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a b s t r a c t 

Currently, graphs serve as fundamental data structures for many applications, such as road 

networks, social and communication networks, and web requests. In many applications, 

graph edges stream in and users are only interested in the recent data. In data exploration, 

the storage and processing of such massive amounts of graph stream data has become a 

significant problem. As the categorical attributes of vertices and edges are often referred 

to as labels, we propose a labeled graph sketch that stores real-time graph structural infor- 

mation using only sublinear space and that supports graph queries of diverse types. This 

sketch also works for sliding-window queries. We conduct extensive experiments on real- 

world datasets in six different domains and compare the results with a state-of-the-art 

method to show the accuracy, efficiency, and practicability of our proposed approach. 

© 2019 Elsevier Inc. All rights reserved. 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

Currently, graphs serve as fundamental data structures for many applications. Often, graph data is constantly produced

at a fast rate, in the form of a graph stream—a stream of edges. Some examples include social networks such as Twitter

and Weibo, real-time road traffic, telephone call networks, and web server requests. In data exploration, the storage and

processing of such huge amounts of data has become a major problem. 

Example 1. Fig. 1 shows a snapshot of an email network. Each vertex represents an email address, and each large oval

encloses a group of email addresses belonging to the same domain server. An edge from A to B represents the event of

user A sending an email to user B . The vertex identifier for a user is the email address, and each vertex also has a label,

which is the domain server. Each edge may have a label as well, which is the email subject (e.g., “project” for edge AC ).

In such a situation, interesting queries include getting the discussion frequency over “project” between A and C during the

last week or getting the top-k discussion subjects between A and B during the last month. We call these types of queries

aggregate edge frequency queries . Likewise, aggregate vertex flow queries (e.g., the total number of emails of particular

people on a certain subject within a given period) may be of interest for social media or business intelligence. In addition,

vertex label-based aggregate vertex/edge queries are often needed in such applications. For example, querying the edge

frequency between a specific email address and a domain server, the edge frequency between two domain servers, and the

aggregate incoming/outgoing degrees of a domain server reveal useful information for various parties. 
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Fig. 1. Email Network. 

Fig. 2. Road Network. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Example 2. Fig. 2 shows a road traffic network. Each vertex is an intersection and has a label, indicating whether it is a ma-

jor intersection, marked “M” in parentheses (unmarked vertices have label “secondary”). In heavy traffic, drivers may want

to avoid M vertices to reduce delays. Each edge represents a road segment. The edge label “bad” indicates it is congested or

under construction. A driver going from s to t asks whether there is a path that avoids all major intersections and bad roads.

We call this a path query . Finally, given a subgraph query pattern (e.g., densely congested roads may reveal areas that are

prone to congestion, thereby facilitating smart traffic management), subgraph pattern match queries are also often needed

in practice. 

In all these applications, data are continuously produced at a fast rate. It is reported that there are approximately 500

million tweets per day and over 300 billion tweets in total as of 2013 [1] . Storing all the necessary data in memory for

real-time queries is infeasible. It is also well-known that fast but approximate answers are often better than accurate but

slow results in data stream applications [34] . We propose a labeled graph sketch that stores graph stream information in

sublinear space, while supporting many types of graph queries, such as those mentioned above. Our sketch structure also

supports sliding-window queries, which are often needed in practice. More types of queries are shown in Sections 4 and 5 . 

1.1. Related work 

Some previous studies on graph sketches maintain a random linear projection that aims to infer relevant properties of the

input from the sketch and to retain the sketch in a small space. McGregor [32] is an excellent survey for this line of work.

However, each is only applicable to a specific problem, such as finding a spanning forest of a graph, testing k -connectivity,

min-cut, and sparsification. Thus, each of them needs to preserve few data features to solve a specific problem. Moreover,

they do not deal with labeled graphs. Ahn et al. [11] , Kapron et al. [25] , Reittu et al. [36] all fall in this category. 

Other sketch work also applies linear projections of data, while trying to preserve salient features of data using the

CountMin sketch [15] . The CountMin sketch was originally used to summarize general data streams. gSketch [49] extends it

to support graph streams, by first treating each edge as an element with a unique identifier and then applying CountMin.

gMatrix [26] and TCM [43] have been proposed, which both use a three-dimensional sketch. Instead of treating the graph

edge set as an element set and mapping each edge onto a one-dimensional space, gMatrix and TCM apply hash functions

that define a mapping of the graph vertex set to an integer range 1 . . . w . However, they do not handle vertex/edge labels.

Additionally, they do not handle automatic edge expiration for a sliding window. TCM [43] is the state-of-the-art method

most related to our work. Thus, we compare our experimental results against TCM. 

We have briefly described some preliminary high-level ideas of our sketches in an ICDE 2018 poster [41] . By contrast, in

this paper, we present the complete work by including the detailed algorithms for query processing, theoretical analyses of

each type of query, examples that are more illustrative, more query types, and comprehensive experimental evaluations. 

Other graph compression/summarization work includes [18] , where Fan et al. propose query preserving graph compres-

sion, especially for path reachability queries and bounded simulation pattern matching. However, this method needs to know

the whole data graph in advance. Shah et al. propose TimeCrunch [39] to summarize important temporal structures for dy-

namic graphs and try to find patterns that agree with intuition. Their target is different from ours. Khandelwa et al. propose

ZipG [27] to execute a larger fraction of queries in main memory. Some other work includes [12,31,40] . Previous work on



C. Song, T. Ge and Y. Ge et al. / Information Sciences 503 (2019) 469–492 471 

Fig. 3. Count-Min Sketch Insertions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

graph queries includes reachability queries such as [13,23,24,44,50] , graph pattern matching queries [17,35,37,42,45,48] , and

top-k pattern queries [14,19,21,47] . As we show in Sections 3 and 4 , our sketch can serve as a black box for most of the

above algorithms. 

Other graph stream sampling methods include [9,10,22,29,30] . GPS [10] provides an order-based reservoir sampling

method for massive graph streams, which aims at estimating the frequency of occurrence of certain subgraphs, i.e., trian-

gle and wedge counting, from graph streams. Jha et al. [22] also propose a space-efficient algorithm to estimate the global

clustering coefficient (computed from the wedge count and triangle count) and the total triangle count, using the birth-

day paradox. Lim and Kang [29] and Lim et al. [30] only target the triangle counting problem. Ahmed et al. propose gSH

[9] to build a generic graph stream sampling framework to estimate various graph properties, using the Horvitz–Thompson

construction [20] . However, none of the above-mentioned methods can handle queries on labeled graphs. 

1.2. Our contributions 

First, we formulate the problem and propose a CountMin-based labeled graph sketch (LGS) that can store the original

data graph in only sublinear space while maintaining the structural information and supporting many types of graph queries.

A challenge of this problem is that we need to store the label information without using significant extra storage space. To

solve this problem, we utilize the characteristics of prime numbers to encode the label information into a product of prime

numbers. The proposed LGS can handle query semantics that involve vertex or edge labels, edge expiration, and sliding

windows, which enable it to perform better than traditional sketches for analytics over graph streams. We then devise

algorithms to answer various types of queries, including aggregate vertex queries (on a specific vertex or a vertex type),

aggregate edge queries (with or without a specified edge label), path reachability queries (with or without a specified edge

type), and subgraph matching queries (with or without a specified edge label). We analyze the accuracy and complexity

of our proposed algorithms. Importantly, we show that our sketch can work as a black box for many existing algorithms

to support more graph queries. Comprehensive experiments have been conducted based on real-world datasets from six

different domains. We compare our method with a state-of-the-art method, TCM [43] , and find that our method shows

better accuracy than TCM. Additionally, we verify our theoretical analysis and show that answering queries on our sketch

takes significantly less time than on a raw data graph. Our contributions can be summarized as follows: 

• We show the concept of labeled graph streams and provide the background of the CountMin sketch algorithm ( Section 2 ).

• We introduce the framework of the proposed LGS ( Section 3 ). 

• We devise algorithms to answer various types of queries, and demonstrate that the proposed framework can work as a

black box for many existing graph algorithms ( Section 4 ). 

• We perform comprehensive experiments to show the superiority of our proposed framework ( Section 5 ). 

2. Preliminaries 

Graph Streams. A graph stream G is a sequence of elements e = (A, B ; t) , where A is the identifier of e ’s starting vertex

and is associated with a vertex label L v ( A ), and B is the identifier of e ’s ending vertex with a vertex label L v ( B ). Vertex labels

may be used for different vertex types (e.g., email domain servers in Example 1 ). Each edge e also has an edge label L e ( e )

(e.g., different email subjects in Example 1 ). A timestamp t indicates the incoming time of edge e . Such a stream naturally

defines a graph G = (V, E) , where V is a set of vertices { v 1 , v 2 , . . . , v n } and E is a set of edges { e 1 , e 2 , . . . , e m 

} . Each vertex

v i has a vertex label L v ( v i ) from a vertex label set �N and each edge e i has an edge label L e ( e i ) from an edge label set

�E . A graph stream G is sorted by its edge incoming times, in nondecreasing order. We use the sliding-window model.

Suppose the sliding window size is W time units (e.g., seconds) and the current time is t ; we automatically discard edges

with incoming time older than t − W . Our work applies to nonwindow settings as well. 

CountMin Sketch (CMS). CMS was originally proposed by Cormode et al. [15] , and is used for data stream summarization.

