
The Disk Substructures at High Angular Resolution Project (DSHARP).
VI. Dust Trapping in Thin-ringed Protoplanetary Disks

Cornelis P. Dullemond1 , Tilman Birnstiel2 , Jane Huang3 , Nicolás T. Kurtovic4, Sean M. Andrews3 ,
Viviana V. Guzmán5,6 , Laura M. Pérez4 , Andrea Isella7 , Zhaohuan Zhu8 , Myriam Benisty9,10 , David J. Wilner3 ,

Xue-Ning Bai11, John M. Carpenter12 , Shangjia Zhang8 , and Luca Ricci13
1 Zentrum für Astronomie, Heidelberg University, Albert Ueberle Str. 2, D-69120 Heidelberg, Germany; dullemond@uni-heidelberg.de
2 University Observatory, Faculty of Physics, Ludwig-Maximilians-Universität München, Scheinerstr. 1, D-81679 Munich, Germany

3 Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138, USA
4 Departamento de Astronomía, Universidad de Chile, Camino El Observatorio 1515, Las Condes, Santiago, Chile

5 Joint ALMA Observatory, Avenida Alonso de Córdova 3107, Vitacura, Santiago, Chile
6 Instituto de Astrofísica, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, 7820436 Macul, Santiago, Chile

7 Department of Physics and Astronomy, Rice University 6100 Main Street, MS-108, Houston, TX 77005, USA
8 Department of Physics and Astronomy, University of Nevada, Las Vegas, 4505 S. Maryland Parkway, Las Vegas, NV 89154, USA

9 Unidad Mixta Internacional Franco-Chilena de Astronomía, CNRS/INSU UMI 3386, Departamento de Astronomía,
Universidad de Chile, Camino El Observatorio 1515, Las Condes, Santiago, Chile

10 Univ. Grenoble Alpes, CNRS, IPAG, F-38000 Grenoble, France
11 Institute for Advanced Study and Tsinghua Center for Astrophysics, Tsinghua University, Beijing 100084, Peopleʼs Republic of China

12 Joint ALMA Observatory, Avenida Alonso de Córdova 3107, Vitacura, Santiago, Chile
13 Department of Physics and Astronomy, California State University Northridge, 18111 Nordhoff Street, Northridge, CA 91130, USA

Received 2018 September 26; revised 2018 November 23; accepted 2018 November 23; published 2018 December 26

Abstract

A large fraction of the protoplanetary disks observed with ALMA display multiple well-defined and nearly
perfectly circular rings in the continuum, in many cases with substantial peak-to-valley contrast. The DSHARP
campaign shows that several of these rings are very narrow in radial extent. In this Letter we test the hypothesis
that these dust rings are caused by dust trapping in radial pressure bumps, and if confirmed, put constraints on the
physics of the dust trapping mechanism. We model this process analytically in 1D, assuming axisymmetry. By
comparing this model to the data, we find that all rings are consistent with dust trapping. Based on a plausible
model of the dust temperature we find that several rings are narrower than the pressure scale height, providing
strong evidence for dust trapping. The rings have peak absorption optical depth in the range between 0.2 and 0.5.
The dust masses stored in each of these rings is of the order of tens of Earth masses, though much ambiguity
remains due to the uncertainty of the dust opacities. The dust rings are dense enough to potentially trigger the
streaming instability, but our analysis cannot give proof of this mechanism actually operating. Our results show,
however, that the combination of very low a ´ - 5 10turb

4 and very large grains a 0.1 cmgrain can be
excluded by the data for all the rings studied in this Letter.

