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Abstract— The structure of a complex networked system
can be modeled as a graph with nodes representing the
agents and the links describing a notion of dynamic coupling
between them. Data-driven methods to identify such influence
pathways is central to many application domains. However,
such dynamically related data-streams originating at different
sources are prone to corruption caused by asynchronous time-
stamps, packet drops and noise. In this article, we provide
a tight characterization of the connectivity structure of the
agents that can be constructed based solely on measured data
streams that are corrupted. A necessary and sufficient condition
that delineates the effects of corruption on a set of nodes
is obtained. Here, the generative system that yields the data
admits nonlinear dynamic influences between agents and can
involve feedback loops. Directed information based concepts are
utilized in conjunction with tools from graphical models theory
to arrive at the results.

I. INTRODUCTION

Many complex systems lend themselves to effective mod-

eling described by a network of interacting agents. Such

modeling is prevalent in many areas such as climate science

[1], biological systems [2], quantitative finance [3] and in

many engineered systems like the Internet of Things [4].

In these systems, identification of influence pathways and

determining the topology of the underlying interaction net-

work is of significant interest. In many scenarios such as the

power grid, metabolic pathways in cells and financial markets

it is impractical, impossible or impermissible to externally

influence the system. Here network structure identification

has to be achieved via passive means.

Often, the measurements in such large systems are not

immune to effects of noise, asynchronous sensor clocks and

packet drops [5]. When dealing with problems of identifying

structural and functional connectivity of a large network,

there is a pressing need to rigorously study such uncertainties

and address detrimental effects of corrupt data-streams on

network reconstruction.

Authors in [6] leveraged multivariate Wiener filters to

reconstruct the undirected topology of the generative network

model. With assumptions of perfect measurements, and linear

time invariant (LTI) interactions, it is established that the

multivariate Wiener filter can recover the connectivity struc-

ture without recovering the directionality of the influence.

For a network of interacting agents with nonlinear, dy-

namic dependencies and strictly causal interactions, the

authors in [7] proposed the use of directed information to

determine the directed structure of the network. Sufficient
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conditions to recover the directed structure are provided.

More recently, [8] defined and used information transfer to

determine underlying causal interactions in a power network.

Here too it is assumed that the data-streams are ideal with

no distortions.

Despite its significance, little is known on the effects of

measurement uncertainties on network reconstruction. Re-

cently, in [9] focusing on networks with linear time-invariant

interactions, authors provided locality characterization of

spurious links that can appear due to data-corruption. An

important insight obtained is that the spurious links if present

are restricted to the neighborhood of the perturbed node. In

[9], the analysis is restricted to LTI systems. Moreover, the

directions of the spurious interactions is not determined.

In this article, we consider the more challenging case in

which the underlying dynamics generating the data is al-

lowed to be non-linear. and admits feedback loops. Here, the

interactions are assumed to be strictly causal. We emphasize

on the determination of the directions of spurious links that

can arise when inferring network structure from corrupt data-

streams. The knowledge of the directionality of spurious

effects can lead to a better assessment of the quality of

reconstruction of mutual influences, and can aid, elimination

of spurious links using complimentary methods. Moreover,

results can be used to determine smart stationing of high fi-

delity sensors and superior communication resources to limit

the detection of spurious interactions. The results characteriz-

ing the corrupted reconstruction are, surprisingly, direct and

non-conservative; given the difficulties that typically result

in the analysis of nonlinear stochastic networked system.

Section II-A defines few terms that will be extensively

used in the article. Section II-B presents the class of gener-

ative models that has been considered to effectively abstract

complex networks. Next, Section III highlights corruption

models that are of practical relevance. The main results and

methods to identify the network structure are discussed in

Section IV. Section V verifies the theoretical predictions by

providing simulation results. Finally, a conclusion is provided

in Section VI.

II. PRELIMINARIES

Notations:

Y denotes a vector with yi being ith element of Y.
z[·] denotes a sequence and z(t) denotes the sequence

z[0], z[1], . . . z[t].
PX represents the probability density function of a random

variable X .

X ⊥⊥ Y denotes that the random variables X and Y are

independent.
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i → j indicates an arc or edge from node i to node j in a

directed graph.

i− j denotes i→ j or j → i or both.

E[·] denotes the expectation operator.

A. Definitions

In this section few graph theory notions that will be used

in the article are discussed [10].

