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Abstract—One important problem that is insufficiently studied
is finding densest lasting-subgraphs in large dynamic graphs,
which considers the time duration of the subgraph pattern. We
propose a framework called Expectation-Maximization with Util-
ity functions (EMU), a novel stochastic approach that nontrivially
extends the conventional EM approach. EMU has the flexibility
of optimizing any user-defined utility functions. We validate our
EMU approach by showing that it converges to the optimum—
by proving that it is a specification of the general Minorization-
Maximization (MM) framework with convergence guarantees.
We then devise EMU algorithms for the densest lasting subgraph
problem. Using real-world graph data, we experimentally verify
the effectiveness and efficiency of our techniques, and compare
with two prior approaches on dense subgraph detection.

I. INTRODUCTION

Big Data is often represented by large dynamic graphs. Dis-

covering dense subgraphs is especially of interest and has been

studied for static graphs, but little has been done on detecting

dense subgraphs that last for a long time interval. The need for

detecting such dense lasting subgraphs in dynamic graphs is

especially evident in telecommunication, traffic networks, and

social network analysis. Consider the following examples.

Communication hotspots. In a dynamic mobile phone net-

work, each user is a vertex, and a phone call session between

users corresponds to one or more edges with a time duration.

Upon a significant event or breaking news (e.g., a natural

disaster or a social spotlight event), dense, long-lasting phone

calls among groups of users pose a challenge to the quality of

mobile services, and should be detected in a timely fashion for

fast response [1]. The service provider may want to identify the

densest subgraph region having edges that last for a long time,

and allocate more resources there. A similar need arises in

Internet service providers and data centers, where long-lasting

and dense computer network request regions (e.g., large file

transfers) should be provided with more resources.

Spam network filtering. Dense subgraph detection has been

used for community detection [2]. Dense long-lasting sub-

graph patterns in communication/phone-call networks often

indicate true communities, while conventional community

detection will also include spam call subgraphs that are dense

but typically quite short.

Traffic control. In road traffic networks, each road intersection

(or critical points such as highway entries/exits) is a vertex,

and a real-time report of traffic condition between two vertices

suggests an edge with a time duration and a label (e.g., high-

congestion, slowness, or smoothness). Dense lasting subgraphs

indicate traffic congestion that lasts long and hence is the

most significant [3]. Detecting such congestion in time benefits

interventions and overall traffic effectiveness optimization.

While detecting dense subgraphs has been studied over

static graphs, not much has been done to detect dense lasting

subgraphs over dynamic networks. (1) Aggarwal et al. [4]

propose a two-phase solution for finding frequently occurring

dense subgraphs in dynamic graphs. In the first phase, they

identify vertices that tend to appear together. In the second

phase, they further find which vertices also form a dense

subgraph in the snapshots where they appear together. Never-

theless, the method is based on set similarity—it may return

vertices which are correlated in co-occurrence, but which still

appear rarely over time. Detecting dense subgraphs that can

last for a long period is not addressed. (2) Ma et al. [5] study

fast computation of dense temporal subgraphs that pertain

to the same set of nodes and edges with time-varying edge

weights. The density is aggregated as the total edge weights

of a subgraph. The approach first detects “promising” time

intervals; instances of subgraphs in each time interval is then

computed. In a nutshell, none of these previous approaches

performs a direct, principled optimization of an objective

function for the densest lasting subgraph problem as we do.

Problem and framework overview. We develop a general,

stochastic approach to detecting densest lasting subgraphs. We

consider a dynamic graph as a sequence of graph snapshots,

each of which pertains to the same set of vertices but may

contain a different set of edges (Figure 1a). Part of our goal

is to compute a probabilistic subgraph model (Figure 1b top).

The model has three critical parameters: number of vertices,

probabilities (ρi) of each edge, and time duration (number of

consecutive snapshots it appears in). In addition to this model,

we need to find the value of a latent variable, which indicates

the “location” index of the occurrence of this subgraph model

within the graph snapshots: from which snapshot it starts, and

which vertices it maps to in that snapshot (Figure 1b bottom).

At the core of our work is a novel framework, namely, Ex-

pectation Maximization with a utility function (EMU), which

nontrivially extends the Expectation Maximization (EM) [6]
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Fig. 1. Overview: Dynamic graph (a) and target subgraph model (b).

method by incorporating a “utility” component that charac-

terizes the need of detecting dense lasting subgraphs. We

theoretically justify the extension by proving that the new two-

step iterative algorithm converges to the optimum since EMU

falls into the Minorization-Maximization (MM) framework [7]

in statistics. We propose novel utility functions for EMU, show

their connections with previous work, and devise an algorithm

under the utility functions. The algorithm iterative refines both

the model and the latent variable value of the occurrence

location (Figure 1b). In summary:

• We formalize the problem of finding densest lasting-

subgraph in a dynamic graph (Section II).

• We propose a novel EMU framework, and create utility

functions for our problem (Section III).

• We devise an algorithm under EMU, and prove its cor-

rectness as it is in the MM framework (Section IV).

• Using four real-world dynamic datasets, we perform a

comprehensive empirical study (Section VI).

Related Work. We categorize the related work as follows.

Dense subgraphs in static graphs. Discovering dense sub-

graphs has been studied for static graphs [8]–[12]. Dense

subgraphs in static graphs are usually characterized by induced

subgraphs with high edge-node count ratio, such as edge

density [9], k-cores [10], α-quasi-cliques [11], among other

variants. Decomposition algorithms are developed to find ap-

proximately dense subgraphs with optimaility guarantees [8],

[9]. As observed in [12], dense subgraphs defined by edge-

node counts tend to produce large subgraphs—for example,

a graph can itself be a k-core, while quasi-cliques are often

too small. The semantics in [12] incorporates an objective

function on a notion of edge surplus over the expected number

of edges under the random-graph model. This characterization

subsumes several conventional semantics, such as edge/vertex

count ratio and α-quasi-cliques, and leads to densest subgraphs

with a more balanced size.

Dense subgraph detection in dynamic graphs. Previous work

in this direction is significantly less than its static graph

counterpart. A streaming algorithm is proposed to improve the

algorithm in [8] for large graphs. The methods are nevertheless

still developed for static graphs rather than temporal graphs.

As remarked earlier, the approaches developed in [4], [5] either

do not address time intervals, or do not focus on finding dense

subgraphs that also last long (the details of comparisons are

in Sections I and VI). The work by Bogdanov et al. [13]

shares the same problem model as [5], but [5] improves the

performance of [13] (thus we only compare with [5]). Angel

et al. [14] consider weighted graphs with a constant number

of vertices, and there are a number of weight updates at each

time interval. Even though one can use weight increase and

decrease to simulate the presence and absence of edges, the

major difference of [14] from our work is the semantics:

[14] finds dense subgraphs in each graph snapshot without

considering the density across snapshots or time duration.

II. PRELIMINARIES

A. Subgraph Models: A Probabilistic Characterization
We define a dynamic graph GT over a period of time as

a sequence of graph snapshots {G1, . . . , GT }. Each snapshot

Gt = (V,Et) at timestamp t (t ∈ [1, T ]) is an undirected graph

with a vertex set V and an edge set Et. We next introduce

our subgraph model (shown in Figure 1).

