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Abstract

Many big data applications today require querying highly dynamic and large-

scale data streams for top-k frequent items in the most recent window of any

specified size at any time. This is a challenging problem. We propose a novel

approach called Floating Top-k. Our algorithm does not need to explicitly main-

tain any item counts over time or to deal with count updates upon item entry

and expiration. Succinctly we use only a small-size data structure to retrieve

the top-k items dynamically in a window of any size within an upper bound. We

prove that the space and time costs of Floating Top-k grow only logarithmically

with the window size rather than linearly as in previous work. Our comprehen-

sive experiments over three real-world datasets show that Floating Top-k not

only provides accuracy guarantees, but it also has two to three orders of mag-

nitude smaller memory footprint, and is one to two orders of magnitude faster

than previous approaches. Hence, Floating Top-k is both effective and scalable,

significantly outperforming competing approaches. In addition, we devise a con-

cise and efficient solution called Progressive Trend Model to a related problem

of tracking the frequency of selected items, improving upon previous work by

twenty to thirty times in model conciseness when having the same accuracy and

efficiency.

Keywords: data stream, top-k frequent items, item frequency tracking, sliding

window.
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1. Introduction

In this big data era, data are generated at unprecedented rates. Social

network data, web data, business/server logs, and data from the Internet of

Things are just some examples. For such real-time data streams, it is often

useful to dynamically query the top-k most frequent (“hot”) items in a past5

window of any size chosen by users. The stream server thus needs to efficiently

maintain a succinct data structure, ready to answer top-k most frequent item

queries for a past window of any size at any time. Let us look at some examples.

Example 1. Twitter has been a surging online social network [4]. Hashtags

are a reasonable indicator of the contents and topics of the discussions in the10

Twitter platform. One may want to query, in real time, the top-10 hottest (most

frequent) hashtags in the past hour, or in the past day, week, or month, and so

on.

Example 2. As another example, for Amazon, or an Internet search engine,

or an online news web site, one may be interested in finding the top-k purchased15

products, or rented movies, or searched terms, or clicked links, or browsed news,

in a past window of any duration chosen by the user.

We call this problem the Windowed Top-k Frequent Items. It is challenging

because there is a large number of distinct data items and it is generally too

expensive or even infeasible to maintain a counter for each distinct data item.20

For instance, in Example 1, with a high-rate Twitter stream, it is too costly

to keep a counter for each hashtag string. Moreover, we need to get the top-k

frequent items for a window of any size (within an upper bound W ). A window

slides as time goes, and items expire from windows at different times for windows

of different sizes.25

In addition to this Windowed Top-k Frequent Items problem, there are also

application scenarios where a user would like to succinctly track the frequencies

of selected items that he/she is interested in. For example, in 2016, one may be

interested in tracking the frequency of Twitter hashtag “TownHallDebate” (for
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U.S. presidential debates), which can be useful for political campaigns. Likewise,30

in Example 2, tracking the sales of a product over a long period of time may

be beneficial for business intelligence. Tracing the popularity of a particular

contagious disease through social networks can also help to understand the

spread of the disease and to come up with preventive measures accordingly.

Tracking item frequency is widely used in the information cascade study [22],35

for dynamic spreading processes, such as rumour propagation and marketing

campaigns. In the field of security, monitoring the frequency of body contacts

and mass events provides a possible way to avoid crowd disasters [18]. Moreover,

tracking frequency has been successfully applied to capturing the styles and

trends of scientific development [36]. Scientific memes can be abstracted into40

a pattern by tracking the frequency of occurrence and finding the relationship

between the frequency and the degree to which the memes propagate along

the ciatation graph [23]. Furthermore, in interactive data exploration, after

querying the top-k frequent items, the user may want to individually track the

frequency evolvement of some of these items. As time goes by, some of them45

may not be “hot” anymore, and the user would start another data exploration

cycle—querying the top-k followed by tracking individual items.

We call this second problem an Item Frequency Tracking Problem. The goal

here is to use a succinct model to accurately summarize the frequency history

of the items in question. Thus, given that such a model satisfies some accuracy50

constraint, it is desired to be as concise as possible. Furthermore, obtaining the

model through real-time stream data needs to be very efficient.

1.1. Related Work

Efficiently (in time and space) answering frequent item (i.e., heavy-hitter)

queries over the entire data stream or over a static window has been extensively55

studied. Cormode and Hadjieleftheriou [13] give an excellent survey with exper-

imental comparisons of various approaches. For instance, the work by Misra and

Gries [31] is one of the algorithms. In our experiments, we implement the Fre-

quent algorithm (i.e., Algorithm 1) in [13] to find out the ground truth top-k
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items in any static fixed window for comparing various competing approaches.60

However, there are fundamental differences between [13] and our work. We

study the top-k most frequent items problem in a past window of any size; we

can dynamically answer the query at any time.

Liu et al. [27] give another excellent survey that summarizes different meth-

ods for heavy hitters. The existing algorithms are divided into sampling-based,65

counting-based and hashing-based categories. As stated in [27], although sam-

pling might be the most straightforward way to deal with big data, there are

some shortcomings with sampling for data streams. Specifically, it is difficult to

decide the sampling rate when the size of the stream is unknown. In addition,

as the answer quality usually improves as the sample size increases, achieving70

a required accuracy may need samples that exceed the storage capacity. In

contrast to counting-based and hashing-based methods, sampling-based algo-

rithms only update the synopsis at the samples. As such, [27] only focuses on

counting-based and hashing-based methods. We will also discuss counting- and

hashing-based related work in detail. The surveyed data stream models include75

time-sensitive models, distributed models, hierarchical and multi-dimensional

models, and skewed data models. Sliding window falls into the time-sensitive

models. Over the years there is a series of work on heavy-hitter queries in a

sliding window, with a subsequent one improving upon a former one: Golab et

al.’s [20], Arasu and Manku’s [6], and Lee and Ting’s [26]. As experimentally80

demonstrated by Homem and Carvalho [21] (and verified in our experiments),

these approaches do not perform as well as the algorithms in [21] for top-k

frequent items over a sliding window. In addition, Chen et al. [12] present an

algorithm λ-HCount based on a time fading model for computing the frequency

counts of stream data. It uses r hash funcions to estimate the density values of85

data items and has a similar problem as the aforementioned three approaches.

More importantly, heavy-hitter queries rely on a frequency threshold Φ to de-

termine which items to pick. However, in big data applications and large-scale

dynamic streams such as Twitter, even the top-k items in a large window may

be only a tiny fraction out of the total. Furthermore, as the window slides and90
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stream changes, and for different window sizes that users may request, Φ is

highly dynamic and is never fixed for top-k items. Thus, it would be impossible

to determine a good Φ value to use. A conservative very-low Φ value would

return too many items. To make matters worse, most of these heavy-hitter

approaches do not provide frequency estimates for each item [21], making it95

impossible to pick the top-k among many that are returned. Hence, among this

line of work, we only show the comparisons with Homem and Carvalho’s work

[21] in our experiment section (in addition to the comparisons with Persistent

Data Sketching [41] and Piecewise Linear Approximation [34]).

Homem and Carvalho’s algorithms [21] extend the Space-Saving algorithm100

originally proposed by Metwally et al. [29] to handle sliding window queries; the

new algorithm is called Filtered Space-saving with Sliding Windows. However,

like other sliding window work discussed above, a major limitation is that it

is only designed for one fixed window size, even though the window slides over

time, while our method simultaneously handles all window sizes within an upper105

bound W . Note that this is not the same as one fixed window size. W is the far-

thest data unit that users care about, e.g., a year, a month or a day ago. We can

answer any query of window size w ∈ [1,W ] dynamically by only maintaining

one small-size data structure. Of course, with Filtered Space-saving with Sliding

Windows, one can independently handle multiple fixed window sizes, but then110

the memory footprint and processing cost have to add up linearly as well. Even

with a single window size, the algorithm has a high space complexity O(kW ) and

maintenance time complexity O(k log k + kW ) per time unit. With all window

sizes, this space and time complexities become O(kW 2) and O(kW log k+kW 2)

respectively. It is worth noting that Gibbons et al. [19] improve upon [16] for115

the basic counting problem. The worst case per-data-element processing time is

improved from O(logW ) to O(1) and only O( 1
ε log2W ) memory bits are needed

for each data item. Suppose the number of different items in window W is N , it

is possible to handle top-k frequent items query in O(kε log2W )(ε ∈ (0, 1)) mem-

ory bits by using the method of [19] and scanning the stream N times. Although120

the space complexity is low enough, its time complexity is O(NW + kWlogk)
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for all window sizes. By contrast, our method only has a space complexity

O(k logW ) and a time complexity O(k log k logW ) per time unit.

