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Abstract—The structure of a complex networked system
can be modeled as a graph with nodes representing the
agents and the links describing a notion of dynamic coupling
between them. Data-driven methods to identify such influence
pathways is central to many application domains. However,
such dynamically related data-streams originating at different
sources are prone to corruption caused by asynchronous time-
stamps, packet drops and noise. In this article, we provide
a tight characterization of the connectivity structure of the
agents that can be constructed based solely on measured data
streams that are corrupted. A necessary and sufficient condition
that delineates the effects of corruption on a set of nodes
is obtained. Here, the generative system that yields the data
admits nonlinear dynamic influences between agents and can
involve feedback loops. Directed information based concepts are
utilized in conjunction with tools from graphical models theory
to arrive at the results.

I. INTRODUCTION

Many complex systems lend themselves to effective mod-
eling described by a network of interacting agents. Such
modeling is prevalent in many areas such as climate science
[1], biological systems [2], quantitative finance [3] and in
many engineered systems like the Internet of Things [4].
In these systems, identification of influence pathways and
determining the topology of the underlying interaction net-
work is of significant interest. In many scenarios such as the
power grid, metabolic pathways in cells and financial markets
it is impractical, impossible or impermissible to externally
influence the system. Here network structure identification
has to be achieved via passive means.

Often, the measurements in such large systems are not
immune to effects of noise, asynchronous sensor clocks and
packet drops [5]. When dealing with problems of identifying
structural and functional connectivity of a large network,
there is a pressing need to rigorously study such uncertainties
and address detrimental effects of corrupt data-streams on
network reconstruction.

Authors in [6] leveraged multivariate Wiener filters to
reconstruct the undirected topology of the generative network
model. With assumptions of perfect measurements, and linear
time invariant (LTI) interactions, it is established that the
multivariate Wiener filter can recover the connectivity struc-
ture without recovering the directionality of the influence.

For a network of interacting agents with nonlinear, dy-
namic dependencies and strictly causal interactions, the
authors in [7] proposed the use of directed information to
determine the directed structure of the network. Sufficient
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conditions to recover the directed structure are provided.
More recently, [8] defined and used information transfer to
determine underlying causal interactions in a power network.
Here too it is assumed that the data-streams are ideal with
no distortions.

Despite its significance, little is known on the effects of
measurement uncertainties on network reconstruction. Re-
cently, in [9] focusing on networks with linear time-invariant
interactions, authors provided locality characterization of
spurious links that can appear due to data-corruption. An
important insight obtained is that the spurious links if present
are restricted to the neighborhood of the perturbed node. In
[9], the analysis is restricted to LTI systems. Moreover, the
directions of the spurious interactions is not determined.

In this article, we consider the more challenging case in
which the underlying dynamics generating the data is al-
lowed to be non-linear. and admits feedback loops. Here, the
interactions are assumed to be strictly causal. We emphasize
on the determination of the directions of spurious links that
can arise when inferring network structure from corrupt data-
streams. The knowledge of the directionality of spurious
effects can lead to a better assessment of the quality of
reconstruction of mutual influences, and can aid, elimination
of spurious links using complimentary methods. Moreover,
results can be used to determine smart stationing of high fi-
delity sensors and superior communication resources to limit
the detection of spurious interactions. The results characteriz-
ing the corrupted reconstruction are, surprisingly, direct and
non-conservative; given the difficulties that typically result
in the analysis of nonlinear stochastic networked system.

Section II-A defines few terms that will be extensively
used in the article. Section II-B presents the class of gener-
ative models that has been considered to effectively abstract
complex networks. Next, Section III highlights corruption
models that are of practical relevance. The main results and
methods to identify the network structure are discussed in
Section IV. Section V verifies the theoretical predictions by
providing simulation results. Finally, a conclusion is provided
in Section VL.

II. PRELIMINARIES

Notations:

Y denotes a vector with y; being i*" element of Y.

z[-] denotes a sequence and z(*) denotes the sequence
z[0], z[1], . .. 2[t].

Px represents the probability density function of a random
variable X.

X 1Y denotes that the random variables X and Y are
independent.
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i — j indicates an arc or edge from node ¢ to node j in a
directed graph.

i — J denotes ¢ — j or j — ¢ or both.

E[-] denotes the expectation operator.

