Top-k Frequent Items and Item Frequency Tracking
over Sliding Windows of Any Size

Chunyao Song', Xuanming Liu?, Tingjian Ge? and Yao Ge!

L College of Computer and Control Engineering, Nankai University
2 University of Massachusetts Lowell

Abstract

Many big data applications today require querying highly dynamic and large-
scale data streams for top-k frequent items in the most recent window of any
specified size at any time. This is a challenging problem. We propose a novel
approach called Floating Top-k. Our algorithm does not need to explicitly main-
tain any item counts over time or to deal with count updates upon item entry
and expiration. Succinctly we use only a small-size data structure to retrieve
the top-k items dynamically in a window of any size within an upper bound. We
prove that the space and time costs of Floating Top-k grow only logarithmically
with the window size rather than linearly as in previous work. Our comprehen-
sive experiments over three real-world datasets show that Floating Top-k£ not
only provides accuracy guarantees, but it also has two to three orders of mag-
nitude smaller memory footprint, and is one to two orders of magnitude faster
than previous approaches. Hence, Floating Top-k£ is both effective and scalable,
significantly outperforming competing approaches. In addition, we devise a con-
cise and efficient solution called Progressive Trend Model to a related problem
of tracking the frequency of selected items, improving upon previous work by
twenty to thirty times in model conciseness when having the same accuracy and
efficiency.

Keywords: data stream, top-k frequent items, item frequency tracking, sliding

window.

Preprint submitted to Journal of BTEX Templates September 18, 2018

20

25

1. Introduction

In this big data era, data are generated at unprecedented rates. Social
network data, web data, business/server logs, and data from the Internet of
Things are just some examples. For such real-time data streams, it is often
useful to dynamically query the top-k most frequent (“hot”) items in a past
window of any size chosen by users. The stream server thus needs to efficiently
maintain a succinct data structure, ready to answer top-k£ most frequent item

queries for a past window of any size at any time. Let us look at some examples.

Example 1. Twitter has been a surging online social network [/]. Hashtags
are a reasonable indicator of the contents and topics of the discussions in the
Twitter platform. One may want to query, in real time, the top-10 hottest (most
frequent) hashtags in the past hour, or in the past day, week, or month, and so

on.

Example 2. As another example, for Amazon, or an Internet search engine,
or an online news web site, one may be interested in finding the top-k purchased
products, or rented movies, or searched terms, or clicked links, or browsed news,

in a past window of any duration chosen by the user.

We call this problem the Windowed Top-k Frequent Items. It is challenging
because there is a large number of distinct data items and it is generally too
expensive or even infeasible to maintain a counter for each distinct data item.
For instance, in Example 1, with a high-rate Twitter stream, it is too costly
to keep a counter for each hashtag string. Moreover, we need to get the top-k
frequent items for a window of any size (within an upper bound W). A window
slides as time goes, and items expire from windows at different times for windows
of different sizes.

In addition to this Windowed Top-k Frequent Items problem, there are also
application scenarios where a user would like to succinctly track the frequencies
of selected items that he/she is interested in. For example, in 2016, one may be

interested in tracking the frequency of Twitter hashtag “TownHallDebate” (for

30

35

40

45

50

55

U.S. presidential debates), which can be useful for political campaigns. Likewise,
in Example 2, tracking the sales of a product over a long period of time may
be beneficial for business intelligence. Tracing the popularity of a particular
contagious disease through social networks can also help to understand the
spread of the disease and to come up with preventive measures accordingly.
Tracking item frequency is widely used in the information cascade study [22],
for dynamic spreading processes, such as rumour propagation and marketing
campaigns. In the field of security, monitoring the frequency of body contacts
and mass events provides a possible way to avoid crowd disasters [18]. Moreover,
tracking frequency has been successfully applied to capturing the styles and
trends of scientific development [36]. Scientific memes can be abstracted into
a pattern by tracking the frequency of occurrence and finding the relationship
between the frequency and the degree to which the memes propagate along
the ciatation graph [23]. Furthermore, in interactive data exploration, after
querying the top-k frequent items, the user may want to individually track the
frequency evolvement of some of these items. As time goes by, some of them
may not be “hot” anymore, and the user would start another data exploration
cycle—querying the top-k followed by tracking individual items.

We call this second problem an Item Frequency Tracking Problem. The goal
here is to use a succinct model to accurately summarize the frequency history
of the items in question. Thus, given that such a model satisfies some accuracy
constraint, it is desired to be as concise as possible. Furthermore, obtaining the

model through real-time stream data needs to be very efficient.

1.1. Related Work

Efficiently (in time and space) answering frequent item (i.e., heavy-hitter)
queries over the entire data stream or over a static window has been extensively
studied. Cormode and Hadjieleftheriou [13] give an excellent survey with exper-
imental comparisons of various approaches. For instance, the work by Misra and
Gries [31] is one of the algorithms. In our experiments, we implement the FRE-

QUENT algorithm (i.e., Algorithm 1) in [13] to find out the ground truth top-k

60

65

70

75

80

85

90

items in any static fixed window for comparing various competing approaches.
However, there are fundamental differences between [13] and our work. We
study the top-k most frequent items problem in a past window of any size; we
can dynamically answer the query at any time.

Liu et al. [27] give another excellent survey that summarizes different meth-
ods for heavy hitters. The existing algorithms are divided into sampling-based,
counting-based and hashing-based categories. As stated in [27], although sam-
pling might be the most straightforward way to deal with big data, there are
some shortcomings with sampling for data streams. Specifically, it is difficult to
decide the sampling rate when the size of the stream is unknown. In addition,
as the answer quality usually improves as the sample size increases, achieving
a required accuracy may need samples that exceed the storage capacity. In
contrast to counting-based and hashing-based methods, sampling-based algo-
rithms only update the synopsis at the samples. As such, [27] only focuses on
counting-based and hashing-based methods. We will also discuss counting- and
hashing-based related work in detail. The surveyed data stream models include
time-sensitive models, distributed models, hierarchical and multi-dimensional
models, and skewed data models. Sliding window falls into the time-sensitive
models. Over the years there is a series of work on heavy-hitter queries in a
sliding window, with a subsequent one improving upon a former one: Golab et
al.’s [20], Arasu and Manku’s [6], and Lee and Ting’s [26]. As experimentally
demonstrated by Homem and Carvalho [21] (and verified in our experiments),
these approaches do not perform as well as the algorithms in [21] for top-k
frequent items over a sliding window. In addition, Chen et al. [12] present an
algorithm A-H Count based on a time fading model for computing the frequency
counts of stream data. It uses r hash funcions to estimate the density values of
data items and has a similar problem as the aforementioned three approaches.
More importantly, heavy-hitter queries rely on a frequency threshold ® to de-
termine which items to pick. However, in big data applications and large-scale
dynamic streams such as Twitter, even the top-k items in a large window may

be only a tiny fraction out of the total. Furthermore, as the window slides and

95

100

105

110

115

120

stream changes, and for different window sizes that users may request, ® is
highly dynamic and is never fixed for top-k items. Thus, it would be impossible
to determine a good ® value to use. A conservative very-low ® value would
return too many items. To make matters worse, most of these heavy-hitter
approaches do not provide frequency estimates for each item [21], making it
impossible to pick the top-k among many that are returned. Hence, among this
line of work, we only show the comparisons with Homem and Carvalho’s work
[21] in our experiment section (in addition to the comparisons with Persistent
Data Sketching [41] and Piecewise Linear Approximation [34]).

Homem and Carvalho’s algorithms [21] extend the Space-Saving algorithm
originally proposed by Metwally et al. [29] to handle sliding window queries; the
new algorithm is called Filtered Space-saving with Sliding Windows. However,
like other sliding window work discussed above, a major limitation is that it
is only designed for one fized window size, even though the window slides over
time, while our method simultaneously handles all window sizes within an upper
bound W. Note that this is not the same as one fized window size. W is the far-
thest data unit that users care about, e.g., a year, a month or a day ago. We can
answer any query of window size w € [1, W] dynamically by only maintaining
one small-size data structure. Of course, with Filtered Space-saving with Sliding
Windows, one can independently handle multiple fixed window sizes, but then
the memory footprint and processing cost have to add up linearly as well. Even
with a single window size, the algorithm has a high space complexity O(kW) and
maintenance time complexity O(klogk + kW) per time unit. With all window
sizes, this space and time complexities become O(kW?2) and O(kW log k+kW?)
respectively. It is worth noting that Gibbons et al. [19] improve upon [16] for
the basic counting problem. The worst case per-data-element processing time is
improved from O(log W) to O(1) and only O(% log? W) memory bits are needed
for each data item. Suppose the number of different items in window W is N, it
is possible to handle top-k frequent items query in O(% log? W) (e € (0,1)) mem-
ory bits by using the method of [19] and scanning the stream N times. Although
the space complexity is low enough, its time complexity is O(NW + kWlogk)

125

130

135

140

145

150

for all window sizes. By contrast, our method only has a space complexity
O(klog W) and a time complexity O(klog klog W) per time unit.

Another line of work extends data stream sketches to handle heavy-hitter
queries in a sliding window. Papapetrou et al. [35] extend Count-Min sketch
[15] with exponential histograms [16] to handle sliding windows, and call the
new sketch Exponential Count-Min which can handle various kinds of queries
including point queries, inner product and self-join queries, and heavy-hitter
queries (while we only focus on top-k frequent item queries). More recently, Wei
et al. [41] propose Persistent Data Sketching, which handles, among other types
of queries, heavy-hitter queries over sliding windows. Like [35], Persistent Data
Sketching also extends the Count-Min sketch [15], but using the more succinct
piecewise functions [34] (instead of exponential histograms as in [35]). Thus,
it improves upon the version of [35] (as its analysis shows). We compare with
Persistent Data Sketching in our experiments. Moreover, some novel sketches
based on the time fading model or distributed streams are proposed. Cafaro et
al. [10] present a new sketch based algorithm where the key ideas are borrowed
from forward decay, the Count-Min and the Space Saving algorithms. It works
in the time fading model. [11] implements a parallel version of [10]. Shah et
al. [38] focus on query estimation over sliding window distributed data streams.
They propose an efficient Exponential Space Saving sketch approach, whose
overall memory growth is sub-linear with respect to the data size and length
of sliding window. Exponential Space Saving sketch provides the same average
estimation errors and outperforms Exponential Count-Min sketch in terms of
the communication cost of distributed queries.