Definition 1. (Subgraph Model) Given a dynamic graph
GT , a subgraph model M(n, ρ, d) consists of three (sets) of
parameters: (1) n vertices , (2) the existence probabilities ρi
of each edge ei from a total of

(
n
2

)
possible edges, and (3)

a time depth d that the model spans in GT (i.e., d adjacent
snapshots).

The probabilistic subgraph model allows approximate char-

acterization of edge appearance in a temporal graph, in terms

of its probability. Moreover, it provides the flexibility for us

to specify a class of utility functions (to be discussed) that

characterize the properties of desired subgraphs. Subgraphs

with predefined properties (e.g., k-cores) lack such flexibility.
Based on the model, we introduce lasting subgraphs.

Definition 2. (Lasting Subgraph) A lasting subgraph Gd in
GT specified by a subgraph model M(n, ρ, d) is a dynamic
graph that consists of n vertices, and spans d contiguous
snapshots in GT ; moreover, there is a one-to-one mapping f
from the vertices of M to the vertices of Gd. We say that Gd
is an occurrence of M, with a probability Pr[Gd|M].

Intuitively, the existence of a lasting subgraph in GT is

induced by an occurrence Gd of a corresponding subgraph

model M (n, ρ, d) in GT , specified by the node mapping

from M to Gd and the lasting duration d; the likelihood of

its existence is quantified by the model probability Pr[Gd|M].
Note that the edges of each snapshot of Gd is induced by the

node mapping. We discuss model probability in Section IV.

We are now ready to introduce the densest lasting subgraph

problem. To this end, we introduce a utility function, denoted

as u(M), to measure the “quality” of subgraph models. The

utility function allows us to integrate various density mea-

sures to lasting subgraph models. As such, intuitively, finding

densest lasting subgraphs is to discover and compare subgraph

models with higher u(M) values, and moreover, more likely

to have the corresponding occurrences in GT .
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Densest Lasting Subgraph Problem. Given a dynamic graph

GT and a specified utility function u(M), the densest lasting
subgraph problem is to discover a subgraph model M∗(n, ρ, d)
and the associated lasting subgraph Gd∗, such that

(M∗,Gd∗) = arg max
M,Gd

(u(M) · Pr[Gd|M,GT ]).

We shall introduce and focus on a specific utility function to

present our algorithms (Section III). These techniques on the

other hand readily extend to other classes of utility functions,

as verified in Section V.

B. EM and Metropolis-Hastings Revisited

Before we introduce our framework, we briefly overview

Expectation Maximization and related techniques. Readers

who are familiar with these can skip to Section III.

Expectation Maximization (EM). EM is an iterative method

to find maximum likelihood or maximum a posteriori (MAP)

estimates of parameters in statistical models, which depend

on unobserved latent variables. The EM iteration alternates

between (1) an expectation (E) step, which, given the current

estimate of model parameters, computes a distribution of the

latent variables and the expectation, and (2) a maximization
(M) step, which, given the expectation/estimate of latent vari-

ables in E step, computes a new estimate of model parameters.

These parameter-estimates are then used to determine the

distribution of the latent variables in the next E step. We refer

the reader to [6] for details.

Metropolis-Hastings (MH). MH is a Markov chain Monte

Carlo (MCMC) sampling method. Suppose we want to draw

samples from a probability distribution P (X) which is complex

or even unknown. We can nevertheless compute the value

of a function f (X) that is proportional to the density of P .

MH defines an MCMC sampling process, in a way that the

stationary distribution of the Markov chain is P (X). Suppose

the current sample value is Xn. We define a proposal function
(distribution) Q(X∗|Xn), where X∗ is called a candidate. Then

we accept X∗ as the next sample Xn+1 with probability min

(1, P (X∗)
P (Xn)

·Q(Xn|X∗)
Q(X∗|Xn)

), which is just min(1, f(X∗)
f(Xn)

·Q(Xn|X∗)
Q(X∗|Xn)

), due

to the discussion above as f (X) can be obtained, but not

P (X). Furthermore, if Q(Xn|X∗) = Q(X∗|Xn), where we call

Q a symmetric proposal function, this probability is further

simplified as min(1, f(X∗)
f(Xn)

). If X∗ is not accepted, the current

sample is still Xn. We refer the reader to [15] for details.

We will nontrivially extend the above techniques for our

solution to the densest lasting subgraph problem, and show its

feasibility over large scale dynamic graphs.

III. EMU: EM WITH A UTILITY FUNCTION

In this section, we introduce our general algorithm frame-

work called EMU (EM with utility function). The idea is to

integrate a utility function into the EM process, such that the

process is guided by the utility function towards maximizing

the likelihood of subgraph models with the desired density

property.

A. Utility Function for Densest Lasting Subgraph

Intuitively, the subgraph models and their occurrences with

more edges and larger time depth should be favored, given

a specified number of vertices. We justify this intuition by

providing a utility function to characterize “good” models.

A probabilistic perspective. Given a subgraph model M,

consider M as an “agent” that generates the observed data. If

M generates Gd, then a “reward” u(M) is granted. Otherwise,

M gets no reward. Define a random variable U that refers to

the utility the model is rewarded in this process. The goal is

to find a model agent that achieves the highest expected value

of U . In other words, we want to maximize

E[U ] = u(M) · Pr[Gd|M] (1)

which justifies our objective function in Section II.

Utility function. In particular, our utility function for a densest

subgraph model M(n, ρ, d) is defined as

u(M(n, ρ, d)) =
∏

j∈Ec(M)
ed(ρj−α) (2)

where ρj is the existence probability of edge j in the complete
edge set Ec(M) of the model (edges induced by every vertex

pair), d is the time duration of M, and α is a constant

that (implicitly) balances contrasting terms of edge abundance

and node size of occurrences generated by the probabilistic

model agent. Intuitively, the utility function favors subgraph

models with higher aggregated edge probability (thus denser

occurrences) and larger time duration d.

We next provide a justification by bridging the utility

function to a widely adopted semantics for static dense graphs

[12]. The density of a subgraph with edges ES induced by a

set VS of n vertices in [12] is quantified by edge surplus of VS ,

which is defined as |ES |−α
(
n
2

)
, where α is a counterbalancing

factor that penalizes subgraphs with too many vertices. Thus

the semantics strikes a balance between contrasting measures

of edge size and node size, by favoring subgraphs that are

neither “too small” nor “too large”. We show the following.

Theorem 1. The problem of computing densest subgraph that
maximizes edge surplus [12] is equivalent to finding a densest
lasting subgraph that maximizes u(M(n, ρ, d)) where d = 1
and ρ is either 0 or 1 for each edge ej ∈ Ec(M).

Proof. We show Theorem 1 by constructing the equivalence

between the problem of computing static dense subgraph with

edge surplus and a special case of our problem. Since the log

function is monotonic, maximizing Equation (2) is equivalent

to maximizing

lnu(M) =
∑

j∈Ec(M)
d(ρj − α) (3)

Consider a “flat” deterministic subgraph G = (VM, E) where

the time depth is d = 1 and an edge probability ρj is either 0
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or 1, corresponding to a static graph over VM. Let n = |VM|.
Equation (3) becomes

lnu(M) =
∑

j∈E(1− α) +
∑

j∈Ec−E
(−α)

= (1− α)|E|+ (−α)
[(

n

2

)
− |E|

]

= |E| − α

(
n

2

) (4)

where we abbreviate Ec(M) as Ec, denoting the complete set

of
(
n
2

)
edges in the subgraph model. Observe that Equation (4)

is exactly of the same form as edge surplus [12]. Theorem 1

thus follows.