Definition 1 (Directed Graphs): A directed graph G is a

pair (V,A) where V is a set of vertices or nodes and A is a

set of edges given by ordered pairs (vi, vj) where vi, vj ∈ V .

If (vi, vj) ∈ A, then we say that there is an edge from vi to

vj . Also denoted as vi → vj .

Definition 2 (Trail and Chain): Nodes v1, v2, . . . , vk ∈
V forms a trail in G if for every i = 1, 2, . . . , k − 1 we

have vi− vi+1. If all the edges along the trail have the same

orientation, then the trail is called a chain.

Definition 3 (Children, Parents and Descendants): Given

a directed graph G = (V,A) and a node j ∈ V , the children

of j are defined as C(j) := {i|j → i ∈ A} and the parents

of j as P(j) := {i|i→ j ∈ A}. If there is a chain from i
to j then j is called a descendant of i

Definition 4 (Collider): A node vk is a collider in G if

there are two other nodes vi, vj such that vi → vk ← vi
holds.

Definition 5 (Active Trail): A trail v1 − v2 − · · · − vn in

G is active given a set of nodes Z if one of the following

statements holds for every triple vm−1 − vm − vm+1 along

the trail:

a) If vm is not a collider, then vm /∈ Z.

b) If vm is a collider, then vm or one of its descendants is

in Z.

Definition 6 (d-separation): Let X,Y and Z be a set of

nodes in G. X and Y are d-separated by Z in G if there is

no active trail between any x ∈ X and any y ∈ Y given Z.

It is denoted as d-sep (X,Z, Y ).
Definition 7 (Directed Cycle): A directed cycle from a

node vi to vi in G has the form vi → w1 → · · · → wk → vi
for some sequence of nodes {wn}

k
n=1 in G.

Definition 8 (Directed Acyclic Graph): A directed graph

with no directed cycles is called a directed acyclic graph

(DAG).

Definition 9 (Faithful Bayesian Network): Suppose G =
(V,A) is a DAG whose N nodes represent random variables

y1, . . . , yN . G is called a Bayesian Network if for any three

subsets X, Y and Z of V , d-sep(X,Z, Y ) implies X is

independent of Y given Z. G is called a Faithful Bayesian

network (BN) if for any three subsets X, Y and Z of V , it

holds that X and Y are independent given Z, if and only if

d-sep(X,Z, Y ) is true.

B. Generative Model

Here the generative model that is assumed to generate

the measured data is described. Consider N agents that

interact over a network. Let Y denote the set of all random

process {y1, . . . , yN} with a parent set P(i) defined for

1

2 3

(a) Generative Graph G

y1[0]

y2[0]

y3[0]

y1[1]

y2[1]

y3[1]

y1[2]

y2[2]

y3[2]

(b) DBN G
′ for 3 time slices

Fig. 1: This figure shows 1a generative graph, 1b its associ-

ated DBN for 3 time slices.

i = 1, . . . , N. The generative model for yi is described by

the structural relationship:

yi[t] = fi



y
(t−1)
i ,

⋃

j∈P(i)

y
(t−1)
j , ei[t]



 (1)

where fi’s are arbitrary functions. To each agent we associate

a discrete time sequence yi[·] and another sequence ei[·]. The

process ei[·] is considered innate to agent i and thus ei and

ej are independent for i 6= j. It is also assumed that ei[·]
is independent across time. All discrete time sequences have

a finite horizon assumed to be T . The structural description

of (1) induces a generative graph G = (V,A) formed by

identifying the set of vertices, V, with random processes yi
and the set of directed links, A, obtained by introducing a

directed link from every element in the parent set P(i) of

agent i to i.
For an illustration, consider the dynamics of a generative

model described by:

y1[t] = f1(y
(t−1)
1 , e1[t]),

y2[t] = f2(y
(t−1)
1 , y

(t−1)
2 , e2[t]),

y3[t] = f3(y
(t−1)
1 , y

(t−1)
3 , e3[t])

Its associated generative graph is shown in Fig. 1(a). Note

that for all i in {1, 2, 3}, i→ i is not shown.

Dynamic Bayesian Network (DBN)

Let G = (V,A) be a generative graph. Let yi be

as defined in (1) for all i ∈ V . Consider the graph

G′ = (V ′, A′) where V ′ =







⋃

i∈V

t∈{0,1,...T}

yi[t]






and A′ =

⋃

i∈V

t∈{0,1,...T}









⋃

j∈P(i)∪{i}

k∈{0,1,...t−1}

yj [k]→ yi[t]









.

