2019 IEEE 35th International Conference on Data Engineering (ICDE)

Finding Densest Lasting Subgraphs in Dynamic
Graphs: a Stochastic Approach

Xuanming Liu
Computer Science
University of Massachusetts, Lowell
xliu@cs.uml.edu

Abstract—One important problem that is insufficiently studied
is finding densest lasting-subgraphs in large dynamic graphs,
which considers the time duration of the subgraph pattern. We
propose a framework called Expectation-Maximization with Util-
ity functions (EMU), a novel stochastic approach that nontrivially
extends the conventional EM approach. EMU has the flexibility
of optimizing any user-defined utility functions. We validate our
EMU approach by showing that it converges to the optimum—
by proving that it is a specification of the general Minorization-
Maximization (MM) framework with convergence guarantees.
We then devise EMU algorithms for the densest lasting subgraph
problem. Using real-world graph data, we experimentally verify
the effectiveness and efficiency of our techniques, and compare
with two prior approaches on dense subgraph detection.

I. INTRODUCTION

Big Data is often represented by large dynamic graphs. Dis-
covering dense subgraphs is especially of interest and has been
studied for static graphs, but little has been done on detecting
dense subgraphs that last for a long time interval. The need for
detecting such dense lasting subgraphs in dynamic graphs is
especially evident in telecommunication, traffic networks, and
social network analysis. Consider the following examples.

Communication hotspots. In a dynamic mobile phone net-
work, each user is a vertex, and a phone call session between
users corresponds to one or more edges with a time duration.
Upon a significant event or breaking news (e.g., a natural
disaster or a social spotlight event), dense, long-lasting phone
calls among groups of users pose a challenge to the quality of
mobile services, and should be detected in a timely fashion for
fast response [1]. The service provider may want to identify the
densest subgraph region having edges that last for a long time,
and allocate more resources there. A similar need arises in
Internet service providers and data centers, where long-lasting
and dense computer network request regions (e.g., large file
transfers) should be provided with more resources.

Spam network filtering. Dense subgraph detection has been
used for community detection [2]. Dense long-lasting sub-
graph patterns in communication/phone-call networks often
indicate true communities, while conventional community
detection will also include spam call subgraphs that are dense
but typically quite short.

Traffic control. In road traffic networks, each road intersection
(or critical points such as highway entries/exits) is a vertex,

2375-026X/19/$31.00 ©2019 IEEE

DOI 10.1109/ICDE.2019.00075

Tingjian Ge

Computer Science
University of Massachusetts, Lowell
ge@cs.uml.edu

782

Yinghui Wu
EECS
Washington State University
yinghui @eecs.wsu.edu

and a real-time report of traffic condition between two vertices
suggests an edge with a time duration and a label (e.g., high-
congestion, slowness, or smoothness). Dense lasting subgraphs
indicate traffic congestion that lasts long and hence is the
most significant [3]. Detecting such congestion in time benefits
interventions and overall traffic effectiveness optimization.

While detecting dense subgraphs has been studied over
static graphs, not much has been done to detect dense lasting
subgraphs over dynamic networks. (1) Aggarwal et al. [4]
propose a two-phase solution for finding frequently occurring
dense subgraphs in dynamic graphs. In the first phase, they
identify vertices that tend to appear together. In the second
phase, they further find which vertices also form a dense
subgraph in the snapshots where they appear together. Never-
theless, the method is based on set similarity—it may return
vertices which are correlated in co-occurrence, but which still
appear rarely over time. Detecting dense subgraphs that can
last for a long period is not addressed. (2) Ma et al. [5] study
fast computation of dense temporal subgraphs that pertain
to the same set of nodes and edges with time-varying edge
weights. The density is aggregated as the total edge weights
of a subgraph. The approach first detects “promising” time
intervals; instances of subgraphs in each time interval is then
computed. In a nutshell, none of these previous approaches
performs a direct, principled optimization of an objective
function for the densest lasting subgraph problem as we do.

Problem and framework overview. We develop a general,
stochastic approach to detecting densest lasting subgraphs. We
consider a dynamic graph as a sequence of graph snapshots,
each of which pertains to the same set of vertices but may
contain a different set of edges (Figure 1a). Part of our goal
is to compute a probabilistic subgraph model (Figure 1b top).
The model has three critical parameters: number of vertices,
probabilities (p;) of each edge, and time duration (number of
consecutive snapshots it appears in). In addition to this model,
we need to find the value of a latent variable, which indicates
the “location” index of the occurrence of this subgraph model
within the graph snapshots: from which snapshot it starts, and
which vertices it maps to in that snapshot (Figure 1b bottom).

At the core of our work is a novel framework, namely, Ex-
pectation Maximization with a utility function (EMU), which
nontrivially extends the Expectation Maximization (EM) [6]

IEEE
computer
® psoaety

Lasting subgraph D

i
%l 18

Subgraph Model M:

\

n==6
pi’s for each edge i (1 < i < (5))

Time duration d =3

Hidden/latent variable:

Location of M’s occurrence (lasting subgraph D)
(1) from which snapshot graph (3" one in (a))
(2) which vertices in the snapshot graph (top 6)

(b)

(@)

Fig. 1. Overview: Dynamic graph (a) and target subgraph model (b).

method by incorporating a “utility” component that charac-
terizes the need of detecting dense lasting subgraphs. We
theoretically justify the extension by proving that the new two-
step iterative algorithm converges to the optimum since EMU
falls into the Minorization-Maximization (MM) framework [7]
in statistics. We propose novel utility functions for EMU, show
their connections with previous work, and devise an algorithm
under the utility functions. The algorithm iterative refines both
the model and the latent variable value of the occurrence
location (Figure 1b). In summary:

We formalize the problem of finding densest lasting-
subgraph in a dynamic graph (Section II).

We propose a novel EMU framework, and create utility
functions for our problem (Section III).

We devise an algorithm under EMU, and prove its cor-
rectness as it is in the MM framework (Section 1V).
Using four real-world dynamic datasets, we perform a
comprehensive empirical study (Section VI).

Related Work. We categorize the related work as follows.
Dense subgraphs in static graphs. Discovering dense sub-
graphs has been studied for static graphs [8]-[12]. Dense
subgraphs in static graphs are usually characterized by induced
subgraphs with high edge-node count ratio, such as edge
density [9], k-cores [10], a-quasi-cliques [11], among other
variants. Decomposition algorithms are developed to find ap-
proximately dense subgraphs with optimaility guarantees [8],
[9]. As observed in [12], dense subgraphs defined by edge-
node counts tend to produce large subgraphs—for example,
a graph can itself be a k-core, while quasi-cliques are often
too small. The semantics in [12] incorporates an objective
function on a notion of edge surplus over the expected number
of edges under the random-graph model. This characterization
subsumes several conventional semantics, such as edge/vertex
count ratio and a-quasi-cliques, and leads to densest subgraphs
with a more balanced size.

Dense subgraph detection in dynamic graphs. Previous work
in this direction is significantly less than its static graph
counterpart. A streaming algorithm is proposed to improve the
algorithm in [8] for large graphs. The methods are nevertheless
still developed for static graphs rather than temporal graphs.
As remarked earlier, the approaches developed in [4], [5] either

783

do not address time intervals, or do not focus on finding dense
subgraphs that also last long (the details of comparisons are
in Sections I and VI). The work by Bogdanov et al. [13]
shares the same problem model as [5], but [5] improves the
performance of [13] (thus we only compare with [5]). Angel
et al. [14] consider weighted graphs with a constant number
of vertices, and there are a number of weight updates at each
time interval. Even though one can use weight increase and
decrease to simulate the presence and absence of edges, the
major difference of [14] from our work is the semantics:
[14] finds dense subgraphs in each graph snapshot without
considering the density across snapshots or time duration.