Another line of work extends data stream sketches to handle heavy-hitter

queries in a sliding window. Papapetrou et al. [35] extend Count-Min sketch125

[15] with exponential histograms [16] to handle sliding windows, and call the

new sketch Exponential Count-Min which can handle various kinds of queries

including point queries, inner product and self-join queries, and heavy-hitter

queries (while we only focus on top-k frequent item queries). More recently, Wei

et al. [41] propose Persistent Data Sketching, which handles, among other types130

of queries, heavy-hitter queries over sliding windows. Like [35], Persistent Data

Sketching also extends the Count-Min sketch [15], but using the more succinct

piecewise functions [34] (instead of exponential histograms as in [35]). Thus,

it improves upon the version of [35] (as its analysis shows). We compare with

Persistent Data Sketching in our experiments. Moreover, some novel sketches135

based on the time fading model or distributed streams are proposed. Cafaro et

al. [10] present a new sketch based algorithm where the key ideas are borrowed

from forward decay, the Count-Min and the Space Saving algorithms. It works

in the time fading model. [11] implements a parallel version of [10]. Shah et

al. [38] focus on query estimation over sliding window distributed data streams.140

They propose an efficient Exponential Space Saving sketch approach, whose

overall memory growth is sub-linear with respect to the data size and length

of sliding window. Exponential Space Saving sketch provides the same average

estimation errors and outperforms Exponential Count-Min sketch in terms of

the communication cost of distributed queries.145

For heavy-hitter queries, this line of sketch-based work assumes that items

have integer id’s in the range of [1, n] and uses the dyadic range sum technique

in [14] to decompose [1, n] into logn+1 levels, where level l has n
2l

dyadic ranges

(0 ≤ l ≤ log n). Then a persistent Count-Min sketch is built for each level to

track the total frequencies of elements in every dyadic range. Thus, a heavy-150

hitter query with frequency threshold Φ fraction can be answered by recursively

querying the persistent sketch from level logn down to level 0. The idea is that
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there cannot be more than 1
Φ dyadic ranges with frequency more than fraction

Φ. Once we locate these frequent dyadic ranges, in their next lower level, we

only query those 2
Φ sub-divided dyadic ranges, and again there cannot be more155

than 1
Φ of them being frequent. Finally in level 0, we get all individual frequent

items. With dynamic data items, we may not know a tight upper bound of

the number of distinct items n a priori. Suppose we are able to assume 32-bit

integer item id’s, then there are 32 levels, i.e., 32 persistent Count-Min sketches,

which are very heavy in memory and processing costs. Additionally, we may160

have to maintain and look up a large 1-to-1 mapping table between integer id’s

and items if items do not have integer id’s to begin with (e.g., hashtag strings).

For top-k queries, again this suffers from the problem of choosing Φ, as discussed

above. Furthermore, since retrieval cost is linear to 1
Φ , a very small Φ entails a

large number of lookups of the persistent sketches (in addition to repeated trial165

and error).

Ben-Basat et al. [8] also address heavy-hitter queries in sliding windows.

Their approach divides the stream into W -sized frames and further partitions

each frame into k equal-sized blocks, and the window of interest is also of size

W . The whole algorithm design is based on such k equal-sized blocks. How-170

ever, in practice, data flow fluctuates and we could not know the “block size”

in advance. The algorithm in [8] will not work for equal-sized blocks based on

time. Moreover, one cannot query arbitrary window sizes. Besides what has

been discussed, there is some more remotely related work in the literature. For

example, Mouratidis et al. study continuous monitoring of top-k queries in data175

stream sliding windows [33]. There are two major differences from ours. First,

it is based on a preference function to compute a score for top-k, but not on

frequency. Second, its window size has to be fixed in advance and users cannot

query arbitrary window sizes. Lam and Calders [24] study top-k items in a data

stream with the highest max-frequency, which is defined as the maximum of180

the item frequency over all window lengths. Mirylenka et al. [30] introduce the

notion of Conditional Heavy Hitters. This concept is distinct from prior notions

of heavy hitters and frequent itemsets. It cares about items that are condition-
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ally frequent: a particluar item is frequent within the context of its parent item.

Then they develop several streaming algorithms for retrieving conditional heavy185

hitters. It solves a different problem and is not for a query with a particular

window size. Shah et al. [37] compute hierarchical heavy hitters by modifing

Misra Gries algorithm. In [39], a new concept called Hierarchically Correlated

Heavy Hitters is described to capture the sequential nature of the relationship

between pairs of hierarchical items at multiple concept levels and local contex-190

tual patterns within the context of the global patterns. The algorithm of [39]

finds the correlation between items corresponding to hierarchically discounted

frequency counts. Like [30], the algorithms of [37, 39] are not designed for top-k

frequent items queries of a paricular window size. Le et al. [25] study top-k

erasable pattern mining problem as a variant of frequent pattern mining and195

propose two efficient methods using pruning strategies and the subsume con-

cept, which is not suitable for data streams and window queries. Erra et al.

[17] present a revised TF-IDF measure and a parallel implementation of the

calculation of the approximate TF-IDF based on GPUs to process continuous

data streams. It returns frequent top-k items by calculating the approximate200

TF-IDF value that only works well for a fixed window size. Babcock et al.

[7] propose priority-sample to sample from a timestamp-based moving window.

Upon each element’s arrival, it is assigned a randomly chosen priority between

0 and 1. The purpose of this work is to maintain a uniform random sample

of size k. To achieve this goal, priority-sample generates k priorities p1, ..., pk205

for each element and chooses the element with the highest pi for each i. The

goal of this work is different from ours and is not able to handle frequent items

query. Also, we show in Section 3.2 why a simple random level assignment upon

each element’s arrival cannot serve our needs. The detailed analysis is shown in

Section 3.3.210

Datar et al. [16] address the problem of maintain aggregates and statistics

over data streams. Similar to us, it works for sliding windows of any sizes

chosen at query time. It solves a basic counting problem—counting the number

of 1’s in the last w bits of the stream (at any time), where w ≤ W , and W
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is an upper bound. It works by maintaining exponential histograms. While215

bearing some similarity with our Item Frequency Tracking problem, our target

is fundamentally different. As shown in Definition 2, our problem is to succinctly

track the item counts at each time unit within a very large window (imagine this

can be tracked for many items at the same time). Hence we resort to very concise

piecewise polynomial functions (i.e., a form of dynamic data compression). Note220

that this problem is also different from the work of prediction and forecasting

models in statistics [28].

For this problem, the Piecewise Linear Approximation [34] also provides a

solution, which is very efficient and provides guarantees on model accuracy. The

popularity and wide use of [34] are attributed to its high efficiency—amortized225

O(1) time per point [34], as well as its adaptivity and scalability to any long

period of time, especially suitable for data stream settings. Our method, called

Progressive Trend Model, uses different techniques, namely five-point stencil [9]

to estimate a few low-order derivatives using data points with progressive step

sizes (granularities), as well as Taylor series, to explore the trend, resulting in230

more powerful function models. We prove that its cost is also amortized O(1)

time per point, and our experiments show that it is 20-30 times more concise

than Piecewise Linear Approximation, under the same accuracy constraint.

We have briefly discussed how to deal with the windowed top-k frequent

items and the item frequency tracking problems in the ICDE 2017 poster version235

[40], where we show the algorithms and a few preliminary evaluation results.

By contrast, in this paper, our contributions include more complete algorithms

and the added theoretical analyses (which are not in [40]), along with more

intuitions, explanations, and examples. In addition, in this paper, we have

conducted much more experiments to systematically evaluate our work.240

1.2. Our Contributions

We first formally state the Windowed Top-k Frequent Items problem, as

well as the Item Frequency Tracking problem. For the first problem, we devise

an algorithm called Floating Top-k. The basic idea of it is to let each item
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in the stream perform an independent action—choosing a random “level” from245

a distribution, such that some aggregate value grouped by each distinct item

is probabilistically proportional to the frequency of that item. Thus, we can

estimate the top-k frequent items in a window based on the k items/groups

with top aggregate values. The “aggregate” value here is the maximum level

of the item, where an appearance of the item in the stream gets a random250

level, as stated above. An interesting property with the above procedure is

that we do not need to explicitly maintain any item counts over time or deal

with the count updates upon item entry and expiration from windows of any

sizes. This is because each item in the stream simply makes its own choices

(of levels) independent of any other items. Our Floating Top-k algorithms255

maintain a small-size floating tuple pool, such that the top-k items with highest

maximum levels can be retrieved for any-size windows, at any time. We prove

that the expected space complexity of our method is O(k logW ), where k is the

number of items parameter in top “k”, and W is the maximum window size

(in number of time units). We also prove its time complexity. The fact that260

the space and time costs of Floating Top-k grow only logarithmically with W is

significant; all previous approaches to this problem (Filtered Space-saving with

Sliding Windows and Persistent Data Sketching) grow at least linearly with

W . Our experiments using three real-world datasets show that Floating Top-k

retrieves very accurate top-k most frequent items. The memory footprints of265

Filtered Space-saving with Sliding Windows and Persistent Data Sketching are

2 to 3 orders of magnitude larger than that of our algorithms even for relatively

small W , and grow linearly with W . Floating Top-k is also at least 1 to 2

orders of magnitude faster than Filtered Space-saving with Sliding Windows

and Persistent Data Sketching. Thus, our method is highly scalable for high-270

rate data streams with dynamic items and arbitrary-size windows.

For the Item Frequency Tracking problem, we propose an algorithm called

Progressive Trend Model. We prove that it has an amortized cost of O(1) per

time unit. Experiments show that it is much more concise (20 to 30 times) and

slightly faster than Piecewise Linear Approximation (previous work) under the275

10



same accuracy guarantees. Our contributions can be summarized as follows:

• We state the Windowed Top-k Frequent Items and the Item Frequency

Tracking problems (Section 2).

• We propose an algorithm to effectively solve the Windowed Top-k Fre-

quent Items problem, and prove its complexity and parameter choices280

(Section 3).