The joint distribution of Y (T ) is given by:

PY (T ) = Py1[0] . . . PyN [0]

T
∏

t=1

N
∏

i=1

Pyi[t]|P(yi[t]) (2)

where the parents of yi[t] are obtained from G′. It can

be shown that G′ is the Bayesian network for the random

variables {yi[t] : t = 0, 1, 2, . . . , T, i = 1, 2, . . . , N} and
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is considered the Dynamic Bayesian Network for {yi : i =
1, 2, . . . , N}. See Fig. 1(b) for an illustrative example.

III. UNCERTAINTY DESCRIPTION

In this section we provide a description for how uncer-

tainty affects the time-series yi. In particular, we provide a

discussion on how the dynamic Bayesian network associated

with the measured data-streams gets altered.

A. General Perturbation Models

Consider ith node in a generative graph and it’s associated

unperturbed time-series be yi. The corrupt data-stream ui

associated with i is assumed to follow:

ui[t] = gi(y
(t)
i , u

(t−1)
i , ζi[·]). (3)

where ui can depend dynamically on yi and ζi represents a

stochastic description of the corruption.

Assumption 1: Suppose ζi is a random process in the

perturbation model (3). It is assumed that ζi is independent

across time.

We highlight three important perturbation models that are

practically relevant. See [9] for more details.

Temporal Uncertainty: Consider a node i in a generative

graph G. Suppose n is the true clock index. Suppose node

i measures a noisy clock index which is given by a random

process ζi[n] described by:

ζi[n] =

{

n+ k1, with probability pi

n+ k2, with probability (1− pi).

Therefore the corruption model from (3) takes the form:

ui[n] = yi[ζi[n]]. (4)

Measurement Noise: Suppose the data-stream yi associ-

ated with node i is corrupted with uncorrelated measurement

noise ζi[·], which is a stochastic process and is independent

of yi[·]. Here the perturbation model is given by:

ui[n] = yi[n] + ζi[n]. (5)

Packet Drops: The measurement ui[n] corresponding to a

ideal measurement yi[n] packet reception at time n can be

stochastically modeled as:

ui[n] =

{

yi[n], with probability pi

ui[n− 1], with probability (1− pi).
(6)

B. Perturbed Dynamic Bayesian Network

Let G′ = (V ′, A′) be the associated dynamic Bayesian

network for a generative graph G = (V,A). Suppose

Z ⊂ V is the set of perturbed nodes with perturba-

tion model described in (3). Denote the measured data-

streams by U = {u1, . . . , uN}. If node i is uncor-

rupted, then ui = yi. Otherwise, ui is related to yi
via (3). Consider the graph G′

Z = (V ′
Z , A

′
Z) where

V ′
Z = U ∪







⋃

k∈Z

t∈{0,1,...T}

yk[t]






and A′

Z = A′ ∪

y1[0]

u1[0] u1[1] u1[2]

y2[0]

y3[0]

y1[1]

y2[1]

y3[1]

y1[2]

y2[2]

y3[2]

Fig. 2: Perturbed DBN G′
Z for 3 time slices when

node 1 is corrupt.







⋃

k∈Z

i∈{0,1,...t}

yk[i]→ uk[t]






∪







⋃

k∈Z

i∈{0,1,...t−1}

uk[i]→ uk[t]







for all t ∈ {0, 1, 2, . . . , T}. Note that the vertex set V ′
Z

consists of all measurements (given by the set U ) and also

the uncorrupted versions yk of the corrupted versions uk for

k ∈ Z.
Consider the set of random variables, W = {yi[t] :

i ∈ {1, 2, . . . , N} and t ∈ {0, 1, 2, 3, . . . , T}} ∪ {ui[t] :
i ∈ {1, 2, . . . , N} and t ∈ {0, 1, 2, 3, . . . , T}}. The joint

distribution PW is given by:

PW =

(

∏

i∈V

Pui[0]

)

·





∏

j∈Z

Pyj [0]





·

(

T
∏

t=1

N
∏

i=1

Pui[t]|P(ui[t])

)

·





T
∏

t=1

∏

j∈Z

Pyj [t]|P(yj [t])



 (7)

where the parents of ui[t], yj [t] are obtained from G′
Z . G

′
Z

is the Bayesian Network for the random variables W and is

considered as the perturbed DBN (PDBN) associated with

U ∪ Y .