It has a two-dimensional array of counts with width w and depth v : count[1 , 1] . . . count[ v , w ] . Suppose there are n distinct

items in the data stream and v hash functions [ h 1 , . . . h v : 1 . . . n → 1 . . . w ] are used, chosen uniformly at random from a

pairwise-independent family to map the arriving items to matrix cells. When an item i arrives at time t with update c t , the

corresponding counts are updated in v rows, as shown in Fig. 3 . The update c t could be either positive or negative. c t equals

1 for an unweighted arriving item. This model does not handle item expiration, because it does not store the arriving time
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Fig. 4. Insertion Algorithm for LGS. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

information. To remove an item from the sketch, we can simply set c t to −1 for the unweighted case or some negative value

for the weighted case. To retrieve the counts of an item, we again use v hash functions to map the query item to v cells

and use the minimum value in those cells as the answer, i.e., min { count[1 , h 1 (i )] , count[2 , h 2 (i )] , . . . , count[ v , h v (i )] } . 
Pairwise Independent Hash Functions. A family of pairwise independent hash functions is used to reduce the collisions

and, thus, improve the accuracy. It is defined as follows: 

Definition 1. A family of functions H = { h | h : [ N ] → [ M ]} is called a family of pairwise independent hash functions if for

all i � = j ∈ N and k, l ∈ M , 

P r h ← H 

[ h (i ) = k ∧ h ( j) = l] = 1 /M 

2 

The notion of a pairwise independent hash family is also known as a “strongly universal hash family” [33,38] . 

In our implementation, we use the BKDR hash function [4] and generate functions with different seeds to achieve pair-

wise independence. 

3. Labeled graph sketch 

An edge e from vertex A to vertex B in a graph stream is identified as ( A, B, L v ( A ), L v ( B ), L e ( e )). We consider three factors

including the endpoint identifiers, endpoint labels, and edge labels for each incoming edge when we encode edges into the

sketch. We use hash functions from a pairwise independent hash family to process these three factors. Because we deal

with sliding windows, we need to handle item expiration. As we may not need a very fine time granularity, we divide the

entire sliding window into k subwindows according to practical usage. We then maintain a counter for each subwindow.

Fig. 4 illustrates how our algorithm works on an incoming edge, considering three factors. The upper part of Fig. 4 shows

that v sketches are used to reduce the errors. As we deal with structured graph data, a single sketch is a two-dimensional

matrix. Later, we will show how v affects the accuracy. The lower part of Fig. 4 shows how the insertion algorithm works

for a single sketch. 

Let a single sketch be a wd -by- wd matrix. That is, the whole matrix consists of w -by- w blocks, each of which is a d -by- d

submatrix. Suppose we have an incoming edge e ( A, B ) with an edge label L e ( e ). One endpoint A has a vertex label L v ( A ),

and the other endpoint B has a vertex label L v ( B ). A hash function h is first used to map the labels L v ( A ) and L v ( B ) to the

range [1 . . . w ] , giving one of the matrix blocks mentioned above. Then, h is used again to map the vertex identifiers A and

B to the range [1 . . . d] , reaching a single matrix cell E inside the chosen matrix block above. This two-level hashing (with
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Algorithm 1: LabeledGraphSketch. 

Input : A graph stream G , window size W , subwindow size W s . 

Output : LGS S 

1 S ← an empty sketch 

2 P ← a list of first c prime numbers 

3 k ← W/W s 

4 for each new edge e = (A, B ; t) in G do 

5 m ← d ∗ ( h (L v (A ) ) mod w )+ h (A ) mod d 

6 n ← d ∗ ( h (L v (B ) ) mod w )+ h (B ) mod d 

7 E ← S[ m ][ n ] 

8 if E[ k ] .t + W s equals t then 

9 for i ← 2 to k do 

10 E[ i − 1] ← E[ i ] 

11 E[ k ] .t ← t 

12 E [ k ] .C ← E [ k ] .C + 1 

13 p e ← h (L e (e )) mod c 

14 E [ k ] .e ← E [ k ] .e ∗ P [ p e ] 

15 S[ m ][ n ] ← E 

16 return S 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

vertex labels first, then vertex identifiers) of endpoints ensures that our sketch support aggregate vertex queries based on

vertex labels (and types). Next, we process the edge label L e ( e ). Each matrix cell E contains a list of k subwindow counters.

Each subwindow counter has two parts. The first part C i is simply a count of edges hitting this hash table cell in the i -th

subwindow. The second part is a product of prime numbers containing information from the edge labels, as follows. We

have a list of unique prime numbers for our choice. For example, it may be the 172 prime numbers under 1024. We then

use the hash function h to map the edge label L e ( e ) to the range [1 . . . c] , where c is the length of the prime number list.

Next, we multiply the c -th prime number by the second part of the subwindow cell value e i . The choice of c is application-

dependent. Our experiments in Section 5 show that c = 20 already gives results with good accuracy (higher values will

yield better accuracy but increase the computation cost, as larger prime numbers need to be multiplied). Compared to hash

functions, the prime number list reduces the space consumption when compressing edge labels, because we do not need to

allocate space to store the results initially. This is more obvious under the nonsliding-window scenario. 

As we adopt the sliding-window model for graph streams, we need to maintain the sketches upon edge insertions and

deletions. Edge insertion happens upon each edge arrival, and edge deletion happens upon each edge expiration. 

Algorithm 1 is used to build the sketch online as each edge arrives, and we summarize the notations in Table 1 for

reference. 

Edge expirations are handled automatically with the help of the k subwindows. If an edge deletion is explicitly needed,

we can simply adopt the opposite method of edge insertion. Any edge can be located within O(1) time using hash functions,

and thus there is no need to maintain any indexes. 

In short, for each arriving edge, we first locate the matrix cell that is associated with the insertion according to the two

endpoints’ identifiers and labels, and then we update the corresponding information of that cell according to the edge label.

Edge expirations are handled automatically at the same time. 

Let S be a wd -by- wd matrix. Each matrix cell E maintains two lists: one has an edge count for each subwindow, and each

entry in the other list contains a product of prime numbers corresponding to the labels of edges in a subwindow. Lines 5–7

are to locate the matrix cell according to the two endpoints’ identifiers and vertex labels of the incoming edge. Lines 8–11

are to check whether we need to start a new subwindow. If the starting time of the latest subwindow plus the size of

the subwindow equals the current time t , then we need to start a new subwindow. Note that window sliding and item

expirations are handled in this way. We do not need to keep the starting time of every subwindow; rather, we only need to

keep the starting time of the last subwindow. Lines 12–14 are to update the counter and product fields of the subwindow.

For sliding-window queries, the product of the prime numbers typically does not get so large as to exceed the word size

(e.g., 64-bit). In case it does, especially for nonsliding-window queries, we break down the product into multiple words, as

detailed in Section 4.5 . 

Furthermore, to distinguish collisions caused by hash functions, we use v groups of hash functions to get v sketches

{ S 1 , . . . S v } . Then, our query answer results are computed from these v sketches. 

Example 3. Fig. 5 shows a running example for building the graph sketches under the stream scenario. Fig. 5 (a) shows the

original labeled graph stream, where A, B, D, E, and F are node identifiers; C (for core people) and P (for periphery people)

are node labels; edges are labeled with L (for long calls) or S (for short calls); the numbers enclosed in parentheses next to
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Table 1 

Notations Used in this Paper. 

Symbols Meaning 

W Window size 

W s Subwindow size 

t Current time 

S LGS 

v Number of sketch numbers 

w Vertex label hash value range size 

d Vertex identifier hash value range size 

A, B Vertex identifier 

L v ( A ), L v ( B ) Vertex label 

L e ( e ) Edge label 

k Number of subwindows 

E A cell in S storing edge information 

E [ i ]. C The counter field of subwindow i in cell E 

E [ i ]. e The prime number product field for subwindow i 

of cell E , encoding edge label information 

E [ i ]. t The starting time of subwindow i 

Fig. 5. Illustrative example of LGS. 

 

 

 

 

 

 

 

 

 

 

 

 

 

an edge label indicate the arrival timestamp of that edge. Fig. 5 (b) shows the parameters used in this example. The window

size is 8; the subwindow size is 2; the number of sketches is 2; w · d equals 4, resulting in a 4 ∗4 matrix; and the prime

number list that we use is {2, 3}. Fig. 5 (c) shows the hash values for each identifier/label of two pair-wise independent

hash functions. Fig. 5 (d) and (e) show the two sketches at times 8, and 10, respectively. The first number in parentheses

stands for the counter field and the second number is the prime number product result. An empty pair of parentheses

means that there is no edge coming into this subwindow. An empty matrix cell also means there is no corresponding

edge. The column and row numbers of the matrix are also given in sketch 1 of Fig. 5 (d). At time 9, the first subwindow

expires, and thus the first (and only) empty pair of parentheses in [1, 2] and (2,6) in [1, 3] from v1 expire. Similarly, three

subwindows from v2 expire. At time 9, A ( C ) to F ( P ) with edge label L arrives, and the information should be inserted in

[ 2 ∗ (8%2) + 3%2 , 2 ∗ (11%2) + 6%2 ], which is [1, 2] for v1, and inserted in [ 2 ∗ (2%2) + 7%2 , 2 ∗ (1%2) + 3%2 ], which is [1, 3]

for v2. To represent the edge label, (1,3) is added as a subwindow in [1, 2] for v1, and (1,2) is added as a subwindow in [1,

3] for v2. At time 10, B ( C ) to F ( P ) with edge label S arrives. The information should be inserted into [1, 2] for v1, and [0, 3]

for v2. Therefore, the last subwindow in [1, 2] of v1 is updated to (1+1,3 ∗2), which is (2,6), and (1,3) is added into [0, 3] for
v2. 
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Algorithm 2: GetEdgeCount. 