A. Definitions

In this section few graph theory notions that will be used
in the article are discussed [10].

Definition 1 (Directed Graphs): A directed graph G is a
pair (V, A) where V is a set of vertices or nodes and A is a
set of edges given by ordered pairs (v;,v;) where v;,v; € V.
If (v;,v;) € A, then we say that there is an edge from v; to
v;. Also denoted as v; — v;.

Definition 2 (Trail and Chain): Nodes v1,v2,...,0, €
V forms a trail in G if for every i« = 1,2,...,k — 1 we
have v; —v; 1. If all the edges along the trail have the same
orientation, then the trail is called a chain.

Definition 3 (Children, Parents and Descendants): Given
a directed graph G = (V, A) and a node j € V, the children
of j are defined as C(j) := {i|j — i € A} and the parents
of j as P(j) := {ili — j € A}. If there is a chain from ¢
to j then j is called a descendant of i

Definition 4 (Collider): A node vy, is a collider in G if
there are two other nodes v;,v; such that v; — v + v;
holds.

Definition 5 (Active Trail): A trail vy — vy — -+ — v, in
G is active given a set of nodes Z if one of the following
statements holds for every triple v,,—1 — Vs, — Usny1 along
the trail:

a) If v, is not a collider, then v,, ¢ Z.

b) If v,, is a collider, then v,, or one of its descendants is
in Z.

Definition 6 (d-separation): Let X,Y and Z be a set of
nodes in G. X and Y are d-separated by Z in G if there is
no active trail between any x € X and any y € Y given Z.
It is denoted as d-sep (X, Z,Y).

Definition 7 (Directed Cycle): A directed cycle from a
node v; to v; in G has the form v; — wy — -+ — W — V;
for some sequence of nodes {w,}*_, in G.

Definition 8 (Directed Acyclic Graph): A directed graph
with no directed cycles is called a directed acyclic graph
(DAG).

Definition 9 (Faithful Bayesian Network): Suppose G =
(V, A) is a DAG whose N nodes represent random variables
Y1,...,yn. G is called a Bayesian Network if for any three
subsets X, Y and Z of V, d-sep(X, Z,Y) implies X is
independent of Y given Z. GG is called a Faithful Bayesian
network (BN) if for any three subsets X, Y and Z of V, it
holds that X and Y are independent given Z, if and only if
d-sep(X, Z,Y) is true.

B. Generative Model

Here the generative model that is assumed to generate
the measured data is described. Consider N agents that
interact over a network. Let Y denote the set of all random
process {y1,...,yn} with a parent set P(i) defined for

(a) Generative Graph G (b) DBN @’ for 3 time slices

Fig. 1: This figure shows la generative graph, 1b its associ-
ated DBN for 3 time slices.

i =1,...,N. The generative model for y; is described by
the structural relationship:

y Y o el (1)

JEP(3)

yilt] = fi

where f;’s are arbitrary functions. To each agent we associate
a discrete time sequence y;[-] and another sequence e;[-]. The
process ¢;[-] is considered innate to agent ¢ and thus e; and
e; are independent for ¢ # j. It is also assumed that e;[-]
is independent across time. All discrete time sequences have
a finite horizon assumed to be 7'. The structural description
of (1) induces a generative graph G = (V, A) formed by
identifying the set of vertices, V, with random processes ¥;
and the set of directed links, A, obtained by introducing a
directed link from every element in the parent set P (i) of
agent ¢ to 7.

For an illustration, consider the dynamics of a generative
model described by:

yilt] = fili ™V, ealt]),
alt] = fa(yy'™ 1%y§* Y ealt]),
yslt] = falyl ™V, y8 Y eslt])

Its associated generative graph is shown in Fig. 1(a). Note
that for all ¢ in {1,2,3}, ¢ — ¢ is not shown.
Dynamic Bayesian Network (DBN)

Let G = (V,A) be a generative graph. Let y; be
as defined in (1) for all # € V. Consider the graph

G = (V' A") where V' = U wlt]| and A" =
i€V
te{0,1,...T'}
U U wslkl = vilt]
i€V JEP(i)U{i}
te{0,1,...T} \ke{0,1,....—1}

The joint distribution of Y(T) is given by:

T N
O}HHPi[tHP(yi[t]) 2

t=14i=1

Py(T) :Pyl[O]"'PyN
where the parents of y;[t] are obtained from G’. It can
be shown that G’ is the Bayesian network for the random
variables {y;[t] : t = 0,1,2,...,7, ¢ = 1,2,...,N} and
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is considered the Dynamic Bayesian Network for {y; : ¢ =
1,2,...,N}. See Fig. 1(b) for an illustrative example.