Fig 2. shows an example of a perturbed DBN correspond-

ing to the generative graph in Fig. 1(a) for 3 time slices when

node 1 data-streams are corrupt.

IV. NETWORK INFERENCE USING DIRECTED

INFORMATION

In this section we discuss how the structure of a generative

graph can be recovered using directed information measures.

First, we focus on learning from ideal measurements.

A. Inference from Ideal Data-Streams

Consider a generative graph G with N nodes and let Y
denote the collection of N random processes. The authors

in [7] defined and applied directed information (DI) in a

network of of dynamically interacting agents, to determine

if a process causally influences another. A slightly modified

definition of DI as defined in [7] is:

Definition 10 (Directed Information): The directed infor-

mation (DI) from node yj to yi is given by:

I(yj → yi ‖ Yīj̄) = E

[

log
Pyi‖yj ,Yīj̄

Pyi‖Yīj̄

]

(8)
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where Pyi‖Yīj̄
=

T
∏

t=1
P
yi[t]|y

(t−1)
i

,Y
(t−1)

īj̄

and Yīj̄ = Y \

{yi, yj}.
The following theorem was proved in [7] that specifies a

necessary and sufficient condition to detect a presence of

link in the generative graph.

Theorem 1: A directed edge from j to i exists in the

directed graph G if and only if I(yj → yi ‖ Yīj̄) > 0.
Note that DI is always non-negative. So, if there is no

directed edge from j to i in G, then we must have that

I(yj → yi ‖ Yīj̄) = 0.

B. Main Result: Spurious Links from Data Corruption

In this section, we will describe how data uncertainty will

lead to non-zero directed information between links that are

absent in the original graph. Our main result gives a precise

characterization of the possible spurious links. In order to

present the main result, some definitions are required.

Definition 11 (Perturbed Graph): Let G = (V,A) be a

generative graph. Suppose Z ⊂ V is the set of perturbed

nodes with each perturbation model is as described in (3).

The perturbed graph GZ = (V,AZ) is the graph such that

there is an edge i → j ∈ AZ if and only if there is a trail

i = v1−v2−· · ·−vk−1−vk = j in G such that the following

conditions hold:

i) If j /∈ Z, then vk−1 → j ∈ A.

ii) For m ∈ {2, 3, . . . , k − 1}, if vm−1 → vm ← vm+1,

and vm /∈ Z, then vm+1 ∈ Z.

iii) If vm is an intermediate node which is not a collider,

then vm ∈ Z.

Remark 1: Note that any trail that does not violate one

of the conditions guarantees that i→ j ∈ AZ . For example,

if i → j ∈ A then i → j ∈ AZ . Indeed, if j /∈ Z then

i → j ∈ AZ by condition i) we have that i → j ∈ AZ .

On the other hand, if j ∈ Z, then there is no corresponding

condition. So vacuously, none of the conditions are violated,

and so we have that i→ j ∈ AZ .

Another important case is that if i ← j ∈ A and j ∈ Z,

then i→ j ∈ AZ . As above, this corresponds to none of the

conditions above, so vacuously, none can be violated.

Similary, the trail could have colliders of the form

vm−1 → vm ← vm+1 with vm ∈ Z.

Definition 12 (Spurious Links): Let G = (V,A) be a

generative graph, Z ⊂ V be the set of perturbed nodes and

GZ = (V,AZ) be the perturbed graph. Spurious links are

those links i→ j ∈ AZ that do not belong to A.

Before presenting the main result, we present an example

to understand the intuition behind the presence of spurious

links.

Example 1: Consider a generative graph as shown in

Figure 3a. Suppose node 3 is subject to data-corruption. The

perturbed graph GZ , is constructed as defined in definition

11 and is shown in figure 3b. The corresponding perturbed

DBN, G′
Z , is shown for 3 time steps in figure 3c. We will

reason out the presence and absence of an edge in GZ by

identifying the presence and absence of active trails in the

perturbed DBN. Consider 1 → 3 ∈ AZ . There is a trail

1 2 3

(a) G corresponding to ideal
Measurements Y

1 2 3

(b) GZ corresponding to unreli-
able Measurements U .

y3[0]

u3[0] u3[1] u3[2]

y2[0]

y1[0]

y3[1]

y2[1]

y1[1]

y3[2]

y2[2]

y1[2]

(c) Perturbed dynamic Bayesian network for 3 time
steps

Fig. 3: This figure illustrates the proof of Theorem 2

u1[0] = y1[0] → u2[1] = y2[1] ← y3[0] → y3[1] → u3[2] ∈
A′

Z . Note that the collider u2[1] is observed. Therefore, the

trail is active given {u
(1)
3 , u

(1)
2 }.