Input : An edge label l (optional), hash function h (optional), prime number list P (optional), specific matrix cell 

S[ m ][ n ] . 

Output : i : The number of edges with label l in S[ m ][ n ] , j: the number of edges in S[ m ][ n ] regardless of edge labels 

1 p e ← P [ h (l) mod c] //get the prime number representation of label l if it is provided 

2 i ← 0 //number of edges with label l 

3 j ← 0 //number of edges regardless of labels 

4 currentE ← S[ m ][ n ] 

5 for s t ← 1 to k do 

6 j ← j + currentE[ s t ] .C 

7 while currentE[ s t ].e mod p e = 0 do 

8 i ← i + 1 

9 currentE[ s t ] .e ← currentE[ s t ] .e/p e 

10 return i , j 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4. Answering queries 

Before we discuss in detail the queries that our sketch supports, let us first introduce an auxiliary process used to get

the number of edges from a given vertex to another. All edges with the same two endpoints are hashed to the same matrix

cell. We use GetEdgeCount (shown in Algorithm 2 ) to get the edge count in a matrix cell with or without a particular

edge label. For a non-edge label-based query, we simply need to sum all the counters of the k subwindows, whereas for

an edge label-based query, we sum the number of factors that represent the prime number of that edge label from the k

subwindows. 

The input to GetEdgeCount includes an optional edge label l to match, the corresponding optional hash function, and

the prime number list. Lines 1, 2, and 7–9 compute the edge count in a matrix cell with an edge label if this optional input

is provided. The function returns two counts: the number of edges in S [ m ][ n ] that match the input label (if it is provided),

and the number of all edges in S [ m ][ n ]. Lines 7–9 are due to the fact that each edge with label l contributes a factor p e
to the product. Line 4 clones the current queried matrix cell in the global sketch, and any subsequent query processing is

performed on this cloned matrix cell; hence, the global sketch is not affected. 

With the help of GetEdgeCount , LGS supports various types of vertex queries, edge queries, and path queries. When a

query comes in, we apply h on the vertex labels (and vertex identifiers) to reach certain cell(s). We then apply GetEdge-

Count to get the intended result for each cell. Next, we sum up the count of the final cells as the output for vertex queries

and edge queries. For path queries, our sketch can be used as a black box for any existing path reachability algorithms. Let

us now examine the details of how each type of query is answered. 

4.1. Vertex queries 

Aggregate vertex query: An aggregate vertex query is to estimate the overall in/out edge frequency of a vertex iden-

tifier/type A / L v ( A ), denoted as ˜ f v (A, ← ) / ̃  f v (L v (A ) , ← ) for in-flow queries and 

˜ f v (A, → ) / ̃  f v (L v (A ) , → ) for out-flow queries. A

vertex type L v ( A ) represents a set of all vertices with label L v ( A ). In particular, each vertex query could be associated with an

optional edge label constraint, where all edges contributing to the resulting frequency should have a predefined edge label

L e ( e ). 

Our sketch supports all types of aggregate vertex queries, including edge label-based and non-edge label-based aggregate

single-vertex queries (e.g., the in-degree of user B in Example 1 ), as well as edge label-based or non-edge label-based

aggregate queries on a certain label of vertices (e.g., the total out-degree of all major intersections in Example 2 , considering

only bad roads). To get a specific vertex’s incoming degree, we apply h twice to map this vertex to a particular column. We

then sum up all the cell values in this column. The cell value is computed from GetEdgeCount , either with or without an

edge label. Similarly, for a specific vertex’s out-degree, we apply h twice to map this vertex to a specific row and get the

sum values. Note that we use v groups of hash functions to distinguish collisions. The final value is the minimum we find

among all these v sketches. Because we group vertices of the same type together, we also support aggregate vertex queries

for different vertices with the same label. The detailed algorithm is shown in AggV . Algorithm AggV covers all four types

of queries discussed earlier, and the input to the algorithm includes a vertex label L v ( A ), an optional vertex identifier A , and

an optional edge label l . When querying a certain label of vertices, there is no need to provide a vertex identifier. 

For a vertex query, we first locate the corresponding column(s) or row(s), and then sum all the necessary information to

get the result. The error bound of vertex queries follows that of CMS, which is shown in detail in Theorems 1 and 3 . 

The AggV ( Algorithm 3 ) algorithm handles all types of aggregate vertex queries on in-degrees. Lines 1–4 set four counters

of each type of aggregate-vertex query to 0. Line 5 finds the column for an aggregate vertex query on a given vertex. Line

6 determines the starting column for an aggregate vertex query on a single vertex label/type, e.g., a large oval in Fig. 1 .
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Algorithm 3: AggV. 

Input : A vertex identifier A , a vertex label L v (A ) , an edge label l 

Output : i c : The incoming number of edges with label l of vertex A , j c : the incoming number of edges of vertex A , p c : 

the number of incoming edges with label l of all vertices with label L v (A ) , q c : the number of incoming edges 

of all vertices with label L v (A ) 

1 i c ← 0 

2 j c ← 0 

3 p c ← 0 

4 q c ← 0 

5 m ← d ∗ ( h (L v (A ) ) mod w )+ h (A ) mod d 

6 n ← d ∗ ( h (L v (A ) ) mod w ) 

7 for a ← 1 to d ∗ w do 

8 i c ← i c + i returned by GetEdgeCount ( l, h , P , S[ a ][ m ] ) 

9 j c ← j c + j returned by GetEdgeCount ( S[ a ][ m ] ) 

10 for b ← n to n + d do 

11 for a ← 1 to d ∗ w do 

12 p c ← p c + i returned by GetEdgeCount ( l, h , P , S[ a ][ b] ) 

13 q c ← q c + j returned by GetEdgeCount ( S[ a ][ b] ) 

14 return i c , j c , p c , q c 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Lines 7 and 8 together compute edge label-based aggregate vertex queries for a given vertex. A sample query of this type

is “retrieve the number of emails on subject SALARY that user B has received” in Fig. 1 . Line 9 deals with non-edge label-

based aggregate vertex queries for a given vertex. A sample query of this type is “retrieve the number of emails that user

B has received” in Fig. 1 . Lines 10–12 process edge label-based aggregate vertex queries for a given vertex label/type. A

sample query of this type is “retrieve the number of emails where the receiver’s email server is Gmail and the email subject

is HELLO” in Example 1 . Lines 10, 11, and 13 manage non-edge label-based aggregate vertex queries on a certain vertex

label/type. A sample query of this type is “retrieve the number of emails in which the receivers’ email server is yahoo” in

Example 1 . 

Having presented AggV for all aggregate vertex queries on in-degrees, we can obtain a similar algorithm for out-degrees.

We only need to change the summation of a single column for a certain vertex or the summation of several columns for

a given vertex type to the summation of a single row for a particular vertex or the summation of several rows for an

individual vertex type. 

Example 4. Take the graph stream shown in Fig. 5 as an example. At time 10, there is an in-flow query of F ( P ). Then, for

v1, we locate column 2 and get a result of 7. For v2, we locate column 3, and get a result of 3. The final result is min{7, 3}

which is 3. 

Theorem 1. For non-edge label-based aggregate vertex queries on a given vertex, the estimated aggregate edge count ˆ a i has the

following guarantees: a i ≤ ˆ a i , and with probability at least 1 − δ, 

ˆ a i ≤ a i + εE w 

where the number of sketches is v = 	 ln 

1 
δ

 , and the vertex identifier hash value range size d is 	 e ε 
 ; a i is the ground truth answer

and E w 

is the total number of edges within the sliding window W . 

Proof. Our proof extends the one for CMS [15] . We introduce indicator variables I i,j,k , which are 1 if (i � = k ) ∧ (h j (i ) = h j (k ))

(for vertex queries, two vertices are hashed to the same row/column) for any hash functions of the v sketches, and 0 other-

wise. There are two cases for I i, j,k = 1 . 

Case 1: Different vertices with different vertex labels are hashed to the same column/row, which means the hash collision

has happened twice. By the pairwise independence of the hash functions, the probability is 

P 1 (I i, j,k ) = 1 / (w ∗ d) 

Case 2: Different vertices with the same vertex labels are hashed to the same column/row. By the pairwise independence of

hash functions, the probability is 

P 2 (I i, j,k ) = 1 /d 

Because both cases 1 and 2 are conditional probabilities for two subcases, 

E[ I i, j,k ] ≤ max (P 1 (I i, j,k ) , P 2 (I i, j,k )) ≤
1 ≤ ε
d e 
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Define a random variable X i, j = 

∑ n 
k =1 I i, j,k a k , where n is the total number of distinct vertices, and a k represents the number

of edges incident to a certain vertex k . Observe that 

E[ X i, j ] = E 

[ 

n ∑ 

k =1 

I i, j,k a k 

] 

≤
n ∑ 

k =1 

a k E[ I i, j,k ] ≤
ε

e 
E w 

by the pairwise independence of h j , and the linearity of expectation. By the Markov inequality, 

P r[ ̂  a i < a i + εE w 

] = P r[ ∀ j · count[ j, h j (i )] < a i + εE w 

] = P r[ ∀ j · a i + X i, j < a i + εE w 

] 

= P r[ ∀ j · X i, j < eE(X i, j )] > 1 − e −d ≥ 1 − δ. 