III. UNCERTAINTY DESCRIPTION

In this section we provide a description for how uncer-
tainty affects the time-series y;. In particular, we provide a
discussion on how the dynamic Bayesian network associated
with the measured data-streams gets altered.

A. General Perturbation Models

Consider i*" node in a generative graph and it’s associated
unperturbed time-series be y;. The corrupt data-stream wu;
associated with ¢ is assumed to follow:

wilt] = gi(p”, u Y G- 3)

where u; can depend dynamically on y; and (; represents a
stochastic description of the corruption.

Assumption 1: Suppose (; is a random process in the
perturbation model (3). It is assumed that (; is independent
across time.

We highlight three important perturbation models that are
practically relevant. See [9] for more details.

Temporal Uncertainty: Consider a node ¢ in a generative
graph G. Suppose n is the true clock index. Suppose node
1 measures a noisy clock index which is given by a random
process (;[n]| described by:

n—+ kq,
Q[n]{ !
n+ ko,

Therefore the corruption model from (3) takes the form:
ui[n] = yi[Gin]]. “4)

Measurement Noise: Suppose the data-stream y; associ-
ated with node i is corrupted with uncorrelated measurement
noise (;[-], which is a stochastic process and is independent
of y;[-]. Here the perturbation model is given by:

u;i[n] = yi[n] + Gi[n]. &)

Packet Drops: The measurement u;[n| corresponding to a
ideal measurement y;[n] packet reception at time n can be
stochastically modeled as:

u;[n] = {yz ]

with probability p;
with probability (1 — p;).

with probability p; ©6)

u;[n — 1],  with probability (1 — p;).

B. Perturbed Dynamic Bayesian Network

Let G’ = (V', A’) be the associated dynamic Bayesian
network for a generative graph G = (V,A). Suppose
Z C V is the set of perturbed nodes with perturba-
tion model described in (3). Denote the measured data-
streams by U = {uj,...,un}. If node ¢ is uncor-
rupted, then u; = 1y;. Otherwise, w; is related to y;
via (3). Consider the graph G, = (V},A},) where
AU

V, = UU U

keZ
t€{0,1,...T’}

ypt] | and A}, =

Fig. 2: Perturbed DBN G’, for 3 time slices when
node 1 is corrupt.

U weli] = wlt] | U U ugli] — ug[t]
= kez
i€{0,1,...t} i€{0,1,...t—1}

for all ¢ € {0,1,2,...,T}. Note that the vertex set V
consists of all measurements (given by the set U) and also
the uncorrupted versions y;, of the corrupted versions wuy for
ke Z
Consider the set of random variables, W = {y;[t]

1 € {1,2,...,N}and t € {0,1,2,3,...,T}} U {w;[t] :
i € {1,2,...,N}andt € {0,1,2,3,...,T}}. The joint
distribution Py is given by:

Py = (;[I PLiKﬂ> ’ I]:Piﬂm

eV jez

T N T
| (HHPui[tnP(ui[tl)) AT Powreen | O

t=1i=1 t=1jeZ

where the parents of u;[t], y;[t] are obtained from G',. G,
is the Bayesian Network for the random variables W and is
considered as the perturbed DBN (PDBN) associated with
Uuy.

Fig 2. shows an example of a perturbed DBN correspond-
ing to the generative graph in Fig. 1(a) for 3 time slices when
node 1 data-streams are corrupt.

IV. NETWORK INFERENCE USING DIRECTED
INFORMATION

In this section we discuss how the structure of a generative
graph can be recovered using directed information measures.
First, we focus on learning from ideal measurements.