Key words: protoplanetary disks

1. Introduction

The concept of dust trapping in local pressure maxima has
become a central theme in studies of planet formation and
protoplanetary disk evolution, because it might provide an
elegant solution to several problems in these fields of study.
Theories of planet formation are plagued by the “radial drift
barrier”: the problem that, as dust aggregates grow by
coagulation, they tend to radially drift toward the star before
they reach planetesimal size (e.g., Birnstiel et al. 2010). A
natural solution to this problem could be the trapping of dust
particles in local pressure maxima (Whipple 1972; Barge &
Sommeria 1995; Klahr & Henning 1997; Kretke & Lin 2007).
Not only does this process prevent excessive radial drift of dust
particles, it also tends to concentrate the dust into small
volumes and high dust-to-gas ratios, which is beneficial to
planet formation. From an observational perspective, the radial
drift problem manifests itself by the presence of large grains in
the outer regions of protoplanetary disks (Testi et al. 2003;
Andrews et al. 2009; Ricci et al. 2010), which appears to be in
conflict with theoretical predictions (Brauer et al. 2007). One
possible solution to this observational conundrum could be that
the disks are much more massive in the gas than previously

suspected, leading to a higher gas friction for millimeter grains
and thus longer drift timescales (Powell et al. 2017).
Another explanation is to invoke dust traps. The most

striking observational evidence for dust trapping seems to come
from large transitional disks, which feature giant dust rings,
sometimes lopsided, in which large quantities of dust appears
to be concentrated (Casassus et al. 2013; van der Marel et al.
2013). These observations appear to be well explained by the
dust trapping scenario (Pinilla et al. 2012a). But these
transitional disks seem to be rather violent environments,
possibly with strong warps (Marino et al. 2015; Benisty et al.
2017) and companion-induced spirals (Dong et al. 2016).
For a more “normal” protoplanetary disk the dust traps

would have to be more subtle. Pinilla et al. (2012b) explored
the possibility that the disk contains many axisymmetric local
pressure maxima, and calculated how the dust drift and growth
would behave under such conditions. It was found that, if the
pressure bumps are strong enough, the dust trapping can keep a
sufficient fraction of the dust mass at large distances from the
star to explain the observed dust millimeter flux. It would leave,
however, a detectable pattern of rings that should be
discernable with ALMA observations. Since the multi-ringed
disk observation of HL Tau (ALMA Partnership et al. 2015) a
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number of such multi-ringed disks have been detected
(Andrews et al. 2016; Isella et al. 2016; Cieza et al. 2017;
Fedele et al. 2017, 2018; Clarke et al. 2018; Dipierro et al.
2018; Long et al. 2018; van Terwisga et al. 2018). It is
therefore very tempting to see also these multi-ringed disks as
evidence for dust trapping, and as an explanation for the
retention of dust in the outer regions of protoplanetary disks.

The data from the ALMA Large Programme DSHARP
(Andrews et al. 2018) offers an exciting new opportunity to put
this concept to the test, and to put constraints on the physics of
dust trapping in axisymmetric pressure maxima. This is an
opportunity that we explore in this Letter.

As is shown by Huang et al. (2018a), most of the disks in the
DSHARP sample display multi-ringed substructure. We
investigate whether these rings are caused by dust trapping,
and if so, what we can learn about dust trapping from these
data. We will focus on a subsample of rings, for which the
contrast is particularly strong, so that amplitude and width can
be clearly defined. We study the rings individually, assuming
that the dust does not escape from the ring. This makes it
possible to look for a steady-state dust trapping solution in
which the radial drift forces (that push the dust to the pressure
peak) are balanced by turbulent mixing (that tends to smear out
the dust away from the pressure peak). In Appendix F we will
construct a very simplified analytic dust trapping model, and
confront this with the most well-isolated rings from our sample.

The structure of the Letter is as follows. We first review, in
Section 2, our subsample of rings, and how the radial profile of
the intensity was obtained. Next we fit these rings to Gaussians
(Section 3), because this will make the quantitative analysis of
the subsequent sections easier. In Section 4.1 we will first
analyze these Gaussian fits under the assumption that these
rings are optically thin. It turns out, however, that the optical
depths are on the border between thin and thick, requiring us to
explore, in Section 4.2, how moderate optical depths affect our
results, and correct for this. We are then ready to compare this
to a model of dust trapping. In Section 5 we take the simplest
possible model of dust trapping: that of a Gaussian pressure
bump. This allows us to derive most results analytically. In
Section 6 we go one step further by numerically exploring dust
trapping by a very simple planetary gap model, and see to
which extent the results are different and may fit better or worse
to the data. We close with a discussion and a conclusion
section.