Equation (4) suggests that our subgraph model subsumes

edge surplus of vertex set VS over expected edge size under the

random-graph model. Given Theorem 1, one can also verify

that our problem is in general NP-hard. Indeed, computing

optimal static densest subgraph with edge surplus, as a special

case of our problem, is already intractable [12].

B. The General EMU Framework

While a standard EM method with the Maximum Likelihood

estimation [6] can be used to compute subgraph models that

are likely to occur in GT , it may yield occurrences that are

neither dense nor lasting. We now introduce our general EMU

framework incorporating a utility function.

Overview. Similar to EM, EMU methods also interleave the

E step and the M step. The difference is that in the M step,

instead of using the maximum likelihood estimate to get the

model parameters for the next iteration, EMU estimates the

model parameters by maximizing Equation (1). It is easy to

see that, if the utility function u(M) is a positive constant

value, then EMU is equivalent to EM. Thus, EMU can be

deemed a generalization of EM, expressing preference over

some property of the model to be searched for.

Specifically, a model M̂i at iteration i of EMU consists of

three (sets of) parameters: (1) the number of vertices n̂i, (2)

the probability ρ̂ji of the j-th edge in a complete graph of n̂i

vertices (1 ≤ j ≤ (
n̂i

2

)
), and (3) the time depth d̂i. In the E

step of EMU, given M̂i, we estimate a probability distribution

L̂i of the location of M̂i’s occurrence in GT . In the M step,

based on the (expected) information collected from L̂i in GT ,

we estimate a new model M̂i+1 that maximizes E[U ], and

continue with the next iteration of EMU.

IV. THE EMU ALGORITHMS

We next show that the general EMU framework gives birth

to efficient algorithms to compute the densest lasting sub-

graphs in large GT . We use the utility function in Section III-A

by default, with generalized edge probability ρj ∈ [0, 1]
(beyond the binary case in [12]), and for the case d > 1,

to characterize the densest lasting subgraphs desired in many

real-world applications.

Recall that a subgraph model M consists of a set of n
vertices VM (out of the N vertices V of the dynamic graph),

edge probability ρj for each edge j, and the time depth

d. During EMU, we need to match M with subgraphs in

GT , starting from some snapshot. To perform this subgraph

match, one would need to enumerate all permutations of the

n vertices for isomorphism and examine ρj . We first introduce

a technique to reduce the cost of subgraph matching between

a subgraph model and GT , used by our EMU algorithms.

Linearized Vertex Order. To simplify the model evaluation,

we assign an arbitrary, but fixed order to the N vertices (V )

of the dynamic graph (let the list be v1, . . . , vN ), as well as to

the n vertices VM of M (let the list be u1, . . . , un). When we

evaluate any subset of n vertices vi1 , . . . , vin from the dynamic

graph against M (to get the matching probability in our EMU

algorithms that follow), vi1 , . . . , vin are sorted in their linear

ID order in V , and are mapped one-to-one with u1, . . . , un in

M. The vertex linearization ensures that a subset of n vertices

is matched against M̂ as one subgraph rather than n! subgraphs

(all vertex permutations). As such, we avoid enumerating all

permutations of vi1 , . . . , vin in the dynamic graph GT .

Lemma 1. Assigning a fixed order to V and a fixed order to
VM, and matching any subset of n vertices from V with VM

following this order do not miss any occurrence of the densest
lasting subgraph models using the EMU framework.

Proof. Consider an arbitrary fixed order v1, . . . , vN of V .

Suppose the ground-truth densest lasting subgraph Gd consists

of vertices vi1 , . . . , vin also in this order (i1 < · · · < in
may not be consecutive). There will always exist a subgraph

model M with vertices u1, . . . , un that one-to-one map to

vi1 , . . . , vin , respectively, and the edge probabilities ρj of

M match the edge connectivity in Gd. Thus, a correct EMU

algorithm should identify the lasting subgraph Gd induced by

vi1 , . . . , vin and the corresponding M simultaneously.

The intuition of Lemma 1 is that, even though we give an

order to the vertices in V and those in VM, the EMU algorithm

has the full freedom to set the probabilities of all the edges in

the model M, so that its vertices one-to-one match those in the

optimal instance (Gd). We next introduce our EMU algorithm.

As remarked earlier, EMU follows EM by interleaving E steps

and M steps. We present the E step first and show the M

step in Section IV-B. The algorithm, in the end, returns the

subgraph model M, and the latent variable value—the model’s

best location L in GT .

A. Generalized E Step

Consider iteration i of EMU. In the generalized E step,

we assume that the model M̂i is given (M̂0 is initialized

arbitrarily in the first iteration). The goal of E step is to

estimate the location distribution L̂i of this model in GT .

However, there are
(
N
n̂i

)
(T−d̂i) “locations” to examine, where

n̂i and d̂i are the number of vertices and time depth of M̂i,

respectively, for any subset of n̂i vertices starting from the

first T − d̂i snapshots. While the vertex linearization avoids

vertex enumeration cost, it is still quite expensive to examine

every locations and compute the probabilities of matching.
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We tackle this challenge by adapting a statistical technique

called the Metropolis-Hastings (MH) method (reviewed in

Section II-B) to the lasting subgraph model discovery. The

idea is to selectively get samples from the whole space of(
N
n̂i

)
(T − d̂i) locations, in such a way that they form a Markov

chain that has a stationary distribution, in which the probability

of “hitting” a location sample is proportional to the probability

that M̂i occurs in that location. Thus, this guided search tends

to find the true occurrence locations of M̂i quickly.

We present the E step as Algorithm GENERALIZEDE.

Algorithm 1: GENERALIZEDE (M̂i,GT )
Input: model M̂i(n̂i, ρ̂ji, d̂i), dynamic graph GT
Output: a location distribution L̂i

1 C ← getEdgeWalkComponent (n̂i, d̂i,GT )
2 pc ←∏

j∈E(C) ρ̂ji ·
∏

j /∈E(C)(1− ρ̂ji)

3 L̂i ← {(C, pc)}
4 while |L̂i| < nc do
5 Cprev ← C
6 r ← random(0, 1)
7 if r ≥ pteleport then
8 t0 ← C.t or C.t+ 1 or C.t− 1 with equal probability
9 if C.V is a connected component in Gt0...t0+d̂i

then
10 C.t← t0

11 with probability 1/2 do
12 e← pick an edge randomly from Ne(C)
13 C.V ← C.V ∪ {e’s endpoint not in C.V }
14 remove a random v ∈ C.V s.t. C is still a

component

15 else
16 C ← getEdgeWalkComponent (n̂i, d̂i,GT )

17 pc ←∏
j∈E(c) ρ̂ji ·

∏
j /∈E(C)(1− ρ̂ji)

18 α← min (1, pc
pcprev

)

19 with probability 1− α, set C ← Cprev

20 L̂i ← L̂i∪ {(C, pc)}
21 return L̂i

1 Function getEdgeWalkComponent (n̂i, d̂i,GT )
2 e← pick an edge uniformly at random from G1...T−d̂i

3 C.t← e.t; C.d← d̂i
4 C.V ← {two end points of e}
5 while |C.V | < n̂i do
6 e← pick an edge uniformly at random from Ne(C)
7 C.V ← C.V ∪ {e’s endpoint not in C.V }
8 return C

EMU Algorithm: E step. We introduce the details of E step.

