Fundamentally, all the information about the spectrum is encoded in the shape of the

boundary of the kinematically accessible region in phase space, not in the distribution of

events, which will have additional dependence on the matrix element. The ideal mass mea-

surement analysis would therefore be based on finding the boundary alone, for example

by using our methods combined with Voronoi tessellations as has already been done in

refs. [68–70]. Once the masses have been measured by using the boundary, more sophisti-

cated methods such as matrix element matching can then be utilized for determining the

spins of the particles in the decay chain. We proceed with the quality-of-fit variables below

mainly to keep the comparison between the two methods as simple as possible for this

initial study of the five-body decay chains. We leave a more realistic work incorporating

tools such as Voronoi tessellations to future work.

3.1 Quality-of-fit variable for the kinematic endpoint method

We define the measured position of a kinematic endpoint as the highest value obtained for

the observable in question within the data sample. We construct the quality-of-fit function

to quantify the agreement between the measured endpoints and those predicted by the

spectrum hypothesis:

Q = Ξ
∑

i=endpoints

(
Opredicted
i −Omeasured

i

Omeasured
i

)2

(3.1)

where Ξ = 1 if all measured endpoints occur at smaller (or equal) values than the predicted

ones. If any one of the measured endpoints exceeds the predicted value, the mass hypothesis

is rejected (Ξ is taken to be∞). We consider all possible Lorentz-invariant endpoints, with

pairs, triplets, etc. of visible final state particles. All endpoints used in our analysis and
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their predicted values are listed in appendix A. The best fit mass hypothesis is the one

that minimizes Q.

3.2 Quality-of-fit variable for the multidimensional phase space method

To quantify the quality-of-fit using the multidimensional phase space method, we introduce

a likelihood function. In particular, let L({Mi}|data) denote the likelihood for a hypothesis

spectrum {Mi} given the data. By Bayes’ theorem, using a flat prior over spectra, this is

proportional to L(data|{Mi}), the probability of obtaining the data from the underlying

spectrum {Mi}. This probability can be factored over the events in the data sample as

L(data|{Mi}) =
∏

events

Levent({m2
ij}|{Mi}), (3.2)

where {m2
ij} denote all Lorentz-invariant observables in the event. The form of the Levent

factors and the details of their calculation are described in appendix B. Ultimately, we

bring the likelihood functions for each topology into a standard form

Levent = Θ[D1] · · ·Θ[Dm]×N ×F (3.3)

where for any given decay topology, the Θ[D] factors encode the kinematically accessible

region in phase space, F contains all dependence on the hypothesis spectrum {Mi}, and

N includes all remaining dependence on the observables in the events. Note that as in

the setup for the kinematic endpoint method, spectra for which there exist events that fall

outside the (hypothetical) kinematically accessible region are considered excluded. Since

the phase space density becomes large near the boundary of the kinematically accessible

region, the likelihood function favors spectra where as many events as possible lie near the

boundary, with no events lying outside the boundary. The best fit mass hypothesis is the

one that maximizes L (to be more precise, we use the logarithm of L).

3.3 Analysis and Results

As mentioned above, kinematic endpoint methods are generically much more sensitive to

mass differences in the spectrum than to the overall mass scale, parameterized e.g. by the

mass of the lightest partner. Therefore, when the statistical distribution of best fit values

for the mass of any particle in the spectrum is considered, the spread in the distribution

is dominated by the uncertainty in the overall scale. In order to better compare the

performance of the two methods to the overall mass scale and to the mass gaps in the

spectrum separately, it is preferable to find an alternative parametrization for spectra

rather than using the masses of the individual particles. In particular, we parameterize

the spectrum in terms of one parameter that sets the overall mass scale, and three other

parameters that only depend on mass gaps.