For heavy-hitter queries, this line of sketch-based work assumes that items
have integer id’s in the range of [1,n] and uses the dyadic range sum technique
in [14] to decompose [1,7] into logn+1 levels, where level I has 3; dyadic ranges
(0 <1 <logn). Then a persistent Count-Min sketch is built for each level to
track the total frequencies of elements in every dyadic range. Thus, a heavy-
hitter query with frequency threshold ® fraction can be answered by recursively

querying the persistent sketch from level logn down to level 0. The idea is that

155

160

165

170

175

180

there cannot be more than é dyadic ranges with frequency more than fraction
®. Once we locate these frequent dyadic ranges, in their next lower level, we
only query those % sub-divided dyadic ranges, and again there cannot be more
than é of them being frequent. Finally in level 0, we get all individual frequent
items. With dynamic data items, we may not know a tight upper bound of
the number of distinct items n a priori. Suppose we are able to assume 32-bit
integer item id’s, then there are 32 levels, i.e., 32 persistent Count-Min sketches,
which are very heavy in memory and processing costs. Additionally, we may
have to maintain and look up a large 1-to-1 mapping table between integer id’s
and items if items do not have integer id’s to begin with (e.g., hashtag strings).
For top-k queries, again this suffers from the problem of choosing ®, as discussed
above. Furthermore, since retrieval cost is linear to é, a very small ® entails a
large number of lookups of the persistent sketches (in addition to repeated trial
and error).

Ben-Basat et al. [8] also address heavy-hitter queries in sliding windows.
Their approach divides the stream into W-sized frames and further partitions
each frame into k equal-sized blocks, and the window of interest is also of size
W. The whole algorithm design is based on such k& equal-sized blocks. How-
ever, in practice, data flow fluctuates and we could not know the “block size”
in advance. The algorithm in [8] will not work for equal-sized blocks based on
time. Moreover, one cannot query arbitrary window sizes. Besides what has
been discussed, there is some more remotely related work in the literature. For
example, Mouratidis et al. study continuous monitoring of top-k queries in data
stream sliding windows [33]. There are two major differences from ours. First,
it is based on a preference function to compute a score for top-k, but not on
frequency. Second, its window size has to be fixed in advance and users cannot
query arbitrary window sizes. Lam and Calders [24] study top-k items in a data
stream with the highest max-frequency, which is defined as the maximum of
the item frequency over all window lengths. Mirylenka et al. [30] introduce the
notion of Conditional Heavy Hitters. This concept is distinct from prior notions

of heavy hitters and frequent itemsets. It cares about items that are condition-

185

190

195

200

205

210

ally frequent: a particluar item is frequent within the context of its parent item.
Then they develop several streaming algorithms for retrieving conditional heavy
hitters. It solves a different problem and is not for a query with a particular
window size. Shah et al. [37] compute hierarchical heavy hitters by modifing
Misra Gries algorithm. In [39], a new concept called Hierarchically Correlated
Heavy Hitters is described to capture the sequential nature of the relationship
between pairs of hierarchical items at multiple concept levels and local contex-
tual patterns within the context of the global patterns. The algorithm of [39]
finds the correlation between items corresponding to hierarchically discounted
frequency counts. Like [30], the algorithms of [37, 39] are not designed for top-k
frequent items queries of a paricular window size. Le et al. [25] study top-k
erasable pattern mining problem as a variant of frequent pattern mining and
propose two efficient methods using pruning strategies and the subsume con-
cept, which is not suitable for data streams and window queries. Erra et al.
[17] present a revised TF-IDF measure and a parallel implementation of the
calculation of the approximate TF-IDF based on GPUs to process continuous
data streams. It returns frequent top-k items by calculating the approximate
TF-IDF value that only works well for a fixed window size. Babcock et al.
[7] propose priority-sample to sample from a timestamp-based moving window.
Upon each element’s arrival, it is assigned a randomly chosen priority between
0 and 1. The purpose of this work is to maintain a uniform random sample
of size k. To achieve this goal, priority-sample generates k priorities p1, ..., pg
for each element and chooses the element with the highest p; for each i. The
goal of this work is different from ours and is not able to handle frequent items
query. Also, we show in Section 3.2 why a simple random level assignment upon
each element’s arrival cannot serve our needs. The detailed analysis is shown in
Section 3.3.

Datar et al. [16] address the problem of maintain aggregates and statistics
over data streams. Similar to us, it works for sliding windows of any sizes
chosen at query time. It solves a basic counting problem—counting the number

of 1’s in the last w bits of the stream (at any time), where w < W, and W

215

220

225

230

235

240

is an upper bound. It works by maintaining exponential histograms. While
bearing some similarity with our Item Frequency Tracking problem, our target
is fundamentally different. As shown in Definition 2, our problem is to succinctly
track the item counts at each time unit within a very large window (imagine this
can be tracked for many items at the same time). Hence we resort to very concise
piecewise polynomial functions (i.e., a form of dynamic data compression). Note
that this problem is also different from the work of prediction and forecasting
models in statistics [28].

For this problem, the Piecewise Linear Approximation [34] also provides a
solution, which is very efficient and provides guarantees on model accuracy. The
popularity and wide use of [34] are attributed to its high efficiency—amortized
O(1) time per point [34], as well as its adaptivity and scalability to any long
period of time, especially suitable for data stream settings. Our method, called
Progressive Trend Model, uses different techniques, namely five-point stencil [9]
to estimate a few low-order derivatives using data points with progressive step
sizes (granularities), as well as Taylor series, to explore the trend, resulting in
more powerful function models. We prove that its cost is also amortized O(1)
time per point, and our experiments show that it is 20-30 times more concise
than Piecewise Linear Approximation, under the same accuracy constraint.

We have briefly discussed how to deal with the windowed top-k frequent
items and the item frequency tracking problems in the ICDE 2017 poster version
[40], where we show the algorithms and a few preliminary evaluation results.
By contrast, in this paper, our contributions include more complete algorithms
and the added theoretical analyses (which are not in [40]), along with more
intuitions, explanations, and examples. In addition, in this paper, we have

conducted much more experiments to systematically evaluate our work.

1.2. Our Contributions

We first formally state the Windowed Top-k Frequent Items problem, as
well as the Item Frequency Tracking problem. For the first problem, we devise

an algorithm called Floating Top-k. The basic idea of it is to let each item

245

250

255

260

265

270

275

in the stream perform an independent action—choosing a random “level” from
a distribution, such that some aggregate value grouped by each distinct item
is probabilistically proportional to the frequency of that item. Thus, we can
estimate the top-k frequent items in a window based on the k items/groups
with top aggregate values. The “aggregate” value here is the maximum level
of the item, where an appearance of the item in the stream gets a random
level, as stated above. An interesting property with the above procedure is
that we do not need to explicitly maintain any item counts over time or deal
with the count updates upon item entry and expiration from windows of any
sizes. This is because each item in the stream simply makes its own choices
(of levels) independent of any other items. Our Floating Top-k algorithms
maintain a small-size floating tuple pool, such that the top-k items with highest
maximum levels can be retrieved for any-size windows, at any time. We prove
that the expected space complexity of our method is O(klog W), where k is the
number of items parameter in top “k”, and W is the maximum window size
(in number of time units). We also prove its time complexity. The fact that
the space and time costs of Floating Top-k grow only logarithmically with W is
significant; all previous approaches to this problem (Filtered Space-saving with
Sliding Windows and Persistent Data Sketching) grow at least linearly with
W. Our experiments using three real-world datasets show that Floating Top-k
retrieves very accurate top-k most frequent items. The memory footprints of
Filtered Space-saving with Sliding Windows and Persistent Data Sketching are
2 to 3 orders of magnitude larger than that of our algorithms even for relatively
small W, and grow linearly with W. Floating Top-k is also at least 1 to 2
orders of magnitude faster than Filtered Space-saving with Sliding Windows
and Persistent Data Sketching. Thus, our method is highly scalable for high-
rate data streams with dynamic items and arbitrary-size windows.

For the Item Frequency Tracking problem, we propose an algorithm called
Progressive Trend Model. We prove that it has an amortized cost of O(1) per
time unit. Experiments show that it is much more concise (20 to 30 times) and

slightly faster than Piecewise Linear Approximation (previous work) under the

10

280

285

290

295

300

same accuracy guarantees. Our contributions can be summarized as follows:

o We state the Windowed Top-k Frequent Items and the Item Frequency
Tracking problems (Section 2).

e We propose an algorithm to effectively solve the Windowed Top-k Fre-
quent Items problem, and prove its complexity and parameter choices

(Section 3).

e We devise a Progressive Trend Model algorithm for the Item Frequency
Tracking problem, and prove its amortized cost of O(1) per time unit

(Section 4).

e We perform a comprehensive experimental evaluation, using three real-
world datasets and comparing with three methods in previous work (Sec-

tion 5).

2. Problem Statement

We are given as input a data stream s = ajas.... Each item qa; is drawn
from a highly dynamic, potentially very large domain D. We partition the time
domain into time units, such as seconds or minutes, depending on the window
granularity in queries. For example, if the finest window granularity a user cares
about is at minute boundaries, then a time unit is a minute. A user could ask
for top-5 hot news in the past 30 minutes, but has no need in asking for the
top-5 hot news in the past 30 minutes and 2 seconds. In general there can be
any number of items arriving in each time unit. We first formally define the

Windowed Top-k Frequent Items problem.

Definition 1. (Windowed Top-k Frequent Items). Let the current time unit
be t. The windowed top-k frequent item problem is to return the top-k most
frequent items for any given time window from time unit t — w to time unit t,
denoted as [t — w,t], where w < W (W is an upper bound of w). This query

may be asked at any time unit t.

11

305

310

315

320

325

330

In general, W can be very large. For example, the time window can be sec-
onds, minutes, hours, days, weeks, or even months. The system should maintain
a data structure as concise as possible, in real time as data streams in. Then
whenever a query is asked at any time unit ¢, the top-k most frequent items in

the query window need to be returned. Let us now define the second problem.

Definition 2. (Item Frequency Tracking Problem). For a selected item i, we
maintain a concise data structure M such that for any time unit t' chosen
uniformly at random from the window [t — W, t], with probability at least 1 — €,
the count of item i in t' returned by looking up M has an error no more than §

fraction from the true count.

Our goals in a solution to the Item Frequency Tracking problem are three-
fold: (1) it provides accuracy guarantees; (2) building M is incremental and
highly-efficient for real-time operations; (3) the resulting data structure/model

M should be succinct.

3. Windowed Top-krequent Items

3.1. Intuition

A major issue with previous methods (Filtered Space-saving with Sliding
Windows and Persistent Data Sketching), as also found in the experiments
(Section 5), is that they are too heavy, particularly in memory footprint, and in
turn processing overhead. They typically require memory space growing linearly
with the window size W (and with a large constant). Moreover, it is hard to
succinctly maintain item counts over time due to continuous item’s entry into
and expiration from all the windows within the upper bound W.