Function getEdgeWalkComponent. We start with a

procedure invoked by GENERALIZEDE, denoted as

getEdgeWalkComponent, to randomly “grow” an n̂i

vertex component starting from a selected edge (thus denser

areas in GT have a higher chance to be reached). As shown

in line 2 of getEdgeWalkComponent, it chooses an edge

uniformly from G1...T−d̂i
, which denotes snapshots G1 to

GT−d̂i
in GT . In line 3 of the function, we initialize a

component object C (which in the end will grow to the

same size as M̂i and be returned). We set its starting time
field C.t to be the random edge’s time, and its time depth

field C.d to the current model’s time depth. Line 4 of

getEdgeWalkComponent initializes component C’s vertex set

C.V as the endpoints of the first edge. The loop (lines 5-7)

grows C by randomly selecting edges from Ne(C), where

Ne(C) refers to the set of neighboring edges of C (i.e., those

edges with exactly one endpoint included in C).

Main algorithm. The algorithm GENERALIZEDE invokes func-

tion getEdgeWalkComponent to obtain a component C (line

1). It then calculates the probability of generating the specific

component C, based on the edge probabilities ρ̂ji’s for each

edge j in M̂i, and the set of edges E(C) that are in component

C (between C.V in the C.d snapshots from C.t). In line 3,

the component and probability pair is added to the location

distribution set L̂i. The loop in lines 4-20 will select more

components to add to L̂i, until the number is nc, a perfor-

mance/accuracy tradeoff parameter we shall study in Section

VI. L̂i is finally returned in line 21.

“Teleport” or “Stay”?. In each iteration, the algorithm GEN-

ERALIZEDE decides whether to “teleport” to reinitialize a

component C or to continue to perform local incremental

update to the current component C. This is decided by a

probability threshold pteleport (line 6). (1) With probability

1 − pteleport, we do not “teleport”, i.e., to arbitrarily jump

to anywhere in the dynamic graph by calling getEdgeWalk-

Component (line 16). (2) Otherwise, we randomly change

the component’s starting time C.t in its ±1 interval (lines

8-10). Then in lines 11-14 we do minor adjustment to the

vertex set C.V . The intuition of introducing teleport is to

strike a balance between exploitation (sticking with local good

candidates) and exploration (exploring remote good locations).

This is especially necessary when the graph is not connected.

We will further examine the parameter pteleport in Section VI.

“Accept” or “Reject”? Line 17 computes the probability of

the current component C given the model M̂i. The parameter

α at line 18 denotes the “acceptance” probability of the current

component C, which is the ratio between pC (the probability

of C given the model) and the probability of the previous

(accepted) component, but it should not exceed 1. At line 19,

with probability 1 − α, C is rejected and set to the previous

one. Note that GENERALIZEDE returns a distribution of the

locations (latent variable); the “expectation” (as in “E” of EM)

will be readily performed in the M step in Section IV-B.

Moreover, upon the return of the last run of E step, the location

(i.e., match instance C) in L̂i with the maximum probability

pC is considered as the best match instance of the final model.

We illustrate GENERALIZEDE in Example 1.

Example 1. Figure 2(a) shows the current model M̂i where
the time depth is d̂i = 3, n̂i = 4, and the edge probabilities
are as shown—for clarity, all solid edges in Figure 2(a)
have probability 0.7 and all dashed edges have probability
0.1. Figure 2(b) shows a component C involving the same
four vertices across three consecutive snapshots G8, G9, and
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Fig. 2. Illustrating details of GENERALIZEDE. (a) The model ̂Mi where
n̂i = 4, d̂i = 3, and each solid edge has probability 0.7 and each dashed
one 0.1 (simplified for clarity). (b) A component across three snapshots G8

to G10 with the same four vertices.

G10, i.e., C.t = 8 and C.d = 3. Then the probability
of this component as calculated in line 2 or 17 is pc =
(0.73 ·0.3·0.1·0.9)·(0.74 ·0.92)·(0.73 ·0.3·0.1·0.9), where the
three sets of parentheses correspond to the edges from G8, G9,
and G10, respectively. For example, for G8, the contribution
to pC is 0.73 · 0.3 · 0.1 · 0.9, because among the four solid
edges in M̂i of Figure 2(a), G8 has three of them (each with
probability 0.7) and the missing one is with probability 0.3,
while for the two dashed edges, one is there (with probability
0.1), and one is absent (with probability 0.9).

We now prove some property of the GENERALIZEDE al-

gorithm, as will be part of the correctness proof/validation of

the whole EMU algorithms in Section IV-C.

Theorem 2. GENERALIZEDE performs a Markov chain
Monte Carlo sampling, specifically, the Metropolis-Hastings
method with a symmetric proposal function, returning a loca-
tion sample drawn from the probabilistic match instances of
M̂i in GT for iteration i.

Proof. First, the way in which GENERALIZEDE generates

component (i.e., location) samples follows a Markov chain.

This is because the next sample, either through lines 8-14

or through line 16 (getEdgeWalkComponent) only depends

on the previous step sample (at most). Second, this Markov

chain is finite (a finite number of states), irreducible (i.e., from

one component, the algorithm can get to any other component

with non-zero probability), and aperiodic (lines 7-16 ensure

that with non-zero probability, the next sample/state stays the

same—hence aperiodic). Thus, this Markov chain must have

a unique stationary distribution [16].

Finally, GENERALIZEDE follows the Metropolis-Hastings

method. In particular, the proposal function is symmetric, as

the probability of going from a component Cprev to the next

component C is the same as the probability of going from C
to Cprev . The C computed from lines 6-16 is a “candidate”

in Metropolis-Hastings, and the α in line 18 is its acceptance

probability. Since the distribution of match instances of M̂i

in GT fits the MH sampling process, it must be the unique
stationary distribution.

B. Generalized M Step

We now proceed to describing the generalized M step of

EMU. Given a location distribution L̂i returned by GENER-

ALIZEDE, the goal of M step is to estimate (the parameters

of) an updated model M̂i+1, which in turn will be used by the

next iteration (i+ 1)’s E step. Our general idea is to estimate

the parameters of M̂i+1 that maximizes E[U ], which is to get

three parts: number of vertices n̂i+1, edge probabilities ρ̂j,i+1,

and time depth d̂i+1. The key idea is to apply the result of

solving the optimization problem associated with the utility

function in Equation (2) to set the edge probabilities (Theorem

3), and to use Coordinate Ascent [17] and Gradient Ascent

[18] to optimize n̂i+1 and d̂i+1. The algorithm is presented as

GENERALIZEDM.