For the 2+2+3 topology, we define the dimensionless parameters {α, β, γ, δ} as

Mi = M true
i + (αVα + β Vβ + γ Vγ + δ Vδ)i × (100 GeV), (3.4)

where M1 parameterizes the (hypothetical) mass of the initial decaying particle, M4 pa-

rameterizes the (hypothetical) mass of the lightest partner, M true
i denote the benchmark
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Figure 2. Distribution of the best fit values of α, β, γ and δ (defined in equation 3.4) for the

kinematic endpoint method (blue) and the multidimensional phase space method (yellow), using

the first benchmark spectrum for the 2+2+3 topology and data samples of 100 events. The true

masses correspond to α, β, γ and δ all being zero.

mass values that were used to generate the Monte Carlo events, and the vectors V are

defined as

Vα = {1, 1, 1, 1}, (3.5)

Vβ = {1,−1, 0, 0}, (3.6)

Vγ = {1, 1,−1,−1}, (3.7)

Vδ = {0, 0, 1,−1}. (3.8)

Thus the coordinate α parametrizes the overall mass scale. The allowed range of α, β,

γ and δ are chosen such that the hierarchy of masses is preserved, and all masses remain

positive.

Similarly, for the 3+3 topology we define {α, β, γ} as

Mi = M true
i + (αVα + β Vβ + γ Vγ)i × (100 GeV), (3.9)

where

Vα = {1, 1, 1} (3.10)

Vβ = {0, 1,−1} (3.11)

Vγ = {2,−1,−1}. (3.12)
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Figure 3. Distribution of the best fit values of α, β, γ and δ (defined in equation 3.4) for the

kinematic endpoint method (blue) and the multidimensional phase space method (yellow), using

the second benchmark spectrum for the 2+2+3 topology and data samples of 100 events. The true

masses correspond to α, β, γ and δ all being zero.

Again, α parameterizes the overall mass scale, and similar consideration as above apply in

choosing the allowed range for these parameters.

Our results for the 2+2+3 topology are shown in figure 2 for benchmark spectrum

1, in figure 3 for benchmark spectrum 2. The results for the 3+3 topology is shown in

figure 4. The mean value and standard deviation of the distributions for α, β, γ and δ are

listed in table 2. It is easy to see that the conclusions obtained for the four-body decay

topologies [60] continue to hold, namely that the multidimensional phase space method

yields both more precise and more accurate results for the overall mass scale as well as

for the mass gaps. The reasons for the mean values of the distributions obtained by the

kinematic endpoint method to be biased away from the correct masses is similar to those

discussed in appendix C of ref. [60] for the four-body final states. Note also that for

the 2+2+3 topology, although the α distribution for the kinematic endpoint method of

benchmark spectrum 1, which was chosen to have lesser sensitivity on the overall scale,

seems to be broader compared to benchmark spectrum 2, this is somewhat misleading.

The lower end of the α distribution for benchmark spectrum 2 is cut off by the constraint

that all masses in the spectrum be positive numbers, which obscures the true spread in the

distribution.
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Figure 4. Distribution of the best fit values of α, β and γ (defined in equation 3.9) for the

kinematic endpoint method (blue) and the multidimensional phase space method (yellow), using

the benchmark spectrum for the 3+3 topology and data samples of 100 events. The true masses

correspond to α, β and γ all being zero.

4 Topology Determination

In this section we will consider how different event topologies may be distinguished from one

another by using the distribution of events in phase space. We will consider both 4-body and

5-body final states, since ref. [60] did not consider the question of topology determination.

In particular, let {Ti} be the set of event topologies that are compatible with the number

of observed particles, with one invisible particle assumed to be produced in the last stage

of the cascade. We will now write the likelihood function as L(Ti, {Mi}|data), making

the dependence on the topology explicit. As before, with a flat prior over topologies and

spectra, the likelihood can be related to the probability of obtaining a given distribution

of events from an underlying topology

L(Ti, {Mi}|data) ∝ L(data|Ti, {Mi}). (4.1)

We can now use the likelihood functions listed in appendix B, in the standard form

L(data|Ti, {Mi}) =
∏

events

Θ[D1] · · ·Θ[Dm]×N ({m2
ij})×F({m2

ij}, {Mi}). (4.2)

As for the analysis for mass measurements, we adopt logL as the quality of fit variable.