The basic idea of our method is that each arriving item in the stream makes
an independent random choice of its “levels”, following a particular distribution.
Then for any window, some aggregate value grouped by items is probabilistically
proportional to the total count of that item in that window. This aggregate

value is the mazimum level assigned to that item in the window. For example,

12

335

340

345

350

355

360

suppose the items (il,142,143,2,13,71,42,44) arrive in increasing time order. Let
us say that they are given random levels (2, 3, 1, 0, 3, 1, 4, 2) respectively.
(i1,42,43,i4)’s aggregate values (i.e., maximum levels) will be (2, 4, 3, 2) for a
window of size 9. Then we use (2, 4, 3, 2) to give evidence of the frequency of
the items approximately and obtain top-k frequent items. Hence, we may just
somehow maintain a succinct data structure, called a Floating Top-k tuple pool,
that incrementally keeps the items with top-k maximum levels for each window.

By doing this, an interesting and nice effect is that we do not need to main-
tain continuous counter states, and hence it is extremely simple to deal with
item’s entry into and exit from all windows. In other words, there is no need to
explicitly handle item expiration as in previous methods. In other methods, for
example, if we maintain frequencies for each item ¢ as in the algorithm of [21],
when an item expires, we must deduct the expired item counts from the total
counts, resulting in a high maintenance overhead. While in our method, each
tuple in the top-k tuple pool has a timestamp in the interval [t — W, t] where ¢ is
the current time and W is the maximum window size. Thus, simply collecting
all tuples in the pool that fall in the query window will be sufficient (note that
we allow query window to be less than TW). This advantage is attributed to the

independent level choices of arriving items.

3.2. Main Algorithms

With the intuitions in Section 3.1, we next present the main algorithms for
the Windowed Top-k Frequent Items problem. We call our method Floating
Top-k. The first algorithm, MAINTAINFLOATINGTOPK, as shown below, is for
the stream system to maintain a Floating Top-k tuple pool I'. As discussed in
Section 3.1, this pool I' is to store a number of items that have the highest
maximum levels. Then at any time, when the user’s query comes in, the system
can retrieve the top-k most frequent items from the current snapshot of I'.

The key point of the pool I' is that it needs to be sublinear to the maximum
window size W. In fact, we will show shortly in Theorem 1 that the expected

size of I' is O(klog W). To achieve this, we organize the tuples in I' (where each

13

Algorithm 1: MAINTAINFLOATINGTOPK (s, W, k)

Maintain a pool I' to store a number of items that have the highest maxi-

mum levels.

N

10

11

12

13

14

15

16

17

18

19

20

21

22

Input: s: data Stream,
W: upper bound of window size,
k: upper bound of number of top results needed
Output: a continuously evolving data structure I'
for j <~ 0to W —1do
L I'[j] +—empty list
foreach current time unit t do
for j < W —1 down to 1 do
| Tl -1
I'[0] + empty list
foreach item ¢ that arrives in t do
! + RANDOMLEVEL(p)
I'[0] maintains top-k tuples(é,!) with distinct ¢ and highest I (i.e.,
ranked on [/ in descending order)
ctop + T'[0] //maintain a current top-k vector
for j«—1,... W —-1do
for (i,1) € T'[j] do
if | < ctoplk].level then
remove (i,1) from I'[§]

continue

f 3, s.t.(i,1') € ctop then

—

if [> !’ then
L replace (z,1') by (7,1) in ctop
else

L remove (7,1) from I'[j]

else

t replace ctop[k] by (¢,1) in ctop

14

365

370

375

380

385

390

tuple contains level information [of an item ¢) in their timestamp order. Thus,
if we scan the tuples in I in reverse chronological order, and maintain a vector
of k tuples ctop that have the highest levels thus far, we can remove a tuple
(i,1) from T if it does not have a higher level than any tuple in ctop. This is
because (i,1) will expire from a window earlier than all tuples in ctop anyway;
hence there is no chance for it to be in the top-k of any window from now on.
We will show an example of this point after explaining the algorithm.

The input parameter k to MAINTAINFLOATINGTOPK is also considered as
an upper bound, since the algorithm can easily handle top-k’ most frequent
items for any &’ < k. In lines 1-2, we initialize the Floating Top-k tuple pool T’
to be all empty. For simplicity and clarity, we present I' as an array, where the
index is time unit in reverse chronological order, i.e., T'[0] holds some tuples at
the current time unit (“now”), and I'[4] holds some tuples at time unit j before
“now” (0 < 7 < W —1). Here, a tuple has the form (4,!) indicating item 4
with level [. It may seem that this by itself is already O(W') space and time
complexity. However, as we prove in Theorem 1, most entries in I' are expected
to be empty; we actually implement I with a linked list ordered by time, where
each tuple also has a “time unit” attribute.

Lines 4-22 are the actions we perform for each current time unit ¢ (i.e.,
“now”). Lines 4-5 are due to the time unit shift. Lines 6-9 first assign a random
level for each item in the current time unit (¢), and then get the top-k highest-
level tuples from them and assign them to I'[0] (the RANDOMLEVEL called in line
8 will be explained in detail below). In case there are fewer than k items/tuples
at time ¢, we just keep all of them. Note that we need to keep all these tuples
(at most k) in I'[0], because they are the “newest” (i.e., latest). If one were
to query the top-k now with window size 1, they will be returned. Intuitively,
“newer” tuples in the pool are “better” as they expire later. Hence, in lines
10-22, we iterate through the tuples in reverse chronological order.

Line 10 initializes the “current” top-k vector ctop. The loop from line 11
considers what will be in top-k if the query window is of size j. Line 12 iterates

through all tuples (with timestamp ¢ — j) that are currently in the pool. In line

15

395

400

405

410

415

420

13, if such a tuple (4,1) has level [not better than the lowest level in ctop (tuples
in ctop are in descending order of levels), we just remove this tuple from the pool
(lines 14-15). Otherwise, the condition in line 16 indicates that there exists a
tuple in ctop that is from the same item (i.e.,) as this tuple (¢,7). Then we must
only keep one of them in ctop (lines 17-20)—the one with higher level (in case
it is a tie, we keep the newer one). This can be easily implemented by searching
for the item 4 from ctop[0] to ctoplk] and by doing a simple insertion sort. In
this way, we update ctop and maintain its descending order. The reason we
only record the highest level for each item is because the resulting top-k items
are ordered by their maximum levels. We will show the relationship between
the expected maximum level of an item and its true counts in Section 3.3. In a
nutshell, an item with a higher count is expected to have a greater maximum
level. If (,1) does not make it into ctop, we remove it from I' (as it will never be
from now on). In lines 21-22, the tuple (i,1) will replace the one in ctop with the
lowest level (i.e. the last element in ctop). The resulting ctop then maintains the
top-k items for the largest window size W. Finally, the continuously evolving
tuple pool T is exposed to top-k queries at any time (i.e., will be an input to
the RETRIEVETOPK algorithm discussed below).

Recall that the algorithm RANDOMLEVEL is called in line 8 MAINTAIN-
FroaTINGTOPK; we present this simple algorithm. The choice of its input
parameter p will be discussed in Section 3.4. Line 1 of RANDOMLEVEL picks a
real value m from the interval [0, 1) uniformly at random. Then lines 2-9 im-
plement an iterative procedure: starting from level [= 0 (line 2), we stop and
return [as the level value with probability 1 —p. That is, with probability p, we
advance to the next level I = 1 (line 9), and continue this recursive probabilistic
level promotion again, until it stops and a level [is returned (line 6). A greater
m implies a greater level [. This helps us to get an aggregated maximum level
of an item which is probabilistically proportional to the total count of that item
(i.e., calling this algorithm more times tends to result in a higher m and hence
higher level in at least one call). In addition, our overall method can conve-

niently re-construct the top-k tuples in a window of any size and for sliding

16

425

430

435

Algorithm 2: RANDOMLEVEL(p)

Get a random level of an item.
Input: p: probability of level promotion

Output: a random level
1 m < random(0, 1)
21+0
3 g+ 1

4 while true do

5 if m < ¢(1 — p) then
6 Lreturnl

7 m <+ m—q(1l—p)

8 q < qp

9 l<1+1

windows. The detailed analysis is shown in Section 3.3. By contrast, a simple
random level assignment upon each item’s arrival cannot serve this purpose.
Next we show the algorithm RETRIEVETOPK, which returns the top-k£ most
frequent items for any window of length w < W, i.e., in the window [t —w+1,],
based on the tuple pool structure I' that is built and continuously maintained.
As discussed earlier, k is an upper bound (used for building I'); we can answer
top-k’ queries (k' < k) too, through replacing k by k¥’ in RETRIEVETOPK.
Recall that, in the Floating Top-k tuple pool I, the list of tuples at a partic-
ular time unit, I'[u] (0 < u < w — 1), is sorted in level-descending order. Thus,
RETRIEVETOPK is essentially a multi-way merge sort, until we get k tuples
with highest levels. This can be done by using a max-heap structure (priority
queue) in line 1, starting the heap with only the first tuples at each non-empty
list I'[u]. Then we keep popping the top-one from the heap (and add the next

one from its I'[u] list into heap), until we have k of them.

Example 3. We use a simple example to illustrate how MAINTAINFLOATING-
ToprK works. At the top of Figure 1 we show the data stream in increasing time

order (time units t0,t1,... t8), together with the items (i1,i2), (i2), (i1), (i1),

17

440

445

450

Algorithm 3: RETRIEVETOPK (T, w, k)

Obtain top-k frequent items within the most recent window of the given

size based on the tuple pool that is built and continuously maintained.