Algorithm 2: GENERALIZEDM (M̂i,GT )
Input: distribution L̂i, model M̂i(n̂i, ρ̂ji, d̂i), dynamic graph

GT
Output: model M̂i+1

1 M̂i+1 ← null; L̂prev ← L̂i; n̂prev ← n̂i; d̂prev ← d̂i
2 while M̂i+1 not converged do
3 L̂← L̂prev; d̂← d̂prev
4 n̂← n̂prev or n̂prev − 1 or n̂prev + 1 with equal

probability
5 for each component C in L̂ do
6 if n̂ > n̂prev then
7 e← an edge uniformly at random from Ne(C)
8 C.V ← C.V ∪ {e’s endpoint not in C.V }
9 else if n̂ < n̂prev then

10 remove random v ∈ C.V s.t. C is still connected

11 d̂← gradientAscentTimeDepth (L̂, n̂, d̂)

12 M← getModel(L̂, n̂, d̂)

13 if M̂i+1 = null or u(M) > u(M̂i+1) then
14 M̂i+1 ←M

15 α← min (1, u(M)

u(M̂i+1)
)

16 with probability α do
17 L̂prev ← L̂; n̂prev ← n̂; d̂prev ← d̂

18 return M̂i+1

1 Function gradientAscentTimeDepth (L̂, n̂, d̂i+1)
2 while true do
3 M+h ← getModel (L̂i, n̂, d̂i+1 + h)

4 M−h ← getModel (L̂i, n̂, d̂i+1 − h)
5 Δu← u(M+h)− u(M−h)
6 if Δu < ε then
7 break

8 d̂i+1 ← d̂i+1 + γΔu
2h

9 return d̂i+1

1 Function getModel (L̂i, n̂, d̂)
2 foreach edge j in the subgraphs identified by L̂i and d̂ do
3 n+

j ← E[number of snapshots that has edge j] from L̂i

4 ρ̂j ←
√

n+
j

d̂

5 return M(n̂, ρ̂j , d̂)
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EMU Algorithm: M step. Lines 2-17 perform iterative Coor-

dinate Ascent optimization [17] over three sets of parameters

of M̂i+1, namely ρ̂j,i+1, n̂i+1, and d̂i+1. Like the E-step, the

algorithm does Metropolis-Hastings sampling to figure out the

best model. In line 4, with equal probability, the algorithm

tries the adjacent values of the previous iteration’s number of

vertices. Lines 5-10 revise each component accordingly. Line

11 invokes the function gradientAscentTimeDepth (below the

main function) to optimize the time depth d̂i+1. Line 3 of

gradientAscentTimeDepth uses the current setting of L̂i and

n̂, and first try time depth d̂i+1 + h, a value slightly greater

than the current d̂i+1 (e.g., h = 2). Then it tries the time depth

d̂i+1 − h. In either case, it calls the function getModel to set

the edge probabilities.

Line 2 of the function getModel iterates over each edge of

the subgraph components identified by L̂i and d̂, and retrieves

the “expectation” result as in EM. Recall that L̂i consists of

pairs (C, pC). Suppose edge j in line 2 is between vertices u
and v in the subgraph model, which are mapped to vertices

ui and vi in each component i, respectively. The idea is

to perform a weighted “average” (expectation) over the |C|
components, to draw a conclusion whether edge j, i.e., (u, v),
exists in each of the d̂ snapshots. The expectation will be a

value in [0, 1]. Summing this expectation over the d̂ snapshots

(and based on the linearity of expectation), the result is the

expected number of snapshots that contain a match for edge

j, which is n+
j in line 3 of getModel. Then in line 4, the edge

probability ρ̂j is set based on the optimization result using the

utility function (Theorem 3).

Example 2. Revisiting the example in Figure 2, suppose
Figure 2(a) is the current model and Figure 2(b) is only one
of the |C| components in L̂i. For clarity, suppose there are
only two components |C| = 2, and the component shown in
Figure 2(b) has probability 0.8, while the other component
(not shown) has probability 0.2. Line 2 of getModel iterates
through each edge of the model in Figure 2(a); let us take
one edge as an example, the left vertical solid edge. In the
component shown in Figure 2(b), this edge appears in 2
snapshots (G8 and G9) out of d̂ = 3 snapshots. In the other
component not shown, suppose this edge appears in all 3
snapshots. Then the expected value n+

j calculated in line 3
of getModel is 2× 0.8 + 3× 0.2 = 2.2. The edge probability
in line 4 is ρ̂j =

√
2.2
3 = 0.856. This is repeated for all other

edges of the model in Figure 2(a).

Back to the gradientAscentTimeDepth function, in lines 5

and 8, it estimates the gradient of the model utility function

and adjusts d̂i+1 with a value proportional to it (where γ is a

small constant), based on Gradient Ascent [18]. Lines 6-7 are

to exit the loop at convergence. This function estimates the

optimal d̂i+1 under the current n̂ and ρj’s.

After gradientAscentTimeDepth is invoked in line 11 and

the best d̂ is obtained, the algorithm retrieves the currently

chosen model in M at line 12, and at lines 13-14 sets it to

M̂i+1 if it is the best so far. At lines 15-17 it completes the

MH sampling by setting the acceptance probability α. Once

the current candidate is accepted, its L̂, n̂, and d̂ are bookkept

as the next iteration’s starting point (line 17).

EMU iteratively interleaves GENERALIZEDE and GENER-

ALIZEDM, until the model converges, and the maximum prob-

ability component is returned as the densest lasting subgraph.

We analyze the correctness of GENERALIZEDM.

Theorem 3. With the utility function in Equation (2), given the
parameters n̂ and d̂ of the model and a location distribution
L̂ of the model in the dynamic graph, the edge probability
parameters ρ̂j that maximizes E[U ] in Equation (1) is ρ̂j =√

n+
j

d̂
, where n+

j is the expected number of occurrences of

edge j in L̂ (as in line 3 of the getModel function).

Proof. Given a model M(n̂, ρ, d̂), the probability of the

weighted average component of L̂ (as in line 3 of getModel
and Example 2) is:

Pr[Gd|M] =
∏

j∈E ρj ·
∏

j /∈E(1− ρj) (5)

where E is the set of edges in this component. From Equations

(2) and (5), we get the expected utility

E[U ] = u(M) · Pr[Gd|M]

=
∏

j∈Ec(M)
ed̂(ρj−α) ·

∏
j∈E ρj ·

∏
j /∈E(1− ρj)

(6)

Taking the log on Equation (6), we get

lnE[U ] =∑
j∈Ec(M)

d̂(ρj − α) +
∑

j∈E ln ρj +
∑

j /∈E ln(1− ρj)

(7)

Thus, to get maximum E[U], setting

∂ lnE[U ]

∂ρj
= d̂+

n+
j

ρj
− d̂− n+

j

1− ρj
= 0 (8)

gives us ρ̂j =

√
n+
j

d̂
as given in the theorem.

Theorem 3 justifies the choice of the getModel function (line

4). We now justify the correctness of GENERALIZEDM.

Theorem 4. Given the location distribution L̂i from GENER-

ALIZEDE, the GENERALIZEDM algorithm does Coordinate
Ascent to optimize three groups of parameters of model M̂:
n̂, ρ̂j’s, and d̂.