II. PRELIMINARIES
A. Subgraph Models: A Probabilistic Characterization

We define a dynamic graph Gr over a period of time as
a sequence of graph snapshots {G1, ..., Gr}. Each snapshot
Gy = (V, E;) at timestamp ¢ (¢ € [1,T]) is an undirected graph
with a vertex set V' and an edge set F;. We next introduce
our subgraph model (shown in Figure 1).

Definition 1. (Subgraph Model) Given a dynamic graph
Gr, a subgraph model M(n, p,d) consists of three (sets) of
parameters: (1) n vertices , (2) the existence probabilities p;
of each edge e; from a total of (g) possible edges, and (3)
a time depth d that the model spans in G (i.e., d adjacent
snapshots).

The probabilistic subgraph model allows approximate char-
acterization of edge appearance in a temporal graph, in terms
of its probability. Moreover, it provides the flexibility for us
to specify a class of utility functions (to be discussed) that
characterize the properties of desired subgraphs. Subgraphs
with predefined properties (e.g., k-cores) lack such flexibility.

Based on the model, we introduce lasting subgraphs.

Definition 2. (Lasting Subgraph) A lasting subgraph G, in
Gr specified by a subgraph model M(n, p,d) is a dynamic
graph that consists of n vertices, and spans d contiguous
snapshots in Gr; moreover, there is a one-to-one mapping f
from the vertices of M to the vertices of Gq. We say that G4
is an occurrence of M, with a probability Pr(G,|M].

Intuitively, the existence of a lasting subgraph in Gp is
induced by an occurrence G; of a corresponding subgraph
model M (n,p,d) in Gp, specified by the node mapping
from M to G, and the lasting duration d; the likelihood of
its existence is quantified by the model probability Pr[G.|M].
Note that the edges of each snapshot of G, is induced by the
node mapping. We discuss model probability in Section IV.

We are now ready to introduce the densest lasting subgraph
problem. To this end, we introduce a utility function, denoted
as u(M), to measure the “quality” of subgraph models. The
utility function allows us to integrate various density mea-
sures to lasting subgraph models. As such, intuitively, finding
densest lasting subgraphs is to discover and compare subgraph
models with higher u(M) values, and moreover, more likely
to have the corresponding occurrences in Gp.

Densest Lasting Subgraph Problem. Given a dynamic graph
Gr and a specified utility function u(M), the densest lasting
subgraph problem is to discover a subgraph model M*(n, p, d)
and the associated lasting subgraph G;*, such that

(M*,G4") = arg max (u(M) - Pr[Gq|M, Gr]).
M,Ga
We shall introduce and focus on a specific utility function to
present our algorithms (Section III). These techniques on the
other hand readily extend to other classes of utility functions,
as verified in Section V.

B. EM and Metropolis-Hastings Revisited

Before we introduce our framework, we briefly overview
Expectation Maximization and related techniques. Readers
who are familiar with these can skip to Section III.

Expectation Maximization (EM). EM is an iferative method
to find maximum likelihood or maximum a posteriori (MAP)
estimates of parameters in statistical models, which depend
on unobserved latent variables. The EM iteration alternates
between (1) an expectation (E) step, which, given the current
estimate of model parameters, computes a distribution of the
latent variables and the expectation, and (2) a maximization
(M) step, which, given the expectation/estimate of latent vari-
ables in E step, computes a new estimate of model parameters.
These parameter-estimates are then used to determine the
distribution of the latent variables in the next E step. We refer
the reader to [6] for details.

Metropolis-Hastings (MH). MH is a Markov chain Monte
Carlo (MCMC) sampling method. Suppose we want to draw
samples from a probability distribution P(x) which is complex
or even unknown. We can nevertheless compute the value
of a function f(x) that is proportional to the density of P.
MH defines an MCMC sampling process, in a way that the
stationary distribution of the Markov chain is P(x). Suppose
the current sample value is x,,. We define a proposal function
(distribution) @Q(x*|x,), where x~ is called a candidate. Then
we accept x+ as the next sample x,, with probability min

. XX) Q(Xn|X
(l,jj&f”; %) which is just mm(l,jf(gg 8EXJX)) due
to the discussion above as f(x) can be obtalne but not

P(x). Furthermore, if Q(x,|x*) = Q(x*|x,), where we call
@ a symmetric proposal function, this probability is further
simplified as min(1, ;ggf:g) If x~ is not accepted, the current
sample is still x,,. We refer the reader to [15] for details.

We will nontrivially extend the above techniques for our
solution to the densest lasting subgraph problem, and show its

feasibility over large scale dynamic graphs.

III. EMU: EM WITH A UTILITY FUNCTION

In this section, we introduce our general algorithm frame-
work called EMU (EM with utility function). The idea is to
integrate a utility function into the EM process, such that the
process is guided by the utility function towards maximizing
the likelihood of subgraph models with the desired density

property.

784

A. Utility Function for Densest Lasting Subgraph

Intuitively, the subgraph models and their occurrences with
more edges and larger time depth should be favored, given
a specified number of vertices. We justify this intuition by
providing a utility function to characterize “good” models.

A probabilistic perspective. Given a subgraph model M,
consider M as an “agent” that generates the observed data. If
M generates G, then a “reward” u(M) is granted. Otherwise,
M gets no reward. Define a random variable U that refers to
the utility the model is rewarded in this process. The goal is
to find a model agent that achieves the highest expected value
of U. In other words, we want to maximize

=u(M

which justifies our objective function in Section II.

E[U]) - Pr[Ga|M] (1)

Utility function. In particular, our utility function for a densest
subgraph model M(n, p,d) is defined as

_ d(p;—a
unpd)) =T, ™™™)
where p; is the existence probability of edge j in the complete
edge set E.(M) of the model (edges induced by every vertex
pair), d is the time duration of M, and « is a constant
that (implicitly) balances contrasting terms of edge abundance
and node size of occurrences generated by the probabilistic
model agent. Intuitively, the utility function favors subgraph
models with higher aggregated edge probability (thus denser
occurrences) and larger time duration d.

We next provide a justification by bridging the utility
function to a widely adopted semantics for static dense graphs
[12]. The density of a subgraph with edges Es induced by a
set Vs of m vertices in [12] is quantified by edge surplus of Vg,
which is defined as | Eg|—a (g), where «a is a counterbalancing
factor that penalizes subgraphs with too many vertices. Thus
the semantics strikes a balance between contrasting measures
of edge size and node size, by favoring subgraphs that are
neither “too small” nor “too large”. We show the following.

Theorem 1. The problem of computing densest subgraph that
maximizes edge surplus [12] is equivalent to finding a densest
lasting subgraph that maximizes u(M(n, p,d)) where d = 1
and p is either 0 or 1 for each edge e; € E.(M).

Proof. We show Theorem 1 by constructing the equivalence
between the problem of computing static dense subgraph with
edge surplus and a special case of our problem. Since the log
function is monotonic, maximizing Equation (2) is equivalent
to maximizing

3

a0 =3 o dlos =)
Consider a “flat” deterministic subgraph G = (Vay, E') where
the time depth is d = 1 and an edge probability p; is either 0

or 1, corresponding to a static graph over Vy¢. Let n = |Vay|.
Equation (3) becomes

@) => _ (-a)+> _ (-a)
~ (- ael+) |(5) - 12]

()

where we abbreviate E.(M) as E., denoting the complete set
of (g) edges in the subgraph model. Observe that Equation (4)
is exactly of the same form as edge surplus [12]. Theorem 1
thus follows. O

“4)

Equation (4) suggests that our subgraph model subsumes
edge surplus of vertex set Vg over expected edge size under the
random-graph model. Given Theorem 1, one can also verify
that our problem is in general NP-hard. Indeed, computing
optimal static densest subgraph with edge surplus, as a special
case of our problem, is already intractable [12].