• We devise a Progressive Trend Model algorithm for the Item Frequency

Tracking problem, and prove its amortized cost of O(1) per time unit

(Section 4).

• We perform a comprehensive experimental evaluation, using three real-285

world datasets and comparing with three methods in previous work (Sec-

tion 5).

2. Problem Statement

We are given as input a data stream s = a1a2. . . . Each item ai is drawn

from a highly dynamic, potentially very large domain D. We partition the time290

domain into time units, such as seconds or minutes, depending on the window

granularity in queries. For example, if the finest window granularity a user cares

about is at minute boundaries, then a time unit is a minute. A user could ask

for top-5 hot news in the past 30 minutes, but has no need in asking for the

top-5 hot news in the past 30 minutes and 2 seconds. In general there can be295

any number of items arriving in each time unit. We first formally define the

Windowed Top-k Frequent Items problem.

Definition 1. (Windowed Top-k Frequent Items). Let the current time unit

be t. The windowed top-k frequent item problem is to return the top-k most

frequent items for any given time window from time unit t − w to time unit t,300

denoted as [t − w, t], where w ≤ W (W is an upper bound of w). This query

may be asked at any time unit t.
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In general, W can be very large. For example, the time window can be sec-

onds, minutes, hours, days, weeks, or even months. The system should maintain

a data structure as concise as possible, in real time as data streams in. Then305

whenever a query is asked at any time unit t, the top-k most frequent items in

the query window need to be returned. Let us now define the second problem.

Definition 2. (Item Frequency Tracking Problem). For a selected item i, we

maintain a concise data structure M such that for any time unit t′ chosen

uniformly at random from the window [t−W, t], with probability at least 1− ε,310

the count of item i in t′ returned by looking up M has an error no more than δ

fraction from the true count.

Our goals in a solution to the Item Frequency Tracking problem are three-

fold: (1) it provides accuracy guarantees; (2) building M is incremental and

highly-efficient for real-time operations; (3) the resulting data structure/model315

M should be succinct.

3. Windowed Top-krequent Items

3.1. Intuition

A major issue with previous methods (Filtered Space-saving with Sliding

Windows and Persistent Data Sketching), as also found in the experiments320

(Section 5), is that they are too heavy, particularly in memory footprint, and in

turn processing overhead. They typically require memory space growing linearly

with the window size W (and with a large constant). Moreover, it is hard to

succinctly maintain item counts over time due to continuous item’s entry into

and expiration from all the windows within the upper bound W .325

The basic idea of our method is that each arriving item in the stream makes

an independent random choice of its “levels”, following a particular distribution.

Then for any window, some aggregate value grouped by items is probabilistically

proportional to the total count of that item in that window. This aggregate

value is the maximum level assigned to that item in the window. For example,330
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suppose the items (i1, i2, i3, i2, i3, i1, i2, i4) arrive in increasing time order. Let

us say that they are given random levels (2, 3, 1, 0, 3, 1, 4, 2) respectively.

(i1, i2, i3, i4)’s aggregate values (i.e., maximum levels) will be (2, 4, 3, 2) for a

window of size 9. Then we use (2, 4, 3, 2) to give evidence of the frequency of

the items approximately and obtain top-k frequent items. Hence, we may just335

somehow maintain a succinct data structure, called a Floating Top-k tuple pool,

that incrementally keeps the items with top-k maximum levels for each window.

By doing this, an interesting and nice effect is that we do not need to main-

tain continuous counter states, and hence it is extremely simple to deal with

item’s entry into and exit from all windows. In other words, there is no need to340

explicitly handle item expiration as in previous methods. In other methods, for

example, if we maintain frequencies for each item i as in the algorithm of [21],

when an item expires, we must deduct the expired item counts from the total

counts, resulting in a high maintenance overhead. While in our method, each

tuple in the top-k tuple pool has a timestamp in the interval [t−W, t] where t is345

the current time and W is the maximum window size. Thus, simply collecting

all tuples in the pool that fall in the query window will be sufficient (note that

we allow query window to be less than W ). This advantage is attributed to the

independent level choices of arriving items.

3.2. Main Algorithms350

With the intuitions in Section 3.1, we next present the main algorithms for

the Windowed Top-k Frequent Items problem. We call our method Floating

Top-k. The first algorithm, MaintainFloatingTopK, as shown below, is for

the stream system to maintain a Floating Top-k tuple pool Γ. As discussed in

Section 3.1, this pool Γ is to store a number of items that have the highest355

maximum levels. Then at any time, when the user’s query comes in, the system

can retrieve the top-k most frequent items from the current snapshot of Γ.

The key point of the pool Γ is that it needs to be sublinear to the maximum

window size W . In fact, we will show shortly in Theorem 1 that the expected

size of Γ is O(k logW ). To achieve this, we organize the tuples in Γ (where each360
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Algorithm 1: MaintainFloatingTopK (s,W, k)

Maintain a pool Γ to store a number of items that have the highest maxi-

mum levels.

Input: s: data Stream,

W : upper bound of window size,

k: upper bound of number of top results needed

Output: a continuously evolving data structure Γ

1 for j ← 0 to W − 1 do

2 Γ[j]←empty list

3 foreach current time unit t do

4 for j ←W − 1 down to 1 do

5 Γ[j]← Γ[j − 1]

6 Γ[0]← empty list

7 foreach item i that arrives in t do

8 l← RandomLevel(p)

9 Γ[0] maintains top-k tuples(i, l) with distinct i and highest l (i.e.,

ranked on l in descending order)

10 ctop← Γ[0] //maintain a current top-k vector

11 for j ← 1, ...,W − 1 do

12 for (i, l) ∈ Γ[j] do

13 if l ≤ ctop[k].level then

14 remove (i, l) from Γ[j]

15 continue

16 if ∃l′, s.t.(i, l′) ∈ ctop then

17 if l > l′ then

18 replace (i, l′) by (i, l) in ctop

19 else

20 remove (i, l) from Γ[j]

21 else

22 replace ctop[k] by (i, l) in ctop

14



tuple contains level information l of an item i) in their timestamp order. Thus,

if we scan the tuples in Γ in reverse chronological order, and maintain a vector

of k tuples ctop that have the highest levels thus far, we can remove a tuple

(i, l) from Γ if it does not have a higher level than any tuple in ctop. This is

because (i, l) will expire from a window earlier than all tuples in ctop anyway;365

hence there is no chance for it to be in the top-k of any window from now on.

We will show an example of this point after explaining the algorithm.

The input parameter k to MaintainFloatingTopK is also considered as

an upper bound, since the algorithm can easily handle top-k′ most frequent

items for any k′ ≤ k. In lines 1-2, we initialize the Floating Top-k tuple pool Γ370

to be all empty. For simplicity and clarity, we present Γ as an array, where the

index is time unit in reverse chronological order, i.e., Γ[0] holds some tuples at

the current time unit (“now”), and Γ[j] holds some tuples at time unit j before

“now” (0 ≤ j ≤ W − 1). Here, a tuple has the form (i, l) indicating item i

with level l. It may seem that this by itself is already O(W ) space and time375

complexity. However, as we prove in Theorem 1, most entries in Γ are expected

to be empty; we actually implement Γ with a linked list ordered by time, where

each tuple also has a “time unit” attribute.

Lines 4-22 are the actions we perform for each current time unit t (i.e.,

“now”). Lines 4-5 are due to the time unit shift. Lines 6-9 first assign a random380

level for each item in the current time unit (t), and then get the top-k highest-

level tuples from them and assign them to Γ[0] (the RandomLevel called in line

8 will be explained in detail below). In case there are fewer than k items/tuples

at time t, we just keep all of them. Note that we need to keep all these tuples

(at most k) in Γ[0], because they are the “newest” (i.e., latest). If one were385

to query the top-k now with window size 1, they will be returned. Intuitively,

“newer” tuples in the pool are “better” as they expire later. Hence, in lines

10-22, we iterate through the tuples in reverse chronological order.

Line 10 initializes the “current” top-k vector ctop. The loop from line 11

considers what will be in top-k if the query window is of size j. Line 12 iterates390

through all tuples (with timestamp t− j) that are currently in the pool. In line
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13, if such a tuple (i, l) has level l not better than the lowest level in ctop (tuples

in ctop are in descending order of levels), we just remove this tuple from the pool

(lines 14-15). Otherwise, the condition in line 16 indicates that there exists a

tuple in ctop that is from the same item (i.e., i) as this tuple (i, l). Then we must395

only keep one of them in ctop (lines 17-20)—the one with higher level (in case

it is a tie, we keep the newer one). This can be easily implemented by searching

for the item i from ctop[0] to ctop[k] and by doing a simple insertion sort. In

this way, we update ctop and maintain its descending order. The reason we

only record the highest level for each item is because the resulting top-k items400

are ordered by their maximum levels. We will show the relationship between

the expected maximum level of an item and its true counts in Section 3.3. In a

nutshell, an item with a higher count is expected to have a greater maximum

level. If (i, l) does not make it into ctop, we remove it from Γ (as it will never be

from now on). In lines 21-22, the tuple (i, l) will replace the one in ctop with the405

lowest level (i.e. the last element in ctop). The resulting ctop then maintains the

top-k items for the largest window size W . Finally, the continuously evolving

tuple pool Γ is exposed to top-k queries at any time (i.e., will be an input to

the RetrieveTopK algorithm discussed below).