2. The High-contrast Rings of AS 209, Elias 24, HD 163296,
GW Lup, and HD 143006

In this Letter we focus on a subsample of sources of the
DSHARP Programme that show high-contrast and radially thin
rings that are separated by deep valleys, and that are
sufficiently face-on to not have to worry much about 3D
line-of-sight issues. These are AS 209, Elias 24, HD 163296,
GW Lup, and HD 143006. Their stellar parameters are given in
Table 1.

A gallery of these sources is shown in Figure 1. For an
overview of the ALMA Large Programme we refer to Andrews
et al. (2018), and for an in-depth discussion on the data of the
individual sources we refer to Huang et al. (2018a), Isella et al.
(2018), Guzmán et al. (2018), and Perez et al. (2018).

The high-contrast rings of these sources provide “clean
laboratories” for testing the theory of dust trapping in a ring-by-
ring manner. Figure 2 shows the radial profile (deprojected for

inclination) of the thermal emission of the dust of the five disks.
These brightness profiles are expressed as intensity Iν in units
of -Jy arcsec 2 . The procedure used to extract these radial
profiles from the continuum maps is described by Huang et al.
(2018a). In creating these profiles, the “arcs” seen in HD
163296 and HD 143006 were excised, so these radial profiles
represent the axially symmetric structures only.
The DSHARP sample has many more sources with rings,

and several of the sources we study in this Letter display more
than just the one or two rings we focus on from Huang et al.
(2018a). Particularly striking in this regard is AS 209, which
features three more ringlike structures in the inner disk. The
contrast and radial separation of these rings is, however, much
less than for the subset of rings we choose for this Letter. While
dust trapping can certainly also play a role in those rings, it is
much harder to quantify this. For that reason we do not
consider those rings further in this Letter.

3. Fitting a Gaussian Profile to the Ring Emission

As we will discuss later (Section 5), for a radially Gaussian
pressure bump the solution to the radial dust mixing and drift
problem is, to first approximation, also a Gaussian surface
density profile. It has a width smaller than, or equal to, that of
the gas pressure bump. Our analysis of the eight rings of this
Letter therefore naturally starts with the fitting of the observed
radial intensity profiles with a Gaussian function. We choose
here to do so in the image plane, because that allows us to
select an individual ring, and study it independently of the
emission elsewhere. But note that other Letters in the DSHARP
series have done, for individual sources, fits in the uv-plane
(Guzmán et al. 2018; Isella et al. 2018; Perez et al. 2018).

3.1. Procedure

The aim is to find, for each ring, a Gaussian intensity profile

s
= -

-
n

⎛
⎝⎜

⎞
⎠⎟( ) ( ) ( )I r A

r r
exp

2
1gauss 0

2

2

that best describes the ring. To be more precise: We determine
the values of A, r0, and σ for which Equation (1) best fits the
observed intensity profile n ( )I robs shown in Figure 2 within a
prescribed radial domain as given in Table 2. Details of the
fitting procedure are described in Appendices B and C. The
Gaussian fits appear as inverse parabolas in Figure 2. In the

Table 1
The Stellar Parameters Assumed for the Stars Studied in This Letter, and the

ALMA Beam Size and Position Angle of the DSHARP Observations

Source d M* L* i Beam, PA
(pc) ( )M ( )L (deg) (mas), (deg)

AS 209 121 0.83 1.41 35 38×36, 68
Elias 24 136 0.78 6.0 29 37×24, 82
HD 163296 101 2.04 17.0 47 48×38, 82
GW Lup 155 0.46 0.33 39 45×43, 1
HD 143006 165 1.78 3.80 19 46×45, 51

Note. Distance is in parsecs and mass and luminosity are in units of the solar
values. The beam is in milliarcseconds. Inclination and position angle are in
degrees (PA east from north for the major axis). More details, as well as
references and uncertainty estimates, can be found in Andrews et al. (2018).