B. The General EMU Framework

While a standard EM method with the Maximum Likelihood
estimation [6] can be used to compute subgraph models that
are likely to occur in G, it may yield occurrences that are
neither dense nor lasting. We now introduce our general EMU
framework incorporating a utility function.

Overview. Similar to EM, EMU methods also interleave the
E step and the M step. The difference is that in the M step,
instead of using the maximum likelihood estimate to get the
model parameters for the next iteration, EMU estimates the
model parameters by maximizing Equation (1). It is easy to
see that, if the utility function u(M) is a positive constant
value, then EMU is equivalent to EM. Thus, EMU can be
deemed a generalization of EM, expressing preference over
some property of the model to be searched for.

Specifically, a model JT/[l at iteration ¢+ of EMU consists of
three (sets of) parameters: (1) the number of vertices n;, (2)
the probability p;; of the j-th edge in a complete graph of 7,
vertices (1 < j < (E\)), and (3) the time depth d;. In the E
step of EMU, given M;, we estimate a probability distribution
ﬁi of the location of M;’s occurrence in Gp. In the M step,
based on the (expected) information collected from ﬁi in Gr,
we estimate a new model M, ; that maximizes E[U], and
continue with the next iteration of EMU.

IV. THE EMU ALGORITHMS

We next show that the general EMU framework gives birth
to efficient algorithms to compute the densest lasting sub-
graphs in large Gr. We use the utility function in Section III-A
by default, with generalized edge probability p; € [0,1]
(beyond the binary case in [12]), and for the case d > 1,
to characterize the densest lasting subgraphs desired in many
real-world applications.

Recall that a subgraph model M consists of a set of n
vertices Vyy (out of the N vertices V' of the dynamic graph),

785

edge probability p; for each edge j, and the time depth
d. During EMU, we need to match M with subgraphs in
Gr, starting from some snapshot. To perform this subgraph
match, one would need to enumerate all permutations of the
n vertices for isomorphism and examine p;. We first introduce
a technique to reduce the cost of subgraph matching between
a subgraph model and Gr, used by our EMU algorithms.

Linearized Vertex Order. To simplify the model evaluation,
we assign an arbitrary, but fixed order to the N vertices (V)
of the dynamic graph (let the list be v1,...,vn), as well as to
the n vertices V¢ of M (let the list be uq,...,u,). When we
evaluate any subset of n vertices v;,, . .., v;, from the dynamic
graph against M (to get the matching probability in our EMU
algorithms that follow), v;,,...,v;, are sorted in their linear
ID order in V/, and are mapped one-to-one with uq, ..., u, in
M. The vertex linearization ensures that a subset of n vertices
is matched against M as one subgraph rather than n! subgraphs
(all vertex permutations). As such, we avoid enumerating all
permutations of v; ,...,v; in the dynamic graph Gr.

Lemma 1. Assigning a fixed order to V and a fixed order to
Vm, and matching any subset of n vertices from V with Vi
following this order do not miss any occurrence of the densest
lasting subgraph models using the EMU framework.

Proof. Consider an arbitrary fixed order vq,...,vy of V.
Suppose the ground-truth densest lasting subgraph G, consists
of vertices vj,,...,v;, also in this order (i3 < -+ < 4y
may not be consecutive). There will always exist a subgraph
model M with vertices ui,...,u, that one-to-one map to
Vi, ..., V;,, respectively, and the edge probabilities p; of
M match the edge connectivity in G4. Thus, a correct EMU
algorithm should identify the lasting subgraph G, induced by
Vi, .., 0;, and the corresponding M simultaneously. O

n

The intuition of Lemma 1 is that, even though we give an
order to the vertices in V' and those in V5, the EMU algorithm
has the full freedom to set the probabilities of all the edges in
the model M, so that its vertices one-to-one match those in the
optimal instance (G4). We next introduce our EMU algorithm.
As remarked earlier, EMU follows EM by interleaving E steps
and M steps. We present the E step first and show the M
step in Section IV-B. The algorithm, in the end, returns the
subgraph model M, and the latent variable value—the model’s
best location L in Gr.

A. Generalized E Step

Consider iteration ¢ of EMU. In the generalized E step,
we assume that the model M; is given (Mg is initialized
arbitrarily in the first iteration). The goal of E step is to
estimate the location distribution ﬁi of this model in Gr.
However, there are (i\:) (T—czi) “locations” to examine, where
n; and cii are the number of vertices and time depth of JT/[Z
respectively, for any subset of 7; vertices starting from the
first 7' — d; snapshots. While the vertex linearization avoids
vertex enumeration cost, it is still quite expensive to examine
every locations and compute the probabilities of matching.

We tackle this challenge by adapting a statistical technique
called the Metropolis-Hastings (MH) method (reviewed in
Section II-B) to the lasting subgraph model discovery. The
idea is to selectively get samples from the whole space of
(711\7)(T —d;) locations, in such a way that they form a Markov
chain that has a stationary distribution, in which the probability
of “hitting” a location sample is proportional to the probability
that M; occurs in that location. Thus, thi§\ guided search tends
to find the true occurrence locations of M; quickly.

We present the E step as Algorithm GENERALIZEDE.

Algorithm 1: GENERALIZEDE (JVti7gT)

Input: model JV[I(ﬁ27 Djis d)) dynamic graph Gr
QOutput: a location distribution ﬁz .
1 C + getEdgeWalkComponent (7, d;, Gr)
2 pe < [Lieno) Pit - igney (1 = Pii)
3 Li = {(C,pc)}
4 while |L;| < n. do
Cprev < C
r < random(0, 1)
if r 2 pteleport then
to < C.tor C.t+ 1 or C.t — 1 with equal probability
if C.V is a connected component in G, . . ; then
| Cit<+to
with probability 1/2 do
e + pick an edge randomly from N, (C')
C.V + C.VU {e’s endpoint not in C.V }
remove a random v € C.V s.t. C' is still a
component

e ® 9 w;m

else
L C « getEdgeWalkComponent (7, di, Gr)

Pe < [ienee Pii - Tlig ey (1 = pii)
o < min (1, m Pe)

15
16

17
18

with pr()babi]ityp{ei a, set C' < Cprev
L; + LU {(C,peo)}

return L;

19
20

21
1 Function getEdgeWalkComponent (7, dAi, gr)
e < pick an edge uniformly at random from G, g
Cteet; Cd+ds
C.V <+ {two end points of e}
while |C.V| < 7i; do

e < pick an edge uniformly at random from N, (C')
L C.V «+ C.VU {e’s endpoint not in C.V'}

return C'

N U R W N

EMU Algorithm: E step. We introduce the details of E step.

Function getEdgeWalkComponent. We start with a
procedure invoked by GENERALIZEDE, denoted as
getEdgeWalkComponent, to randomly ‘“grow” an n;

vertex component starting from a selected edge (thus denser
areas in Gp have a higher chance to be reached). As shown
in line 2 of getEdgeWalkComponent, it chooses an edge
uniformly from G, ;. which denotes snapshots Gy to
G i in Gy. In line 3 of the function, we initialize a
component object C' (which in the end will grow to the

786

same size as 3\7[1 and be returned). We set its starting time
field C'.t to be the random edge’s time, and its time depth
field C.d to the current model’s time depth. Line 4 of
getEdgeWalkComponent initializes component C’s vertex set
C.V as the endpoints of the first edge. The loop (lines 5-7)
grows C by randomly selecting edges from N,(C), where
N.(C) refers to the set of neighboring edges of C' (i.e., those
edges with exactly one endpoint included in C).

Main algorithm. The algorithm GENERALIZEDE invokes func-
tion getEdgeWalkComponent to obtain a component C' (line
1). It then calculates the probability of generating the specific
component C, based on the edge probabilities p;;’s for each
edge j in ﬁi, and the set of edges F(C') that are in component
C (between C.V in the C.d snapshots from C.t). In line 3,
the component and probability pair is added to the location
distribution set L;. The loop in lines 4-20 will select more
components to add to ﬁi, until the number is n., a perfor-
mance/accuracy tradeoff parameter we shall study in Section
VL L; is finally returned in line 21.