A. Inference from Ideal Data-Streams

Consider a generative graph G with N nodes and let Y
denote the collection of N random processes. The authors
in [7] defined and applied directed information (DI) in a
network of of dynamically interacting agents, to determine
if a process causally influences another. A slightly modified
definition of DI as defined in [7] is:

Definition 10 (Directed Information): The directed infor-
mation (DI) from node y; to y; is given by:

Pyi|ym,-]

I(y; = yi | i) =E
yill Y5

log ®)
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where Py, |v; and Y;; = Y\

P (=1) v, (t—1)
o wiltly Y5

{viry;i}-
The following theorem was proved in [7] that specifies a
necessary and sufficient condition to detect a presence of
link in the generative graph.

Theorem 1: A directed edge from j to i exists in the
directed graph G if and only if I(y; — y; || Yi3) > 0.
Note that DI is always non-negative. So, if there is no
directed edge from j to ¢ in G, then we must have that
I(y; — i || Yi7) = 0.

B. Main Result: Spurious Links from Data Corruption

In this section, we will describe how data uncertainty will
lead to non-zero directed information between links that are
absent in the original graph. Our main result gives a precise
characterization of the possible spurious links. In order to
present the main result, some definitions are required.

Definition 11 (Perturbed Graph): Let G = (V, A) be a
generative graph. Suppose Z C V is the set of perturbed
nodes with each perturbation model is as described in (3).
The perturbed graph Gz = (V, Az) is the graph such that
there is an edge i« — j € Ay if and only if there is a trail
i =1v1—vy—---—Vg_1—vU = j in G such that the following
conditions hold:

i) If j¢ Z, then vy_1 — j € A.

ii) For m € {2,3,...,k — 1}, if v—1 — vy ¢ U1,
and vy, ¢ Z, then v,,41 € Z.

iii) If v, is an intermediate node which is not a collider,
then v,, € Z.

Remark 1: Note that any trail that does not violate one
of the conditions guarantees that ¢ — j € Az. For example,
ifi > j€ Atheni — j € Az. Indeed, if j ¢ Z then
i — j € Az by condition i) we have that i — j € Ag.
On the other hand, if j € Z, then there is no corresponding
condition. So vacuously, none of the conditions are violated,
and so we have that i — j € Ag.

Another important case is that if i < j € A and j € Z,
then i — j € Az. As above, this corresponds to none of the
conditions above, so vacuously, none can be violated.

Similary, the trail could have colliders of the form
Um—1 —> U ¢ U1 With v, € Z.

Definition 12 (Spurious Links): Let G = (V,A) be a
generative graph, Z C V be the set of perturbed nodes and
Gz = (V,Az) be the perturbed graph. Spurious links are
those links ¢ — j € Az that do not belong to A.

Before presenting the main result, we present an example
to understand the intuition behind the presence of spurious
links.

Example 1: Consider a generative graph as shown in
Figure 3a. Suppose node 3 is subject to data-corruption. The
perturbed graph Gz, is constructed as defined in definition
11 and is shown in figure 3b. The corresponding perturbed
DBN, G, is shown for 3 time steps in figure 3c. We will
reason out the presence and absence of an edge in Gz by
identifying the presence and absence of active trails in the
perturbed DBN. Consider 1 — 3 € Ay. There is a trail

(@) G corresponding to ideal (b) Gz corresponding to unreli-
Measurements Y able Measurements U.

(c) Perturbed dynamic Bayesian network for 3 time
steps

Fig. 3: This figure illustrates the proof of Theorem 2

u1[0] = y1[0] = wz[l] = y2[1] + y3[0] — y3[1] — us[2] €
A’,. Note that the collider us[1] is observed. Therefore, the

g ; : (1 @)
trail is active given {uy ', us ' }.

Take the edge 2 — 3 € Az. There exists a trail us[l] =
y2[1] < y3[0] — u3[2] in G’;. Note that the node y3[0] is
not a collider and is not observed. Thus, the trail is active
given {uél),ugl)}.

The edges 3 — 1 and 2 — 1 are absent in G 2. Ideally,
we look for a trail from uét_l) to uq[t] = y1[t] that is active
given {ugtfl), ug‘fl)} and a trail from ugfl) to uq [t] = y1[t]
that is active given {ugt_1)7u§t_1)}. Note that every trail
from uét_l) and ugt_l) to w4 [t] traverses through a node in
u&til) which is in the observed set and this holds for all ¢.
This blocks the information flow along the trail. Therefore,
all these trails are inactive.

The following theorem is our main result. It states that
the potential spurious links are precisely characterized by
the perturbed graph.