�

We can quickly verify that when v is greater than 5, the algorithm has a probability greater than 0.99 to fall in the

theoretical error range. We also validate this in our experiments. In practical use, we can run a small window to obtain the

statistics about the incoming graph stream and set the corresponding parameters according to the space requirement. 

Theorem 2. The time complexity of answering non-edge-label aggregate vertex queries on a given vertex is O ( w · d · k ), which is

O (	 e ε 
 · k ) , where k is the number of subwindows. 

Proof. In this case, we only need to sum up all the numbers in one column/row. There are w · d cells in a column/row. Then,

for each cell, we need to add up all k counters of this cell’s counter list. �

Theorem 3. For edge label-based aggregate vertex queries on a certain vertex, the estimated aggregate edge count ˆ a i has the

following guarantees: a i ≤ ˆ a i , and with probability at least 1 − δ, 

ˆ a i ≤ a i + εE w 

where the number of sketches is v = 	 ln 

1 
δ

 ; the vertex identifier hash value range is d; the number of prime numbers used is c,

and d · c is set to 	 e ε 
 ; a i is the ground truth answer, and E w 

is the number of edges within the sliding window W. 

Proof. The proof is similar to the proof of Theorem 1 , and hence we omit it here. �

Theorem 4. The time complexity of answering an edge label-based aggregate vertex query on a given vertex is O (w · d · k + i ) ,

which is O (	 e ε 
 · k + i ) , where i is the query result. 

Proof. In this case, we again need to sum up all the numbers in one column/row. Moreover, for each matrix cell, we need

to check whether each subwindow includes the specific edge label for all k subwindows. If so, we check how many edges it

includes, and this process takes at most i time units. Otherwise, we check the next subwindow. Thus, compared to non-edge

label-based aggregate vertex queries, edge label-based aggregate vertex queries consume at most i more time units. �

As we have discussed earlier, our sketch also supports aggregate vertex queries on a specific vertex type/label. The error

bounds for such queries are similar to those of aggregate vertex queries on a given vertex. The time complexity for non-edge

label-based aggregate vertex queries on a certain vertex label/type and the time complexity for edge label-based aggregate

vertex-queries on a given vertex label/type are O ( w 

2 d ) and O (w 

2 d + i ) , respectively, where i is the query result. 

4.2. Edge queries 

Aggregate edge query: An aggregate edge query is to estimate the edge frequency from a node identifier/type A / L v ( A ) to

a node identifier/type B / L v ( B ), which is denoted as ˜ f e (A , B) , where A represents either a node identifier A , or a node type

L v ( A ), and similar for B. In particular, each aggregate edge query could retain an optional edge label constraint, where all

edges contributing to the final frequency should carry a predefined edge label L e ( e ). 

Our sketch supports various types of aggregate edge queries, including the following six: 

• Aggregate edge queries between two vertices, without a required edge label. 

• Aggregate edge queries between two vertices, with a required edge label. 

• Aggregate edge queries between a vertex and vertices of a certain label, without a required edge label. 

• Aggregate edge queries between a vertex and vertices of a certain label, with a required edge label. 

• Aggregate edge queries between vertices of two types, without a required edge label. 

• Aggregate edge queries between vertices of two types, with a required edge label. 

For all the query types above, we only need to locate the corresponding matrix cells from the sketch and retrieve the

required information. The error bound of edge queries follows that of CMS as well, as shown in detail in Theorem 5 . The

detailed algorithm is shown in AggEdge ( Algorithm 4 ). The final result is the minimum value among all v sketches. 

Lines 1–3 compute aggregate edge queries between two vertices with a particular edge label. A sample query of this

type is “retrieve the number of emails that A sends to B , where the email subject is work ” in Example 1 . Lines 1, 2, and 4

process aggregate edge queries between two vertices without a specific edge label. A sample query of this type is “retrieve
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Algorithm 4: AggEdge. 

Input : An edge e = (A, B ) with vertex labels L v (A ) and L v (B ) , and an edge label L e (e ) 

Output : i vv : Aggregate edge count with label L e (e ) between vertices A and B , j vv : Aggregate edge count between 

vertices A and B , i v t : Aggregate edge count with label L e (e ) between vertex A and vertex type L v (B ) , j v t : 

Aggregate edge count between vertex A and vertex type L v (B ) , i tt : Aggregate edge count with label L e (e ) 

between vertex type L v (A ) and vertex type L v (B ) , j tt : Aggregate edge count between vertex type L v (A ) and 

vertex type L v (B ) 

1 m ← d ∗ ( h (L v (A ) ) mod w )+ h (A ) mod d 

2 n ← d ∗ ( h (L v (B ) ) mod w )+ h (B ) mod d 

3 i vv ← i returned by GetEdgeCount ( L e (e ) , h , P , S[ m ][ n ] ) 

4 j vv ← j returned by GetEdgeCount ( S[ m ][ n ] ) 

5 i v t ← 0 

6 j v t ← 0 

7 i tt ← 0 

8 j tt ← 0 

9 for a ← d ∗ ( h (L v (B ) ) mod w ) to d ∗ ( h (L v (B ) ) mod w )+d do 

10 i v t ← i v t + i returned by GetEdgeCount ( L e (e ) , h , P , S[ m ][ a ] ) 

11 j v t ← j v t + j returned by GetEdgeCount ( S[ m ][ a ] ) 

12 for a ← d ∗ ( h (L v (A ) ) mod w ) to d ∗ ( h (L v (A ) ) mod w )+d do 

13 for b ← d ∗ ( h (L v (B ) ) mod w ) to d ∗ ( h (L v (B ) ) mod w )+d do 

14 i tt ← i tt + i returned by GetEdgeCount ( L e (e ) , h , P , S[ a ][ b] ) 

15 j tt ← j tt + j returned by GetEdgeCount ( S[ a ][ b] ) 

16 return i vv , j vv , i v t , j v t , i tt , j tt 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

the number of emails that A sends to B ” in Example 1 . Lines 5–8 set the initial counter values for the remaining four types

of queries. Lines 1, 2, 9, and 10 deal with aggregate edge queries between a vertex and a vertex label/type with a required

edge label. A sample query of this type is “retrieve the number of emails that A sends to all receivers whose email server

is Gmail, where the email subject is greetings ” in Example 1 . Lines 1, 2, 9, and 11 manage aggregate edge queries between

a vertex and a vertex label/type. A sample query of this type is “retrieve the number of emails that A sends to all receivers

whose email server is Hotmail” in Example 1 . Lines 1, 2, and 12–14 together resolve aggregate edge queries between two

vertex labels/types with a required edge label. A sample query of this type is “retrieve the number of emails where senders

use a Gmail server, and receivers use a Hotmail server, and the email subject is salary ” in Example 1 . Lines 1, 2, 12, 13,

and 15 solve aggregate edge queries between two vertex labels/types. A sample query of this type is “retrieve the number

of emails where senders use a Yahoo server, and receivers use a Yahoo server as well” in Example 1 . 

Example 5. Consider the graph stream shown in Fig. 5 . At time 10, an edge query f e ( A ( C ), E ( P )) with edge label L arrives.

In v1, {(1, 2)(2, 9)(2, 6)(2, 6)} is retrieved from [1, 2] and L corresponds to 3, and thus we get ˜ f e = 3 from v1. In v2, {(1, 3)(1,

2)()()} is retrieved from [1, 2] and L corresponds to 2, and thus we get ˜ f e = 1. The final result is min{3, 1} = 1. 

Theorem 5. For aggregate edge queries between two vertices without an edge label constraint, the estimated aggreagate edge

count ˆ a i has the following guarantees: a i ≤ ˆ a i , and with probability at least 1 − δ, 

ˆ a i ≤ a i + εE w 

where the number of sketches is v = 	 ln 

1 
δ

 ; the vertex identifier hash value range size d ∗d is 	 e ε 
 ; a i is the ground truth answer,

and E w 

is the number of edges within the sliding window W. 

Proof. The proof is similar to the proof of Theorem 1 , and hence we omit it here. �

It is easy to see that the time complexity of aggregate edge queries between two vertices without an edge label constraint

is O ( k ), for summing up the k subwindows in a matrix cell. Similarly, aggregate edge queries between two vertices with an

edge label constraint achieve the same error bound as the non-edge-label case when setting d ∗d ∗c to 	 ln 

1 
ε 
 . The time

complexity of aggregate edge queries between two vertices with an edge label constraint is O (k + i ) , where i is the query

result. 

The other four types of queries all achieve the similar error bounds. The time complexity for aggregate edge queries

between a vertex and a vertex label/type without an edge label constraint is O ( d · k ). The time complexity for aggregate

edge queries between a vertex and a vertex type with an edge label constraint is O (d · k + i ) , where i is the query result.