“Teleport” or “Stay”?. In each iteration, the algorithm GEN-
ERALIZEDE decides whether to “teleport” to reinitialize a
component C' or to continue to perform local incremental
update to the current component C. This is decided by a
probability threshold ptciepor: (line 6). (1) With probability
1 — Dteteport, We do not “teleport”, i.e., to arbitrarily jump
to anywhere in the dynamic graph by calling getEdgeWalk-
Component (line 16). (2) Otherwise, we randomly change
the component’s starting time C.t in its +1 interval (lines
8-10). Then in lines 11-14 we do minor adjustment to the
vertex set C.V. The intuition of introducing feleport is to
strike a balance between exploitation (sticking with local good
candidates) and exploration (exploring remote good locations).
This is especially necessary when the graph is not connected.
We will further examine the parameter piejeport in Section VI.

“Accept” or “Reject”? Line 17 computes the probability of

the current component C' given the model JT/L . The parameter
« at line 18 denotes the “acceptance” probability of the current
component C, which is the ratio between pc (the probability
of C given the model) and the probability of the previous
(accepted) component, but it should not exceed 1. At line 19,
with probability 1 — «, C' is rejected and set to the previous
one. Note that GENERALIZEDE returns a distribution of the
locations (latent variable); the “expectation” (as in “E” of EM)
will be readily performed in the M step in Section IV-B.
Moreover, upon the return of the last run of E step, the location
(i.e., match instance C) in I:i with the maximum probability
pc 1s considered as the best match instance of the final model.
We illustrate GENERALIZEDE in Example 1.

Example 1. Figure 2(a) shows the current model JT@ where
the time depth is cfz = 3,Mn; = 4, and the edge probabilities
are as shown—for clarity, all solid edges in Figure 2(a)
have probability 0.7 and all dashed edges have probability
0.1. Figure 2(b) shows a component C' involving the same
four vertices across three consecutive snapshots Gs, Go, and

[71 N

(b)

Fig. 2. Illustrating details of GENERALIZEDE. (a) The model J/\\/EL where
n; = 4,d; = 3, and each solid edge has probability 0.7 and each dashed
one 0.1 (simplified for clarity). (b) A component across three snapshots G'g
to G1p with the same four vertices.

G, Le., Cit 8 and C.d = 3. Then the probability
of this component as calculated in line 2 or 17 is p.
(0.73-0.3-0.1-0.9) - (0.74-0.92) - (0.73-0.3-0.1-0.9), where the
three sets of parentheses correspond to the edges from Gg, Gy,
and Gy, respectively. For example, for Gs, the contribution
to pc is Q.73 -0.3-0.1-0.9, because among the four solid
edges in M; of Figure 2(a), Gg has three of them (each with
probability 0.7) and the missing one is with probability 0.3,
while for the two dashed edges, one is there (with probability
0.1), and one is absent (with probability 0.9).

We now prove some property of the GENERALIZEDE al-
gorithm, as will be part of the correctness proof/validation of
the whole EMU algorithms in Section IV-C.

Theorem 2. GENERALIZEDE performs a Markov chain
Monte Carlo sampling, specifically, the Metropolis-Hastings
method with a symmetric proposal function, returning a loca-
tion sample drawn from the probabilistic match instances of
M; in Gr for iteration 1.

Proof. First, the way in which GENERALIZEDE generates
component (i.e., location) samples follows a Markov chain.
This is because the next sample, either through lines 8-14
or through line 16 (getEdgeWalkComponent) only depends
on the previous step sample (at most). Second, this Markov
chain is finite (a finite number of states), irreducible (i.e., from
one component, the algorithm can get to any other component
with non-zero probability), and aperiodic (lines 7-16 ensure
that with non-zero probability, the next sample/state stays the
same—hence aperiodic). Thus, this Markov chain must have
a unique stationary distribution [16].

Finally, GENERALIZEDE follows the Metropolis-Hastings
method. In particular, the proposal function is symmetric, as
the probability of going from a component Cp,, to the next
component C' is the same as the probability of going from C
to Cprey. The C computed from lines 6-16 is a “candidate”
in Metropolis-Hastings, and the « in line 18 is its acceptance
probability. Since the distribution of match instances of M;
in Gp fits the MH sampling process, it must be the unique
stationary distribution. O

787

B. Generalized M Step

We now proceed to describing the generalized M step of
EMU. Given a location distribution L; returned by GENER-
ALIZEDE, the goal of M step is to estimate (the parameters
of) an updated model M1, which in turn will be used by the
next iteration (z 4 1)’s E step. Our general idea is to estimate
the parameters of M, that maximizes E[U], which is to get
three parts: number of vertices 7,41, edge probabilities p; 11,
and time depth d, . The key idea is to apply the result of
solving the optimization problem associated with the utility
function in Equation (2) to set the edge probabilities (Theorem
3), and to use Coordinate Ascent [17] and Gradient Ascent
[18] to optimize 7,41 and Czi+1. The algorithm is presented as
GENERALIZEDM.

Algorithm 2: GENERALIZEDM (J\A/ti7gT)

Input: distribution ii, model J\A/El(ﬁl, Dijis (fl) dynamic graph
Gr

Output model M1+1 . .
1 M1+1 <— null; Lp'r‘ev — Lz, npre'u — Mg dpre’u —d;
2 while JV[1,+1 not converged do
3 L« Lyrev; d < dpres
4 N < Nprev OF Nprey —

probability .
for each component C' in L do

if 7 > Nprev then
e < an edge uniformly at random from N.(C')

L C.V «+ C.VU {e’s endpoint not in C.V'}

else if 7 < fiprey then
L remove random v € C.V s.t. C is still connected

1 or fiprev + 1 with equal

® 9 & w

10

d« gradientAscentTimeDepth (ﬁ, , ci)

M getModel(ﬁ7 n, UZ)

if ﬁj+1 = null or u(M) > u(JV[iH) then
L J/\/\Ei+1 —~ M

u(M))

u(Miy1)
with probabtlzty a do

L Lprev <~ L npre'u — n dee'U — d

11
12
13
14

15 o < min (1,
16

17

18 return M,

Function gradientAscentTimeDepth (ﬁ, n, CZ1'+1)
while true do

Myp < getModel (L“n dz+1 + h)

M_p, < getModel (Lz,n d7,+l h)

Au — u(Myp) —u(M_p)

if Au < e then

| break
Au

&i+1 — d;+1 +v35r

B Y N O

return d;

1 Function getModel (f/i, 7, (f)
foreach edge j in the subgraphs identified by L; and d do
nj < E[number of snapshots that has edge j] from L;

nt
J

Pi= A\ 3

| return M(7, pj;, d)

EMU Algorithm: M step. Lines 2-17 perform iterative Coor-
dinate Ascent optimization [17] over three sets of parameters
of M1, namely pj 41, Miy1, and cZiH. Like the E-step, the
algorithm does Metropolis-Hastings sampling to figure out the
best model. In line 4, with equal probability, the algorithm
tries the adjacent values of the previous iteration’s number of
vertices. Lines 5-10 revise each component accordingly. Line
11 invokes the function gradientAscentTimeDepth (below the
main function) to optimize the time depth d;;;. Line 3 of
gradientAscentTimeDepth uses the current setting of L; and
7, and first try time depth di+1 + h, a value slightly greater
than the current (LH (e.g., h = 2). Then it tries the time depth
di+1 — h. In either case, it calls the function getModel to set
the edge probabilities.