Theorem 2: Consider a generative graph G = (V, A)
consisting of N nodes. Let Z = {v1,...,v,} CV be the set
of n perturbed nodes where each perturbation is described by
Q). Let U = {uy,...,uny} be the measured data-streams.
There is a directed edge from i to j in perturbed graph,
Gz = (V,Agz), if and only if I(u; — u; || Uz;) > 0.

Proof sketch: Let Y denote data-streams corresponding
to G such that each y;[t] is described by (1) and G’ =
(V', A’) be its associated dynamic Bayesian network (DBN).
The DBN associated with U is the perturbed DBN G’, =
(V}, A,). The perturbed graph is Gz = (V, Az).

Note that faithfulness assumption ensures that I(u; —
uj || Uy) > 0 if and only if there is an active trail in

the perturbed DBN, G’,, between ugt_l) and w;[t] given

{ugt_l), Ug _1)} , for some t. Thus, to prove the theorem, it
suffices to show that such an active trail exists if and only if
i — j € Az, where Az is the set of links in the perturbed
graph. Due to space constraints we omit the full proof here.

However, we provide a proof sketch that is motivated and
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illustrated through example 1.

(=) Suppose i — j is in Ayz. Then, there is a trail
described by i = v; — vy — -+ — v = j in G, satisfying
conditions in Definition 14. Depending on whether one of
i,7 or both are perturbed, we have 4 cases of finding
trails in G, between ugt_l) and u;[t], that are active given
{ugt_l), Ug_l)}. Note that these trails could be active or
inactive depending whether they contain subtrails with col-
liders or not.

(<) We will prove the contrapositive statement that if
i — j ¢ Ay, then no corresponding active trail exists in
G’,. Note that if i — j ¢ Ay, then either there is no trail
from i to j in G, or every trail from ¢ to j in G violates at
least one of the conditions of Definition 11. Then, consider
these cases separately to show that no corresponding active
trail exists in G7,. We emphasize here that to prove this
direction there is no need to assume faithfulness. We consider
all corresponding trails in G, and show that they are not
active. [ ]

V. SIMULATION RESULTS

To verify the predictions of Theorem 2, we estimate
directed information rates (DIR), which are DI estimates
averaged along the sequence length till the horizon. We use
the methods proposed in [11] to compute DIR. For both
the networks, the horizon length is chosen as 10%. The DIR
estimates are then averaged over 50 trials. We consider binary
valued processes that admit a finite alphabet of {0,1}.

A. Single node Perturbation

Consider a network consisting of 2 nodes with a common
child as shown in Fig. 4a). The true generative model is
described by:

Y [t] elt],
yalt] = wult — 1] +yalt — 1] +eaft],
yslt] = es[t]

where e;[t] ~ Bernouilli(0.7), e2[t] ~ Bernouilli(0.4) and

es[t] ~ Bernouilli(0.6) and ‘+’ is logical ‘OR’ operation.
The perturbation considered here is the time-origin uncer-

tainty at node 2. The corruption model takes the form:

wolt] = yolt — 2],
2[t] {yz[tL

with probability 0.5
with probability 0.5.

The perturbed graph predicted by Theorem 2 is shown in
Fig. 4b). The DIR estimates from ideal (Y') and unreliable
measurements (U) are shown in Fig. 4c). We observe non-
zero DIR estimates and add edges to GGz respectively. In
particular, note the substantial rise in I(u; — ug || ug) and
in I(us — ug || u1). This indicates the presence of spurious
links 1 — 3 and 2 — 3 in the inferred perturbed graph.

(a) Ideal Measurements Y  (b) Unreliable Measurements U'.

D estimates using Y DI estimates using U

015

- v I\ . - T —
0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000

(c) Comparison of directed information estimates
between perfect measurements and corrupted data-
streams. DIR [ is shown along X-axis and the sample
length n is along Y-axis.

Fig. 4: This figure shows how unreliable measurements at
node 3 can result in spuriously inferring a direct dynamic
influence of node 1 on the third and a spurious influence of
node 2 on node 3.