Recall that the algorithm RandomLevel is called in line 8 Maintain-410

FloatingTopK; we present this simple algorithm. The choice of its input

parameter p will be discussed in Section 3.4. Line 1 of RandomLevel picks a

real value m from the interval [0, 1) uniformly at random. Then lines 2-9 im-

plement an iterative procedure: starting from level l = 0 (line 2), we stop and

return l as the level value with probability 1−p. That is, with probability p, we415

advance to the next level l = 1 (line 9), and continue this recursive probabilistic

level promotion again, until it stops and a level l is returned (line 6). A greater

m implies a greater level l. This helps us to get an aggregated maximum level

of an item which is probabilistically proportional to the total count of that item

(i.e., calling this algorithm more times tends to result in a higher m and hence420

higher level in at least one call). In addition, our overall method can conve-

niently re-construct the top-k tuples in a window of any size and for sliding
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Algorithm 2: RandomLevel(p)

Get a random level of an item.
Input: p : probability of level promotion

Output: a random level

1 m← random(0, 1)

2 l← 0

3 q ← 1

4 while true do

5 if m < q(1− p) then

6 return l

7 m← m− q(1− p)

8 q ← qp

9 l← l + 1

windows. The detailed analysis is shown in Section 3.3. By contrast, a simple

random level assignment upon each item’s arrival cannot serve this purpose.

Next we show the algorithm RetrieveTopK, which returns the top-k most425

frequent items for any window of length w ≤W , i.e., in the window [t−w+1, t],

based on the tuple pool structure Γ that is built and continuously maintained.

As discussed earlier, k is an upper bound (used for building Γ); we can answer

top-k′ queries (k′ ≤ k) too, through replacing k by k′ in RetrieveTopK.

Recall that, in the Floating Top-k tuple pool Γ, the list of tuples at a partic-430

ular time unit, Γ[u] (0 ≤ u ≤ w − 1), is sorted in level-descending order. Thus,

RetrieveTopK is essentially a multi-way merge sort, until we get k tuples

with highest levels. This can be done by using a max-heap structure (priority

queue) in line 1, starting the heap with only the first tuples at each non-empty

list Γ[u]. Then we keep popping the top-one from the heap (and add the next435

one from its Γ[u] list into heap), until we have k of them.

Example 3. We use a simple example to illustrate how MaintainFloating-

TopK works. At the top of Figure 1 we show the data stream in increasing time

order (time units t0, t1, . . . , t8), together with the items (i1, i2), (i2), (i1), (i1),

17



Algorithm 3: RetrieveTopK (Γ, w, k)

Obtain top-k frequent items within the most recent window of the given

size based on the tuple pool that is built and continuously maintained.

Input: Γ : Floating Top-k structure,

w : query window size,

k : number of top results needed

Output: top-k frequent items in the window [t− w + 1, t]

1 build a max-heap H (sorted on level) using each first tuple in Γ[0], ...,Γ[w − 1]

2 R← empty list

3 for j ← 1...k do

4 while true do

5 pop max from H; let it be Γ[u][v] = (i, l)

6 if i is not in R then

7 break

8 append Γ[u][v] to R

9 if Γ[u][v] is not the last element in Γ[u] then

10 push Γ[u][v + 1] into H

11 return R

(i3, i4), (i5, i3), (i2), (i2, i4), (i5) (only one or two items per time unit for sim-440

plicity). Time t8 is the current time unit (“now”). Suppose W = 9 and k = 2.

Each row in the table in Figure 1 shows the tuples in the Floating Top-k tuple

pool Γ at the corresponding time unit. In a tuple at each column, the second

value is the random level that item is assigned by RandomLevel. Let us pick

two time units to see how the algorithm works. First consider t = t3 and see445

how Γ changes from t = t2 to t = t3. At t3, item i1 arrives with a random

level 4. Lines 6-9 of MaintainFloatingTopK assign Γ[0] to be (i1, 4) (there

are fewer than k = 2 tuples; but that’s all we have). Then lines 10-22 iterate

through the existing tuples in Γ (inherited from row t = t2) in reverse chronolog-

ical order. First, for tuple (i1, 0), the same item i1 already exists in the current450
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Figure 1: A simple example to illustrate the process of maintaining the floating pool, where

W = 9 and k = 2.

top-kctop in (i1, 4); hence (i1, 0) is removed from Γ (line 20). The same is true

for tuple (i1, 2), while (i2, 3) joins ctop and stays in Γ. Now consider the row

t = t7. Item i2 arrives with level 3 and i5 arrives with level 2. ctop includes

(i2, 3), (i5, 2). For tuple (i2, 4), item i2 is in the current ctop; hence (i2, 3) is re-

placed by (i2, 4) (line 18). Similarly, (i5, 3) replaces (i5, 2) in ctop. Tuple (i3, 0)455

is removed from Γ because its level is less than the current top-2 in ctop (line

20). The same is true for tuple (i3, 2). Then the next tuple, (i4, 5), however,

replaces (i5, 3) in ctop (line 22). Finally, tuple (i1, 4), whose level is equal to

ctop[k], is removed from Γ. Suppose at this moment a top-2 query is asked with

w = 9, then RetrieveTopK will return i2 and i4. If the query is asked with460

w = 3, then RetrieveTopK will return i2 and i5.

We next perform a detailed analysis of our Floating Top-k algorithm frame-

work in Section 3.3.

3.3. Analysis

In this subsection, we first analyze the time and space complexity of our465

main algorithms. Then we analyze the accuracy of the finally retrieved top-k

items. For complexity, we first show that the number of (i, l) tuples maintained

in the Floating Top-k structure Γ has a nice bound. We first show the following

result.
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Theorem 1. The expected number of tuples maintained in the Floating Top-k470

tuple pool is O(k logW ).

Proof 1. For the current time unit t, Γ[0] stores k tuples. Γ[1] stores the addi-

tional (i, l) tuples that go into the top-k in the window [t− 1, t] (in addition to

a few top ones in Γ[0]). Since the choices of levels are random and independent

for each item in the stream, we have E[|Γ[1]|] = k
2 , i.e., in expectation, half of

the k highest levels come from Γ[1], and the other half from Γ[0]. Similarly,

E[|Γ[2]|] = k
3 , ...,E[|Γ[W − 1]|] = k

W . Hence, the expected size of the Floating

Top-k tuple pool is:

E[|Γ|] = E[
∑W−1

i=0
Γ[i]] =

∑W−1

i=0
E[|Γ[i]|]

= k ·
∑W−1

i=0

1

i+ 1
= O(k logW )

Note that in case the stream is so slow that there are fewer than k tuples per

time unit, we can just merge multiple time units into one “large unit” that has

sufficient tuples. There will be fewer than W large units in the pool and E[|Γ|]

can only be smaller.475

We now have the complexity results.

Theorem 2. The time complexity is O(k log k logW ) per time unit for Main-

tainFloatingTopK, and the total space complexity is O(k logW ) in expecta-

tion. The expected time and space complexity of RetrieveTopK is O(k logw).

Proof 2. Firstly, the call RandomLevel(p) in line 8 takes O( 1
1−p ) time, since480

the loop in lines 4-9 of the algorithm RandomLevel can be considered as a ge-

ometric distribution with success (i.e., stop of the loop) probability 1− p in each

loop. Thus, the expected cost is O( 1
1−p ), which is a constant (we will discuss

the choice of p shortly). Also note that the random levels returned by Random-

Level can be easily precomputed offline using a pseudorandom generator.485

Secondly, from Theorem 1, the loops in lines 11-12 of MaintainFloating-

TopK examines an expected number of O(k logW ) tuples (i, l) in the pool Γ.
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Within the loop (lines 13-22), each line takes O(1) time, except lines 18 and

22 where we “replace” a tuple in ctop by (i, l), which takes O(log k) time, as

we need to search to maintain the sorted order of ctop. Note that line 16 takes490

O(1) time too, as the match of item i can be done using a hash table. Thus, the

expected time complexity per time unit is O(k log k logW ). It is also clear that

the expected space complexity is O(k logW ) for storing the top-k tuple pool.

Finally, the heap building in line 1 of RetrieveTopK takes an expected

O(k logw) cost in both time and space (again from Theorem 1 for the size of495

the floating tuple pool). Note that we use “w” for the actual window size in

the query. Thereafter, the heap operations in lines 3-10 take O(k log(k logw))

time. Hence the overall expected cost in time and space of RetrieveTopK is

O(k logw).

Now let us analyze the relationship between an item’s frequency and its500

maximum level.

Theorem 3. For any query window [t − w, t], the expected maximum level of

an item i returned by RandomLevel is E[L] =
∑∞
r=1[1− (1− pr)n] , where n

is the number of times i appears in that window, and r is an integer.

Proof 3. L = maxj=1,...,n Lj, where Lj is the level of item i at its j’s appear-

ance. Since the level L of the item i is a random variable that takes on only

non-negative integers, it follows that

E[L] =
∞∑
r=1

Pr(L ≥ r)

=

∞∑
r=1

Pr(maxj=1,...,n Lj ≥ r)

=

∞∑
r=1

[1−
∏n

j=1
Pr(Lj < r)]

=
∑∞

r=1
[1−

∏n

j=1
[1− Pr(Lj ≥ r)]]

=
∑∞

r=1
[1− (1− pr)n]
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Note that the first equality is true since L is a non-negative integer [32]. In-505

tuitively, Pr(L ≥ r) is the probability that we can add 1 to L, iteratively for

increasing r.