Line 2 of the function getModel iterates over each edge of
the subgraph components identified by L; and d, and retrieves
the “expectation” result as in EM. Recall that L; consists of
pairs (C, pc). Suppose edge j in line 2 is between vertices u
and v in the subgraph model, which are mapped to vertices
u; and v; in each component i, respectively. The idea is
to perform a weighted “average” (expectation) over the |C|
components, to draw a conclusion whether edge 7, i.e., (u,v),
exists in each of the d snapshots. The expectation will be a
value in [0, 1]. Summing this expectation over the d snapshots
(and based on the linearity of expectation), the result is the
expected number of snapshots that contain a match for edge
7, which is n;' in line 3 of getModel. Then in line 4, the edge
probability p; is set based on the optimization result using the
utility function (Theorem 3).

Example 2. Revisiting the example in Figure 2, suppose
Figure 2(a) is the current model and Figure 2(b) is only one
of the |C| components in L;. For clarity, suppose there are
only two components |C| = 2, and the component shown in
Figure 2(b) has probability 0.8, while the other component
(not shown) has probability 0.2. Line 2 of getModel iterates
through each edge of the model in Figure 2(a); let us take
one edge as an example, the left vertical solid edge. In the
component shown in Figure 2(b), this edge appears in 2
snapshots (Gg and Gg) out of d=3 snapshots. In the other
component not shown, suppose this edge appears in all 3
snapshots. Then the expected value nj calculated in line 3
of getModel is 2 x 0.8 + 3 x 0.2 = 2.2. The edge probability
in line 4 is p; = 22 — (.856. This is repeated for all other

3
edges of the model in Figure 2(a).

Back to the gradientAscentTimeDepth function, in lines 5
and 8, it estimates the gradient of the model utility function
and adjusts Cii+1 with a value proportional to it (where 7 is a
small constant), based on Gradient Ascent [18]. Lines 6-7 are
to exit the loop at convergence. This function estimates the
optimal d;y; under the current 7 and p;’s.

After gradientAscentTimeDepth is invoked in line 11 and
the best d is obtained, the algorithm retrieves the currently
c/l\losen model in M at line 12, and at lines 13-14 sets it to
M;4q if it is the best so far. At lines 15-17 it completes the

788

MH sampling by setting the acceptance probability a. Once
the current candidate is accepted, its L, n, and d are bookkept
as the next iteration’s starting point (line 17).

EMU iteratively interleaves GENERALIZEDE and GENER-
ALIZEDM, until the model converges, and the maximum prob-
ability component is returned as the densest lasting subgraph.
We analyze the correctness of GENERALIZEDM.

Theorem 3. With the utility function in Equation (2), given the
parameters 1 and d of the model and a location distribution
L of the model in the dynamic graph, the edge probability
parameters p; that maximizes E[U] in Equation (1) is p,

ny +
J .
i where n;

is the expected number of occurrences of

edge j in L (as in line 3 of the getModel function).

Proof. Given a model M(#,p,d), the probability of the
weighted average component of L (as in line 3 of getModel
and Example 2) is:

Pr[Gy|M] = HjEE p; - ngE(l _

where F is the set of edges in this component. From Equations
(2) and (5), we get the expected utility

E[U] = u(M) - Pr[Gq|M]

= HjeEC(M) o). HjEE Pi- ngE(l —Pi)

Pj))

(6)
Taking the log on Equation (6), we get
InE[U] =
ZJ.EEC<M) d(pj —a) + ZjeElan + ngE In(1 — p;)
@)
Thus, to get maximum E[U], setting
OmE[U] . nf d-nf
OmEU] _ gy m 7n @®)
dp; P l=p;
gives us p; = 5 as given in the theorem. O

Theorem 3 justifies the choice of the getModel function (line
4). We now justify the correctness of GENERALIZEDM.

Theorem 4. Given the location distribution IA/, from GENER-
ALIZEDE, the GENERALIZEDM algorithm does Coordinate
Ascent to optimize three groups of parameters of model M:
n, p;’s, and d.

Proof. The loop in lines 2-17 (particularly lines 4, 15-17)
of GENERALIZEDM does Metropolis-Hastings sampling of 7,
with acceptance probability «, and the sample probability is
proportional to the utility of the corresponding model. Line
11 calls the function gradientAscentTimeDepth to set d using
gradient ascent. Finally, the algorithm sets p; in line 4 of
the getModel function as proved in Theorem 3. Overall, this
simulates a coordinate ascent optimization where we optimize
three groups of parameters alternately. O

Both GENERALIZEDE and GENERALIZEDM employ
Metropolis-Hastings sampling—although there are no theo-
retical guarantees when it will converge to the stationary
distribution, in practice [15], several thousand iterations are
typically used as the “burn-in” period. After that, the cost of
GENERALIZEDE is linear to the model size, given that the
distribution size n. is a constant (we study n. in Section VI,
of which we use 50 as the default). Similarly, the cost of
GENERALIZEDM has the cost of gradient ascent as a linear
factor, which takes O(1/e) iterations [18] where e is the
allowed error in line 6 of gradient AscentTimeDepth.

C. Validation of EMU Algorithms

In Sections IV-A and I'V-B, we have individually shown the
correctness of the generalized E step and M step, respectively,
in terms of their own roles. It remains to show that our
extension from EM to EMU is valid, i.e., the EMU algorithms
still converge to the optimum as EM does. We do so by proving
that EMU falls into a more general statistical optimization
framework called MM [7], which has been proven to converge
to the optimal objective values.

Preliminary on MM. The MM algorithm framework is an
iterative optimization method which exploits the convexity of
a function in order to find their maxima or minima. The MM
stands for “Majorization-Minimization” or ‘“Minorization-
Maximization”, depending on whether it is a minimization or
a maximization problem, respectively. EM can be treated as
a special case of MM, although EM has been more widely
known for its applications.

Let f(0) be the objective function for which we want
to find the location of the maximum value, as illustrated in
Figure 3 (the minimization problem is similar). The MM
algorithm works by finding a surrogate function g(6|6;) that
minorizes f(0), meaning that f(0) > ¢(0]6;) for all 6, and
f(0;) = g(6;16;), as shown in Figure 3. Note that 6; denotes
the parameter value at the 4’th iteration of MM. Thus, 6; (with
a subscript) is a constant, while # is a variable. g(6|6;) is a
function over #. The above minorization condition says that
the function curve/surface g(6|6;) lies below that of f(#), and
is tangent to it at the current iteration 6 = 60; (Figure 3).

90100

0i1 0;

Fig. 3. Ilustrating MM. f(0) is the objective function, and g(0|6;) is the
surrogate function we maximize at each iteration ¢ instead. This continues for
iteration 7 + 1, and so on.

MM is also iterative, where each iteration has two “M”
steps. The construction of the minorizing function g(6|6;)
constitutes the first M step, and the second M step maximizes
the surrogate g(6|6;) rather than f(6) directly. The marching

789

of 6; and the surrogate functions relative to the objective
function is shown in Figure 3. We refer the reader to [7] for
more details of MM.

Theorem 5. The EMU algorithm (given in Sections IV-A and
1V-B) is also an MM (Minorization-Maximization) algorithm.

Proof. From the EMU algorithm, we construct the correspond-
ing f(0) and the surrogate function g(0|6;) in MM. The very
first question is what 6 corresponds to in our EMU algorithm.
Let 6 be a tuple (M, L), where M is the subgraph model
parameters (edge probabilities, number of vertices, and time
depth) and L is the location (and the component there) of this
model in Gr. Then we define:

F(0) = FOV L) = max{u(VC) - PALDO] - ©)

9(0105) = g(M, L|M;, L;) = u(M) - Pr[(L;|M)] (10)

where M,; and L; are the model parameters and location/co-
mponent obtained in iteration i, respectively. In words, f(6),
which is just f(M, L), ignores its input argument M, but
only uses Lj; it is defined as the maximum product of the
utility of some model M’ and the probability of the input data
location/component given this model M. f (0) can be deemed
the objective function, as essentially we look for L such that
f(0) is maximized, i.e., the optimal data location such that,
with the suitable model there, E[U] is maximized.