2
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close-up views of Figure 3 they are overplotted in orange. The
parameters of the best fits are listed in Tables 2 and 5.

The observed rings are the result of the thermal emission of a
dust ring convolved with the ALMA beam. To obtain the width
of the underlying dust ring we have to deconvolve. Assuming a
Gaussian beam and a Gaussian dust ring, we can use the rule of
the convolution of two Gaussians, and obtain the width wd of
the dust ring

s s= - ( )w , 2bd
2 2

where σb is the beamwidth expressed as standard deviation in
astronomical units. The effects of the elliptical shape of the
beam and the inclination of the disk are accounted for in the
way described in Appendix H. The resulting values of bfwhm,as

are listed in Table 2, and the corresponding σb can be computed
through s = d b 2.355b pc fwhm,as , where dpc is the distance to the
source in units of parsec.

The slightly narrower deconvolved ring should also have a
correspondingly higher amplitude Adec given by

s
= ( )A

w
A 3dec

d

to conserve luminosity, where we ignore the geometric effects
due to the circular coordinates. The values of Adec are listed in
Table 2 as well.

For completeness, let us note that the deconvolved Gaussian
model then becomes

= -
-

n

⎛
⎝⎜

⎞
⎠⎟( ) ( ) ( )I r A

r r

w
exp

2
. 4gauss,dec

dec
0

2

d
2

3.2. Results

The immediate first result is that we see that all the rings are
radially resolved by our observations. If the dust rings were
much narrower than the beam ( sw bd ), then this would have
been apparent by having s s b. Although the ratio σ/σb
(column 14 in Table 2) is in some cases less than 2, it is in all
cases clearly larger than 1. For this reason Equation (2)
produces reasonably reliable values for the widths wd of the
underlying dust rings.
One of the most important pieces of information we can now

derive from these Gaussian fits is the ratio of the ring width wd

to the local pressure scale height hp. If this ratio is substantially
less than 1, dust trapping must be at work, as we will argue
below. Unfortunately, hp can only be estimated, because we do
not know the disk midplane temperature very well. From the
continuum images we have no information about Td(r). From
the 12CO line emission one can estimate the temperature in the
disk surface layers, but it is much more difficult to do that for
the midplane (see, e.g., Weaver et al. 2018). We will instead
estimate the midplane disk temperature using the following

Figure 1. Continuum maps in band 6 of the five disks in our sample that have the most pronounced rings. The eight highest contrast rings, which are the topic of this
Letter, are marked in the images. The color scale is the same as that from Huang et al. (2018a). For a detailed description of these data, see Guzmán et al. (2018) for
AS 209, Isella et al. (2018) for HD 163296, Perez et al. (2018) for HD 143006, and Huang et al. (2018a) for the rest.
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simple irradiated flaring disk recipe:

*j

p s
=

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟( ) ( )T r

L

r4
, 5d

1

2
2

SB

1 4

where sSB is the Stefan–Boltzmann constant and j is the so-
called flaring angle (e.g., Chiang & Goldreich 1997; D’Alessio
et al. 1998; Dullemond et al. 2001). We take the flaring angle to
be j=0.02, which is an estimate based on typical values from
models. The resulting values of Td at the peak of the rings are
given in Table 2.Assuming that the gas temperature is equal
to the dust temperature, the pressure scale height of the disk
now follows from

*m
= ( )h

k T r

m GM
, 6p

p

B d
3

with kB being the Boltzmann constant, mp being the proton
mass, G being the gravitational constant, and μ=2.3 being the
mean molecular weight in atomic units.