B. Multiple Perturbation

Consider a network of 6 nodes as shown in Fig. 5a). The
true generative model is given by:

yiltl = elt,

yolt] = it — 1]+ eaft],

yslt] = walt — 1] + esft],

valt] = ealt],

ys[t] = (2t — 1] + yalt — 1]) - es[t],
yolt] = ws[t — 1]+ egt]

where e1[t] ~ Bernouilli(0.55), es[t] ~ Bernouilli(0.5),
es[t] ~ Bernouilli(0.2), e4[t] ~ Bernouilli(0.4), e5[t] ~ and
es[t] ~ Bernouilli(0.3)and ‘+’ is logical ‘OR’ operation
while ‘> is logical ‘AND’ operation. The perturbations
considered here are time-origin uncertainties at nodes 2 and
5. The corruption models takes the form:

wold] — yolt — 2],
2[t] {y2[t]7

with probability 0.5
with probability 0.5.

and,

with probability 0.5

us[t]: y5[t72]a
with probability 0.5.

Ys [t} )

The perturbed graph predicted by Theorem 2 is shown
in figure 5Sb). The DIR estimates from ideal (Y) and
unreliable measurements (U) are shown in figures 5c) and
6. We observe non-zero DIR estimates and add edges to Gz
respectively. For clarity of visualization, only non-zero DIR
estimates that would be predicted by Theorem 2 are shown.
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(a) True generative graph.  (b) Network inferred from cor-
rupt data-streams at nodes 2 and

03 Links from 1 using Y 015 Links from 1 using U
—(1->2]3) e
= —(1>3]2)
~ 1(1->6][2) =
o —1(1->514)
—I(1->6]}5)
—
0
0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000
n n
Links from 2 using Y Links from 2 using U
03 02—
J————————— TN
" 015
02l/ —i2>113) ~——
—l12->3]1) —
- 1(2->5]14) Sy
01 —I1(2->6]l5)
0.05
b¥ | e

0
0 2000 4000 6000 8000 10000 [ 2000 4000 6000 8000 10000
n n

(c) Comparison of directed information rate (DIR) estimates
for links from nodes 1 and 2, between ideal data-streams Y
and uncertain measurements U. DIR I is shown along X-axis
and the sample length n is along Y-axis.

Fig. 5: 5a shows true generative graph. 5c depicts DIR
estimates to detect links from nodes 1 and 2 using ideal
measurements Y and when there is corruption at nodes 2 and
5. It can be clearly observed that there are lot of spurious
links detected.

Remark 2: Though the systems considered in the simula-

Links from 3 using Y

Links from 3 using U

0 0
0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000
n n

5 Links from 4 using Y . Links from 4 using U

0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000
n n

(a) A comparison of DIR estimates to detect links from
nodes 3 and 4 using ideal measurements and when there is
corruption at nodes 2 and 5. DIR [ is shown along X-axis
and the sample length n is along Y-axis.

Links from 5 using Y Links from 5 using U

—-—|(5->2[|1)
>3|[2) L

1(5->46)
—I(5->6]l4)

0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000
n n

Links from 6 using Y Links from 6 using U

—1(6->2]|1) 008

==1(6->3|]2)

16->4]}5) 008}y f7
—I(6->5(12)
0.05 == |(6->5]|4)

— ]

(b) A comparison of DIR estimates to detect links from nodes
5 and 6 using ideal measurements and when there is corruption
at nodes 2 and 5 is shown. DIR I is shown along X-axis and

the sample length n is along Y-axis.

tions are not faithful, the necessary and sufficient conditions  Fig. 6: DI estimates to detect links from nodes 3,4,5 and 6.

of Theorem 2 are verified to be true. However, recall that
to arrive at the assertion: if I(u; — w; || Uj;) > 0 then
i — j € Az, in the proof of Theorem 2 faithfulness was not
assumed.

VI. CONCLUSION AND FUTURE WORK

We studied the problem of inferring directed graphs for
a large class of networks that admit non-linear and strictly
causal interactions between several agents. Particularly, we
established that inferring from corrupt data-streams can re-
sult in spurious edges and we precisely characterized the
directionality of such spurious edges. Simulation results were
provided to verify the theoretical predictions. Motivated by
remark 2, it is imperative to analyze conditions under which
the faithfulness assumptions can be relaxed. This will allow
a larger class of networks and perturbation models to be
studied and moreover, to formulate necessary and sufficient
conditions to detect the presence of links in the inferred
graph.
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