The surrogate function g(6|0;), which is also a function of
M and L (given M; and L; computed in iteration ¢ of EMU),
is the product of the utility of M and the probability of the
computed constant L; at iteration ¢ (data location/component)
assuming model M. Note that, opposite to f(0), g(0]6;)
ignores its input argument L, but only uses M.

We construct the two functions (9) and (10) following this,
so that they satisfy the definition of “surrogate function” of
MM as remarked earlier (Figure 3). That is, it holds that
9(010;) < f(0) for all 0, since f(#) uses the “best” model
M w.rt. the input argument L. Note that we assume the
input argument L always matches M, i.e., given M, L is
the location of M with the highest probability. Then we can
see that ¢(0|6;) < f(6), as f(0) > u(M) - Pr[(L|M)] >
w(M) - Pr[(L;|M)] = g(6]0;). The other condition (tangent
point) also holds, i.e., f(0;) = g(6;]6;), because f(M;, L;) =
g(M;, Li|M;, L;), as the M step of EMU exactly sets the
optimal M based on L; at this iteration.

The first M step of MM corresponds to the E step of
EMU, which constructs the surrogate function g(6|6;) at 6;
of iteration ¢. Basically, it is to compute L; given the M;
resulted from the previous iteration. Thus, ¢(#|6;) is ready
for operation. The second M step of MM corresponds to the
M step of EMU, which, given L;, maximizes the surrogate
function g(6]6;) by computing a new M;, ready for the next
iteration (M,; will be the initial M, for iteration ¢ + 1).

This completes the proof of Theorem 5.

O

Remarks. Our EMU algorithm belongs to the category of
random search algorithms. Random search algorithms have

been shown to have a potential to solve large-scale problems
efficiently in a way that is not possible for deterministic
algorithms, especially for NP-hard problems [19]. Theorem 5
shows that our algorithm belongs to MM, and hence converges
to the optimal solution. Here we give some intuitions on the
efficiency of finding good-quality (dense) subgraphs, even if
they were very rare. Suppose there are only k high-quality
subgraph components matching a good model after some
iterations (for a very small %k, such as 1 or 2); assume
each of them matches the model with a high probability
p*, while each of the remaining n — k low-quality subgraph
components matches with a low probability L (for a large
ratio r). From Theorem 2, GENERALIZEDE samples the n
subgraphs with a probability proportional to their respective
matching probabilities to the model. Thus, in one iteration,
the probablllty one of the k high-quality subgraphs is chosen
is € m. After m iterations, the probability
that at least one of the high-quality subgraphs is chosen is
Prhit)y =1-(1—-¢™ =1-— (#f_l)) , for a small
integer £ and a large » > 1. Since #ﬁ_l) < 1, the
probability Pr(miss) of not finding a high-quality model
decreases exponentially fast with the sample size m. Moreover,
it is intuitive that as the number of good subgraph components
k increases, the decrease of Pr(miss) is even faster; perhaps
surprisingly, this is also true when r increases. This is because
as the difference between the good and other match instances
is more pronounced, the weight/ratio of getting a good model
is higher since each instance is chosen with a probability
proportional to their matching probabilities.

V. EXTENSIONS TO MULTIPLE EDGE/VERTEX LABELS

In this section, we discuss several extensions to our basic
EMU utility function for the densest lasting subgraph problem.
Our discussion in Section IV only considers the density from
the perspective of graph structures, without taking into account
edge or vertex labels. In practice, edge and vertex labels are
also an important part of the information in determining and
reporting the densest structure. For example, in Twitter graphs
where vertices are people and edges are tweet messages,
edge labels may indicate various hashtags or message content
topics. Then one may be interested in dense subgraphs over
time considering, as well as reporting “dense” message topics.
More formally, we add to our formulation in Section II a label
function L : V U E — X that assigns a vertex/edge a label
from a finite alphabet >, where E = Uthl FE,.

Adding node/edge labels. We show, in response, that edge
(or vertex) label distributions can be readily incorporated to
the model. Given the subgraph model M, in addition to n
and d, we extend the edge distributions p; into edge-label
distributions /;; (I € X is a label) for edge j. Vertex labels are
similar, and we omit the discussion here. Moreover, we use
pLj =1=3",cs pi; to denote the probability that edge j does
not exist. Accordingly, we extend the utility function to

_ AP ex Prj—a)
FO0 =1L, e € (11)

790

Theorem 6. Given the utility function in Equation (11), a
location distribution L, and the current parameters 1 and d
of the model, to maximize E[U] (Section III-A), the edge label
probaf)ility pi;(l € E) of the model should be set to p; =
ny;

d2—dn?,
snapshots in which edge j has label | (resp., does not exist)
among the d snapshots in L.

, where n\; 0 (resp., nT i¥) is the expected number of

Proof. Equation (6) now becomes
E[U] = f(}0) - Pr(Gu| V]
- A ex brj—) |
ILce.oo =™ I cor,ennis

In addition, we have the constraints that 3,/ ;o = 1.
Taking the log over Equation (12), and using Lagrange Mul-
tipliers [18] over the constraints, we have:

=d Z]GE () ZZGZ

ZjEE,l]EZU{J_} npu;+)‘(Zlezuu} Pij

12)

Plyj

pl]7 Oé)+

—1)

(13)
Thus, for [€ ¥, we set
oA . nj
S L R (14)
i P
Moreover, N
OA n
= = =0 (15)
0pL; Pij
Given Equations (14) and (15), together with
Diesuquy Py = 1 and Zlexuu}”;‘ = d, we get
A = —d— /d2— dnL., which, combined with Equation
+
nlj

(14), gives py; = O

\ /dA2—(i’nij '
Given Theorem 6, we can modify the getModel() function in
the GENERALIZEDM to set the model parameters accordingly.
Likewise, in lines 2 and 17 of the GENERALIZEDE, we modify
the calculation of probability pc following Equation (12).

Adding node/edge weights. In the same vein, we may take
advantage of the flexibility of the EMU framework by setting
the utility function for other scenarios, such as giving weights
to edge/vertex labels for appearing in the densest lasting
subgraph, as well as handling parallel edges (i.e., multiple
edges at the same time between two vertices). We omit these
discussions and will leave them as future work.

VI. EXPERIMENTS
A. Datasets and Setup

Datasets. We use four real-world datasets: (1) Twitter data.
We use the Twitter Stream API [20] to retrieve real-time
Twitter graphs from January 22, 2017 to May 21, 2017. For
communication datasets (Twitter and Stack Overflow below),
we treat users as vertices and edges as communications,
and the duration of an edge is the time period in which

the user who initiates the communication keeps active and
communicating with one or more users (without pausing for
more than 30 seconds). (2) Taxi data. The trip data is about
30GB, containing the information of all taxi trips in NYC in
2013 [21]. It has 14 attributes. Each trip from the pick-up to the
drop-off locations is considered as an edge, and the duration of
the edge is the trip time. We treat the number of passengers
as an edge label. (3) Stack Overflow data [22]. This is a
network of interactions on the web site Stack Overflow [23].
There are three types of interactions represented by a directed
edge (u,v,t), where user u answered or commented on user
v’s question or comment at time t. (4) NY events data [24].
This dataset contains historical traffic and transit events in NY.
We partition the NY state area into 0.0011-degree latitude by
0.0012-degree longitude grid areas (i.e., 122 meters by 100
meters). Each grid area is a vertex and the event type is a
vertex label. When a transportation event happens at a vertex
(e.g., an accident), we create eight edges indicating its impact
to its eight surrounding grid areas (vertices), and the duration
of the event is the duration of the edges. We report the statistics
of the datasets in Table I.