Maximizing over spectra as before, statistical statements (such as exclusion with a given
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Multidimensional Phase Space Kinematic Endpoints

2+2+3 Topology Benchmark Spectrum 1

mX (GeV) 500± 1 543± 24

mY (GeV) 400± 1 447± 26

mZ (GeV) 150± 1 193± 22

m5 (GeV) 100± 1 143± 22

α (0.2± 0.8)× 10−2 0.4± 0.2

β (0.04± 0.3)× 10−3 (−2± 1)× 10−2

γ (0.007± 1.7)× 10−3 (1± 2)× 10−2

δ (0.1± 0.8)× 10−3 (−0.3± 0.4)× 10−2

2+2+3 Topology Benchmark Spectrum 2

mX (GeV) 400± 4 317± 15

mY (GeV) 350± 4 270± 14

mZ (GeV) 300± 4 216± 15

m5 (GeV) 100± 5 20± 16

α (0.3± 4)× 10−2 −0.8± 0.2

β (−0.004± 0.5)× 10−3 (−1± 0.8)× 10−2

γ (0.8± 4)× 10−3 (0.4± 0.9)× 10−2

δ (2± 7)× 10−3 (−2± 1)× 10−2

3+3 Topology

mX (GeV) 496± 13 413± 16

mY (GeV) 296± 14 215± 17

m5 (GeV) 98± 15 16± 17

α −0.04± 0.1 −0.9± 0.2

β (−0.8± 1)× 10−2 (−0.5± 1.4)× 10−2

γ (−2± 4)× 10−3 (−1± 0.6)× 10−2

Table 2. The mean value and standard deviation of the distributions masses in the spectrum as

well as of the parameters α, β etc. for the two benchmark spectra of the 2+2+3 topology, and for

the benchmark spectrum of the 3+3 topology, for data samples of 100 events.

confidence level) can then be made about a number of possible topology hypotheses based

on the data. We will not attempt to perform a detailed analysis of this type in this work,

since the idealizations we work with, such as perfect energy resolution and the absence of

backgrounds and combinatoric effects, would render the conclusions unreliable.

Nevertheless, one general conclusion can be drawn immediately: When a topology

hypothesis T̃ contains more on-shell particles than the “true” topology T , it can be ruled

out (for any spectrum) with a very small number of events. Indeed, for the hypothesis

T̃ , the optimization over mass spectra will be trying to enforce an on-shell constraint

among the visible particles where no such constraint is actually obeyed by the data. In

general, there is no reason for a constraint that appears to be satisfied by one event to also

be satisfied by any other. Conversely, a choice for T̃ that contains fewer on-shell particles

than T , while it cannot be ruled out completely, will generally result in a significantly lower
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Figure 5. For data samples of 100 events each generated with the spectrum

(500, 350, 200, 100) GeV, the distribution of log-likelihood values for the 2 + 2 + 2, 2 + 3 and

3 + 2 topology hypotheses where the likelihood is maximized over spectra for each sample and

each topology hypothesis.

likelihood than when the correct topology hypothesis is used, since T̃ will not provide a

very good fit to the distribution of events in the data.

Let us demonstrate this on a specific example. The 2 + 2 + 2 topology with the

spectrum (500, 350, 200, 100) GeV was used to generate Monte Carlo samples of 100 events

each, and for the topology hypotheses 2 + 2 + 2, 2 + 3, 3 + 2 and 4, all possible spectra

were scanned until the spectrum with the highest likelihood was found for each sample.

Note that unlike in the analysis in section 3, for an incorrect topology hypothesis there is

no “correct” mass point to center the scan region on, therefore we scan the spectra over a

larger region where each mass is varied between zero and several TeV. The distribution of

the best-fit log-likelihood over samples for each topology hypothesis is shown in figure 5.

In accordance with our expectations, the 2 + 3 and 3 + 2 topologies with fewer on-shell

particles result in a poor fit, and the correct topology results in the highest likelihoods.

It should be noted that for certain incorrect hypotheses, there exists a runaway direc-

tion in the space of spectra {Mi}, namely the likelihood increases as all masses go to infinity

with fixed mass gaps. This happens for instance when a direct 4-body decay topology hy-

pothesis is used in the example above. In addition to being completely unphysical (which

is why they are not plotted in figure 5), the likelihood values for this topology hypothesis

in any case turn out to be smaller than for the other topology hypotheses. Runaway di-

rections do not exist for the correct topology hypothesis, and therefore the presence of a

runaway direction can be used to rule out a topology hypothesis.