The time complexity for aggregate edge queries between two vertex labels/types without edge label constraint is O ( d 2 k ), and

the time complexity for aggregate edge queries between two vertex labels/types with an edge label constraint is O (d 2 k + i ) ,

where i is the query result. 
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Algorithm 5: PathReachability. 

Input : Two vertices A, B 

Output : whether there is a path from A to B 

1 s ← d ∗ ( h (L v (A ) ) mod w )+ h (A ) mod d 

2 t ← d ∗ ( h (L v (B ) ) mod w )+ h (B ) mod d 

3 j e ← j returned by GetEdgeCount( S[ s ][ t] ) 

4 if j e > 0 then 

5 return true 

6 V ← ∅ //visited list, initially empty 

7 return Reach( s , t) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.3. Path queries 

Path reachability query: given two node identifiers A and B , a path reachability query is a Boolean query, denoted

as ˜ r (A, B ) , indicating whether there is a path from A to B . In particular, edges on the path could be constrained with a

predefined edge label L e ( e ). 

Because our sketch maintains all structural information, it can be used as a black box for any existing path reachability

algorithms. Here, we use the classical depth-first search (DFS) for an illustration. Again, employ GetEdgeCount , where a

greater than 0 result indicates an edge exists, and 0 otherwise. 

To check whether there is a path from vertex A to vertex B , we first perform an initialization in PathReachability

(Algorithm 5) . If it happens that ( A, B ) is already an edge in the graph, then B is reachable from A . Otherwise, we call a

recursive function Reach and perform a DFS to check whether B is reachable from A . Note that there is no false negative

and only false positive, i.e., if B is not reachable from A is returned by the algorithm, then B is indeed not reachable from A .

On the contrary, if B is reachable from A is returned by the algorithm, it is possible that B is not in fact reachable from A . 

Lines 1–2 in PathReachability map the starting and ending vertices to the corresponding row and column. Lines 3–5

check whether these two vertices are connected directly. Again, we use the auxiliary algorithm GetEdgeCount . The idea is

simple; if the aggregate edge count between these two vertices is greater than 0, then they are certainly connected. If the

two queried vertices are not connected initially, then we call Reach (Algorithm 6) to perform a depth-first recursive search.

We do not specify an edge label in our algorithm. However, it is possible to check whether vertex B is reachable from

vertex A through edges of a certain type. In that case, we only need to change lines 3 and 4 of PathReachability and lines

2, 3, 6, and 7 of Reach to i e ← i returned by GETEDGECOUNT ( l , h , P, S [ s ][ t ]) and if i e > 0. An example query of this type is

“check whether t is reachable from s through all good roads” in Fig. 2 . It is also easy to extend our algorithm to answer a

query such as “is vertex B reachable from vertex A with at most two edges of type L e ( e )?” by maintaining a state variable

Algorithm 6: Reach. 

Input : s : starting vertex row ID in matrix, t: ending vertex column ID in matrix 

Output : whether there is a path from s to t 

1 V ← V ∪ s 

2 j e ← j returned by GetEdgeCount( S[ s ][ t] ) 

3 if j e > 0 then 

4 return true 

5 for i ← 1 to d ∗ w do 

6 j e ← j returned by GetEdgeCount( S[ s ][ i ] ) 

7 if j e > 0 and i / ∈ V then 

8 if Reach( i , t) then 

9 return true 

10 return false 

of how many edges of type L e ( e ) have been found so far in the algorithm. The proposed sketch is also able to handle path

reachability queries that avoid certain node and/or edge types. To avoid a certain edge type, we only need to add i e ← i

returned by GETEDGECOUNT ( l , h , P, S [ s ][ t ]) before lines 3 and 7, and then change lines 3 and 7 to if j e > i e . 

We run the algorithm for all v sketches. A vertex is reachable from another vertex only if there is a path between these

two vertices returned by all v sketches. As discussed earlier, when a vertex B is reachable from vertex A in the graph stream

window, vertex B is always reachable from A in our sketch. The reason for this is that if there were indeed a path from

vertex A to vertex B , because of the existence of each connecting edge, the corresponding hash cell value would be greater
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Fig. 6. Example of a subgraph. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

than or equal to 1, such that the sketch could also find it as a path. However, if vertex B is not reachable from vertex A in

the graph stream window, it is possible that the sketch might find a false path from A to B . 

Example 6. Suppose at time 10, a path reachability query r ( A ( C ), B ( C )) comes for the graph stream shown in Fig. 5 . In v1,

the start point A ( C ) corresponds to row 1, where column 2 and column 3 are not empty. The endpoint B ( C ) corresponds to

column 1. If we can reach a non-empty column 1 from row 1, then we find a path. However, in row 1, the first non-empty

column we find is column 2. Then we develop row 2, which is all empty. We then go back to row 1, and find a non-empty

column 3. Then we develop row 3, and find it to be all empty. We then go back to row 1, and all the non-empty columns

have been developed. Therefore, we return NO REACH. In this case, there is no need to run the algorithm on v2, because

there are no false negatives for path reachability queries. The query result is “there is no path from A ( C ) to B ( C ).”

Theorem 6. Suppose our algorithm finds a path (i.e., sequence) P of l positive edges in the sketch (line 6 in REACH ). In a

hypothesis-testing setup, let the null hypothesis be that no path in the graph stream corresponds to P. Then the false positive rate

of our algorithm (i.e., the probability of finding P, and thus mistakenly rejecting the null hypothesis) is no more than 1 − e 
− E w l 

d 2 w 2 ,

where E w 

is the number of edges within the current window and d and w are vertex identifier hash value range size and vertex

label hash value range size, respectively. 

Proof. Let us first get the false positive rate of a single cell in the sketch, i.e., it is set to positive by chance, and thus it

is an upper bound of the false positive rate of a single edge in the sketch. The probability of a graph edge hitting a cell

is 1 
d 2 w 

2 . Then, the probability that none of the E w 

edges in the window hits that cell is (1 − 1 
d 2 w 

2 ) 
E w ≈ e 

− E w 
d 2 w 2 , giving the

upper bound of a single cell’s false positive rate of 

p + ≤ 1 − e 
− E w 

d 2 w 2 (1) 

Next, we calculate the overall false positive rate. First, the probability that our algorithm does NOT make the false positive

error is as follows: 

P r ( correct ) ≥ �l 
i =1 [ p i (1 − p + ) + (1 − p i ) ] 

≥ �l 
i =1 [ p i (1 − p + ) + (1 − p i )(1 − p + ) ] 

= �l 
i =1 (1 − p + ) 

= (1 − p + ) l 

where p i is the probability that the i -th edge/cell in P does not really correspond to an edge in the graph stream window.

Thus, the overall false positive rate is 

P r ( false positi v e ) = 1 − P r ( correct ) ≤ 1 − (1 − p + ) l 

Using the upper bound of p + in Eq. (1) , we then get the upper bound of the false positive rate as stated in the theorem.

�

Theorem 6 gives the result for one sketch. When there are v sketches, they may return different paths (of different

lengths). Given that no path exists from A to B in the graph stream window, the null hypothesis is true for each of the v

sketches. The overall error probability is the product of those from each sketch, because the v sketches are independent. 

4.4. Subgraph queries 

Subgraph Query: A subgraph query is to estimate the number of subgraph pattern matching, given a subgraph G S ( Q ),

which is denoted as ˜ f G S (Q ) . 

A subgraph is represented as a group of constituent edges G S (Q ) = (e 1 , e 2 , . . . , e n ) . Each e i is represente d as < x i , L v ( x i ),

y i , L v ( y i ), L e ( e i ) > , where x i and y i represent the two endpoints of edge e i ; L v ( x i ) and L v ( y i ) are the node labels of the two

endpoints, respectively; and L e ( e i ) is an optional edge label. In particular, if for each e i (2 ≤ i ≤ n ), y i −1 equals x i , then the

subgraph query becomes a path search query. Consider Fig. 6 as an example, where the distinct identifiers of each node

are represented as lowercase letters, and the uppercase letters shown in parentheses denote node labels. The optional edge

labels are shown on the edges. The subgraph shown in Fig. 6 can be represented as ( < a, A , b, A , E 2 > , < d, M, a, A, E 1 > ,

< d, M, c, M , ∗ > , < b, A, c, M , ∗ > , < d, M, e, A, E 2 > , < e, A, b, A, E 1 > ). A path search from node d to node b can be
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Algorithm 7: Subgraph. 

Input : A set of edges (e 1 , e 2 , . . . , e n ) constituting the subgraph, where each e i is in the form of 

< x i , L v (x i ) , y i , L v (y i ) , L e (e i ) > 

Output : The number of matches of the subgraph or NO MATCH 

1 Sub n ← MAX 

2 for i ← 1 to n do 

3 m ← d ∗ ( h (L v (x i ) ) mod w )+ h (x i ) mod d 

4 n ← d ∗ ( h (L v (y i ) ) mod w )+ h (y i ) mod d 

5 e c ← i returned by GetEdgeCount( L e (e i ) , h , P , S[ m ][ n ] ) OR j returned by GetEdgeCount ( S[ m ][ n ] ) if L e (e i ) is empty 

6 if e c is 0 then 

7 return NO MATCH 

8 if e c < Sub n then 

9 Sub n ← e c 

10 return Sub n 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

represented as ( < d, M, a, A, E 1 > , < a, A, b, A, E 2 > ). A subgraph query ˜ f G S (Q ) returns the number of matches of G S ( Q ) in

the underlying graph stream, and there could be no match if the number is 0. 