Take the edge 2 → 3 ∈ AZ . There exists a trail u2[1] =
y2[1] ← y3[0] → u3[2] in G′

Z . Note that the node y3[0] is

not a collider and is not observed. Thus, the trail is active

given {u
(1)
3 , u

(1)
1 }.

The edges 3 → 1 and 2 → 1 are absent in GZ . Ideally,

we look for a trail from u
(t−1)
3 to u1[t] = y1[t] that is active

given {u
(t−1)
1 , u

(t−1)
2 } and a trail from u

(t−1)
2 to u1[t] = y1[t]

that is active given {u
(t−1)
1 , u

(t−1)
3 }. Note that every trail

from u
(t−1)
3 and u

(t−1)
2 to u1[t] traverses through a node in

u
(t−1)
1 which is in the observed set and this holds for all t.

This blocks the information flow along the trail. Therefore,

all these trails are inactive.

The following theorem is our main result. It states that

the potential spurious links are precisely characterized by

the perturbed graph.

Theorem 2: Consider a generative graph G = (V,A)
consisting of N nodes. Let Z = {v1, . . . , vn} ⊂ V be the set

of n perturbed nodes where each perturbation is described by

(3). Let U = {u1, . . . , uN} be the measured data-streams.

There is a directed edge from i to j in perturbed graph,

GZ = (V,AZ), if and only if I(ui → uj ‖ Uj̄ī) > 0.

Proof sketch: Let Y denote data-streams corresponding

to G such that each yi[t] is described by (1) and G′ =
(V ′, A′) be its associated dynamic Bayesian network (DBN).

The DBN associated with U is the perturbed DBN G′
Z =

(V ′
Z , A

′
Z). The perturbed graph is GZ = (V,AZ).

Note that faithfulness assumption ensures that I(ui →
uj ‖ Uj̄ī) > 0 if and only if there is an active trail in

the perturbed DBN, G′
Z , between u

(t−1)
i and uj [t] given

{u
(t−1)
j , U

(t−1)

j̄ī
} , for some t. Thus, to prove the theorem, it

suffices to show that such an active trail exists if and only if

i → j ∈ AZ , where AZ is the set of links in the perturbed

graph. Due to space constraints we omit the full proof here.

However, we provide a proof sketch that is motivated and
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illustrated through example 1.

(⇒) Suppose i → j is in AZ . Then, there is a trail

described by i = v1 − v2 − · · · − vk = j in G, satisfying

conditions in Definition 14. Depending on whether one of

i, j or both are perturbed, we have 4 cases of finding

trails in G′
Z between u

(t−1)
i and uj [t], that are active given

{u
(t−1)
j , U

(t−1)

j̄ī
}. Note that these trails could be active or

inactive depending whether they contain subtrails with col-

liders or not.

(⇐) We will prove the contrapositive statement that if

i → j /∈ AZ , then no corresponding active trail exists in

G′
Z . Note that if i → j /∈ AZ , then either there is no trail

from i to j in G, or every trail from i to j in G violates at

least one of the conditions of Definition 11. Then, consider

these cases separately to show that no corresponding active

trail exists in G′
Z . We emphasize here that to prove this

direction there is no need to assume faithfulness. We consider

all corresponding trails in G′
Z and show that they are not

active.

V. SIMULATION RESULTS

To verify the predictions of Theorem 2, we estimate

directed information rates (DIR), which are DI estimates

averaged along the sequence length till the horizon. We use

the methods proposed in [11] to compute DIR. For both

the networks, the horizon length is chosen as 104. The DIR

estimates are then averaged over 50 trials. We consider binary

valued processes that admit a finite alphabet of {0, 1}.

A. Single node Perturbation

Consider a network consisting of 2 nodes with a common

child as shown in Fig. 4a). The true generative model is

described by:

y1[t] = e1[t],

y2[t] = y1[t− 1] + y3[t− 1] + e2[t],

y3[t] = e3[t]

where e1[t] ∼ Bernouilli(0.7), e2[t] ∼ Bernouilli(0.4) and

e3[t] ∼ Bernouilli(0.6) and ‘+’ is logical ‘OR’ operation.