TABLE I
STATISTICS OF THE DATASETS
Average
Dataset #vertices #edges inter-ar- Data
rival time Size
Twitter 17,274,424 119,604,457 0.1 sec 4.9GB
Taxi 5,654 169,100,000 0.186 sec 5.62GB
Stack 2,601,977 | 63,497,050 3.775 sec 1.64GB
Overflow
NY events 429,456 10,148,112 161.62 sec 138.7MB

Methods. We compare our methods with two related ap-
proaches in [4] and [5]. briefly reviewed below.

Dense pattern. The “Dense pattern” approach in [4] returns a
set of vertices that are similar with respect to the snapshots
they appear in, and that have dense edges between them (above
a threshold). There are a few issues in this approach for the
problem we study. First, the “similarity” above is based on
the set similarity, for the set of snapshots each vertex appears
in. This is too restrictive. Second, the dense pattern approach
returns “small” subgraphs, i.e., a small number of vertices.
In step 1, [4] uses a MinHash method for finding a set of
vertices. If the probability that two vertices are similar is p,
the probability that three vertices are similar is p2, and so on.
Thus, the probability that such similar pair of vertices joining
a returned vertex set decreases exponentially. Finally, it does
not consider “continuity” strength over time.

Dense temporal subgraph. The “dense temporal subgraph” ap-
proach in [5] simplifies the search into two phases: (1) locating
top-k promising snapshot intervals without considering any
subgraphs, and (2) finding the heaviest-weight subgraph in
each of those intervals. Although this approach is efficient,
there are a few major issues for the problem that we target at.
First, it uses a model where all edges are present in all graph
snapshots, while only edge weights vary from one snapshot

791

to another. The “evolving convergence phenomenon” relied
upon in [5] is to assume that edge weights of the whole graph
increase or decrease in the same direction at any time. This
does not hold for the applications we look at. For example,
for communication graphs, over a long period of time, the
number of times of starting a communication should match the
number of times of ending a communication, and the weight
increase and decrease may happen simultaneously in any graph
snapshot. Second, it would tend to return huge subgraphs.
This is because the connection between two positive weight
components is a single edge (with a minimum weight of
—1 in each snapshot of the selected time interval). Thus,
there is a good chance that the algorithm will merge the two
positive components to have a higher total weight, resulting
in a component too large to be a meaningful result.

We implement all the algorithms in Java. The experiments
are performed on a MacBook Pro machine with OS X version
10.11.4, a 2.5 GHz Intel Core i7 processor, a 16 GB 1600
MHz DDR3 memory, and a Macintosh hard disk.

B. Experimental Results

We first study the effectiveness of our EMU approach, i.e.,
the quality/density of the subgraphs discovered. We compare
our method with the two related methods, denoted as “Dense
pattern” [4] and “Dense temporal” [5], respectively. For a
fair comparison, we define a metric called density score
s = [m — «(})]d®, where n is the number of vertices in
the found subgraph pattern, d is the time duration (number of
consecutive snapshots), and m is the number of edges in this
subgraph that appears in at least half of the snapshots (d/2).
Following [12], we set « = 1/3 and 8 = 1/2 by default.
Intuitively, this metric indicates the “surplus” number of edges
compared to a (discounted) complete graph over all vertices
in the selected subgraph and across d snapshots.

Effectiveness on Real Datasets. We report our findings below.

Twitter. We first evaluate the methods using the Twitter dataset.
Recall that two parameters in our algorithms are the location
distribution size and the teleport probability in GENERAL-
1IZEDE. Figure 4 shows the density scores of the densest
lasting-subgraphs returned by EMU over Twitter data, as we
vary the location distribution size. The same figure also shows
the density scores of the results returned by previous work
dense pattern [4] and dense temporal [5] respectively (which
remain constants as they do not have such a parameter).

As the distribution size increases, the density scores im-
prove, eventually converging. This is because exploring a
larger location distribution gives a higher chance to get to a
denser lasting-subgraph, indicating a trade-off between result
quality and performance. We use 50 as the default distribution
size. As explained earlier, the dense pattern approach [4] tends
to return small subgraphs, which get smaller (but usually
positive) density scores. The dense temporal approach [5], on
the other hand, tends to return subgraphs that are very large,
resulting in negative density scores (i.e., the number of edges
are few compared to the complete graph over those vertices).

15 800 60 15
1]
10 50 0
600 © E*E__H
5
30 5 @—6—o——o—9o
400
® 0 o —B—EMU 2 5 o
5]] Dense pattern 1) S
> 200 > 10 >
] iDensetem oral|] 2 2 o0—6& o O = —5—EMU
] F 2 2 2 5 :gzDsnss pattern
3 8 8 ° 8 Dense temporal
o -10 0 —B—EMU
-10 Dense pattern R
15 :gzDense temporal 10
-200 20 -15
A A A A A A A A A -30 A A A A A
A A A
25 -400 40 L £ 20
0 100 200 300 400 500 0.2 0.4 0.6 0.8 1 0 100 200 300 400 500 0 0.2 0.4 0.6 0.8 1
Teleport probability Distribution size Teleport probability

Distribution size

Fig. 4. Density vs distrib. size(Twitter) Fig. 5. Density vs teleport prob.(Taxi) Fig. 6. Density vs distrib. size(Stack) Fig. 7. Density vs teleport prob.(Events)

10° x10° 108 106
35 0 A\ 45 F A A A A
A—AD—A— A A 4
= AA A 8 5 —=—EMU .
g &hAhA A A 5 S 10 Dense pattern o
2 107 ﬁ 25 @ iDense temporal 8 35
S —B—Emu 8 g 3 3
3 :2: Dense pattern S 2 3 S
b= Dense temporal < b 108 Los
=3 215 a 3
£ £ —B—EMU £ g,
310 %” ; :g: Dense pattern 3 EY —B—EMU
£ o Dense temporal £ .5 1< :g: Dense pattern
£ £ E£10°6-—© © © £ Dense temporal
05 1
G—6—6—6—©
1056=0=6 (=] © 0 104 05
0 100 200 300 400 500 0 0.2 0.4 06 08 1 0 100 200 300 400 500 0 0.2 0.4 0.6 0.8 1
Distribution size Teleport probability Distribution size Teleport probability

Fig. 8. Speed vs distrib. size(Twitter) Fig. 9. Speed vs teleport prob.(Taxi) Fig. 10. Speed vs distrib. size(Stack) Fig. 11. Speed vs teleport prob.(Events)

900 107 102 5
4
800 10 —B—No label
—O—With labels 5 No label
—~ —&—No label 35 "
700 § —©— With labels 98 B —EB—With labels
° &
£ 600 —8—No label 2 o 96 2
s —6— With labels S 5 S 3
3 3 S 94 g
3 @ S
2500 = > <
2 3 G 92 H
S =3 [=4 o
& 400 S g 5,25
D 3 9 3
= [
800 = 88 S
200 86 2
100 8.4 ©
100 200 300 400 500 0 100 200 300 400 500 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
Distribution size Distribution size Teleport probability Teleport probability

Fig. 12. Density w/ edge labels(Taxi) Fig. 13. Speed w/ edge labels(Taxi) Fig.

Taxi. In Figure 5, we vary the teleport probability between 0.1
and 0.9, and measure the density scores over Taxi.

(1) The maximum density score occurs when the teleport
probability is around 0.3 (which we use as default). Indeed,
teleports help when the search is stuck at a local maximum.
Too frequent teleports, however, may prematurely abort or
delay a good location.

(2) The density scores achieved over the Taxi dataset in Figure
5 are much higher than the Twitter dataset in Figure 4. This is
due to the nature of the datasets—traffic network tends to be
much denser with longer-lasting edges than communication
networks. The dense pattern [4], however, still ranks small
subgraphs as they are much more likely to be discovered, thus
resulting in small positive density scores. The dense temporal
subgraph [5], on the other hand, returns subgraphs that are too
large with negative density score.