10

11

Input: I': Floating Top-k structure,
w : query window size,
k : number of top results needed
Output: top-k frequent items in the window [t — w + 1,]
build a max-heap H (sorted on level) using each first tuple in I'[0], ..., [[w — 1]
R + empty list
for j «+ 1...k do
while true do
pop max from H; let it be I'[u][v] = (4,1)
if ¢ is not in R then

L break

append I'[u][v] to R
if T[u][v] is not the last element in I'[u] then

L push I'[u][v + 1] into H

return R

(i3,14), (i5,43), (i2), (i2,44), (i5) (only one or two items per time unit for sim-
plicity). Time t8 is the current time unit (“now”). Suppose W =9 and k = 2.
FEach row in the table in Figure 1 shows the tuples in the Floating Top-k tuple
pool T' at the corresponding time unit. In a tuple at each column, the second
value is the random level that item is assigned by RANDOMLEVEL. Let us pick
two time units to see how the algorithm works. First consider t = t3 and see
how I' changes from t = t2 to t = t3. At t3, item il arrives with a random
level 4. Lines 6-9 of MAINTAINFLOATINGTOPK assign T'[0] to be (il,4) (there
are fewer than k = 2 tuples; but that’s all we have). Then lines 10-22 iterate
through the existing tuples in T (inherited from row t = t2) in reverse chronolog-

ical order. First, for tuple (i1,0), the same item il already exists in the current

18

455

460

465

earlier now

time t0 1 2 3 t4 15 6 t7 t8

item L2 2 i1 il i3,i4 is,i3 2 i2,i4 i
t0 t1 12 13 1 t5 6 17 18

r t=t0 |{i1, 2} {i2, 0}

t=t1 {i1, 2} {i2,3)

t=t2 {i1,2) (2,3} {i1, 0}

=13 (2,3} (i1, 4}

t=ta (2,3} (1,4} |{8,2}{ia,5)

t=t5 (2,3} (1,4} |{8,2} {ia, 5} |45, 3} {33, 0}

=16 (1,4} |{B,2} 08,5} |65, 3) (i3, 01| {iz, 4}

t=t7 {i4,5) {i5, 3} (2,4} |{iz,3}{5,2)

t=t8 {ia, 5} {i5,3) (2,4} |(i2,3}05,2)| (i5,1)

Figure 1: A simple example to illustrate the process of maintaining the floating pool, where
W =9and k = 2.
top-kctop in (il,4); hence (i1,0) is removed from I' (line 20). The same is true

for tuple (i1,2), while (i2,3) joins ctop and stays in T. Now consider the row
t = t7. Item i2 arrives with level 3 and i5 arrives with level 2. ctop includes
(i2, 3), (i5,2). For tuple (i2,4), item 2 is in the current ctop; hence (i2,3) is re-
placed by (i2,4) (line 18). Similarly, (i5,3) replaces (i5,2) in ctop. Tuple (i3,0)
is removed from T' because its level is less than the current top-2 in ctop (line
20). The same is true for tuple (i3,2). Then the next tuple, (i4,5), however,
replaces (i5,3) in ctop (line 22). Finally, tuple (il,4), whose level is equal to
ctoplk], is removed from T'. Suppose at this moment a top-2 query is asked with
w = 9, then RETRIEVETOPK will return i2 and i4. If the query is asked with

w = 3, then RETRIEVETOPK will return i2 and 5.

We next perform a detailed analysis of our Floating Top-k algorithm frame-

work in Section 3.3.

8.8. Analysis

In this subsection, we first analyze the time and space complexity of our
main algorithms. Then we analyze the accuracy of the finally retrieved top-k
items. For complexity, we first show that the number of (7,1) tuples maintained
in the Floating Top-k structure I' has a nice bound. We first show the following

result.

19

470

475

480

485

Theorem 1. The expected number of tuples maintained in the Floating Top-k

tuple pool is O(klog W).

Proof 1. For the current time unit t, T'[0] stores k tuples. T'[1] stores the addi-
tional (i,1) tuples that go into the top-k in the window [t — 1,t] (in addition to

a few top ones in T'[0]). Since the choices of levels are random and independent

k
27

the k highest levels come from T'[1], and the other half from T[0]. Similarly,
E[T[2]]] = &,...,E[L[W —1]|] = {%. Hence, the expected size of the Floating

for each item in the stream, we have E[|T[1]|]] = %, i.e., in expectation, half of

Top-k tuple pool is:

w-1 w-1

Br)=E}__ Tul=)_ _ EIrl

=0

w-1 1
:k-zizo Z,H=O(k10gW)

Note that in case the stream is so slow that there are fewer than k tuples per
time unit, we can just merge multiple time units into one “large unit” that has
sufficient tuples. There will be fewer than W large units in the pool and E[|T]

can only be smaller.
We now have the complexity results.

Theorem 2. The time complezity is O(klog klog W) per time unit for MAIN-
TAINFLOATINGTOPK, and the total space complezity is O(klog W) in expecta-

tion. The expected time and space complezity of RETRIEVETOPK is O(klogw).

Proof 2. Firstly, the call RANDOMLEVEL(p) in line 8 takes O(ﬁ) time, since
the loop in lines 4-9 of the algorithm RANDOMLEVEL can be considered as a ge-
ometric distribution with success (i.e., stop of the loop) probability 1 —p in each
loop. Thus, the expected cost is O(ﬁ), which is a constant (we will discuss
the choice of p shortly). Also note that the random levels returned by RANDOM-
LEVEL can be easily precomputed offline using a pseudorandom generator.
Secondly, from Theorem 1, the loops in lines 11-12 of MAINTAINFLOATING-

ToprK ezamines an expected number of O(klog W) tuples (i,1) in the pool T.

20

490

495

500

Within the loop (lines 13-22), each line takes O(1) time, except lines 18 and
22 where we “replace” a tuple in ctop by (i,1), which takes O(logk) time, as
we need to search to maintain the sorted order of ctop. Note that line 16 takes
O(1) time too, as the match of item i can be done using a hash table. Thus, the
expected time complexity per time unit is O(klogklogW). It is also clear that
the expected space complexity is O(klog W) for storing the top-k tuple pool.
Finally, the heap building in line 1 of RETRIEVETOPK takes an expected
O(klogw) cost in both time and space (again from Theorem 1 for the size of
the floating tuple pool). Note that we use “w” for the actual window size in
the query. Thereafter, the heap operations in lines 3-10 take O(klog(klogw))
time. Hence the overall expected cost in time and space of RETRIEVETOPK is

O(klogw).

Now let us analyze the relationship between an item’s frequency and its

maximum level.

Theorem 3. For any query window [t — w,t], the expected maximum level of
an item i returned by RANDOMLEVEL is E[L] =Y 02 [1 — (1 —p")"] , where n

r=1

s the number of times i appears in that window, and r is an integer.

Proof 3. L = max;—_y,. , L;, where L; is the level of item i at its j’s appear-
ance. Since the level L of the item i is a random variable that takes on only

non-negative integers, it follows that

E[L) = i Pr(L >)

21

505

510

515

520

525

530

Note that the first equality is true since L is a non-negative integer [32]. In-
tuitively, Pr(L > r) is the probability that we can add 1 to L, iteratively for

mcereasing T.

From Theorem 3 we can see that, the greater n is (i.e., the more frequent
item ¢ appears in the query window), the greater E[L] is. Theorem 3 does not

give a closed form solution. We have the following result.

Theorem 4. An unbiased estimate of the number of appearances of an item i
n a query window, given its mazimum observed level | returned by RANDOM-
p+1

LEVEL, is B2(1)! — 5.

Proof 4. We define a random variable X as the number of times item i appears
n a time window when its mazximum level first reaches value l. Then we define
a random variable Y as the number of times item i appears in the time window
when its very next appearance increases its mazximum level to | + 1. The event
that item i’s level reaches value | has a probability p*. Thus, X follows a geomet-
ric distribution with parameter p'. We then have E[X] = ﬁ . Similarly, Y + 1
follows a geometric distribution with parameter p'*1. Thus E[Y +1] = ﬁ and
E)Y]|= zﬁ —1. As we observe that the maximum level is | when the query is is-
sued, the actual number of times N that item i appears must satisfy X < N <Y.
Since N is equally likely to be any value in that interval, we have an unbiased es-

timate N = ££X | and hence E[N] = 7E[X]JQFE[Y] = %(ﬁ-}-pl}rl -1) = %(%)l—%.

We now further show the order-preserving property in Theorem 5.

Theorem 5. For a given query window, the probability that a frequent item

i is not reported by RETRIEVETOPK is no more than e "% where p = Z—;,
n; 18 the count of item i, k is the upper bound parameter used in MAINTAIN-
FLOATINGTOPK, and ny is the count of the item ranked the k’th in the ground

truth.

Proof 5. Let the maximum level of the item ranked the k’th in the query window

22

535

540

be 7. Then for the j’th appearance of item i, define a random variable

1 if its level > T

0 otherwise
giving n; random variables. Thus, Pr(X; = 1) = p”, and E[X;] = p”. Further
define X = 377" X;. From linearity of expectation,

EX] =" EXj]=np (1)

j=1
On the other hand, ngp™ =~ 1, as T is the mazimum level of the rank-k item
(There are one or more occurrences of the rank-k item at level T by definition.
Thus, one can show a probabilistic lower bound of nixp™ close to 1. Note that
a greater ngp” only helps our Chernoff bound in the proof below in the right
direction). Combining this with Equation (1) gives

EX] = Z—; = p (p 1s as defined in the theorem)

Then from Chernoff bound [32],

1

PriX <1)=Pr(X <[1—-(1-—2)p) < e P12 o omn/2

I
as we consider frequent item i and hence large u; the above probability is small.
Note that p grows exponentially as we slightly increase k (the upper bound that
determines the cost of the top-k tuple pool). Finally, from the definitions of X;
and X, Pr(X < 1) is the probability that item i has never had level at least T in
its n; appearances in the window, and hence is not reported by RETRIEVETOPK,

finishing the proof.

Theorem 5 shows that as the frequency ratio p = Z—; increases (i.e., item 14
is much more frequent than the item ranked at the k’th), the probability that
item ¢ is not reported in top-k decreases exponentially fast.

We may further enhance the accuracy of the top-k results by reducing the
variance through independently repeating MAINTAINFLOATINGTOPK and RE-

TRIEVETOPK a constant number of times. Suppose it is repeated ¢ times,

23

545

550

555

560

565

which we call ¢ rounds, and we get ¢ - k item-level pairs (i,1). For each dis-
tinct item ¢ that appears in these results, we first use Theorem 4 to calculate
the estimated counts in each of the ¢ rounds. It is possible that ¢ only ap-
pears in some rounds but not others. For a round that misses i, we use the
minimum level of that round — 1 as the level [in Theorem 4 to estimate the
count. Then, removing the maximum and the minimum (to drop possible out-
liers), we get the mean of the remaining ¢ — 2 counts as the final count of item i.
In the end, we select top-k items based on these final counts. Although repeat-
ing MAINTAINFLOATINGTOPK and RETRIEVETOPK c times increases accuracy,
it consumes more computation resources. We show the effect of varying c in

Section 5.

8.4. Choice of Parameters

We now discuss the choice of parameter p, i.e., the promotion probability in
choosing random levels for each item. The intuition is that we should ensure
that the maximum levels of top-k items should be spread out in a sufficiently
large range (e.g., 2k), so as to be robust against variations of item levels. We

have the following result.

Theorem 6. Let the total number of items in a time window be n, and the

number of the item with rank k be ny (which can be estimated at runtime as

discussed below). Then we should choose the parameter p as p = (%)ﬁ, where

k' is the desired number of levels that top-k items span across.

Proof 6. First consider all items together, and let the maximum level in the

time window be I. Then from Theorem 4, we have

1

PGy -3 &)

2p 'p

174

n

Since k' is the desired number of levels that top-k items span across, the item
with rank k should have the mazimum level | — k'. Again from Theorem 4, we
have

=IO =S)

24

570

575

580

585

590

1
LT

Dividing Equation (2) by Equation (8), and simplifying, we have p = (%)%

n

as

in the theorem.