The perturbation considered here is the time-origin uncer-

tainty at node 2. The corruption model takes the form:

u2[t] =

{

y2[t− 2], with probability 0.5

y2[t], with probability 0.5.

The perturbed graph predicted by Theorem 2 is shown in

Fig. 4b). The DIR estimates from ideal (Y ) and unreliable

measurements (U ) are shown in Fig. 4c). We observe non-

zero DIR estimates and add edges to GZ respectively. In

particular, note the substantial rise in I(u1 → u3 ‖ u2) and

in I(u2 → u3 ‖ u1). This indicates the presence of spurious

links 1→ 3 and 2→ 3 in the inferred perturbed graph.

1 2 3

(a) Ideal Measurements Y

1 2 3

(b) Unreliable Measurements U .

(c) Comparison of directed information estimates
between perfect measurements and corrupted data-
streams. DIR I is shown along X-axis and the sample
length n is along Y-axis.

Fig. 4: This figure shows how unreliable measurements at

node 3 can result in spuriously inferring a direct dynamic

influence of node 1 on the third and a spurious influence of

node 2 on node 3.

B. Multiple Perturbation

Consider a network of 6 nodes as shown in Fig. 5a). The

true generative model is given by:

y1[t] = e1[t],

y2[t] = y1[t− 1] + e2[t],

y3[t] = y2[t− 1] + e3[t],

y4[t] = e4[t],

y5[t] = (y2[t− 1] + y4[t− 1]) · e5[t],

y6[t] = y5[t− 1] + e6[t]

where e1[t] ∼ Bernouilli(0.55), e2[t] ∼ Bernouilli(0.5),

e3[t] ∼ Bernouilli(0.2), e4[t] ∼ Bernouilli(0.4), e5[t] ∼ and

e6[t] ∼ Bernouilli(0.3)and ‘+’ is logical ‘OR’ operation

while ‘·’ is logical ‘AND’ operation. The perturbations

considered here are time-origin uncertainties at nodes 2 and

5. The corruption models takes the form:

u2[t] =

{

y2[t− 2], with probability 0.5

y2[t], with probability 0.5.

and,

u5[t] =

{

y5[t− 2], with probability 0.5

y5[t], with probability 0.5.

The perturbed graph predicted by Theorem 2 is shown

in figure 5b). The DIR estimates from ideal (Y ) and

unreliable measurements (U ) are shown in figures 5c) and

6. We observe non-zero DIR estimates and add edges to GZ

respectively. For clarity of visualization, only non-zero DIR

estimates that would be predicted by Theorem 2 are shown.

4497



1 4

2 5

3 6

(a) True generative graph.

1 4

2 5

3 6

(b) Network inferred from cor-
rupt data-streams at nodes 2 and
5

(c) Comparison of directed information rate (DIR) estimates
for links from nodes 1 and 2, between ideal data-streams Y

and uncertain measurements U . DIR I is shown along X-axis
and the sample length n is along Y-axis.

Fig. 5: 5a shows true generative graph. 5c depicts DIR

estimates to detect links from nodes 1 and 2 using ideal

measurements Y and when there is corruption at nodes 2 and

5. It can be clearly observed that there are lot of spurious

links detected.

Remark 2: Though the systems considered in the simula-

tions are not faithful, the necessary and sufficient conditions

of Theorem 2 are verified to be true. However, recall that

to arrive at the assertion: if I(ui → uj ‖ Uj̄ī) > 0 then

i→ j ∈ AZ , in the proof of Theorem 2 faithfulness was not

assumed.

VI. CONCLUSION AND FUTURE WORK

We studied the problem of inferring directed graphs for

a large class of networks that admit non-linear and strictly

causal interactions between several agents. Particularly, we

established that inferring from corrupt data-streams can re-

sult in spurious edges and we precisely characterized the

directionality of such spurious edges. Simulation results were

provided to verify the theoretical predictions. Motivated by

remark 2, it is imperative to analyze conditions under which

the faithfulness assumptions can be relaxed. This will allow

a larger class of networks and perturbation models to be

studied and moreover, to formulate necessary and sufficient

conditions to detect the presence of links in the inferred

graph.
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