Proof. The loop in lines 2-17 (particularly lines 4, 15-17)

of GENERALIZEDM does Metropolis-Hastings sampling of n̂,

with acceptance probability α, and the sample probability is

proportional to the utility of the corresponding model. Line

11 calls the function gradientAscentTimeDepth to set d̂ using

gradient ascent. Finally, the algorithm sets ρ̂j in line 4 of

the getModel function as proved in Theorem 3. Overall, this

simulates a coordinate ascent optimization where we optimize

three groups of parameters alternately.
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Both GENERALIZEDE and GENERALIZEDM employ

Metropolis-Hastings sampling—although there are no theo-

retical guarantees when it will converge to the stationary

distribution, in practice [15], several thousand iterations are

typically used as the “burn-in” period. After that, the cost of

GENERALIZEDE is linear to the model size, given that the

distribution size nc is a constant (we study nc in Section VI,

of which we use 50 as the default). Similarly, the cost of

GENERALIZEDM has the cost of gradient ascent as a linear

factor, which takes O(1/ε) iterations [18] where ε is the

allowed error in line 6 of gradientAscentT imeDepth.

C. Validation of EMU Algorithms

In Sections IV-A and IV-B, we have individually shown the

correctness of the generalized E step and M step, respectively,

in terms of their own roles. It remains to show that our

extension from EM to EMU is valid, i.e., the EMU algorithms

still converge to the optimum as EM does. We do so by proving

that EMU falls into a more general statistical optimization

framework called MM [7], which has been proven to converge

to the optimal objective values.

Preliminary on MM. The MM algorithm framework is an

iterative optimization method which exploits the convexity of

a function in order to find their maxima or minima. The MM

stands for “Majorization-Minimization” or “Minorization-

Maximization”, depending on whether it is a minimization or

a maximization problem, respectively. EM can be treated as

a special case of MM, although EM has been more widely

known for its applications.

Let f(θ) be the objective function for which we want

to find the location of the maximum value, as illustrated in

Figure 3 (the minimization problem is similar). The MM

algorithm works by finding a surrogate function g(θ|θi) that

minorizes f(θ), meaning that f(θ) ≥ g(θ|θi) for all θ, and

f(θi) = g(θi|θi), as shown in Figure 3. Note that θi denotes

the parameter value at the i’th iteration of MM. Thus, θi (with

a subscript) is a constant, while θ is a variable. g(θ|θi) is a

function over θ. The above minorization condition says that

the function curve/surface g(θ|θi) lies below that of f(θ), and

is tangent to it at the current iteration θ = θi (Figure 3).

Fig. 3. Illustrating MM. f(θ) is the objective function, and g(θ|θi) is the
surrogate function we maximize at each iteration i instead. This continues for
iteration i+ 1, and so on.

MM is also iterative, where each iteration has two “M”

steps. The construction of the minorizing function g(θ|θi)
constitutes the first M step, and the second M step maximizes

the surrogate g(θ|θi) rather than f(θ) directly. The marching

of θi and the surrogate functions relative to the objective

function is shown in Figure 3. We refer the reader to [7] for

more details of MM.

Theorem 5. The EMU algorithm (given in Sections IV-A and
IV-B) is also an MM (Minorization-Maximization) algorithm.

Proof. From the EMU algorithm, we construct the correspond-

ing f(θ) and the surrogate function g(θ|θi) in MM. The very

first question is what θ corresponds to in our EMU algorithm.

Let θ be a tuple (M, L), where M is the subgraph model

parameters (edge probabilities, number of vertices, and time

depth) and L is the location (and the component there) of this

model in GT . Then we define:

f(θ) = f(M, L) ≡ max
M

′
[u(M

′
) · Pr[(L|M′

)]] (9)

g(θ|θi) = g(M, L|Mi, Li) ≡ u(M) · Pr[(Li|M)] (10)

where Mi and Li are the model parameters and location/co-

mponent obtained in iteration i, respectively. In words, f(θ),
which is just f(M, L), ignores its input argument M, but

only uses L; it is defined as the maximum product of the

utility of some model M
′

and the probability of the input data

location/component given this model M
′
. f(θ) can be deemed

the objective function, as essentially we look for L such that

f(θ) is maximized, i.e., the optimal data location such that,

with the suitable model there, E[U ] is maximized.

The surrogate function g(θ|θi), which is also a function of

M and L (given Mi and Li computed in iteration i of EMU),

is the product of the utility of M and the probability of the

computed constant Li at iteration i (data location/component)

assuming model M. Note that, opposite to f(θ), g(θ|θi)
ignores its input argument L, but only uses M.

We construct the two functions (9) and (10) following this,

so that they satisfy the definition of “surrogate function” of

MM as remarked earlier (Figure 3). That is, it holds that

g(θ|θi) ≤ f(θ) for all θ, since f(θ) uses the “best” model

M
′

w.r.t. the input argument L. Note that we assume the

input argument L always matches M, i.e., given M, L is

the location of M with the highest probability. Then we can

see that g(θ|θi) ≤ f(θ), as f(θ) ≥ u(M) · Pr[(L|M)] ≥
u(M) · Pr[(Li|M)] = g(θ|θi). The other condition (tangent

point) also holds, i.e., f(θi) = g(θi|θi), because f(Mi, Li) =
g(Mi, Li|Mi, Li), as the M step of EMU exactly sets the

optimal M based on Li at this iteration.

The first M step of MM corresponds to the E step of

EMU, which constructs the surrogate function g(θ|θi) at θi
of iteration i. Basically, it is to compute Li given the Mi

resulted from the previous iteration. Thus, g(θ|θi) is ready

for operation. The second M step of MM corresponds to the

M step of EMU, which, given Li, maximizes the surrogate

function g(θ|θi) by computing a new Mi, ready for the next

iteration (Mi will be the initial Mi+1 for iteration i+ 1).

This completes the proof of Theorem 5.

Remarks. Our EMU algorithm belongs to the category of

random search algorithms. Random search algorithms have
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been shown to have a potential to solve large-scale problems

efficiently in a way that is not possible for deterministic

algorithms, especially for NP-hard problems [19]. Theorem 5

shows that our algorithm belongs to MM, and hence converges

to the optimal solution. Here we give some intuitions on the

efficiency of finding good-quality (dense) subgraphs, even if

they were very rare. Suppose there are only k high-quality

subgraph components matching a good model after some

iterations (for a very small k, such as 1 or 2); assume

each of them matches the model with a high probability

p∗, while each of the remaining n − k low-quality subgraph

components matches with a low probability p∗

r (for a large

ratio r). From Theorem 2, GENERALIZEDE samples the n
subgraphs with a probability proportional to their respective

matching probabilities to the model. Thus, in one iteration,

the probability one of the k high-quality subgraphs is chosen

is ε = kp∗

kp∗+(n−k) p∗
r

. After m iterations, the probability

that at least one of the high-quality subgraphs is chosen is

Pr(hit) = 1 − (1 − ε)m = 1 − ( n−k
n+k(r−1) )

m, for a small

integer k and a large r � 1. Since n−k
n+k(r−1) < 1, the

probability Pr(miss) of not finding a high-quality model

decreases exponentially fast with the sample size m. Moreover,

it is intuitive that as the number of good subgraph components

k increases, the decrease of Pr(miss) is even faster; perhaps

surprisingly, this is also true when r increases. This is because

as the difference between the good and other match instances

is more pronounced, the weight/ratio of getting a good model

is higher since each instance is chosen with a probability

proportional to their matching probabilities.

V. EXTENSIONS TO MULTIPLE EDGE/VERTEX LABELS

In this section, we discuss several extensions to our basic

EMU utility function for the densest lasting subgraph problem.