For example, if we first collect the statistics that n=100,000 and n;=3,000
(k=5). ni can be estimated by using any p value first (e.g., p=0.5). Suppose
the desired k¥ = 2k = 10. Then Theorem 6 advises us to choose p = 0.03%! =
0.7. Note that we cannot indefinitely increase k', as Theorem 6 shows that
a greater k' implies a greater p value; yet this would increase the cost of the
RANDOMLEVEL algorithm invoked for each item, which has an expected cost of
O(1).

Finally, we note that the choice of p may be dynamic. Based on the estimated

ng and n at runtime for window size W, we can dynamically adjust p.

4. Concise Real-Time Tracking of Item Frequency

In the previous section, we have studied how to locate top-k most frequent
items in any time window. As discussed in Section 1, there are also many usage
scenarios where a user knows which item(s) he/she is interested in. For example,
in interactive data exploration, after querying top-k frequent items, the user may
want to individually track the frequency evolvement of some of these items. As
time goes by, some of them may not be “hot” any more, and the user would start
another data exploration cycle—querying top-k followed by tracking individual
items. This process may go on repeatedly. Thus, our proposed techniques in
this section complement those in Section 3, and are needed in a comprehensive
data exploration system.

Imagine that one may want to track a great number of individual items at
the same time. Thus, our goal in solving the Item Frequency Tracking problem
is concise and efficient (real-time) tracking of the historical frequency counts of
a selected item over a time window, subject to the accuracy requirement. We
first give some intuition and background. To track the frequency of an item over
a large window, it is intuitive and broadly applicable to use piecewise functions,

since most likely no single function can fit the whole large window. The question

25

595

600

605

610

615

620

625

is what function we use for each “piece”, so that it is not only concise, but also
efficient, while guaranteeing accuracy.

Background. We devise a novel solution by using five-point stencil [9] to
estimate some low-order derivatives from data, combined with Taylor series
models. In numerical analysis, the five-point stencil of a point z in one di-
mension consists of the point itself together with its four “neighbors”, i.e.,
{z — 2h,x — h,z,x + h,x + 2h}, where we call h the step size between the
points. Knowing the function values f(-) at these five points, one can ap-

proximate a number of low-order derivatives of f(-) at point x. For example,
F(z) ~ 7f(z+2h)+8f(z+}i)2;8f(fr*h)+f(m72h)

. Likewise, there are formulas [9] to
approximate f”(z), f® (z), and f® (), etc. Once we have these derivatives,
we use the Taylor series at x as a model function.

One novel aspect of our solution is to progressively increase the step size h,
to explore a suitable one so that the item frequency and change patterns (i.e.,
speed f'(t), acceleration f”(t), etc.) are well represented, and the Taylor series
model can cover as many data points (i.e., time units) as possible. That is,
we maximize the coverage of a “piece” in the piecewise model. We
use two auxiliary algorithmic constructs “chains” and “rounds” to achieve this.
The rationale of this point is illustrated in Figure 2(a), where time “zero” is the
center point of five-point stencil. The five point stencil inside the dashed oval
corresponds to the initial step size h = 1. Due to its limited scope, the function
that it produces can only be close to a horizontal line, which would not cover a
big range in time. In our method, we iteratively (but efficiently) explore other
step size h values. For example, the center (zero) point plus the four points
outside the dashed oval is another five-point stencil that possibly results in a
better function that covers more points. We now present the PROGRESSIVE-
TRENDMODEL algorithm.

Figure 2(b) illustrates some high-level notions in the algorithm. The time
line is partitioned into epochs. Each epoch in the end has one function (Taylor
series) as part of the whole model. Each epoch has a “zero” point in time as its

first data point. We use the terms data “point” and “time unit” interchangeably.

26

Algorithm 4: PROGRESSIVETRENDMODEL (s,)
Return the built model that tracks the frequency of a given item in a data

stream.

Input: s: data stream,
i : item being tracked

Output: a model

=

F + ¢; zero, front, front, < s.now(); chain < 0; h < 1/2; f,v + null;

2 while s.now() is in the window where i 1s tracked do

3 while f = null do
4 chain < chain + 1; h < 2h
5 if chain > o then
6 chain <1
7 if front — zero > 2(front, — zero) then
8 t fronty, < front //advance to next round
9 else
10 h<+1 //start a new epoch
11 zero, front, front, < s.now()
12 F«+ FUf.
13 f < BUILDMODEL(zero, h)
14 if VERIFY(f, zero) = false then
15 L [+ null
16 if v = null then
17 L v < s.next(i)
18 if MATCH(f,v) then
19 L v null
20 else
21 front «+ s.now() — 1
22 fe< f //must be the best so far in this epoch
23 [+« null

24 return F

27

630

635

640

645

count

epochl epoch2

zem:y/'d— :
X X X X time

roundl\roundz \ round3 roundl round2

time a chains o chains

zero

(a) (b)

Figure 2: (a) Five-point stencil at different step sizes (granularities). (b) Some high-level

notions in the PROGRESSIVETRENDMODEL and the progress of the entire algorithm.

As discussed earlier, the so-called zero point is just the center of a five-point
stencil and where the Taylor series is at. An epoch comprises a number of
rounds, and the change of rounds keeps track of how our models are progressively
extended. For example, in Fig. 2 (b), the end of round 1 implies that there is
a function f; that could cover all data points in round 1 but not another point
outside round 1. The end of round 2 implies another function f5 that could
cover all data points from the zero of this epoch to the end of round 2. Thus
f2 is better than f; for covering more data points. Then each round comprises
« chains. Here « is a small integer parameter that provides a tradeoff between
model conciseness and performance (a greater o may result in a more concise
model, but with higher computation cost). Within one round, we try different
step sizes a times to build a model. In this work, we use o = 3 as the default;
in the experiment section we explore the effect of different o values. Within an
epoch, from one round to the next, the progress (i.e., distance to the epoch’s
zero point) at least doubles.

The input parameter s is the data stream in a natural chronological order
and 7 is the item being tracked. We scan s in time unit order and get the counts
of . Line 1 of the algorithm initializes the function set F' to be an empty set. At
the end of the algorithm, the constructed F' will be returned as the whole model
M that is referred to in Definition 2. In line 2, now() function is called on the
stream s, which returns the timestamp (time unit number) of the current time
unit in the stream. Initially, we assume this is positioned at the first time unit

in the window where item 7 is tracked. Variable zero indicates the center of a

28

650

655

660

665

670

675

five-point stencil and beginning of an epoch, as discussed earlier. Variable front
is the frontier data point of the current round (recall Figure 2b), while front,
is that of the previous round in the same epoch (if any). Lines 3-4 initialize
variables chain as the chain number in the current round, h as the step size of
five-point stencil (always a power of 2), f as the current Taylor series function,
and v as the count of item 4 in the next time unit, used to explore the frontier
of the current round.

The loop at lines 5-26 handles all time units in the window where 7 is tracked.
Line 8 checks the condition when all a chains in the current round have been
tried (each chain corresponds to one setting of the step size h; from one chain
to the next in the epoch, h doubles). Line 10 checks the condition whether the
progress of this round at least doubles, compared to the previous round. If so,
we advance to the next round in the same epoch (line 11). Or else we start a
new epoch (lines 12-15), and add f. to set F' as the function of the previous
epoch, where f,. stores the best function of this epoch (i.e., matching all data
points there).

The function BUILDMODEL in line 16 uses the values (i.e., counts of item
i) at time units zero — 2h, zero — h, zero, zero + h, zero + 2h and five-point
stencil to estimate the derivatives, and then returns the Taylor series at zero
as the function. By default, we use up to the third derivative in this work.
Note that in case zero + h or zero + 2h are in the future (i.e., after s.now()),
s.next(i) (which returns the count of item 4 in the next time unit) will be called
to advance the stream until zero + 2h is reached.

Next, the VERIFY function in line 17 verifies if the model f can accurately
approximate the time units between zero and s.now() — 1. Suppose there are
t time units in this interval. That is, for at least (1 — €)t time units, the
error is no more than § fraction. If so, VERIFY returns true; otherwise
false. This error budget is similarly true for the MATCH function in line 21.
For the interval between zero and s.now(), if the error budget has not been used
up, MATCH returns true. Parameters € and § are from the accuracy requirement

of the user. Intuitively, a smaller € and a lower ¢ give higher accuracy, which

29

sso will, in turn, result in a larger model size. We also show this in Section 5.
If verification fails (i.e., f is not as good as the best one in the epoch), we
set f to null (line 18) and advance to the next chain. Once we get a function f
that can advance the stream, lines 19-20 ensure that v contains the next data
value to be covered by the model. Once v is matched (by the current function),
ses it is set to null (lines 21-22). Otherwise, the frontier of the round is the previous
time unit, and we store the best function in the epoch so far into f, (lines 23-26).
In the end, the set of functions F is returned. The following example illustrates
how this algorithm works.

{ epach 1 \ { epach 2 \
I ! I |
round 1 ! round 1 round 2 round 3
a_ & & 6 & & & & & o & &8 & 0 6
ﬁ) 1 2 2 4 5 & 7 1h 9 10 11 12 13 14 tirne

Figure 3: An example to illustrate the levels of evolution (i.e., chains, rounds, and epochs)

and how PROGRESSIVETRENDMODEL works.

Example 4. In Figure 3, each tick on the time azis indicates a data point as
s we track item i. Let the current time window start from time O0—initially zero,
front, front, and s.now() are all at time 0. In the first try, the chain number is
1, and the step size h 1s 1. As zero is the start of the current window, the points
used for the five-point stencil are at times (—2,—1,0,1,2). Denote the resulting
function as fy, for smow() is time 2 when this is done. We wverify if f(g)
ss can accurately model the item counts (of i) between times zero and s.now() — 1
(which is trivially true right now). Then we sequentially check the value (v in
line 20) of the subsequent data points until adding one more would exceed the
error budget of using fo); suppose this happens at time s.now() = 5, and front
is set to s.now() — 1 = 4. The recorded current best model is f3). Next h
w0 18 doubled to 2 for the second try in the current round. The points used for
five-point stencil are at times (—4,—2,0,2,4), giving a function f4). Again the
verification is done for the time points from 0 to 4. If this passes, one data point

a time is retrieved from the stream and checked against fa). Suppose the error

30

705

710

715

720

725

730

bound is exceeded at time 8. Then front =7 and f4) is the current best model
of epoch 1. Likewise, in the third try, h = 4, and data points at (—8,—4,0,4,8)
are used to get f(sy. Suppose f(g) fails the verification. As the number of chains
exceeds o (default 3), we advance to the next round with chain reset to 1 and
front, = 7. In the second round, h is doubled to 8, and we get function f(ie)-
After another three tries, suppose the progress of this round does not double that
of the previous round (lines 12-15); then a new epoch is started, for which zero
s set to time 8, and h is reset to 1. Epoch 2 in Figure 3 illustrates a possible
progress with three rounds. This process continues. In all, the algorithm finds
a single best model for each epoch which satisfies the accuracy guarantee, while
chains and rounds are used to progressively extend the epoch size, covering as

many data points as possible.
We next prove that this algorithm is very efficient.