Based on the above considerations, a rather general conclusion can be reached that

when analyzing a given data sample, the correct topology is among those hypotheses that

have the highest number of on-shell particles and that are not immediately ruled out. If

there is only one such hypothesis (2 + 2 + 2 in the above example), then it must be the

correct one. Things are more interesting when there are competing hypotheses with the

same number of on-shell particles.

For the final states with three visible particles and one invisible particle, the following

– 13 –
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Figure 6. For data samples of 100 events each generated with the spectrum (500, 350, 100) GeV

and the 2 + 3 hypothesis, the distribution of log-likelihood values for the 2 + 3 and 3 + 2 topology

hypotheses where the likelihood is maximized over spectra for each sample and each topology

hypothesis.

outcomes are therefore possible:

• The data does not rule out the 2+2+2 topology hypothesis, which is then established

as the correct one.

• The data is not compatible with the 2+2+2 topology hypothesis but it is compatible

with the 2 + 3 and 3 + 2 topology hypotheses. This is the only nontrivial case that

can arise with this number of final state particles, and a statistical analysis would be

needed to find the best fit topology hypothesis. An example of this is demonstrated

in figure 6, where the log-likelihood distributions are plotted for the two competing

hypotheses for data samples of 100 events each, generated with the 2 + 3 topology

and the spectrum (500, 350, 100) GeV. The log-likelihood distribution clearly favors

the correct topology.

• The data is only compatible with a direct 4-body decay hypothesis, which is then

established as the correct topology.

Similarly, for the final states with four visible particles and one invisible particle, the

possible outcomes are:

• The data is compatible with the 2+2+2+2 topology hypothesis, which consequently

must be the correct one.

• The data rules out the 2 + 2 + 2 + 2 topology hypothesis but it is compatible with

the 2 + 2 + 3, 2 + 3 + 2 and 3 + 2 + 2 topology hypotheses. Since these have the

same number of on-shell particles, a statistical analysis would need to be performed

to determine the correct topology hypothesis. We have performed a numerical study

of this scenario with samples of 100 events each, generated with the 2+2+3 topology

and the spectrum (500, 350, 200, 100) GeV. The log-likelihood distribution not only

favors the correct topology but in fact the incorrect topology hypotheses are ruled

out completely since no spectrum can be found that is consistent with the data.
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• If the data is not compatible with any of the above, then the 3+3 topology hypothesis

is the most likely fit, though technically 4 + 2 or 2 + 4 are also potential topology

hypotheses since they have the same number of on-shell intermediate particles. It is

rare for particles in beyond the SM scenarios to not have any 2-body or 3-body decay

channels such that the dominant decay mode is a direct 4-body decay, but from a

purely model-independent point of view this should not be discarded off-hand and a

likelihood analysis should be performed as in the above examples.

• While extremely unlikely from a theoretical point of view, there is also a possibility

that none of the above topology hypotheses provide a good fit such that a direct

5-body decay topology hypothesis may need to be considered.

5 Conclusions

With the LHC already operating close to its design energy, it is not unreasonable to expect

that even if new physics is discovered, the signal will not have high statistics. Earlier

work [60] demonstrated that for limited signal statistics, kinematic endpoints are inefficient

for mass measurements in cascade decays with three visible particles and one invisible

particle, and that a determination of the phase space boundary in its full dimensionality can

lead to significant improvement. This conclusion was borne out further with a subsequent

study with a more realistic analysis [70], using the method of Voronoi tessellations [68, 69]

to find the boundary of the signal region in the presence of background. In this paper we

explored additional decay topologies, including those with four visible particles and one

invisible particle, and we have shown that the enhancement in the density of events near

the boundary of the kinematically allowed region not only persists, but is even stronger.