Essentially, a subgraph query is a set of aggregate edge queries. We execute an aggregate edge query for each of the

constituent edges of the subgraph, and update the number of matches if we see fewer matching edges. The algorithm

automatically terminates once we see a 0 match. The final result is determined by the minimum value of all v sketches. 

Line 1 in Subgraph (Algorithm 7) initializes the matching result to a predefined MAX value. The for loop processes the

edges of the subgraph, one after another. Lines 3–5 locate the current searching edge and get the matching number of the

current edge with an optional edge label. Lines 6–7 early-terminate the algorithm if there is no match of the current edge.

Lines 8–9 update the number of subgraph matches according to the edge matches seen most recently. 

Example 7. Suppose at time 10, a subgraph query is shown in red edges in Fig. 5 . For clarity, we use the timestamp to

represent each edge. In v1, ˜ f e (4)= 3, ˜ f e (5)= 4, ˜ f e (6)= 4, and 

˜ f e (7)= 3, and thus we get ˜ f G S (Q )= 3. In v2, we get ˜ f e (4)= 1,

˜ f e (5)= 1, ˜ f e (6)= 2, and 

˜ f e (7)= 1, and thus we get ˜ f G S (Q )= 1. The final result is min{3, 1} = 1. 

The accuracy of Subgraph follows the error bound of aggregate edge queries, because subgraph queries are essentially

combinations of aggregate edge queries. The time complexity of a subgraph query is linear with respect to the size of the

querying subgraph. 

4.5. Discussions 

Our sketch encodes a broad range of information from graph streams, including not only edge and vertex connection

information, but also edge and vertex label information. Thus, our sketch can be used as a subroutine or black box for many

existing graph algorithms. For example, this sketch may be applied to subgraph pattern matching, where it is used as a

prefilter. Only if all edges in the query pattern have their mapping edges in the sketch, do we go to the graph stream to

verify and obtain an exact result. 

In our scheme, subwindows are used to handle the sliding-window scenario. It is also possible to handle the nonsliding-

window situation without the use of subwindows. In that case, an update includes both insertion and deletion, and deletion

is just the reverse operation of insertion. Without subwindows, each matrix cell only maintains a single counter for the

non-edge-label case and a prime number product list for the edge-label case. The prime number product list is only in use

when the product is too large, and we need to break it into pieces. Otherwise, we can use a single number to hold the

product. Overall, for the nonsliding-window case, and for the same raw data size, we could use less storage space to achieve

the same accuracy bound compared to the sliding-window case. Additionally, when answering queries, the time complexity

is also less because we do not need to multiply the subwindow number k . This is because we no longer need to sum up all

the counters in the counter list for both the non-edge-label case and the edge-label case. The numbers we need to compute

are also obviously fewer than in the sliding window case. 

The theoretical error bounds that we have shown in the theorems are conservative guarantees and work for any skewed

data as well. For skewed data, we can collect the statistics for a short time at the beginning and allocate the storage matrix

cells accordingly. 

If queries on a required vertex type are frequent, we could use an extra matrix cell for each submatrix to hold the

information of the aggregate edge queries between two vertex types, and thus improve the query efficiency. Overall, our

sketch framework is flexible and could fit in many applications. 



482 C. Song, T. Ge and Y. Ge et al. / Information Sciences 503 (2019) 469–492 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5. Experiments 

5.1. Datasets and setup 

We use six datasets in our experiments as follows: 

Phone data: the MIT Reality Mining dataset [16] . The Reality Mining project was conducted from 2004 to 2005 at the MIT

Media Lab. The study followed 94 subjects using mobile phones pre-installed with several pieces of software that recorded

and sent the researchers data about call logs, Bluetooth devices in a proximity of approximately five meters, cell tower IDs,

application usage, and phone status. Each item of the graph stream (i.e., edge) contains the caller ID, receiver ID, time of the

call, call type, and duration of the call. The vertices are naturally divided into two groups: core people (94 subjects) involved

in this research and periphery people (other people who contact them) as vertex labels. An edge label is determined by the

call type and the duration of the call, such that the dataset contains nine edge labels. Edges are sorted according to their

timestamps. 

Road data: the real-time traffic speed map of the roads in Hong Kong [5] . This graph stream is in XML format, where

each observation of a road segment (a piece of XML structure) corresponds to an incoming graph edge. This contains the

observation time, vertex IDs of the two ends of the road, region, road type, road saturation level, and traffic speed. The

edges are sorted according to their timestamps. We do not consider vertex labels in this scenario, because vertex labels are

only maintained through an extra level of hashing. We are more interested in edge labels. We consider the road type and

road saturation level as edge labels, and obtain six edge labels in this case. 

DBLP data: We download the DBLP XML data from [2] ; a description of the data can be found in [28] . The DBLP data

in [2] is updated quite often, and we use the Nov. 17th, 2016 version. We extract 5,507,607 author–article pairs from the

original XML data with known authors, article titles, and publication years. The vertex types include author and article . The

publication year represents the edge label. This dataset contains 140 edge labels in total, including some noisy entries that

we intentionally keep. To make the graph more complex, we also obtain DBLP coauthorship pairs from [3] , where “author”

is the only vertex label and different years are used as edge labels. 

Twitter data: We use the Twitter Stream API [6] implemented by twitter4j [7] to retrieve real-time Twitter streams,

using the twenty most common words as keywords (which results in a much higher rate than the random sample provided

in [7] ). The vertices have two labels, user and message . An edge from a user to a message is created when the user sends a

message; edges from a user/message to a reply (retweet,resp.) user/message are also created when a reply (retweet,resp.) is

performed. These edges have 20 different labels based on topics. We download the real-time stream for two weeks, resulting

in a total size of approximately 36 GB. 

Enron email data: We obtain the dataset from [8] . The dataset contains approximately 50 0,0 0 0 internal emails from

approximately 150 employees at Enron. We retrieve sender email addresses and receiver email addresses as two endpoint

identifiers. We also retrieve the corresponding sender status and receiver status as vertex labels. The status is the last

position of the employee. We label the status of people who work outside of Enron as Others . We use email subjects as

edge labels. The edges are ordered by date. The entire dataset contains 75,406 distinct vertices with 11 vertex labels, and

2,064,442 edges with 140,660 edge labels, from 17,527 distinct senders to 68,074 distinct receivers. The average in-degree is

30.33, and the average out-degree is 117.79. The largest out-degree is 65,675, and the largest in-degree is 19,198. 

Friendster social network data: We adopt the largest dataset from SNAP [46] , which contains 1,80 6,0 67,135 edges. We

randomly assign a vertex label for each distinct vertex from a label set of size 100, and randomly assign an edge label from

an edge label set of size 20 to make this dataset suit our needs, resulting in a size 74.4 GB on disk. We use this dataset to

test the scalability of our methods. 

Although TCM [43] is not able to handle queries on a labeled graph, it is the most recent approach that is most related

to ours. Therefore, we use TCM [43] as a competing method. We run TCM [43] on non-label-based queries fro comparison

and evaluate our method on label-based queries. 

We implement all our algorithms and the competing method in Java. All the experiments are performed on a machine

with an Intel Core i7 3.40 GHz processor and 16 GB of memory. 

We try to answer the following questions: 

• How are the time and storage efficiency of our LabeledGraphSketch ? 

• How accurate it is to use our sketch to answer vertex queries, edge queries, path queries, and subgraph queries? How

does this compare with TCM [43] ? 

• How efficient is it to use our sketch to answer vertex queries, edge queries, path queries, and subgraph queries? How

does this compare with TCM [43] ? 

5.2. Experimental results 

Before we present the experimental results, let us first discuss the parameters we use. We informally define the com-

pression ratio as the sketch matrix’s cell count divided by the input dataset’s edge count. The compression ratio is affected

only by w and d , as w and d together determine the size of the sketch. When we determine the compression ratio, w and

d are set according to the number of labels in different datasets to obtain a balanced distribution. If the dataset has only a
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Fig. 7. Dataset loading time. 

Fig. 8. Storage space needed for LGS, TCM, and raw data. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

few labels, we will set a smaller w . If we set w to 1, LGS works equivalently to other algorithms that do not consider vertex

labels, which indicates that LGS is an extended and more powerful scheme. The processing time of an edge insertion is only

related to the number of sketches v , because v affects the number of times we need to insert the incoming edge into our

sketches. 

Time and Storage Efficiency: 

Although our sketch can automatically handle sliding windows under the stream scenario, TCM is not capable of this.

Methods that work for stream scenarios can be naturally adapted for non-stream scenarios, but the converse does not hold.

Therefore, in this set of experiments, we first test the loading time needed to process all the datasets and compare the

storage requirements for LGS, TCM, and the raw data. The loading time is defined as the time necessary to load the entire

dataset into two sketches, LGS and TCM. We use v = 5 in this set of experiments. The loading times for each dataset are

shown in Fig. 7 . We can see from Fig. 7 that the loading times for the Phone dataset and Road dataset are both less than

1 s, whereas the loading times for the DBLP, Twitter, and Friendster dataset of LGS are approximately twice the loading

times of TCM. The reason for this is that for LGS, we need to perform five hashes for each incoming edge (two hashes

for the identifiers of two endpoints, two hashes for the vertex labels of two endpoints, and one for the edge label of the

incoming edge). For TCM, however, only two hashes are needed (for two identifiers of the two endpoints). The need for

extra processing time is reasonable, because we need to deal with more information. 