Theorem 7. The amortized cost of PROGRESSIVETRENDMODEL is O(1) per

time unit.

Proof 7. We use an accounting argument. Recall that Figure 2(b) shows the
progress of the PROGRESSIVETRENDMODEL algorithm. Let us consider each
epoch alone. Whenever a data point in the stream is first encountered (within
some chain of some round), we pay an amount of 3a in advance. We show
that this payment scheme is enough for covering all costs in the algorithm. In
general, suppose a data point (time unit t) is first encountered in round r of an
epoch. In Figure 2(b), time unit t must be outside round r — 1 for it to be first
encountered by round r. The 3« that we pay for this data point is allocated as
follows:

(1) « is for the cost either to VERIFY (line 17) or to MATCH (line 21) this
time unit t by the a chains in round r.

(2) Another « is for the cost to VERIFY (line 17) the “buddy” time unit ¢/
of time unit t (if any) by the a chains in round r. The buddy t' is an “old” time

unit that has been encountered in a previous round; it is of the same distance to

31

735

740

745

750

755

760

the “zero” point of the epoch as the distance from t to the end of round r — 1.
From line 10, it follows that, except for the case that r is the last round of an
epoch, any “old” time unit (t') within round r—1 has a buddy (t) which is newly
encountered in round r. Hence, the actual cost of verifying the “old” time units
in round 7 is all accounted for.

(8) The last o in our payment for time unit t is to take care of the last round
of an epoch. In the worst case, all a chains of the last round merely verify all
“old” data points D encountered in previous rounds, but are not able to match
any new data points. Hence, no extra payment is made by our scheme, but we
need to cover the cost C' of verifying all data points D o times. C' is taken care
of by the leftover payment « (i.e., the last o as said in this paragraph) from
each data point in D when it was first encountered.

As discussed earlier, a is a (small) constant; thus the amortized cost is O(1)

per time unit.

5. Experiments

We perform a comprehensive empirical evaluation, using three real-world
datasets and comparing with three previous methods that are most relevant.

Through experiments, we answer the following questions:

e How does our Floating Top-K method compare with competing meth-
ods Persistent Data Sketching (PDS) [41] and Filtered Space-saving with
Sliding Windows (FSW) [21] in terms of the quality of the top-k items

found?

e How do they compare in memory usage, and processing overhead under
the three real datasets and various parameter settings such as window

sizes?
e What are the observed Floating Top-k tuple pool sizes?

e For tracing individual items, how does our algorithm Progressive Trend

Model (PTM) compare with the previous approach of piecewise regression

32

765

770

775

780

785

(i.e., Piecewise Linear Approximation (PLA) [34]) in the size (conciseness)

of the produced models under the same accuracy constraint?

e How do PTM and PLA compare in processing overhead?

5.1. Datasets and Experiment Setup

We use the following three real-world datasets:

e Kosarak data. This dataset contains the anonymized click stream of
a Hungarian online news portal [2]. Each click session (in chronological
order) contains a number of (news) items, each of which is identified by
an integer. There are 8,019,015 items in total and 41,269 distinct items.

This dataset was also used in previous work [24].

o Twitter data. We use the Twitter Stream API [1] implemented by twit-
terdj [5] to retrieve real-time Twitter streams from Wednesday October 28,
2015 to Thursday December 10, 2015. On average, we get 10’s of hashtags
per second. Each item of the stream contains a timestamp (Unix time)
and a hashtag (many hashtags may have the same timestamp). Clearly
the string hashtags are highly dynamic and we do not know the number

of distinct hashtags in advance.

e World-Cup data. It contains all the requests made to the 1998 World
Cup web site between April 30, 1998 and July 26, 1998 [3]. There are
1,352,804,107 requests in total. We are mainly concerned with two at-
tributes: timestamp of a request (Unix time) and the objectID, a unique
integer identifier for the requested URL. The mappings between the inte-

gers and URLs are 1-to-1 and preserved across the entire dataset.

We implement all the algorithms in the paper in Java. In addition, we
implement three most relevant competing methods: (1) Persistent Data Sketch
(PDS) [41], (2) Filtered Space-saving with sliding Windows (FSW) [21], and (3)
piecewise regression (Piecewise Linear Approximation, PLA) [34]. Moreover,

we implement (4) the FREQUENT algorithm (i.e., Algorithm 1) in [13] to find

33

790

795

800

805

810

815

out the ground truth top-k items in any static fixed window after knowing that
window is used in comparison, in order to compare the quality of top-k items
found by each competing method. All experiments are performed on a machine

with an Intel Core i7 2.50 GHz processor and an 8 GB memory.

5.2. Experiment Results

In the first set of experiments, we compare our Floating Top-k method with
the most relevant two competing methods, PDS [41] and FSW [21] in solving
the Windowed Top-k Frequent Items problem as defined in Section 2. In this
comparison, we mainly study three aspects: (a) the quality of the top-k items
found, (b) the processing overhead in time, and (c) the memory footprint.

For (a), the quality of top-k items found in a window, a reasonable metric
is top-k strength, which is the ground-truth total count (i.e., strength) of the
k items selected by a method for a window. The true counts of the k selected
items are easy to get in the experiments, since whichever window is used in the
query, after knowing it, we can simply use k counters and do another pass over
the dataset to get the true counts. Thus, the top-k strength metric indicates
the quality of the selected top-k items in a window, and can be used to compare
various competing methods.

In the same vein, in the experiments, after knowing which window is selected
by a query, we can simply re-play the dataset and use the FREQUENT algorithm
(i.e., Algorithm 1 in [13]) to efficiently find out the ground-truth top-k items in
that window. The aforementioned top-k strength of a method can be compared
against this ground-truth top-k items’ strength. In Figure 4, we show the top-k
strengths of our method (Floating Top-k), together with those of the ground-
truth top-k items and of previous methods PDS and FSW, using the Kosarak
data. In Figures 5 and 6, we also show the stream system throughput (indicating
the overhead of maintaining and processing data for top-k queries), and memory
footprint for these methods over various maximum window sizes W (ranging
from the past 3.6K sessions to the past 360K sessions). For Floating Top-k, each

session is a time unit; we use parameter p = 0.79 as determined by Theorem 6

34

820

825

830

835

x10°

8 5000
— ¥ — Ground truth X
- j: Floating top-k)
= PDS & 4000
c 6 :g:PDsz @
°
Th') FsSwW g -
2 2 3000 == Floating top-k
a 4 a —A—pPDS
2 = PDS2
3 2000 FSW
Ny
o 2
o
2 1000
)—
0 0
0 1 2 3 4 0 1 2 3 4
. : ey k108 . . ione) x10°
Window size (sessions) Window size (sessions)
Fig. 4 Top-k strengths of Floating Top-k, Fig. 5 Stream system throughputs of Float-
PDS, FSW, and ground-truth top-k items ing Top-k, PDS, and FSW for different win-
for different window sizes on Kosarak dow sizes on Kosarak

(from a run over an initial segment of the stream), and use 20 rounds (¢ = 20)
by default. In a later experiment, we also study the effect of varying ¢ values.

In PDS, we consider the real-time dynamic stream setting where we do not
know the exact number of distinct news items in advance, but assume that the
ids are integers and hence an upper bound is 23!. In PDS2 of the figures, we
assume the static scenario in which we know the exact number of distinct news
items in advance, which is 41,269 as we know from the dataset. Recall that
answering top-k queries with PDS uses historical window heavy hitter queries
(Section III-B in [41]), which resort to the dyadic range sum technique in [14]
to recursively sub-divide the id range [0,n] over logn + 1 levels, and in each
level, each interval is divided into two. Thus, PDS must know n first. In PDS
of Figure 4, n = 23! and there are 32 levels (i.e., 32 persistent Count-Min
sketches), while in PDS2, n = 41,269 and there are 16 levels.

Furthermore, in order to use heavy-hitter queries to answer top-k queries, we
have to repeatedly run multiple heavy-hitter queries in a trial-and-error fashion
to figure out the right ® threshold. For k£ = 10, we find ® = 0.005 for Kosarak
data. In addition, like in [41], we fix the sizes of the two dimensions of the

Count-Min sketches in PDS/PDS2 to be width = 20,000 and d = 7. When the

35

840

845

850

855

6

108 4 =10

A = ¥ = Ground truth
. . —HE— Floating top-k X
2 —D
BE:' 10 —H— Floating top-k = 3r PDS
= PDS =1 PDS2 .,
(4]
=) PDS2 5 Fsw y
2 10" FsW a
X
g a
£ P
L 0
= 10
Sg= =) 3|
107 0 1 2 3
0 1 2 3 4 10 10 10 10
Window size (sessions) x10° Window size (hours)
Fig. 6 Memory usages of Floating Top-k, Fig. 7 Top-k strengths of Floating Top-k,
PDS, and FSW for different window sizes PDS, FSW, and ground-truth top-k items
on Kosarak for different window sizes on Twitter

number of distinct items is much greater than 20,000, the Count-Min sketches
would have many collisions and would be very inaccurate. This leads to its low
top-k strength in Figure 4 when window size is large.

Figure 4 shows that the Floating Top-k algorithm retrieves top-10 items
with strengths very close to those of the ground-truth top-10 items. PDS takes
the most memory (Figure 6), and is only feasible when window size W = 3, 600
sessions among the ones we test (we constrain the maximum memory consump-
tion of this program to be 512 MB). For window size W = 36,000 sessions
PDS’ memory footprint is already beyond the constraint. PDS2 (with a much
smaller id range) is feasible for window size up to 120,000, but not 360,000 ses-
sions. PDS has a very large memory footprint because it uses piecewise linear
approximation (PLA [34]) to keep track of the history (within the window) of
each cell of each Count-Min sketch. PDS has much more levels (32) than PDS2
(16), and hence is even worse. However, in a dynamic setting when we do not
know the exact number of distinct items, we can only use PDS. We note that
the PDS work [41] is not specifically targeted at the Windowed Top-k Frequent
Items queries; it also addresses window point queries, heavy-hitter queries, and
window join size estimation.

In Figure 6, we can see that the memory footprint of our method Floating

36

860

865

870

875

Top-k is very small (about 0.39 MB) and is almost constant (in fact, only
increases slightly as window size increases). This is consistent with our analysis
in Theorem 1 that the expected number of Floating Top-k tuples maintained
in the pool is only O(klogW). By contrast, PDS and PDS2 have about three
orders of magnitude larger memory footprints. We measure the number of
Floating Top-k tuples for various W values, and show the result in Table 1 (for
both Kosarak and Twitter datasets; the result for World-Cup data is similar
and not shown). We can see that the numbers are relatively small compared to

W and increase only logarithmically.