From Theorem 3 we can see that, the greater n is (i.e., the more frequent

item i appears in the query window), the greater E[L] is. Theorem 3 does not

give a closed form solution. We have the following result.510

Theorem 4. An unbiased estimate of the number of appearances of an item i

in a query window, given its maximum observed level l returned by Random-

Level, is p+1
2p ( 1

p )l − 1
2 .

Proof 4. We define a random variable X as the number of times item i appears

in a time window when its maximum level first reaches value l. Then we define515

a random variable Y as the number of times item i appears in the time window

when its very next appearance increases its maximum level to l + 1. The event

that item i’s level reaches value l has a probability pl. Thus, X follows a geomet-

ric distribution with parameter pl. We then have E[X] = 1
pl

. Similarly, Y + 1

follows a geometric distribution with parameter pl+1. Thus E[Y + 1] = 1
pl+1 and520

E[Y ] = 1
pl+1 −1. As we observe that the maximum level is l when the query is is-

sued, the actual number of times N that item i appears must satisfy X ≤ N ≤ Y .

Since N is equally likely to be any value in that interval, we have an unbiased es-

timate N = X+Y
2 , and hence E[N ] = E[X]+E[Y ]

2 = 1
2 ( 1
pl

+ 1
pl+1−1) = p+1

2p ( 1
p )l− 1

2 .

We now further show the order-preserving property in Theorem 5.525

Theorem 5. For a given query window, the probability that a frequent item

i is not reported by RetrieveTopK is no more than e−µ/2, where µ = ni
nk

,

ni is the count of item i, k is the upper bound parameter used in Maintain-

FloatingTopK, and nk is the count of the item ranked the k’th in the ground

truth.530

Proof 5. Let the maximum level of the item ranked the k’th in the query window
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be τ . Then for the j’th appearance of item i, define a random variable

Xj =

1 if its level ≥ τ

0 otherwise

(1 ≤ j ≤ ni),

giving ni random variables. Thus, Pr(Xj = 1) = pτ , and E[Xj ] = pτ . Further

define X =
∑ni
j=1Xj. From linearity of expectation,

E[X] =
∑ni

j=1
E[Xj ] = nip

τ (1)

On the other hand, nkp
τ ≈ 1, as τ is the maximum level of the rank-k item

(There are one or more occurrences of the rank-k item at level τ by definition.

Thus, one can show a probabilistic lower bound of nkp
τ close to 1. Note that

a greater nkp
τ only helps our Chernoff bound in the proof below in the right

direction). Combining this with Equation (1) gives

E[X] =
ni
nk

= µ (µ is as defined in the theorem)

Then from Chernoff bound [32],

Pr(X < 1) = Pr(X < [1− (1− 1

µ
)]µ) ≤ e−µ(1− 1

µ )2/2 ≈ e−µ/2

as we consider frequent item i and hence large µ; the above probability is small.

Note that µ grows exponentially as we slightly increase k (the upper bound that

determines the cost of the top-k tuple pool). Finally, from the definitions of Xj535

and X, Pr(X < 1) is the probability that item i has never had level at least τ in

its ni appearances in the window, and hence is not reported by RetrieveTopK,

finishing the proof.

Theorem 5 shows that as the frequency ratio µ = ni
nk

increases (i.e., item i

is much more frequent than the item ranked at the k’th), the probability that540

item i is not reported in top-k decreases exponentially fast.

We may further enhance the accuracy of the top-k results by reducing the

variance through independently repeating MaintainFloatingTopK and Re-

trieveTopK a constant number of times. Suppose it is repeated c times,
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which we call c rounds, and we get c · k item-level pairs (i, l). For each dis-545

tinct item i that appears in these results, we first use Theorem 4 to calculate

the estimated counts in each of the c rounds. It is possible that i only ap-

pears in some rounds but not others. For a round that misses i, we use the

minimum level of that round − 1 as the level l in Theorem 4 to estimate the

count. Then, removing the maximum and the minimum (to drop possible out-550

liers), we get the mean of the remaining c−2 counts as the final count of item i.

In the end, we select top-k items based on these final counts. Although repeat-

ing MaintainFloatingTopK and RetrieveTopK c times increases accuracy,

it consumes more computation resources. We show the effect of varying c in

Section 5.555

3.4. Choice of Parameters

We now discuss the choice of parameter p, i.e., the promotion probability in

choosing random levels for each item. The intuition is that we should ensure

that the maximum levels of top-k items should be spread out in a sufficiently

large range (e.g., 2k), so as to be robust against variations of item levels. We560

have the following result.

Theorem 6. Let the total number of items in a time window be n, and the

number of the item with rank k be nk (which can be estimated at runtime as

discussed below). Then we should choose the parameter p as p = (nkn )
1
k′ , where

k′ is the desired number of levels that top-k items span across.565

Proof 6. First consider all items together, and let the maximum level in the

time window be l. Then from Theorem 4, we have

n ∼=
p+ 1

2p
(
1

p
)l − 1

2
(2)

Since k′ is the desired number of levels that top-k items span across, the item

with rank k should have the maximum level l − k′. Again from Theorem 4, we

have

nk ∼=
p+ 1

2p
(
1

p
)l−k

′
− 1

2
(3)
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Dividing Equation (2) by Equation (3), and simplifying, we have p = (nkn )
1
k′ as

in the theorem.

For example, if we first collect the statistics that n=100,000 and nk=3,000

(k=5). nk can be estimated by using any p value first (e.g., p=0.5). Suppose

the desired k′ = 2k = 10. Then Theorem 6 advises us to choose p = 0.030.1 =570

0.7. Note that we cannot indefinitely increase k′, as Theorem 6 shows that

a greater k′ implies a greater p value; yet this would increase the cost of the

RandomLevel algorithm invoked for each item, which has an expected cost of

O( 1
1−p ).

Finally, we note that the choice of pmay be dynamic. Based on the estimated575

nk and n at runtime for window size W , we can dynamically adjust p.

4. Concise Real-Time Tracking of Item Frequency

In the previous section, we have studied how to locate top-k most frequent

items in any time window. As discussed in Section 1, there are also many usage

scenarios where a user knows which item(s) he/she is interested in. For example,580

in interactive data exploration, after querying top-k frequent items, the user may

want to individually track the frequency evolvement of some of these items. As

time goes by, some of them may not be “hot” any more, and the user would start

another data exploration cycle—querying top-k followed by tracking individual

items. This process may go on repeatedly. Thus, our proposed techniques in585

this section complement those in Section 3, and are needed in a comprehensive

data exploration system.

Imagine that one may want to track a great number of individual items at

the same time. Thus, our goal in solving the Item Frequency Tracking problem

is concise and efficient (real-time) tracking of the historical frequency counts of590

a selected item over a time window, subject to the accuracy requirement. We

first give some intuition and background. To track the frequency of an item over

a large window, it is intuitive and broadly applicable to use piecewise functions,

since most likely no single function can fit the whole large window. The question
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is what function we use for each “piece”, so that it is not only concise, but also595

efficient, while guaranteeing accuracy.

Background. We devise a novel solution by using five-point stencil [9] to

estimate some low-order derivatives from data, combined with Taylor series

models. In numerical analysis, the five-point stencil of a point x in one di-

mension consists of the point itself together with its four “neighbors”, i.e.,600

{x − 2h, x − h, x, x + h, x + 2h}, where we call h the step size between the

points. Knowing the function values f(·) at these five points, one can ap-

proximate a number of low-order derivatives of f(·) at point x. For example,

f ′(x) ≈ −f(x+2h)+8f(x+h)−8f(x−h)+f(x−2h)
12h . Likewise, there are formulas [9] to

approximate f ′′(x), f (3)(x), and f (4)(x), etc. Once we have these derivatives,605

we use the Taylor series at x as a model function.

One novel aspect of our solution is to progressively increase the step size h,

to explore a suitable one so that the item frequency and change patterns (i.e.,

speed f ′(t), acceleration f ′′(t), etc.) are well represented, and the Taylor series

model can cover as many data points (i.e., time units) as possible. That is,610

we maximize the coverage of a “piece” in the piecewise model. We

use two auxiliary algorithmic constructs “chains” and “rounds” to achieve this.

The rationale of this point is illustrated in Figure 2(a), where time “zero” is the

center point of five-point stencil. The five point stencil inside the dashed oval

corresponds to the initial step size h = 1. Due to its limited scope, the function615

that it produces can only be close to a horizontal line, which would not cover a

big range in time. In our method, we iteratively (but efficiently) explore other

step size h values. For example, the center (zero) point plus the four points

outside the dashed oval is another five-point stencil that possibly results in a

better function that covers more points. We now present the Progressive-620

TrendModel algorithm.

Figure 2(b) illustrates some high-level notions in the algorithm. The time

line is partitioned into epochs. Each epoch in the end has one function (Taylor

series) as part of the whole model. Each epoch has a “zero” point in time as its

first data point. We use the terms data “point” and “time unit” interchangeably.625
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Algorithm 4: ProgressiveTrendModel (s, i)

Return the built model that tracks the frequency of a given item in a data

stream.