In this set of experiments, we also report the storage space needed for LGS and TCM. We use the same matrix size for

LGS and TCM. The parameters determining the matrix sizes are reported in Table 2 . Fig. 8 shows the comparison of the

storage requirements of LGS, TCM, and raw data. We can see from Fig. 8 that the storage space of LGS is approximately two

to three times that of TCM. The reason for this is, for LGS, in each matrix cell, we need to store not only the number of

edges, but also the prime number product result to encode the edge label information. When the product is too large, we

need additional storage units. However, the storage space needed for LGS is still only two orders of magnitude less than the

original data. 

Fig. 9 shows the throughput for LGS under the streaming scenario, with varying v . The result is computed as the number

of edges of the dataset divided by the time needed to process the dataset. Because the DBLP dataset is not ordered by

timestamp and the coauthor graph does not have a timestamp, neither does the Friendster dataset. These are not under the

streaming scenario. Therefore, we exclude the DBLP and Friendster data from this experiment. We show the number of edges

for the other four datasets, as well as the window size and subwindow size we choose for those four datasets in Tables 3
Table 2 

Matrix Size for Each Dataset. 

Dataset w 

∗d 

Phone 25 

Traffic 80 

Enron 100 

Twitter 300 

DBLP 300 

Friendster 600 
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Fig. 9. LGS Throughput. 

Table 3 

Edge Count for Each Dataset. 

Phone Road Twitter Enron 

Number of edges 52,050 680,551 63,136,932 2,064,151 

Table 4 

Window Size and Subwindow Size for Each Dataset. 

Dataset Window size Subwindow size 

Phone 1 week 1 h 

Road 1 day 5 min 

Twitter 1 day 10 min 

Enron 1 week 1 h 

Fig. 10. Vertex Queries (varying v ) Enron dataset. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

and 4 , respectively. The processing times for v from 1 to 9 on the Phone and Road data are all less than 0.1 s. The dataset

processing time includes not only the insertion time for each edge, but also some initialization work. The initialization of

the Phone dataset spans most of the data processing time, which is why the throughput of this dataset has little variation.

This is similar to the Road data, except that the edges in the Road data are much more numerous (the fluctuation around

v = 7 is due to Java’s garbage collection). The Enron and Twitter datasets are sufficiently large to overcome the influence

of the initialization cost. We can see that the throughput decreases slightly as v increases, but that the throughputs are all

greater than 3 ∗10 5 edges per second. Thus, LGS is able to handle very high graph streaming rates. 

Error measures: We introduce two error measures for vertex, edge, and subgraph queries. The first is an error rate.

Suppose the query answer returned by the sketch is ˆ a i (either by LGS or TCM), and the true answer is a i ; then, the error

rate is computed as 
ˆ a i −a i || a || 1 , where || a || 1 is the total number of edges. This error rate is used to compare with the theoretical

error rate computed from Theorems 1 , 3, and 5. The second measure is a relative error. Observe that even though the error

rate ε is quite small (typically less than 0.01), because the dataset is large (i.e., the number of edges is large), ε|| a || 1 could

result in a large number, which implies a great distance between the estimated answer ˆ a i and the true answer a i . Thus,

the relative error is computed as | ̂  a i − a i | /a i . We compare our method with TCM in terms of the error rate and evaluate

the accuracy of LGS itself in terms of the relative error. These two error measures show identical error trends from the two

aspects. 

Vertex Queries: 

For aggregate vertex queries on a given vertex, we first evaluate the query accuracy for both LGS and TCM without an

edge label constraint. Fig. 10 shows the result from the Enron dataset. In this case, we set the compression ratio to 1/200;

then, the corresponding w 

∗d equals 100, which gives us a theoretical error rate of ε = 

e 
100 , as computed from Theorem 1 . We

vary the number of sketches v from 1 to 9, and the probability that the query answer error rate is less than the theoretical

error rate is thus increased from 0.632 to 0.9998. 
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Fig. 11. Vertex Queries (varying v ) Phone dataset. 

Fig. 12. Vertex Queries with edge constraints (varying v ). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

We see from Fig. 10 that our method, LGS, is very accurate. The reason for this is that the vertex identifiers of the Enron

dataset are all email addresses and there are 11 vertex types. When there are various vertex labels, and vertex identifiers all

occupy similar characteristics (all names, email addresses, numbers, etc.), LGS tends to have a high accuracy. 

Fig. 11 shows the result from the Phone dataset. There are only two vertex types in this dataset; thus, LGS does not

demonstrate a significant advantage over TCM, although LGS is still more accurate. We see from Figs. 10 and 11 that when

v is 1, the error rate of TCM is greater than the theoretical error rate. This is because when v is 1, the probability that the

error rate returned by the sketch falls below the theoretical error rate is only 0.632. The experiments on the other datasets

show similar results to either the Phone or Enron datasets, and thus we omit them from the figure for clarity. All the queries

are answered in less than 1 ms using our LGS. This is much quicker compared to using the original graph streams, which

typically needs a few seconds in data graphs such as the Enron dataset and may require several minutes in a large data

graph such as the Twitter dataset. The average response times for this type of query is given in Table 5 , for compression

ratio = 1/100, and v = 5. LGS runs slightly slower than TCM, because it deals with a more complicated data structure to

support label-based queries, whereas TCM is not able to support queries on labeled graphs or sliding windows under the

stream scenario. However, the difference is negligible compared to the time taken on raw data. For the Friendster dataset,

the queries run on raw data took too long, and thus we terminated the query after one hour. We did not use the Friendster

dataset for our accuracy evaluation, because it took too long to run on raw data to get a ground truth result. 

Next, we evaluate the accuracy of vertex queries with edge label constraints. An example of such a query is “select the

number of calls that core-person 50 made, where the call type is short voice calls” for the Phone dataset. The accuracy, in

this case, is affected by the compression ratio, number of sketches v , and number of prime numbers c we use for the edge

labels. We first set the compression ratio to 1/100, and c is set to no more than 20. We only vary v for the different settings.

We can see from Fig. 12 that the relative error either remains unchanged or decreases as v increases. The reason for this

is that the query result is computed as the minimum number of all v sketches. It is possible that although we use more

sketches, the minimum result stays unchanged. However, the trend is that as the number of sketches increases, the relative

error decreases. Additionally, we see from Fig. 12 that the relative errors of the Twitter, DBLP, and Enron datasets are higher

than those of the Phone and Road datasets. This is because the DBLP, Twitter, and Enron datasets have higher vertex/edge

ratios, which result in more edges with different endpoints being hashed to the same cell, and hence greater relative errors.
Table 5 

Response times for vertex queries. 

Method 

Dataset 

Phone Traffic Enron DBLP Twitter Friendster 

LGS 63 μs 86 μs 115 μs 135 μs 155 μs 320 μs 

TCM 49 μs 76 μs 88 μs 118 μs 138 μs 298 μs 

Raw data 46 ms 312 ms 1909 ms 2793 ms 22936 ms –
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Fig. 13. Vertex Queries with edge constraints (varying compression ratio). 

Fig. 14. Edge Queries (varying v ) Phone dataset. 

Fig. 15. Edge Queries (varying v ) Enron dataset. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

For the Enron dataset, we use the email subject as edge labels. This dataset has numerous edge labels, whereas we only set

c as 20 to save computation time. If we set c to 100, the relative error would decrease sharply. 

Next, we set v to 9 and vary the compression ratio. The results are shown in Fig. 13 . We can see from the figure that

the relative error decreases as the compression ratio increases. The reason for this is that when the compression ratio is

high, the hash value range is larger, resulting in fewer hash collisions. In this set of experiments, all the queries could be

answered in less than 0.1 s, even for a large dataset such as Friendster, as shown in Table 5 . However, answering queries

using original graph streams may take up to several minutes. The performance of LGS under the streaming scenario is

similar to this, and hence we omit it from the figures for clarity. However, it is worth noting that, in the streaming case,

for a reasonably high accuracy, the required memory space using our sketch is much lower than storing the original graph

stream window. Therefore, our technique provides instant query answering and requires significantly less space consumption

while maintaining high query result accuracy. 

Edge Queries: 

Next, we evaluate the performance of aggregate edge queries between two vertices on LGS and TCM. Queries of this

type include as “select the number of emails between Mark Taylor and Mark Elliott from the Enron dataset.” Fig. 14 shows

the results of the Phone dataset. We set the compression ratio to 1/100 and compute the corresponding w 

∗d ∗w 

∗d as well

as the corresponding ε. We vary the number of sketches v in this set of experiments. The accuracy results from LGS are

better than the accuracy of TCM. Addtionally, the error rate converges faster with LGS than TCM. Fig. 15 shows the result of

the Enron dataset. The error rate is high when v is very small, exceeding the theoretical error rate. This is because when v

is small, the probability that the actual error rate is less than the theoretical error rate is small. This probability increases

sharply as v increases. When v is greater than 3, the error rates from both LGS and TCM are less than the theoretical error

rate. Again, LGS converges much more quickly than TCM. The experiments on the other datasets show similar results, and

we omit them from the figures. In this set of experiments, all the queries could be answered in less than 1 ms, compared

with several seconds to a few minutes when querying on raw data graphs. The average response times for edge queries are

given in Table 6 , for compression ratio = 1/100 and v = 5 . We can see that the response times for edge queries are typically
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Table 6 

Response times for edge queries. 