Table 1: Floating Top-k tuple pool sizes |I'| for various window sizes.

Kosarak Twitter
Window | 3.6k | 36k | 120k | 360k | 6h | 1d | 7d | 30d
T 63 | 85 | 109 | 115 | 67 | 75 | 89 | 141

Accordingly, Figure 4 shows that PDS and PDS2 have reasonable top-k
strength results for the first one and three window sizes, respectively, but even
for those window sizes, they are not as good as the top-k strengths of Floating
Top-k. Figure 5 shows the stream system throughput as it continuously main-
tains the corresponding data structures for each method respectively; thus it
indicates the processing overhead in time for each method. Floating Top-k is 2
to 4 times faster than PDS2 and 40 times faster than PDS for the window sizes
where they are feasible.

We also compare with FSW [21]. As discussed in Section 1.1, there is a
limitation of FSW: it is only designed for one fixed window size, even though
the window slides over time, while with Floating Top-k and PDS users can query
any window sizes within W. Of course, with FSW, one can independently handle
multiple fixed window sizes, but then the memory footprint and processing cost

have to add up linearly as well. Nonetheless, for this comparison experiment, we

37

880

885

890

895

900

905

910

run FSW for each window size separately, and show the results of top-k strength,
throughput, and memory footprint (for a single window size) in Figures 4, 5,
and 6 respectively.

However, if we set the time unit size to be one session, as the case for
Floating Top-k and PDS, FSW is infeasible (out of memory) even for window
size 3,600 sessions (i.e., 3,600 time units). This is because FSW has a much
greater memory footprint than Floating Top-k — FSW takes memory O(kW),
as it contains a histogram bucket for each of the W time units in each of the
histograms that it maintains. Thus, for FSW only, we set the time unit size to
be 60 sessions, and hence we have W that is 60 times smaller (in time units),
even though the window contains the same number of sessions. Of course, by
doing this, what we lose is that the FSW window slides with coarser granularity
over time (i.e., updated more slowly). Even with this change, we can see from
Figure 6 that FSW takes from 30 times larger memory footprint than Floating
Top-k when window size is 3,600 sessions, to almost 1,000 times larger when the
window size is 120,000 sessions. FSW is still out of memory when the window
has 360,000 sessions. Its memory footprint increases linearly with W.

Figure 4 shows that, for the three window sizes where FSW is feasible, it is
very accurate—its top-k strengths are about the same as those of the ground-
truth top-k items. Figure 5 shows that Floating Top-k is much faster than
FSW even for the window sizes where FSW is feasible, ranging from 2.4 times
(when window size is 3,600 sessions) to 14 times (when window size is 120,000
sessions). FSW has a much greater processing overhead.

We next experiment on the Twitter dataset. Unlike the Kosarak dataset,
we do not have integer item id’s, and the stream items are strings (hashtags).
This works the same for Floating Top-k and FSW; but for PDS, we have to
dynamically create a dictionary that records the 1-to-1 mappings between string
hashtags and integer id’s, since PDS [41] uses the dyadic range sum technique
[14]. Thus, we use MD5 hash function over a string hashtag to convert it into
a random integer, and keep an in-memory dictionary for the mappings between

integer id’s and hashtags (so that we can also look up the dictionary to obtain

38

915

920

925

3
<10 10
10 V
5 E/E—H =
3 s] = 10%} /
. =
E == Floating top-k 3
® 61 | =Pr=PDs © —B—Floating top-k
3 PDS2 5 10 —A—rpDs
: x
= 5 100
o =
z 2 1 = B = £l
)_
0 107
10° 10’ 10° 10° 10" 10’ 10° 10°
Window size (hours) Window size (hours)
Fig. 8 Stream system throughputs of Float- Fig. 9 Memory usages of Floating Top-k,
ing Top-k, PDS, and FSW for different win- PDS, and FSW for different window sizes
dow sizes on Twitter on Twitter

the hashtags once we get top-k using PDS). In addition, Twitter hashtags are
case insensitive.

We see some interesting results with Twitter data. For example, when we
query the top-10 frequent hashtags in the one week period between November
14, 2015 and November 21, 2015, the results include “PrayForParis”, “ParisAt-
tacks”, and “Paris”, due to the terrorist attacks in Paris on November 13, 2015.
The top ones also include “MTVStars” and “MadeintheAM” (a music album
released on Nov 13, 2015). “GOPDebate” is also among the top ones during
the presidential debate period in US.

In Figure 7, we show the top-k strengths of various methods, Floating Top-
k, PDS, and FSM, together with those of the ground-truth top-10 hashtags for
various window sizes ranging from 6 hours to 30 days, where a time unit is
one minute. In Figures 8 and 9, we show the system throughputs and memory
footprints. PDS’s memory footprint (using integer id’s) exceeds the constraint
for all window sizes tested; hence it is not shown in Figure 9. Thus, we add a
modified version of PDS, shown as PDS2 in the figures, where the integer id’s
are limited within 17 bits, i.e., after using MD5 hash on a hashtag string, we
do “mod 2'7”. With this version, Figure 9 shows that, for window size 6 hours,

PDS2’s memory footprint is about 3 orders of magnitude more than that of

39

930

935

940

945

5
x10 X105

5.2

3
K== X - = X - % = - X N
5 2
c = 3 = Ground truth 1} 3‘2
5 —B—Floating top-k <
S 4.8 o
) >
= D
@ =
X]
S 4.6 a
= =)
= =
44 2
)—
0
4.2 .
10 20 30 40 50 10 20 30 40 50
Number of rounds Number of rounds
Fig. 10 Top-k strengths of Floating Top-k, Fig. 11 Stream system throughputs of
and ground-truth top-k items for different Floating Top-k for different numbers of
numbers of rounds on WorldCup rounds on WorldCup

the Floating Top-k, and becomes infeasible with greater window sizes. Figure 9
also shows that FSW’s memory footprints are 123 and 470 times of the Floating
Top-k’s when window sizes are 6 and 24 hours, respectively. FSW’s memory
consumption exceeds the limit when window size is 7 days, as it grows linearly
with W. We also show the Floating Top-k tuple pool sizes in Table 1.

Figure 7 shows that the top-k strengths from Floating Top-k are very close
to those of the ground-truth top-k items, while PDS2 and FSW are close for
window sizes where they are feasible. Figure 8 further shows that, Floating
Top-k is about one to two orders of magnitude faster than PDS2 and FSW
when they are feasible.

We also do the same experiments with the World-Cup dataset and obtain
similar results. Here we show the effect of varying the number of rounds pa-
rameter c¢. We have discussed how to enhance the accuracy of the top-k results
by repeating MAINTAINFLOATINGTOPK and RETRIEVETOPK c¢ times in Sec-
tion 3.3. By default, we use ¢ = 20, i.e., combining results from 20 runs of
the Floating Top-k. We fix the time unit size at one hour, window size at 7
days, and vary the number of rounds between 10 and 50. Figure 10 shows the
top-k strength results of Floating Top-k compared to the ground-truth top-k

items when k = 5, while Figures 11 and 12 show the throughputs and memory

40

950

955

960

965

(=]

s

=)
L §

-

=

S
=

o
s
S

3
<
q
<1

Memory usage (MB)
(=]
'S

Model size (words)

2
s
na
-
o
@

10°
0.38 p - %) X
[
0.36 10 . .
10 20 30 40 50 0 01 0.2 0.3
Number of rounds 5
Fig. 12 Memory usages of Floating Top-k Fig. 13 Model sizes of PTM, and PLA for
for different numbers of rounds on World- different § values on Twitter

Cup

consumptions, respectively. These figures indicate a tradeoff between accuracy
and performance. When the number of rounds increases, the top-k strength
is closer to the ground-truth top-k items, but the throughput decreases and
memory footprint increases (yet still very low).

In the next set of experiments, we exam our algorithm PROGRESSIVETREND-
MobeL (PTM) for tracking specific items. We compare with the most relevant
and common previous approach of piecewise regression called piecewise linear
approzimation (PLA) [34]. We study the conciseness of the resulting models
from PTM and PLA when they have the same accuracy guarantees, as well as
their processing overheads reflected in system throughputs.

We first show the results under the Twitter dataset. We trace the frequency
of hashtag “ParisAttacks” from November 14, 2015 to November 21, 2015, where
we set time unit to 5 minutes. Recall that PTM has two accuracy parameters
(e,0) (i.e., with probability at least 1 — ¢, the error is no more than ¢ fraction),
while PLA only has one accuracy parameter 0 (i.e., error is no more than &
fraction). Thus, to fairly compare the two, we set ¢ = 0 for PTM, then PTM
and PLA have the same accuracy guarantee for the same ¢ value. For various §
values, we show the conciseness (sizes) of the resulting models in Figure 13, and

the system throughputs in Figure 14. Figures 13 and 14 share the same legend,

41

970

975

980

985

108 10° == PTM (u=1 hour)
4 :g:PLA {u=1 hour)
PTM (u=10 min)
S —V—PLA (u=10 min)
2 35 gt YV ——e |
L4 o
2 5 4
€
5 3 s loee o
k3 8 10° D
3 @
% 25 3 %x
g <)
3 = 102 EE\E\E__EJ
e 2
'_
15 10’
0 0 0.1 0.2 0.3
5)
Fig. 14 Stream system throughputs of Fig. 15 Model sizes of PTM, and PLA for
PTM, and PLA for different § values on different ¢ values on WorldCup
WorldCup

as shown in Figure 14. The y-axis of Figure 13 is in “words”, where a word is
of 32 bits.

For PTM, we use the default parameter value « = 3 (i.e., 3 tries before
advancing to either next round or next epoch). We also experiment with a
few variants of PTM, where we change only one parameter but keep others
unchanged. The first variant is to set ¢ = 0.2 (instead of 0), while the other two
variants are to set & = 1 and a = 10, respectively. Figure 13 shows that the sizes
of PTM are between 20 to 30 times smaller than those of the PLA under the
same accuracy guarantees, while the throughput of PTM is slightly higher than
PLA’s (both are very high). PLA is slightly slower since it starts a new function
more frequently than PTM. PTM’s models are smaller because the exploration
of progressive trend with different h values and the use of Taylor series result in
more powerful functions than PLA, and hence each function covers more data
points (time units).

The variant of PTM with ¢ = 0.2 slightly reduces the model sizes, since
being more permissive on errors can only reduce the number of functions. The
variant of PTM with « = 1 has a significantly greater model size, since there is
only one try of h value before deciding to advance to next round or next epoch,

resulting in many more functions. On the other hand, setting o = 10 produces

42

990

995

1000

1005

1010

significantly smaller model sizes, as there are more tries before giving up on
an epoch and starting a new epoch and function. However, Figure 14 shows
that, especially for higher ¢ values, PTM with o = 10 is much slower. This is
because allowing more errors implies verifying more data points for each function
(before giving up), and higher « values signify that this verification needs to
be done more times. Thus, the a parameter provides a tradeoff between model
conciseness and performance.