Input: s : data stream,

i : item being tracked

Output: a model

1 F ← φ; zero, front, frontp ← s.now(); chain← 0;h← 1/2; f, v ← null;

2 while s.now() is in the window where i is tracked do

3 while f = null do

4 chain← chain+ 1;h← 2h

5 if chain > α then

6 chain← 1

7 if front− zero ≥ 2(frontp − zero) then

8 frontp ← front //advance to next round

9 else

10 h← 1 //start a new epoch

11 zero, front, frontp ← s.now()

12 F ← F ∪ fe

13 f ← BuildModel(zero, h)

14 if Verify(f, zero) = false then

15 f ← null

16 if v = null then

17 v ← s.next(i)

18 if Match(f, v) then

19 v ← null

20 else

21 front← s.now()− 1

22 fe ← f //must be the best so far in this epoch

23 f ← null

24 return F
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Figure 2: (a) Five-point stencil at different step sizes (granularities). (b) Some high-level

notions in the ProgressiveTrendModel and the progress of the entire algorithm.

As discussed earlier, the so-called zero point is just the center of a five-point

stencil and where the Taylor series is at. An epoch comprises a number of

rounds, and the change of rounds keeps track of how our models are progressively

extended. For example, in Fig. 2 (b), the end of round 1 implies that there is

a function f1 that could cover all data points in round 1 but not another point630

outside round 1. The end of round 2 implies another function f2 that could

cover all data points from the zero of this epoch to the end of round 2. Thus

f2 is better than f1 for covering more data points. Then each round comprises

α chains. Here α is a small integer parameter that provides a tradeoff between

model conciseness and performance (a greater α may result in a more concise635

model, but with higher computation cost). Within one round, we try different

step sizes α times to build a model. In this work, we use α = 3 as the default;

in the experiment section we explore the effect of different α values. Within an

epoch, from one round to the next, the progress (i.e., distance to the epoch’s

zero point) at least doubles.640

The input parameter s is the data stream in a natural chronological order

and i is the item being tracked. We scan s in time unit order and get the counts

of i. Line 1 of the algorithm initializes the function set F to be an empty set. At

the end of the algorithm, the constructed F will be returned as the whole model

M that is referred to in Definition 2. In line 2, now() function is called on the645

stream s, which returns the timestamp (time unit number) of the current time

unit in the stream. Initially, we assume this is positioned at the first time unit

in the window where item i is tracked. Variable zero indicates the center of a
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five-point stencil and beginning of an epoch, as discussed earlier. Variable front

is the frontier data point of the current round (recall Figure 2b), while frontp650

is that of the previous round in the same epoch (if any). Lines 3-4 initialize

variables chain as the chain number in the current round, h as the step size of

five-point stencil (always a power of 2), f as the current Taylor series function,

and v as the count of item i in the next time unit, used to explore the frontier

of the current round.655

The loop at lines 5-26 handles all time units in the window where i is tracked.

Line 8 checks the condition when all α chains in the current round have been

tried (each chain corresponds to one setting of the step size h; from one chain

to the next in the epoch, h doubles). Line 10 checks the condition whether the

progress of this round at least doubles, compared to the previous round. If so,660

we advance to the next round in the same epoch (line 11). Or else we start a

new epoch (lines 12-15), and add fe to set F as the function of the previous

epoch, where fe stores the best function of this epoch (i.e., matching all data

points there).

The function BuildModel in line 16 uses the values (i.e., counts of item665

i) at time units zero − 2h, zero − h, zero, zero + h, zero + 2h and five-point

stencil to estimate the derivatives, and then returns the Taylor series at zero

as the function. By default, we use up to the third derivative in this work.

Note that in case zero + h or zero + 2h are in the future (i.e., after s.now()),

s.next(i) (which returns the count of item i in the next time unit) will be called670

to advance the stream until zero+ 2h is reached.

Next, the Verify function in line 17 verifies if the model f can accurately

approximate the time units between zero and s.now() − 1. Suppose there are

t time units in this interval. That is, for at least (1 − ε)t time units, the

error is no more than δ fraction. If so, Verify returns true; otherwise675

false. This error budget is similarly true for the Match function in line 21.

For the interval between zero and s.now(), if the error budget has not been used

up, Match returns true. Parameters ε and δ are from the accuracy requirement

of the user. Intuitively, a smaller ε and a lower δ give higher accuracy, which
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will,inturn,resultinalargermodelsize. WealsoshowthisinSection5.680

Ifverificationfails(i.e.,fisnotasgoodasthebestoneintheepoch),we

setftonull(line18)andadvancetothenextchain.Oncewegetafunctionf

thatcanadvancethestream,lines19-20ensurethatvcontainsthenextdata

valuetobecoveredbythemodel.Oncevismatched(bythecurrentfunction),

itissettonull(lines21-22).Otherwise,thefrontieroftheroundistheprevious685

timeunit,andwestorethebestfunctionintheepochsofarintofe(lines23-26).

Intheend,thesetoffunctionsFisreturned.Thefollowingexampleillustrates

howthisalgorithmworks.

Figure3: Anexampletoillustratethelevelsofevolution(i.e.,chains,rounds,andepochs)

andhowProgressiveTrendModelworks.

Example4.InFigure3,eachtickonthetimeaxisindicatesadatapointas

wetrackitemi.Letthecurrenttimewindowstartfromtime0—initiallyzero,690

front,frontpands.now()areallattime0.Inthefirsttry,thechainnumberis

1,andthestepsizehis1.Aszeroisthestartofthecurrentwindow,thepoints

usedforthefive-pointstencilareattimes(−2,−1,0,1,2).Denotetheresulting

functionasf(2),fors.now()istime2whenthisisdone. Weverifyiff(2)

canaccuratelymodeltheitemcounts(ofi)betweentimeszeroands.now()−1695

(whichistriviallytruerightnow).Thenwesequentiallycheckthevalue(vin

line20)ofthesubsequentdatapointsuntiladdingonemorewouldexceedthe

errorbudgetofusingf(2);supposethishappensattimes.now()=5,andfront

issettos.now()−1=4. Therecordedcurrentbestmodelisf(2). Nexth

isdoubledto2forthesecondtryinthecurrentround. Thepointsusedfor700

five-pointstencilareattimes(−4,−2,0,2,4),givingafunctionf(4).Againthe

verificationisdoneforthetimepointsfrom0to4.Ifthispasses,onedatapoint

atimeisretrievedfromthestreamandcheckedagainstf(4).Supposetheerror
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bound is exceeded at time 8. Then front = 7 and f(4) is the current best model

of epoch 1. Likewise, in the third try, h = 4, and data points at (−8,−4, 0, 4, 8)705

are used to get f(8). Suppose f(8) fails the verification. As the number of chains

exceeds α (default 3), we advance to the next round with chain reset to 1 and

frontp = 7. In the second round, h is doubled to 8, and we get function f(16).

After another three tries, suppose the progress of this round does not double that

of the previous round (lines 12-15); then a new epoch is started, for which zero710

is set to time 8, and h is reset to 1. Epoch 2 in Figure 3 illustrates a possible

progress with three rounds. This process continues. In all, the algorithm finds

a single best model for each epoch which satisfies the accuracy guarantee, while

chains and rounds are used to progressively extend the epoch size, covering as

many data points as possible.715

We next prove that this algorithm is very efficient.

Theorem 7. The amortized cost of ProgressiveTrendModel is O(1) per

time unit.

Proof 7. We use an accounting argument. Recall that Figure 2(b) shows the

progress of the ProgressiveTrendModel algorithm. Let us consider each720

epoch alone. Whenever a data point in the stream is first encountered (within

some chain of some round), we pay an amount of 3α in advance. We show

that this payment scheme is enough for covering all costs in the algorithm. In

general, suppose a data point (time unit t) is first encountered in round r of an

epoch. In Figure 2(b), time unit t must be outside round r − 1 for it to be first725

encountered by round r. The 3α that we pay for this data point is allocated as

follows:

(1) α is for the cost either to Verify (line 17) or to Match (line 21) this

time unit t by the α chains in round r.

(2) Another α is for the cost to Verify (line 17) the “buddy” time unit t′730

of time unit t (if any) by the α chains in round r. The buddy t′ is an “old” time

unit that has been encountered in a previous round; it is of the same distance to
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the “zero” point of the epoch as the distance from t to the end of round r − 1.

From line 10, it follows that, except for the case that r is the last round of an

epoch, any “old” time unit (t′) within round r−1 has a buddy (t) which is newly735

encountered in round r. Hence, the actual cost of verifying the “old” time units

in round r is all accounted for.

(3) The last α in our payment for time unit t is to take care of the last round

of an epoch. In the worst case, all α chains of the last round merely verify all

“old” data points D encountered in previous rounds, but are not able to match740

any new data points. Hence, no extra payment is made by our scheme, but we

need to cover the cost C of verifying all data points D α times. C is taken care

of by the leftover payment α (i.e., the last α as said in this paragraph) from

each data point in D when it was first encountered.

As discussed earlier, α is a (small) constant; thus the amortized cost is O(1)745

per time unit.

5. Experiments

We perform a comprehensive empirical evaluation, using three real-world

datasets and comparing with three previous methods that are most relevant.

Through experiments, we answer the following questions:750

• How does our Floating Top-K method compare with competing meth-

ods Persistent Data Sketching (PDS) [41] and Filtered Space-saving with

Sliding Windows (FSW) [21] in terms of the quality of the top-k items

found?