Method 

Dataset 

Phone Traffic Enron DBLP Twitter Friendster 

LGS 9 μs 12 μs 11 μs 13 μs 15 μs 16 μs 

TCM 11 μs 8 μs 9 μs 12 μs 13 μs 14 μs 

Raw data 51 ms 343 ms 2056 ms 3000 ms 20992 ms –

Fig. 16. Edge Queries with edge constraints (varying v ). 

Fig. 17. Edge Queries with edge constraints (varying compression ratio). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

shorter than those for vertex queries. This is because for edge queries, the number of matrix cells needed to support the

queries is normally less than that for vertex queries. 

Next, we perform edge queries between two vertices with edge label constraints on LGS. A sample query of this type is

“select the number of emails between Mark Taylor and Mark Elliott and where the email subject is “salary” from the Enron

dataset.” The results are shown in Figs. 16 and 17 . In 16 , we set the compression ratio to 1/100 and vary v from 1 to 9. We

can see that some datasets result in a high relative error, and that is because those datasets have higher vertex/edge ratios,

whereas the real result values are relatively small. Thus, a few collisions could lead to large relative errors. The relative

error reduces as v increases, as expected. Next, we set v to 9 and vary the compression ratio. The result is shown in Fig. 17 .

The relative error decreases as the compression ratio increases, as expected, and the relative error converges quickly. The

accuracy results under the stream and nonstream scenarios are similar. All the queries could be answered in less than 1 ms,

comparison with tens of seconds to several minutes when querying on raw data graphs. 

We also evaluate other types of edge queries on the Enron dataset. Vertex type to vertex type queries with an edge

constraint (referred to as VT to VT with EC) include such queries as “select the number of emails between all Employees with

the subject ‘P&G update’ from the Enron dataset.” Vertex type to vertex type queries without an edge constraint (referred to

as VT to VT without EC) include such queries as “select the number of emails all managers send to all managing directors.”

Vertex to vertex type queries with an edge constraint (referred to as V to VT with EC) include such queries as “select the

number of emails Mark Taylor sends to all Employees with subject salary .” Vertex to vertex type queries without an edge

constraint (referred to as V to VT without EC) include such queries as “select the number of emails Mark Elliott sends to all

Directors.” The results are shown in Figs. 18 and 19 . In Fig. 18 , we set the compression ratio to 1/100 and vary v from 1 to

9. In Fig. 19 , we set v to 9 and vary the compression ratio. The evaluation results show similar trends to the other types of

edge queries. 
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Fig. 18. Other Edge Queries (varying v ) Enron Dataset. 

Fig. 19. Other Edge Queries (varying compression ratio) Enron Dataset. 

Fig. 20. Path Queries (varying v ). 

Table 7 

Response times for path queries. 

Method 

Dataset 

Phone Traffic Enron DBLP Twitter Friendster 

LGS 3 μs 8 μs 12 μs 55 μs 86 μs 256 μs 

TCM 3 μs 7 μs 10 μs 48 μs 76 μs 198 μs 

Raw data 23 ms 268 ms 878 ms 1356 ms 8978 ms –

 

 

 

 

 

 

 

 

 

 

 

Path Queries: 

Next, we perform evaluations of path (reachability) queries. In this set of experiments, for each dataset, we randomly

pick 100 pairs of vertices, and the accuracy is measured by the results from these. A “right answer” from a sketch is when

it returns the same answer (“reachable” or “not reachable”) as the ground truth for a pair of vertices. The accuracy is the

number of right answers divided by 100 and falls in [0,1]. We show the accuracy result for path queries for LGS. We first

set the compression ratio to 1/100 and vary v , and the result is shown in Fig. 20 . We can see that the accuracy for the

Road dataset is always 1. This is because the Road dataset is a connected graph. There are no false negatives but only false

positives from LGS. That is, if two vertices have a reachable path in the raw data graph, they will always be returned as

being reachable with LGS. For other datasets, the accuracy is better on data graphs with lower vertex/edge ratios. As v

increases, the accuracy also increases. Next, we set v to 9 and vary the compression ratio. The result is shown in Fig. 21 . We

can see that the accuracy increases because the collisions are reduced owing to a larger space. 

We also report the response times for path queries in Table 7 , for compression ratio = 1/100 and v = 5 . We can see

that some queries can be answered extremely quickly, and even faster than edge queries. This is because path queries may
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Fig. 21. Path Queries (varying compression ratio). 

Fig. 22. Path Queries (varying v ) Phone & Enron datasets. 

Fig. 23. Path Queries (varying v ) DBLP & Twitter datasets. 

Fig. 24. Subgraph Queries (varying v ) Phone dataset. 

 

 

 

 

 

 

 

 

 

terminate early if there is no path, and they do not need to run on all v sketches, because there are no false negatives. For

the queries on raw data, we store the raw data in an adjacency list to support path queries. 

We show the comparison results between LGS and TCM on the four datasets in Figs. 22 and 23 . We set the compression

ratio to 1/100 and vary v from 1 to 9. The figures show that LGS yields better accuracy than TCM, as in the previous

experiments. 

Subgraph Queries: 

In this set of experiments, we evaluate the performance of LGS on subgraph queries. A sample query of this type is

“return the number of subgraph pattern matchings given a subgraph of size3.” Fig. 24 shows the results of the Phone

dataset. Fig. 25 shows the results of the Enron dataset. We adopt the same parameter settings as for edge queries. The

results are similar to those of edge queries as expected, because subgraph queries can be considered as combinations of

several edge queries. The theoretical error rate is computed in the same manner as for edge queries. However, the actual

error rate for subgraph queries is slightly lower than that for edge queries. This is because for subgraph queries, the results
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Fig. 25. Subgraph Queries (varying v ) Enron dataset. 

Fig. 26. Subgraph Queries with edge constraints (varying v ). 

Fig. 27. Subgraph Queries with edge constraints (varying compression ratio). 

 

 

 

 

 

 

 

 

are a minimum (from all v sketches) of the minimum (from all the edges in one sketch). The results of the other datasets

are similar, and thus we omit them from the figures. 

We report the response times needed for subgraph queries in Table 8 . All the queries could be answered in less than

1 ms, and the query response times are linear with respect to the subgraph size. 

Next, we perform subgraph queries with edge constraints. That is, the edges constituting the subgraph have edge label

constraints. In Fig. 26 , we set the compression ratio to 1/100 and vary v . The error decreases as v increases. It is worth

noting that the relative error of a subgraph query on the Phone dataset is 0. This is because there is no match for the given

subgraph pattern, and our sketch catches this even when there is only one sketch. In Fig. 27 , we set v = 9 and vary the

compression ratio. The error decreases as the compression ratio increases, as expected. 

5.3. Summary 

We have presented a comprehensive evaluation in this section. From all these experiments, we can see that LGS is ca-

pable of supporting different types of queries, including aggregate vertex queries, aggregate edge queries (either on two
Table 8 

Response times for subgraph queries. 

Method 

Dataset 

Phone Traffic Enron DBLP Twitter Friendster 

LGS 35 μs 41 μs 46 μs 48 μs 52 μs 58 μs 

TCM 30 μs 36 μs 40 μs 43 μs 46 μs 52 μs 

Raw data 168 ms 1058 ms 6875 ms 10693 ms 68986 ms –
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vertices or vertices of two types), path queries, and subgraph queries. The accuracy of LGS is better than that of the com-

peting method TCM. All the queries supported by TCM are supported by LGS, and LGS also works under the streaming

scenario and works well for highly dynamic graphs. Queries are answered instantly using our sketches, much faster than

querying the original graph streams. To achieve all these benefits, LGS only needs a small amount of extra storage space

to store the encoded label information in a compressed format. To the best of our knowledge, we are the first to store a

labeled graph stream in a sublinear form while supporting various query types. 

6. Conclusion and future work 

In this paper, we first discuss the usage scenarios for aggregate vertex queries, aggregate edge queries, label based ag-

gregate vertex/edge queries, path reachability queries, and subgraph queries on labeled graph streams. We then point out

the significance of the automatic handling of item expirations, and why it is needed under the streaming scenario. Specifi-

cally, we use the sliding-window model. As data are very large and fast in the big data era, using sublinear memory space

to support a diverse set of general graph queries is crucial, and requires exploring the delicate tradeoff between accu-

racy and efficiency. We propose a novel sketch using only sublinear storage space to support queries on labeled graphs. We

provide algorithms for aggregate vertex/edge queries and labeled aggregate vertex/edge queries. We also prove that our pro-

posed sketch could serve as a black box for other graph algorithms. In addition, we discuss how our sketch works for path

reachability queries and subgraph queries. We then perform comprehensive experiments for a comparison with competing

methods and show the superiority of our proposed method. 

Some of our preliminary studies show that our sketch could serve as a black box for many existing graph algorithms. We

would like to explore this research direction in detail in the future, and show how our sketch technique could work together

with those algorithms. For some particular queries, if the true query result is small, our sketch may result in a relatively

high relative error. We would like to further study nonuniform matrix distributions to reduce such errors. 
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