Stack Overflow and NY Events. Similarly, we report the den-
sity scores for various distribution sizes over the Stack Over-
flow dataset in Figure 6. The trend is consistent with that in

792

14. Density w/ vertex labels(Events) Fig. 15. Speed w/ vertex labels(Events)

Figure 4, except that the density scores are higher. Varying
the teleport probability, we report the result using NY events
data in Figure 7. The density scores are relatively low for this
dataset, as the events such as accidents and delays are usually
not very dense. Moreover, compared to Figure 5, the density
scores are less sensitive to the teleport probability.

Efficiency on Real Datasets. We next evaluate the efficiency,
reported as the number of processed edge changes per second,
as shown in Figure 8 for Twitter. For EMU algorithms, as
we increase the location distribution size, the performance
degrades. This is because the increase of distribution size
significantly slows down both the E and M steps. We also
see that the dense temporal approach [5] is significantly faster
than EMU, while the dense pattern approach is slower. Dense
temporal approach is faster because its phase (1) discards a
large amount of data, as it only heuristically selects a small
number of intervals, which also eases its subgraph search in
phase (2). The dense pattern approach [4], however, needs to
process a large “transaction table” for the dataset.

In the same vein, we also measure the performance of
the algorithms over the Taxi dataset for various teleport
probabilities in Figure 9, over the Stack Overflow dataset for
various distribution size in Figure 10, and over the NY events
dataset for various teleport probabilities in Figure 11. The
performance decreases as the transport probability increases,
because performing a transport is more expensive as it needs
to obtain a whole random subgraph component, while making
local changes only slightly revises a component.

Adding vertex/edge labels. We also investigate the effective-
ness and performance of EMU algorithms when we consider
edge or vertex labels in the graph. The two approaches in [4]
and [5] cannot cope with vertex/edge labels.

For the Taxi dataset, we consider the number of passengers
in a trip as an edge label. Thus, the densest lasting-subgraph
model found also contains matching edge labels. Our results
indicate that the densest lasting-subgraph model contains edge
labels with mostly 1 passenger and some 2 passengers. The
density score comparison for with vs. without edge labels
under various distribution sizes is shown in Figure 12. We
can see that the density scores are in general lower when we
consider edge labels. This is because the chance of matching
an edge in the model with a specific label is smaller, compared
to simply just matching an edge; thus it can even be proved
that the density score of the densest lasting-subgraph will be
smaller than that without edge labels.

In Figure 13, we show the performance comparison with
and without edge labels for the Taxi dataset. It becomes slower
when we consider edge labels. This is because essentially the
entropy of the problem instance is higher when we consider
edge labels, i.e., there are more variables in the dynamic graph.
Thus, it takes longer time for the EMU algorithms to converge.

We next examine the effect of vertex labels using the NY
events dataset, where each vertex indicates a grid area where
an event happens, and the vertex label indicates the type
of events. We show the results of density scores in Figure
14 and performance in Figure 15, as we vary the teleport
probability. The densest lasting subgraph model discovered
in our experimental result contains vertex labels “delays” and
“accident”, indicating that they are the most common event
types. The comparison result with and without vertex labels
is similar to its counterpart with and without edge labels—the
density scores and performance are lower with vertex labels,
for the same reason as discussed above for edge labels. We
find that the optimal teleport probability is around 0.1.

Summary. Our experimental study using four real-world data
sets demonstrates that our EMU framework is effective in
solving the problem of finding densest lasting-subgraph as
observed in many dynamic graph applications. Our algorithms
outperforms two state-of-the-art densest subgraph discovery
methods in [4] and [5] in effectiveness measured by density
score, and strikes a balance between too small and too large
dense subgraphs. The location distribution size of our EMU
algorithms provides a tradeoff between result quality and
performance, and the optimal teleport probability is often

793

between 0.1 and 0.3 in our empirical study. Finally, EMU
algorithms readily extend to coping with edge or vertex labels,
which cannot be supported by the baseline methods.

VII. CONCLUSIONS

We propose a novel probabilistic subgraph model to char-

acterize densest lasting subgraphs in a dynamic graph, and
a stochastic approach, EMU, which nontrivially extends EM
with a utility function for the desired objective. Based on the
semantics that we propose for densest lasting subgraphs, we
devise EMU algorithms using MH sampling and coordinate
and gradient ascent, and prove the correctness of EMU by
showing its membership in MM algorithms. Our experiments
over four real-world datasets verify the effectiveness and
efficiency of our algorithms.
Acknowledgments. Tingjian Ge is supported by NSF grants
IIS-1149417 and IIS-1633271. Yinghui Wu is supported by
NSF IIS-1633629, USDA/NIFA 2018-67007-28797, Siemens
and Huawei HIRP.

REFERENCES
[1]

T. R. Weiss, “In emergencies, can cell phone network overload be
prevented?” Computer World, 2007.

[2] J. Chen and Y. Saad, “Dense subgraph extraction with application to
community detection,” TKDE, 2012.

[3] A. Stathopoulos and M. G. Karlaftis, “Modeling duration of urban traffic
congestion,” Journal of Transportation Engineering, 2002.

[4] C. C. Aggarwal, Y. Li, P. S. Yu, and R. Jin, “On dense
pattern mining in graph streams,” VLDB, 2010. [Online]. Available:
http://dx.doi.org/10.14778/1920841.1920964

[5] S.Ma, R. Hu, L. Wang, X. Lin, and J. Huai, “Fast computation of dense
temporal subgraphs,” in ICDE, 2017.

[6] M. R. Gupta and Y. Chen, “Theory and use of the EM algorithm,” Found.
Trends Signal Process., 2011.

[7]1 D. R. Hunter and K. Lange, “A tutorial on MM algorithms,” Amer.
Statist, 2004.

[8] M. Charikar, “Greedy approximation algorithms for finding dense com-
ponents in a graph,” in APPROX, 2000.

[9] A. V. Goldberg, “Finding a maximum density subgraph,” Berkeley, CA,
USA, Tech. Rep., 1984.

[10] N. Tatti and A. Gionis, “Density-friendly graph decomposition,” in
WWW, 2015.

[11] J. Abello, M. G. C. Resende, and S. Sudarsky, “Massive quasi-clique
detection,” in LATIN, London, UK, UK, 2002.

[12] C. Tsourakakis, F. Bonchi, A. Gionis, F. Gullo, and M. Tsiarli, “Denser
than the densest subgraph: Extracting optimal quasi-cliques with quality
guarantees,” in KDD, 2013.

[13] P. Bogdanov, M. Mongiovi, and A. K. Singh, “Mining heavy subgraphs
in time-evolving networks,” in /CDM, Dec 2011, pp. 81-90.

[14] A. Angel, N. Sarkas, N. Koudas, and D. Srivastava, “Dense subgraph
maintenance under streaming edge weight updates for real-time story
identification,” VLDB, 2012.

[15] D. MacKay, “Introduction to Monte Carlo methods,” Learning in Graph-
ical Models, 1999.

[16] R. Serfozo, Basics of Applied Stochastic Processes, ser. Probability and
Its Applications. Springer, 2009.

[17] S. J. Wright, “Coordinate descent algorithms,” Math. Program., 2015.
[Online]. Available: http://dx.doi.org/10.1007/s10107-015-0892-3

[18] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge
University Press, 2004.

[19] Z. B. Zabinsky, “Random search algorithms,” Wiley Encyclopedia of
Operations Research and Management Science, 2010.

[20] https://dev.twitter.com/streaming/overview, 2018.

[21] https://www.reddit.com/r/bigquery/comments/28ialf/173_million_2013_
nyc_taxi_rides_shared_on_bigquery/, 2018.

[22] http://snap.stanford.edu/data/sx-stackoverflow.html, 2018.

[23] https://stackoverflow.com/, 2018.

[24] https://catalog.data.gov/dataset/511-ny-events-beginning-2010, 2018.