• How do they compare in memory usage, and processing overhead under755

the three real datasets and various parameter settings such as window

sizes?

• What are the observed Floating Top-k tuple pool sizes?

• For tracing individual items, how does our algorithm Progressive Trend

Model (PTM) compare with the previous approach of piecewise regression760
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(i.e., Piecewise Linear Approximation (PLA) [34]) in the size (conciseness)

of the produced models under the same accuracy constraint?

• How do PTM and PLA compare in processing overhead?

5.1. Datasets and Experiment Setup

We use the following three real-world datasets:765

• Kosarak data. This dataset contains the anonymized click stream of

a Hungarian online news portal [2]. Each click session (in chronological

order) contains a number of (news) items, each of which is identified by

an integer. There are 8,019,015 items in total and 41,269 distinct items.

This dataset was also used in previous work [24].770

• Twitter data. We use the Twitter Stream API [1] implemented by twit-

ter4j [5] to retrieve real-time Twitter streams from Wednesday October 28,

2015 to Thursday December 10, 2015. On average, we get 10’s of hashtags

per second. Each item of the stream contains a timestamp (Unix time)

and a hashtag (many hashtags may have the same timestamp). Clearly775

the string hashtags are highly dynamic and we do not know the number

of distinct hashtags in advance.

• World-Cup data. It contains all the requests made to the 1998 World

Cup web site between April 30, 1998 and July 26, 1998 [3]. There are

1,352,804,107 requests in total. We are mainly concerned with two at-780

tributes: timestamp of a request (Unix time) and the objectID, a unique

integer identifier for the requested URL. The mappings between the inte-

gers and URLs are 1-to-1 and preserved across the entire dataset.

We implement all the algorithms in the paper in Java. In addition, we

implement three most relevant competing methods: (1) Persistent Data Sketch785

(PDS) [41], (2) Filtered Space-saving with sliding Windows (FSW) [21], and (3)

piecewise regression (Piecewise Linear Approximation, PLA) [34]. Moreover,

we implement (4) the Frequent algorithm (i.e., Algorithm 1) in [13] to find
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out the ground truth top-k items in any static fixed window after knowing that

window is used in comparison, in order to compare the quality of top-k items790

found by each competing method. All experiments are performed on a machine

with an Intel Core i7 2.50 GHz processor and an 8GB memory.

5.2. Experiment Results

In the first set of experiments, we compare our Floating Top-k method with

the most relevant two competing methods, PDS [41] and FSW [21] in solving795

the Windowed Top-k Frequent Items problem as defined in Section 2. In this

comparison, we mainly study three aspects: (a) the quality of the top-k items

found, (b) the processing overhead in time, and (c) the memory footprint.

For (a), the quality of top-k items found in a window, a reasonable metric

is top-k strength, which is the ground-truth total count (i.e., strength) of the800

k items selected by a method for a window. The true counts of the k selected

items are easy to get in the experiments, since whichever window is used in the

query, after knowing it, we can simply use k counters and do another pass over

the dataset to get the true counts. Thus, the top-k strength metric indicates

the quality of the selected top-k items in a window, and can be used to compare805

various competing methods.

In the same vein, in the experiments, after knowing which window is selected

by a query, we can simply re-play the dataset and use the Frequent algorithm

(i.e., Algorithm 1 in [13]) to efficiently find out the ground-truth top-k items in

that window. The aforementioned top-k strength of a method can be compared810

against this ground-truth top-k items’ strength. In Figure 4, we show the top-k

strengths of our method (Floating Top-k), together with those of the ground-

truth top-k items and of previous methods PDS and FSW, using the Kosarak

data. In Figures 5 and 6, we also show the stream system throughput (indicating

the overhead of maintaining and processing data for top-k queries), and memory815

footprint for these methods over various maximum window sizes W (ranging

from the past 3.6K sessions to the past 360K sessions). For Floating Top-k, each

session is a time unit; we use parameter p = 0.79 as determined by Theorem 6
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Fig. 4 Top-k strengths of Floating Top-k,

PDS, FSW, and ground-truth top-k items

for different window sizes on Kosarak

Fig. 5 Stream system throughputs of Float-

ing Top-k, PDS, and FSW for different win-

dow sizes on Kosarak

(from a run over an initial segment of the stream), and use 20 rounds (c = 20)

by default. In a later experiment, we also study the effect of varying c values.820

In PDS, we consider the real-time dynamic stream setting where we do not

know the exact number of distinct news items in advance, but assume that the

ids are integers and hence an upper bound is 231. In PDS2 of the figures, we

assume the static scenario in which we know the exact number of distinct news

items in advance, which is 41,269 as we know from the dataset. Recall that825

answering top-k queries with PDS uses historical window heavy hitter queries

(Section III-B in [41]), which resort to the dyadic range sum technique in [14]

to recursively sub-divide the id range [0, n] over log n + 1 levels, and in each

level, each interval is divided into two. Thus, PDS must know n first. In PDS

of Figure 4, n = 231 and there are 32 levels (i.e., 32 persistent Count-Min830

sketches), while in PDS2, n = 41, 269 and there are 16 levels.

Furthermore, in order to use heavy-hitter queries to answer top-k queries, we

have to repeatedly run multiple heavy-hitter queries in a trial-and-error fashion

to figure out the right Φ threshold. For k = 10, we find Φ = 0.005 for Kosarak

data. In addition, like in [41], we fix the sizes of the two dimensions of the835

Count-Min sketches in PDS/PDS2 to be width = 20, 000 and d = 7. When the
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Fig. 6 Memory usages of Floating Top-k,

PDS, and FSW for different window sizes

on Kosarak

Fig. 7 Top-k strengths of Floating Top-k,

PDS, FSW, and ground-truth top-k items

for different window sizes on Twitter

number of distinct items is much greater than 20,000, the Count-Min sketches

would have many collisions and would be very inaccurate. This leads to its low

top-k strength in Figure 4 when window size is large.

Figure 4 shows that the Floating Top-k algorithm retrieves top-10 items840

with strengths very close to those of the ground-truth top-10 items. PDS takes

the most memory (Figure 6), and is only feasible when window size W = 3, 600

sessions among the ones we test (we constrain the maximum memory consump-

tion of this program to be 512 MB). For window size W = 36, 000 sessions

PDS’ memory footprint is already beyond the constraint. PDS2 (with a much845

smaller id range) is feasible for window size up to 120,000, but not 360,000 ses-

sions. PDS has a very large memory footprint because it uses piecewise linear

approximation (PLA [34]) to keep track of the history (within the window) of

each cell of each Count-Min sketch. PDS has much more levels (32) than PDS2

(16), and hence is even worse. However, in a dynamic setting when we do not850

know the exact number of distinct items, we can only use PDS. We note that

the PDS work [41] is not specifically targeted at the Windowed Top-k Frequent

Items queries; it also addresses window point queries, heavy-hitter queries, and

window join size estimation.

In Figure 6, we can see that the memory footprint of our method Floating855
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Top-k is very small (about 0.39 MB) and is almost constant (in fact, only

increases slightly as window size increases). This is consistent with our analysis

in Theorem 1 that the expected number of Floating Top-k tuples maintained

in the pool is only O(k logW ). By contrast, PDS and PDS2 have about three

orders of magnitude larger memory footprints. We measure the number of860

Floating Top-k tuples for various W values, and show the result in Table 1 (for

both Kosarak and Twitter datasets; the result for World-Cup data is similar

and not shown). We can see that the numbers are relatively small compared to

W and increase only logarithmically.

Table 1: Floating Top-k tuple pool sizes |Γ| for various window sizes.

Kosarak Twitter

Window 3.6k 36k 120k 360k 6h 1d 7d 30d

|Γ| 63 85 109 115 67 75 89 141

865

Accordingly, Figure 4 shows that PDS and PDS2 have reasonable top-k

strength results for the first one and three window sizes, respectively, but even

for those window sizes, they are not as good as the top-k strengths of Floating

Top-k. Figure 5 shows the stream system throughput as it continuously main-

tains the corresponding data structures for each method respectively; thus it870

indicates the processing overhead in time for each method. Floating Top-k is 2

to 4 times faster than PDS2 and 40 times faster than PDS for the window sizes

where they are feasible.

We also compare with FSW [21]. As discussed in Section 1.1, there is a

limitation of FSW: it is only designed for one fixed window size, even though875

the window slides over time, while with Floating Top-k and PDS users can query

any window sizes withinW . Of course, with FSW, one can independently handle

multiple fixed window sizes, but then the memory footprint and processing cost

have to add up linearly as well. Nonetheless, for this comparison experiment, we
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run FSW for each window size separately, and show the results of top-k strength,880

throughput, and memory footprint (for a single window size) in Figures 4, 5,

and 6 respectively.

However, if we set the time unit size to be one session, as the case for

Floating Top-k and PDS, FSW is infeasible (out of memory) even for window

size 3,600 sessions (i.e., 3,600 time units). This is because FSW has a much885

greater memory footprint than Floating Top-k — FSW takes memory O(kW ),

as it contains a histogram bucket for each of the W time units in each of the

histograms that it maintains. Thus, for FSW only, we set the time unit size to

be 60 sessions, and hence we have W that is 60 times smaller (in time units),

even though the window contains the same number of sessions. Of course, by890

doing this, what we lose is that the FSW window slides with coarser granularity

over time (i.e., updated more slowly). Even with this change, we can see from

Figure 6 that FSW takes from 30 times larger memory footprint than Floating

Top-k when window size is 3,600 sessions, to almost 1,000 times larger when the

window size is 120,000 sessions. FSW is still out of memory when the window895

has 360,000 sessions. Its memory footprint increases linearly with W .