We have also demonstrated the improvement in mass measurements that can be obtained

with these methods on several benchmark decay topologies, for which polynomial methods

are not applicable. We have performed this comparison in a very idealized setup, mainly

as a proof of principle; however there is no reason to expect that in a more realistic

analysis the results obtained by the methods presented in this paper should degrade more

than traditional methods based on kinematic endpoints. As has already been done in the

case of 4-body final states [70], it should be possible to verify whether our conclusions

continue to hold using a more realistic analysis. Finally, we have explored the possibility of

determining the underlying decay topology using our methods, and we concluded that at

least in principle topology determination is achievable. The construction of a more realistic

analysis both for mass measurements and for topology determination will be performed in

future work.
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Figure 7. The labeling of final state particles for the 2+2+3 decay topology.

A Endpoint formulas

In this appendix, we list the formulae for the endpoints used in the analysis of section 3.

Additional details and derivations can be found in [12]. We work in the limit of massless

visible final state particles (except for the lightest partner) for which simple expressions

for the endpoints are available. Numerical verification shows that including small masses

has a negligible effect on the endpoint positions.

A.1 2+2+3

The labeling of the particles is illustrated in figure 7. There are eight endpoints for this

topology. The positions of the following four endpoints are spectrum independent:

max(m2
23) = max(m2

24) =
(m2

Y −m2
Z)(m2

Z −m2
5)

m2
Z

, (A.1)

max(m2
13) = max(m2

14) =
(m2

X −m2
Y )(m2

Z −m2
5)

m2
Z

, (A.2)

max(m2
12) =

(m2
X −m2

Y )(m2
Y −m2

Z)

m2
Y

, (A.3)

max(m2
34) = (mZ −m5)

2. (A.4)

The positions of the remaining four endpoints are given by expressions that depend

on the spectrum:

max(m2
1234) =


(m2

X−m2
Y )(m2

Y −m2
5)

m2
Y

if mY
m5

< mX
mY

(m2
Y −m2

Z)(m2
Xm

2
Z−m2

Ym
2
5)

m2
Ym

2
Z

if mY
mZ

> mX
mY

mZ
m5

(mX −m5)
2 otherwise,

(A.5)

max(m2
234) =

{
(m2

Y −m2
Z)(m2

Z−m2
5)

m2
Z

if mZ
m5

< mY
mZ

(mY −m5)
2 otherwise,

(A.6)

max(m2
134) =


(m2

X−m2
Y )(m2

Z−m2
5)

m2
Z

if mZ
m5

<

√
m2

Z+m2
X−m2

Y
mZ

(
√
m2
Z +m2

X −m2
Y −m5)

2 otherwise,
(A.7)
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Figure 8. The labeling of final state particles for the 3+3 decay topology.

max(m2
123) = max(m2

124) =



(m2
X−m2

Z)(m2
Z−m2

5)

m2
Z

if mZ
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> mX
mZ

(m2
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Y )(m2
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m2
Y
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< mX
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(m2
Y −m2

Z)(m2
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2
Z−m2

Ym
2
5)

m2
Ym

2
Z

if mY
mZ

> mX
mY

mZ
m5

(mX −m5)
2 otherwise.

(A.8)

A.2 3+3

The labeling of the particles is illustrated in figure 8. There are six endpoints for this

topology. The positions of the following four of the endpoints are spectrum independent:

max(m2
12) = (mX −mY )2, (A.9)

max(m2
34) = (mY −m5)

2, (A.10)

max(m2
13) = max(m2

23) = max(m2
14) = max(m2

24) = (m2
X −m2

Y )(m2
Y −m2

5)/m
2
Y , (A.11)

max(m2
1234) = (mX −m5)

2. (A.12)

The positions of the remaining two endpoints are given by expressions that depend on

the spectrum:

max(m2
123) = max(m2

124) =

{
(mX −m5)

2 if mX
mY

> mY
m5

(m2
X−m2

Y )(m2
Y −m2

5)

m2
Y

otherwise,
(A.13)

max(m2
134) = max(m2

234) =

{
(mX −m5)

2 if mX
mY

< mY
m5

(m2
X −m2

Y )(m2
Y −m2

5)/m
2
Y otherwise.