Our discussion in Section IV only considers the density from

the perspective of graph structures, without taking into account

edge or vertex labels. In practice, edge and vertex labels are

also an important part of the information in determining and

reporting the densest structure. For example, in Twitter graphs

where vertices are people and edges are tweet messages,

edge labels may indicate various hashtags or message content

topics. Then one may be interested in dense subgraphs over

time considering, as well as reporting “dense” message topics.

More formally, we add to our formulation in Section II a label

function L : V ∪ E → Σ that assigns a vertex/edge a label

from a finite alphabet Σ, where E =
⋃T

t=1 Et.

Adding node/edge labels. We show, in response, that edge

(or vertex) label distributions can be readily incorporated to

the model. Given the subgraph model M, in addition to n̂
and d̂, we extend the edge distributions ρ̂j into edge-label

distributions ρ̂lj(l ∈ Σ is a label) for edge j. Vertex labels are

similar, and we omit the discussion here. Moreover, we use

ρ̂⊥j = 1−∑
l∈Σ ρ̂lj to denote the probability that edge j does

not exist. Accordingly, we extend the utility function to

f(M) =
∏

j∈Ec(M)
ed(

∑
l∈Σ ρ̂lj−α) (11)

Theorem 6. Given the utility function in Equation (11), a
location distribution L̂, and the current parameters n̂ and d̂
of the model, to maximize E[U ] (Section III-A), the edge label
probability ρ̂lj(l ∈ Σ) of the model should be set to ρ̂lj =

n+
lj√

d̂2−d̂n+
⊥j

, where n+
lj (resp., n+

⊥j) is the expected number of

snapshots in which edge j has label l (resp., does not exist)
among the d̂ snapshots in L̂.

Proof. Equation (6) now becomes

E[U ] = f(M̂) · Pr[Gd|M̂]

=
∏

j∈Ec(M)
ed̂(

∑
l∈Σ ρ̂lj−α) ·

∏
j∈E,lj∈Σ∪{⊥}

ρ̂ljj
(12)

In addition, we have the constraints that
∑

l∈Le∪{⊥} ρ̂lj = 1.

Taking the log over Equation (12), and using Lagrange Mul-

tipliers [18] over the constraints, we have:

Λ(ρ̂lj , λ) =d̂
∑

j∈Ec(M̂)
(
∑

l∈Σ ρ̂lj − α)+∑
j∈E,lj∈Σ∪{⊥}

ln ρ̂ljj + λ(
∑

l∈Σ∪{⊥} ρ̂lj − 1)

(13)

Thus, for l ∈ Σ, we set

∂Λ

∂ρ̂lj
= d̂+

n+
lj

ρ̂lj
+ λ = 0 (14)

Moreover,

∂Λ

∂ρ̂⊥j
=

n+
⊥j

ρ̂⊥j
+ λ = 0 (15)

Given Equations (14) and (15), together with∑
l∈Σ∪{⊥} ρ̂lj = 1 and

∑
l∈Σ∪{⊥} n

+
lj = d̂, we get

λ = −d̂ −
√

d̂2 − d̂n+
⊥j , which, combined with Equation

(14), gives ρ̂lj =
n+
lj√

d̂2−d̂n+
⊥j

.

Given Theorem 6, we can modify the getModel() function in

the GENERALIZEDM to set the model parameters accordingly.

Likewise, in lines 2 and 17 of the GENERALIZEDE, we modify

the calculation of probability pC following Equation (12).

Adding node/edge weights. In the same vein, we may take

advantage of the flexibility of the EMU framework by setting

the utility function for other scenarios, such as giving weights

to edge/vertex labels for appearing in the densest lasting

subgraph, as well as handling parallel edges (i.e., multiple

edges at the same time between two vertices). We omit these

discussions and will leave them as future work.

VI. EXPERIMENTS

A. Datasets and Setup

Datasets. We use four real-world datasets: (1) Twitter data.
We use the Twitter Stream API [20] to retrieve real-time

Twitter graphs from January 22, 2017 to May 21, 2017. For

communication datasets (Twitter and Stack Overflow below),

we treat users as vertices and edges as communications,

and the duration of an edge is the time period in which
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the user who initiates the communication keeps active and

communicating with one or more users (without pausing for

more than 30 seconds). (2) Taxi data. The trip data is about

30GB, containing the information of all taxi trips in NYC in

2013 [21]. It has 14 attributes. Each trip from the pick-up to the

drop-off locations is considered as an edge, and the duration of

the edge is the trip time. We treat the number of passengers

as an edge label. (3) Stack Overflow data [22]. This is a

network of interactions on the web site Stack Overflow [23].

There are three types of interactions represented by a directed

edge (u, v, t), where user u answered or commented on user

v’s question or comment at time t. (4) NY events data [24].
This dataset contains historical traffic and transit events in NY.

We partition the NY state area into 0.0011-degree latitude by

0.0012-degree longitude grid areas (i.e., 122 meters by 100

meters). Each grid area is a vertex and the event type is a

vertex label. When a transportation event happens at a vertex

(e.g., an accident), we create eight edges indicating its impact

to its eight surrounding grid areas (vertices), and the duration

of the event is the duration of the edges. We report the statistics

of the datasets in Table I.

TABLE I
STATISTICS OF THE DATASETS

Dataset #vertices #edges
Average
inter-ar-

rival time
Data
Size

Twitter 17,274,424 119,604,457 0.1 sec 4.9GB
Taxi 5,654 169,100,000 0.186 sec 5.62GB
Stack

Overflow
2,601,977 63,497,050 3.775 sec 1.64GB

NY events 429,456 10,148,112 161.62 sec 138.7MB

Methods. We compare our methods with two related ap-

proaches in [4] and [5]. briefly reviewed below.

Dense pattern. The “Dense pattern” approach in [4] returns a

set of vertices that are similar with respect to the snapshots

they appear in, and that have dense edges between them (above

a threshold). There are a few issues in this approach for the

problem we study. First, the “similarity” above is based on

the set similarity, for the set of snapshots each vertex appears

in. This is too restrictive. Second, the dense pattern approach

returns “small” subgraphs, i.e., a small number of vertices.

In step 1, [4] uses a MinHash method for finding a set of

vertices. If the probability that two vertices are similar is p,

the probability that three vertices are similar is p2, and so on.

Thus, the probability that such similar pair of vertices joining

a returned vertex set decreases exponentially. Finally, it does

not consider “continuity” strength over time.

Dense temporal subgraph. The “dense temporal subgraph” ap-

proach in [5] simplifies the search into two phases: (1) locating

top-k promising snapshot intervals without considering any

subgraphs, and (2) finding the heaviest-weight subgraph in

each of those intervals. Although this approach is efficient,

there are a few major issues for the problem that we target at.

First, it uses a model where all edges are present in all graph

snapshots, while only edge weights vary from one snapshot

to another. The “evolving convergence phenomenon” relied

upon in [5] is to assume that edge weights of the whole graph

increase or decrease in the same direction at any time. This

does not hold for the applications we look at. For example,

for communication graphs, over a long period of time, the

number of times of starting a communication should match the

number of times of ending a communication, and the weight

increase and decrease may happen simultaneously in any graph

snapshot. Second, it would tend to return huge subgraphs.