Figure 4 shows that, for the three window sizes where FSW is feasible, it is

very accurate—its top-k strengths are about the same as those of the ground-

truth top-k items. Figure 5 shows that Floating Top-k is much faster than

FSW even for the window sizes where FSW is feasible, ranging from 2.4 times900

(when window size is 3,600 sessions) to 14 times (when window size is 120,000

sessions). FSW has a much greater processing overhead.

We next experiment on the Twitter dataset. Unlike the Kosarak dataset,

we do not have integer item id’s, and the stream items are strings (hashtags).

This works the same for Floating Top-k and FSW; but for PDS, we have to905

dynamically create a dictionary that records the 1-to-1 mappings between string

hashtags and integer id’s, since PDS [41] uses the dyadic range sum technique

[14]. Thus, we use MD5 hash function over a string hashtag to convert it into

a random integer, and keep an in-memory dictionary for the mappings between

integer id’s and hashtags (so that we can also look up the dictionary to obtain910
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Fig. 8 Stream system throughputs of Float-

ing Top-k, PDS, and FSW for different win-

dow sizes on Twitter

Fig. 9 Memory usages of Floating Top-k,

PDS, and FSW for different window sizes

on Twitter

the hashtags once we get top-k using PDS). In addition, Twitter hashtags are

case insensitive.

We see some interesting results with Twitter data. For example, when we

query the top-10 frequent hashtags in the one week period between November

14, 2015 and November 21, 2015, the results include “PrayForParis”, “ParisAt-915

tacks”, and “Paris”, due to the terrorist attacks in Paris on November 13, 2015.

The top ones also include “MTVStars” and “MadeintheAM” (a music album

released on Nov 13, 2015). “GOPDebate” is also among the top ones during

the presidential debate period in US.

In Figure 7, we show the top-k strengths of various methods, Floating Top-920

k, PDS, and FSM, together with those of the ground-truth top-10 hashtags for

various window sizes ranging from 6 hours to 30 days, where a time unit is

one minute. In Figures 8 and 9, we show the system throughputs and memory

footprints. PDS’s memory footprint (using integer id’s) exceeds the constraint

for all window sizes tested; hence it is not shown in Figure 9. Thus, we add a925

modified version of PDS, shown as PDS2 in the figures, where the integer id’s

are limited within 17 bits, i.e., after using MD5 hash on a hashtag string, we

do “mod 217”. With this version, Figure 9 shows that, for window size 6 hours,

PDS2’s memory footprint is about 3 orders of magnitude more than that of
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Fig. 10 Top-k strengths of Floating Top-k,

and ground-truth top-k items for different

numbers of rounds on WorldCup

Fig. 11 Stream system throughputs of

Floating Top-k for different numbers of

rounds on WorldCup

the Floating Top-k, and becomes infeasible with greater window sizes. Figure 9930

also shows that FSW’s memory footprints are 123 and 470 times of the Floating

Top-k’s when window sizes are 6 and 24 hours, respectively. FSW’s memory

consumption exceeds the limit when window size is 7 days, as it grows linearly

with W . We also show the Floating Top-k tuple pool sizes in Table 1.

Figure 7 shows that the top-k strengths from Floating Top-k are very close935

to those of the ground-truth top-k items, while PDS2 and FSW are close for

window sizes where they are feasible. Figure 8 further shows that, Floating

Top-k is about one to two orders of magnitude faster than PDS2 and FSW

when they are feasible.

We also do the same experiments with the World-Cup dataset and obtain940

similar results. Here we show the effect of varying the number of rounds pa-

rameter c. We have discussed how to enhance the accuracy of the top-k results

by repeating MaintainFloatingTopK and RetrieveTopK c times in Sec-

tion 3.3. By default, we use c = 20, i.e., combining results from 20 runs of

the Floating Top-k. We fix the time unit size at one hour, window size at 7945

days, and vary the number of rounds between 10 and 50. Figure 10 shows the

top-k strength results of Floating Top-k compared to the ground-truth top-k

items when k = 5, while Figures 11 and 12 show the throughputs and memory
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Fig. 12 Memory usages of Floating Top-k

for different numbers of rounds on World-

Cup

Fig. 13 Model sizes of PTM, and PLA for

different δ values on Twitter

consumptions, respectively. These figures indicate a tradeoff between accuracy

and performance. When the number of rounds increases, the top-k strength950

is closer to the ground-truth top-k items, but the throughput decreases and

memory footprint increases (yet still very low).

In the next set of experiments, we exam our algorithm ProgressiveTrend-

Model (PTM) for tracking specific items. We compare with the most relevant

and common previous approach of piecewise regression called piecewise linear955

approximation (PLA) [34]. We study the conciseness of the resulting models

from PTM and PLA when they have the same accuracy guarantees, as well as

their processing overheads reflected in system throughputs.

We first show the results under the Twitter dataset. We trace the frequency

of hashtag “ParisAttacks” from November 14, 2015 to November 21, 2015, where960

we set time unit to 5 minutes. Recall that PTM has two accuracy parameters

(ε, δ) (i.e., with probability at least 1− ε, the error is no more than δ fraction),

while PLA only has one accuracy parameter δ (i.e., error is no more than δ

fraction). Thus, to fairly compare the two, we set ε = 0 for PTM, then PTM

and PLA have the same accuracy guarantee for the same δ value. For various δ965

values, we show the conciseness (sizes) of the resulting models in Figure 13, and

the system throughputs in Figure 14. Figures 13 and 14 share the same legend,
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Fig. 14 Stream system throughputs of

PTM, and PLA for different δ values on

WorldCup

Fig. 15 Model sizes of PTM, and PLA for

different δ values on WorldCup

as shown in Figure 14. The y-axis of Figure 13 is in “words”, where a word is

of 32 bits.

For PTM, we use the default parameter value α = 3 (i.e., 3 tries before970

advancing to either next round or next epoch). We also experiment with a

few variants of PTM, where we change only one parameter but keep others

unchanged. The first variant is to set ε = 0.2 (instead of 0), while the other two

variants are to set α = 1 and α = 10, respectively. Figure 13 shows that the sizes

of PTM are between 20 to 30 times smaller than those of the PLA under the975

same accuracy guarantees, while the throughput of PTM is slightly higher than

PLA’s (both are very high). PLA is slightly slower since it starts a new function

more frequently than PTM. PTM’s models are smaller because the exploration

of progressive trend with different h values and the use of Taylor series result in

more powerful functions than PLA, and hence each function covers more data980

points (time units).

The variant of PTM with ε = 0.2 slightly reduces the model sizes, since

being more permissive on errors can only reduce the number of functions. The

variant of PTM with α = 1 has a significantly greater model size, since there is

only one try of h value before deciding to advance to next round or next epoch,985

resulting in many more functions. On the other hand, setting α = 10 produces
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significantly smaller model sizes, as there are more tries before giving up on

an epoch and starting a new epoch and function. However, Figure 14 shows

that, especially for higher δ values, PTM with α = 10 is much slower. This is

because allowing more errors implies verifying more data points for each function990

(before giving up), and higher α values signify that this verification needs to

be done more times. Thus, the α parameter provides a tradeoff between model

conciseness and performance.

Finally, we show the results of PTM and PLA over the World-Cup dataset,

where we trace and model the frequency of the item with id 57 (object /im-995

ages/space.gif) over a one-month period of time. The throughput result is

similar to that of the Twitter dataset, and we only show the model conciseness

result in Figure 15. We compare PTM and PLA over two different settings of

time unit size µ = 1 hour and µ = 10 minutes, respectively. For each µ value,

PTM is about 20 times smaller than PLA’s. In addition, a greater time unit1000

size (µ) implies fewer time units in the fixed time period, and hence a smaller

model.

5.3. Summary of Experiment Results

Our comprehensive experimental results in this section over three real-world

datasets show that Floating Top-k is the only feasible approach so far for the1005

Windowed Top-k Frequent Items problem in top-k strength, memory footprint,

and throughput. The memory footprints of PDS and FSW are 2 to 3 orders of

magnitude larger than that of Floating Top-k for small W , and grow linearly

with W . Floating Top-k is also 1 to 2 orders of magnitude faster than PDS

and FSW when they are feasible. The O(k logW ) space complexity of Floating1010

Top-k makes it highly scalable for high-rate data streams with dynamic items

and arbitrary-size windows. Furthermore, for the Item Tracking Problem, the

PTM is much more concise (20 to 30 times) and slightly faster than PLA under

the same accuracy guarantees.
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6. Conclusions1015

In high velocity, volume, and diversity modern data stream applications,

the ability to query the top-k most frequent (“hottest”) items is particularly

important. We propose a novel solution called Floating Top-k. Our comprehen-

sive analysis and experiments show that Floating Top-k is the only feasible and

scalable solution to this problem thus far. In addition, we devise a solution to1020

the related problem of concisely tracking selected items in data streams, which

also significantly improves upon previous work.
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