(A.14)

B Likelihood functions

In this appendix, we will derive analytical expressions for the likelihood functions that

we use in our analysis. We treat all particles as spin-0 and we work in the narrow width

approximation for any on-shell intermediate states. For a given data sample, we define

the likelihood function as the probability that these events were produced from a certain

underlying event topology with a spectrum {Mi} of intermediate on-shell states. Using

Bayes’ theorem with a flat prior over spectra, one can relate this to the probability of

obtaining a given distribution of events from a given spectrum

L({Mi}|data) ∝ L(data|{Mi}) =
∏

events

Levent({m2
ij}|{Mi}). (B.1)
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To capture the multidimensionality of the phase space, we choose Levent factors to be

normalized fully differential decay widths,

Levent({m2
ij}vis.|{Mi}) =

1

ΓX

∫
dΓX (B.2)

integrated over all unobservable m2
ij involving the lightest partner1. The differential decay

width is simply the product of the squared matrix element and the phase space volume

element (see equation 2.4):

dΓX =
|M|2

2MX
dPSn . (B.3)

Since we treat all particles as spin-0, the matrix element squared only contains factors

of effective couplings for each decay stage and propagators that are simplified using the

narrow width approximation. Therefore, Levent breaks up into factors for each on-shell

stage of the cascade decay. Note that each decay stage involves one heavy particle of mass

Mi that decays to another heavy particle Mi+1 and a number of light particles, assumed

massless. The energy-momentum conserving δ-functions and factors of 1/Γ arising from

the narrow width approximation for each intermediate on-shell state are also combined

with the vertices that they are attached to. See ref. [60] for additional calculational details.

For 2- and 3-body decay stages, the width of the decaying particle is given by

Γ2 =
µ2

16πMi

[
1− r2

]
(B.4)

Γ3 =
λ2Mi

512π3
[
1− r4 + 4r2 log(r)

]
, (B.5)

where µ and λ are the effective couplings of the 2- and 3-body decay vertices (of mass

dimension 1 and 0, respectively), and r is the ratio of the heavy daughter mass to the mass

of the decaying particle in that decay stage.

With the correct normalization, the phase space factors for the 4- or 5-body final state

in terms of Lorentz invariants are given by

dPSn = M−2
X

{
28π6∆

−1/2
4 n = 4

211π9δ(∆5) n = 5

}
δ(Q2)

∏
i<j

d(pi · pj) , (B.6)

where

Q2 ≡

∑
i<j

pi · pj

− M2
X − (m2

1 + · · ·+m2
n−1 +m2

LP)

2
= 0 (B.7)

encodes overall energy conservation. Here MX is the mass of the decaying particle, mLP is

the mass of the lightest partner particle at the end of the decay chain, and the remaining mi

are the masses of the light particles in the final state, which we set to zero in our analysis.

Performing the integration over the unobservable m2
ij , we bring the likelihood functions

into a standard form

L = Θ[D1] · · ·Θ[Dm]×N ×F (B.8)

1Note that the visible m2
ij are fixed on both sides of equation B.2
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where for any given decay topology, the Θ[D] factors encode the kinematically accessible

region, F contains all dependence on the spectrum {Mi}, and N includes all remaining

dependence on the observed Lorentz invariants m2
ij as well as on numerical factors.

In tables 3 and 4 we present the likelihood functions for all 4- and 5-body decays

consisting of 2- and 3-body decay stages. We express the results in terms of the kinematic

functions λn with n(n+ 1)/2 arguments, defined as the determinant of a (n+ 2)× (n+ 2)

symmetric matrix [71] given by

λn(x1, . . . , xn(n+1)/2) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 x1 x2 · · · xn 1

x1 0 xn+1 xn+2 · · · 1

x2 xn+1 0 x2n · · · 1

... xn+2 x2n 0
... 1

xn(n+1)/2 1

xn xn(n+1)/2 0 1

1 1 1 · · · 1 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

. (B.9)

Note that λ2 is the triangle function that appears in 2-body decays, and λn is proportional

to ∆n in an n-body decay. The likelihood functions can be expressed in terms of ∆i’s by

using the invariant masses m2
ij of pairs of particles, or in terms of λn’s by using the invariant

masses of larger collections of particles as shown in tables 3 and 4. For this reason, the

usage of the λn is superior at making the dependence on the masses of on-shell mediators

higher up in the decay chain more explicit, and we adopt this notation in reporting our

results.