Finally, we show the results of PTM and PLA over the World-Cup dataset,
where we trace and model the frequency of the item with id 57 (object /im-
ages/space.gif) over a one-month period of time. The throughput result is
similar to that of the Twitter dataset, and we only show the model conciseness
result in Figure 15. We compare PTM and PLA over two different settings of
time unit size p = 1 hour and pu = 10 minutes, respectively. For each p value,
PTM is about 20 times smaller than PLA’s. In addition, a greater time unit
size () implies fewer time units in the fixed time period, and hence a smaller

model.

5.3. Summary of Experiment Results

Our comprehensive experimental results in this section over three real-world
datasets show that Floating Top-k is the only feasible approach so far for the
Windowed Top-k Frequent Items problem in top-k strength, memory footprint,
and throughput. The memory footprints of PDS and FSW are 2 to 3 orders of
magnitude larger than that of Floating Top-k for small W, and grow linearly
with W. Floating Top-k is also 1 to 2 orders of magnitude faster than PDS
and FSW when they are feasible. The O(klog W) space complexity of Floating
Top-k makes it highly scalable for high-rate data streams with dynamic items
and arbitrary-size windows. Furthermore, for the Item Tracking Problem, the
PTM is much more concise (20 to 30 times) and slightly faster than PLA under

the same accuracy guarantees.

43

1015

1020

1025

1030

1035

6. Conclusions

In high velocity, volume, and diversity modern data stream applications,
the ability to query the top-k most frequent (“hottest”) items is particularly
important. We propose a novel solution called Floating Top-k. Our comprehen-
sive analysis and experiments show that Floating Top-k is the only feasible and
scalable solution to this problem thus far. In addition, we devise a solution to
the related problem of concisely tracking selected items in data streams, which

also significantly improves upon previous work.

Acknowledgements

Chunyao Song was supported in part by the NSFC under the grants 61702285
and 61772289, the NSF of Tianjin under the grants 17JCQNJC00200, and
the Fundamental Research Funds for the Central Universities under the grants
63171111. Tingjian Ge was supported in part by the National Science Founda-
tion under the grants I1S-1149417 (CAREER award) and IIS-1633271.

References
[1] https://dev.twitter.com/streaming/overview.
[2] http://fimi.ua.ac.be/data/ kosarak.dat.gz.
[3] http://ita.ee.lbl.gov/html/contrib/WorldCup.html.
[4] https://twitter.com/?lang=en.
[5] http://twitterdj.org/en/index.html.

[6] Arvind Arasu and Gurmeet Singh Manku. Approximate counts and quan-
tiles over sliding windows. In Proceedings of the 23rd ACM SIGMOD-
SIGACT-SIGART Symposium on Principles of Database Systems, pages
286-296, 2004.

44

1040

1045

1050

1055

1060

[7]

[12]

[13]

[14]

[15]

Brian Babcock, Mayur Datar, and Rajeev Motwani. Sampling from a mov-
ing window over streaming data. In Proceedings of the 13th Annual ACM-
SIAM Symposium on Discrete Algorithms, pages 633-634, 2002.

Ran Ben-Basat, Gil Einziger, Roy Friedman, and Yaron Kassner. Heavy
hitters in streams and sliding windows. In Proceedings of the 35th Annual

IEEE International Conference on Computer Communications, pages 1-9,

2016.

Richard L. Burden and J. Douglas Faires. Numerical analysis. Brooks/Cole
Pacific Grove, CA, 2001.

Massimo Cafaro, Marco Pulimeno, Italo Epicoco, and Giovanni Aloisio.
Mining frequent items in the time fading model. Information Sciences,

370-371:221-238, 2016.

Massimo Cafaro, Marco Pulimeno, and Italo Epicoco. Parallel mining of
time-faded heavy hitters. Ezpert Systems with Applications, 96:115-128,
2018.

Ling Chen and Qingling Mei. Mining frequent items in data stream using

time fading model. Information Sciences, 257(2):54-69, 2014.

Graham Cormode and Marios Hadjieleftheriou. Methods for finding fre-
quent items in data streams. VLDB Journal, 19(1):3-20, 2010.

Graham Cormode and Shan Muthukrishnan. What’s hot and what’s not:
tracking most frequent items dynamically. In Proceedings of the 22nd ACM
SIGMOD-SIGACT-SIGART Symposium on Principles of Database Sys-
tems, volume 30, pages 296-306, 2003.

Graham Cormode and Shan Muthukrishnan. An improved data stream

summary: the count-min sketch and its applications. Journal of Algorithms,

55(1):58-75, 2005.

45

1065

1070

1075

1080

1085

1090

[16]

[18]

[19]

[22]

[23]

Mayur Datar, Aristides Gionis, Piotr Indyk, and Rajeev Motwani. Main-
taining stream statistics over sliding windows. SIAM Journal on Comput-

ing, 31(6):1794-1813, 2002.

Ugo Erra, Sabrina Senatore, Fernando Minnella, and Giuseppe Caggianese.
Approximate TF-IDF based on topic extraction from massive message

stream using the GPU. Information Sciences, 292(C):143-161, 2015.

Dirk Helbing et al. Saving human lives: what complexity science and
information systems can contribute. Journal of Statistical Physics, 158(3):

735-781, 2015.

Phillip B. Gibbons and Srikanta Tirthapura. Distributed streams algo-
rithms for sliding windows. In Proceedings of the 14th Annual ACM Sym-
posium on Parallel Algorithms and Architectures, pages 63-72, 2002.

Lukasz Golab, David DeHaan, Erik D. Demaine, Alejandro Lépez-Ortiz,
and James lan Munro. Identifying frequent items in sliding windows over
on-line packet streams. In Proceedings of the 8rd ACM SIGCOMM Con-

ference on Internet Measurement, pages 173-178, 2003.

Nuno Homem and Joao Paulo Carvalho. Finding top-k elements in a time-

sliding window. Ewolving Systems, 2(1):51-70, 2011.

Mahdi Jalili and Matjaz Perc. Information cascades in complex networks.

Journal of Complexr Networks, 5:665—693, 2017.

Tobias Kuhn, Matjaz Perc, and Dirk Helbing. Inheritance patterns in
citation networks reveal scientific memes. Physical Review X, 4(4):041036,

2014.

Hoang Thanh Lam and Toon Calder. Mining top-k frequent items in a
data stream with flexible sliding windows. In Proceedings of the 16th ACM
SIGKDD International Conference on Knowledge Discovery and Data Min-
ing, pages 283-292, 2010.

46

1095

1100

1105

1110

1115

[25]

[27]

[30]

Tuong Le, Bay Vo, and Sung Wook Baik. Efficient algorithms for min-
ing top-rank-k erasable patterns using pruning strategies and the subsume

concept. Engineering Applications of Artificial Intelligence, 68:1-9, 2018.

Lapkei Lee and Hingfung Ting. A simpler and more efficient deterministic
scheme for finding frequent items over sliding windows. In Proceedings of
the 25th ACM SIGMOD-SIGACT-SIGART Symposium on Principles of
Database Systems, pages 290-297, 2006.

Hongyan Liu, Yuan Lin, and Jiawei Han. Methods for mining frequent
items in data streams: an overview. Knowledge and Information Systems,

26(1):1-30, 2011.

Spyros G. Makridakis, Steven C. Wheelwright, and Victor E. McGee. Fore-
casting: methods and applications, volume 753. Wiley, 1983.

Ahmed Metwally, Divyakant Agrawal, and Amr El Abbadi. Efficient com-
putation of frequent and top-k elements in data streams. In Proceedings
of the 10th International Conference on Database Theory, pages 398—412,
2005.

Katsiaryna Mirylenka, Graham Cormode, Themis Palpanas, and Divesh
Srivastava. Conditional heavy hitters: detecting interesting correlations in

data streams. VLDB Journal, 24(3):395-414, 2015.

Jayadev Misra and David Gries. Finding repeated elements. Science of

Computer Programming, 2(2):143-152, 1982.

Michael Mitzenmacher and Eli Upfal. Probability and computing: ran-
domized algorithms and probabilistic analysis. Cambridge University Press,

2005.

Kyriakos Mouratidis, Spiridon Bakiras, and Dimitris Papadias. Continuous
monitoring of top-k queries over sliding windows. In Proceedings of the 2006
ACM SIGMOD International Conference on Management of Data, pages
635-646, 2006.

47

1120

1125

1130

1135

1140

[34]

[39]

[40]

Joseph O’Rourke. An on-line algorithm for fitting straight lines between
data ranges. Communications of the ACM, 24(9):574-578, 1981.

Odysseas Papapetrou, Minos Garofalakis, and Antonios Deligiannakis.
Sketch-based querying of distributed sliding-window data streams. VLDB
Journal, 5(10):992-1003, 2012.

Matjaz Perc. Self-organization of progress across the century of physics.

Scientific Reports, 3(1720), 2013.

Zubair Shah, Abdun Naser Mahmood, and Michael Barlow. Computing
discounted multidimensional hierarchical aggregates using modified Misra

Gries algorithm. Performance Evaluation, 91:170-186, 2015.

Zubair Shah, Abdun Naser Mahmood, Zahir Tari, and Albert Y. Zomaya.
A technique for efficient query estimation over distributed data streams.
IEEEFE Transactions on Parallel and Distributed Systems, 28(10):2770-2783,
2017.

Zubair Shah, Abdun Naser Mahmood, Michael Barlow, Zahir Tari, Xun
Yi, and Albert Y. Zomaya. Computing hierarchical summary from two-
dimensional big data streams. IEEE Transactions on Parallel and Dis-

tributed Systems, 29(4):803-818, 2018.

Chunyao Song, Xuanming Liu, and Tingjian Ge. Top-k frequent items and
item frequency tracking over sliding windows of any sizes. In Proceedings
of the 33rd IEEE International Conference on Data Engineering, pages
199-202, 2017.

Zhewei Wei, Ge Luo, Ke Yi, Xiaoyong Du, and Ji-Rong Wen. Persistent
data sketching. In Proceedings of the 2015 ACM SIGMOD International
Conference on Management of Data, pages 795-810, 2015.

48

	Introduction
	Related Work
	Our Contributions

	Problem Statement
	Windowed Top-Frequent Items
	Intuition
	Main Algorithms
	Analysis
	Choice of Parameters

	Concise Real-Time Tracking of Item Frequency
	Experiments
	Datasets and Experiment Setup
	Experiment Results
	Summary of Experiment Results

	Conclusions