This is because the connection between two positive weight

components is a single edge (with a minimum weight of

−1 in each snapshot of the selected time interval). Thus,

there is a good chance that the algorithm will merge the two

positive components to have a higher total weight, resulting

in a component too large to be a meaningful result.

We implement all the algorithms in Java. The experiments

are performed on a MacBook Pro machine with OS X version

10.11.4, a 2.5 GHz Intel Core i7 processor, a 16 GB 1600

MHz DDR3 memory, and a Macintosh hard disk.

B. Experimental Results

We first study the effectiveness of our EMU approach, i.e.,

the quality/density of the subgraphs discovered. We compare

our method with the two related methods, denoted as “Dense

pattern” [4] and “Dense temporal” [5], respectively. For a

fair comparison, we define a metric called density score
s = [m − α

(
n
2

)
]dβ , where n is the number of vertices in

the found subgraph pattern, d is the time duration (number of

consecutive snapshots), and m is the number of edges in this

subgraph that appears in at least half of the snapshots (d/2).

Following [12], we set α = 1/3 and β = 1/2 by default.

Intuitively, this metric indicates the “surplus” number of edges

compared to a (discounted) complete graph over all vertices

in the selected subgraph and across d snapshots.

Effectiveness on Real Datasets. We report our findings below.

Twitter. We first evaluate the methods using the Twitter dataset.

Recall that two parameters in our algorithms are the location
distribution size and the teleport probability in GENERAL-

IZEDE. Figure 4 shows the density scores of the densest

lasting-subgraphs returned by EMU over Twitter data, as we

vary the location distribution size. The same figure also shows

the density scores of the results returned by previous work

dense pattern [4] and dense temporal [5] respectively (which

remain constants as they do not have such a parameter).

As the distribution size increases, the density scores im-

prove, eventually converging. This is because exploring a

larger location distribution gives a higher chance to get to a

denser lasting-subgraph, indicating a trade-off between result

quality and performance. We use 50 as the default distribution

size. As explained earlier, the dense pattern approach [4] tends

to return small subgraphs, which get smaller (but usually

positive) density scores. The dense temporal approach [5], on

the other hand, tends to return subgraphs that are very large,

resulting in negative density scores (i.e., the number of edges

are few compared to the complete graph over those vertices).
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Taxi. In Figure 5, we vary the teleport probability between 0.1

and 0.9, and measure the density scores over Taxi.

(1) The maximum density score occurs when the teleport

probability is around 0.3 (which we use as default). Indeed,

teleports help when the search is stuck at a local maximum.

Too frequent teleports, however, may prematurely abort or

delay a good location.

(2) The density scores achieved over the Taxi dataset in Figure

5 are much higher than the Twitter dataset in Figure 4. This is

due to the nature of the datasets—traffic network tends to be

much denser with longer-lasting edges than communication

networks. The dense pattern [4], however, still ranks small

subgraphs as they are much more likely to be discovered, thus

resulting in small positive density scores. The dense temporal

subgraph [5], on the other hand, returns subgraphs that are too

large with negative density score.

Stack Overflow and NY Events. Similarly, we report the den-

sity scores for various distribution sizes over the Stack Over-

flow dataset in Figure 6. The trend is consistent with that in

Figure 4, except that the density scores are higher. Varying

the teleport probability, we report the result using NY events

data in Figure 7. The density scores are relatively low for this

dataset, as the events such as accidents and delays are usually

not very dense. Moreover, compared to Figure 5, the density

scores are less sensitive to the teleport probability.

Efficiency on Real Datasets. We next evaluate the efficiency,

reported as the number of processed edge changes per second,

as shown in Figure 8 for Twitter. For EMU algorithms, as

we increase the location distribution size, the performance

degrades. This is because the increase of distribution size

significantly slows down both the E and M steps. We also

see that the dense temporal approach [5] is significantly faster

than EMU, while the dense pattern approach is slower. Dense

temporal approach is faster because its phase (1) discards a

large amount of data, as it only heuristically selects a small

number of intervals, which also eases its subgraph search in

phase (2). The dense pattern approach [4], however, needs to

process a large “transaction table” for the dataset.
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In the same vein, we also measure the performance of

the algorithms over the Taxi dataset for various teleport

probabilities in Figure 9, over the Stack Overflow dataset for

various distribution size in Figure 10, and over the NY events

dataset for various teleport probabilities in Figure 11. The

performance decreases as the transport probability increases,

because performing a transport is more expensive as it needs

to obtain a whole random subgraph component, while making

local changes only slightly revises a component.

Adding vertex/edge labels. We also investigate the effective-

ness and performance of EMU algorithms when we consider

edge or vertex labels in the graph. The two approaches in [4]

and [5] cannot cope with vertex/edge labels.

For the Taxi dataset, we consider the number of passengers

in a trip as an edge label. Thus, the densest lasting-subgraph

model found also contains matching edge labels. Our results

indicate that the densest lasting-subgraph model contains edge

labels with mostly 1 passenger and some 2 passengers. The

density score comparison for with vs. without edge labels

under various distribution sizes is shown in Figure 12. We

can see that the density scores are in general lower when we

consider edge labels. This is because the chance of matching

an edge in the model with a specific label is smaller, compared

to simply just matching an edge; thus it can even be proved

that the density score of the densest lasting-subgraph will be

smaller than that without edge labels.

In Figure 13, we show the performance comparison with

and without edge labels for the Taxi dataset. It becomes slower

when we consider edge labels. This is because essentially the

entropy of the problem instance is higher when we consider

edge labels, i.e., there are more variables in the dynamic graph.

Thus, it takes longer time for the EMU algorithms to converge.

We next examine the effect of vertex labels using the NY

events dataset, where each vertex indicates a grid area where

an event happens, and the vertex label indicates the type

of events. We show the results of density scores in Figure

14 and performance in Figure 15, as we vary the teleport

probability. The densest lasting subgraph model discovered

in our experimental result contains vertex labels “delays” and

“accident”, indicating that they are the most common event

types. The comparison result with and without vertex labels

is similar to its counterpart with and without edge labels—the

density scores and performance are lower with vertex labels,

for the same reason as discussed above for edge labels. We

find that the optimal teleport probability is around 0.1.

Summary. Our experimental study using four real-world data

sets demonstrates that our EMU framework is effective in

solving the problem of finding densest lasting-subgraph as

observed in many dynamic graph applications. Our algorithms

outperforms two state-of-the-art densest subgraph discovery

methods in [4] and [5] in effectiveness measured by density

score, and strikes a balance between too small and too large

dense subgraphs. The location distribution size of our EMU

algorithms provides a tradeoff between result quality and

performance, and the optimal teleport probability is often

between 0.1 and 0.3 in our empirical study. Finally, EMU

algorithms readily extend to coping with edge or vertex labels,

which cannot be supported by the baseline methods.

VII. CONCLUSIONS

We propose a novel probabilistic subgraph model to char-

acterize densest lasting subgraphs in a dynamic graph, and

a stochastic approach, EMU, which nontrivially extends EM

with a utility function for the desired objective. Based on the

semantics that we propose for densest lasting subgraphs, we

devise EMU algorithms using MH sampling and coordinate

and gradient ascent, and prove the correctness of EMU by

showing its membership in MM algorithms. Our experiments

over four real-world datasets verify the effectiveness and

efficiency of our algorithms.
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