The structure of the D factors has interesting properties as well, which we describe in

more detail in appendix C.

C Factorization of the domain function

In this appendix, we will further study the structure of the factors in the likelihood function

encoding the kinematically accessible region of phase space. Any cascade decay can be

broken down into a number ns of stages, each stage corresponding to the presence of an on-

shell intermediate particle. Let us explore how this structure is related to the factorization

of the domain function. In particular, consider the i-th stage as a heavy particle Xi

decaying to another heavy particle Xi+1 and a number ni of SM particles. The domain

function cannot depend on whether the ni particles are emitted promptly from the decay

vertex, or whether the decay proceeds as Xi → Xi+1Σi, with Σi being a metastable particle

that much later decays into the ni SM particles2. In the likelihood function, an essential

property of the domain function is to ensure that the full cascade X1 → Σ1 . . .ΣnsXns+1

can proceed, where Xns+1 is assumed to be the lightest partner particle which is stable.

2The mass of the fictitious Σi particle will of course depend on the kinematics of the ni particles in each

event.
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Table 3. Likelihood functions for 4-body decays. f2(r) is defined as (1− r2)−1 and f3(r) is defined

as (1− r4 + 4r2 log(r))−1. The λn functions are defined in equation B.9.

1 2 3

X Y 4

Figure 9. The labeling of final state particles for the 2+3 decay topology.

This consideration gives the key to the factorization of the domain function. There

is always a “skeleton factor” corresponding to ns consecutive 2-body decays, with the Σi

and the lightest partner as final state particles. The skeleton factor cannot be factorized

further, and it depends on the spectrum of the Xi. In addition there are a number of other

factors that have to do with the decays of the Σi and these factors depend only on the

m2
ij of the final state SM particles, but not on the spectrum of the Xi. Since the m2

ij are

actually observed in the data, they correspond to a physical configuration of particles and

therefore these factors in the domain function can never become negative. In other words,

for computing the domain function in the likelihood, only the skeleton factor is nontrivial.

The exact form of the remaining factors also depends on the order in which the integrals

over the m2
ij are performed.

For a concrete example, consider the 2+3 decay topology, where the labeling of the

particles is given in figure 9. m2
14, m

2
24 and m2

34 cannot be measured and they need to be

integrated over. There are however only two δ-functions arising from on-shell particles X

and Y in the narrow width approximation. The phase space volume element also includes

a factor of ∆
−1/2
4 . Since ∆4 = −detM4, it is quadratic in all of the m2

ij . After using
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2
12,m

2
1234,m

2
2,m

2
234,m

2
34))

−1/2

Table 4. Likelihood functions for 5-body decays. f2(r) is defined as (1− r2)−1 and f3(r) is defined

as (1− r4 + 4r2 log(r))−1. The λn functions are defined in equation B.9.

the δ-functions to take two of the three integrals, the remaining integral can be performed

using the identity ∫ r+

r−

dx√
−ax2 + bx+ c

=
π√
a
, (C.1)

where r± are the (real) roots of the quadratic expression in the radical. Of course, the

identity eq. C.1 only holds if there exist real roots r±, which is equivalent to ∆4 ≥ 0. This

explains why the argument of the domain function is the discriminant of the quadratic

expression.
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If the last integral is chosen to be over m2
34, then the discriminant can be factored

into two factors DA and DB, where DA is the determinant of the 3× 3 matrix, the entries

of which are dot products of pairs of the four momenta pµ1 , pµ2 and pµ3 . Similarly, DB is

the determinant of the 3 × 3 matrix, the entries of which are dot products of pairs of the

four momenta pµ1 , (pµ2 + pµ3 ) and pµZ . DB can then be recognized as the skeleton factor,

with particles 2 and 3 grouped together into a fictitious Σ particle, while DA depends only

on the measured m2
ij . This structure is reflected in the D entry for the 2+3 topology in

table 3, with the λ3 functions corresponding to DA and DB.
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