We see from Table 2 that some rings are narrower than the
(estimated) pressure scale height hp, while others are broader.
This comparison is important, because a long-lived pressure
bump in the gas cannot be radially narrower than about one
pressure scale height. If it were, its structure would be
horizontally narrower than its vertical extent, which makes a
stable vertical hydrostatic equilibrium difficult to establish.
Moreover, linear stability analysis (see Ono et al. 2016, and

Appendix G) shows that a Rossby wave instability would be
triggered, and the axial symmetry of the ring would be lost.
One can thus argue that, if a thermal emission ring produced

by the dust is substantially narrower than hp, then some kind of
dust trapping must have taken place. We can therefore
conclude that we have strong evidence of dust trapping
operating in the rings in the disks around AS 209, Elias 24, and
GW Lup. A similar conclusion can be reached for the outer of
the two high-contrast rings in the disk around HD 163296,
although the strong wing on the outer part makes it harder to
define the width unambiguously. For the other rings dust
trapping is certainly not ruled out either, but would require
further evidence.
As can be seen in Figure 3, for most rings the Gaussian model

fits the radial profile reasonably well, at least near the peak. The
largest relative deviation from a Gaussian shape can be seen in
ring 1 of HD 163296. The peak of the profile is “pointier” than the
best-fitting Gauss, and the left flank steeper. On the other hand,
the fitting window is much wider than for the other ring profiles,
and it remains close to the Gaussian fit well into the wings.
In most rings the observed profiles rise above the Gaussian

fit at some point in the wings. This is particularly clear for the
inner flanks of ring 1 of Elias 24 and ring 1 of HD 143006, as
well as for the outer flanks of ring 2 of AS 209, ring 2 of HD
163296, the ring of GW Lup, and ring 2 of HD 143006. The
excess above the Gaussian gradually increases away from the
peak of the Gaussian. The profiles tend to Lorentzian shape in
the flanks, but often asymmetrically.

Figure 2. Intensity profiles in band 6 of the five disks in our sample that have the most pronounced rings. The vertical axis is logarithmic to better show the contrast.
The eight highest contrast rings are fitted by a Gaussian profile, shown as the solid inverse parabolas. The dotted inverse parabolas are Gaussians with the width of the
ALMA beam. For a detailed description of these data, see Huang et al. (2018a). The unit of intensity is always Jansky arcsec−2 at λ=0.125 cm. For Elias 24 the
observations had a central wavelength of λ=0.129 cm, but we rescaled to λ=0.125 cm assuming a spectral slope of nµnI 2, meaning a 6.5% increase.

4
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Table 2
The Model Parameters for the Gaussian Ring Fits in Figures 2 and 3

Source Ring Name Beam Domain A Adec r0 σ wd Td n ( )B Td wd/hp σ/σb tn
peak Md

thin Md
true

( )mas ( )au -( )Jy as 2 -( )Jy as 2 ( )au ( )au ( )au ( )K -( )Jy as 2
Å( )M Å( )M

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16) (17)

AS 209 1 B74 40 69–79 0.14 0.17 74.2 3.98 3.38 15.8 0.45 0.6 1.9 0.46 27.0 31.5
AS 209 2 B120 40 115–125 0.11 0.13 120.4 4.62 4.11 12.4 0.32 0.4 2.2 0.52 58.7 69.8
Elias 24 1 B77 31 72–82 0.23 0.25 76.7 4.93 4.57 22.3 0.72 0.6 2.7 0.42 35.4 40.8
HD 163296 1 B67 51 52–82 0.36 0.38 67.7 7.18 6.84 30.8 1.06 1.6 3.2 0.44 48.3 56.0
HD 163296 2 B100 51 94–104 0.21 0.24 100.0 5.17 4.67 25.3 0.84 0.7 2.3 0.33 39.0 43.6
GW Lup 1 B85 49 79–89 0.05 0.06 85.6 5.81 4.80 10.2 0.24 0.6 1.8 0.32 33.2 37.0
HD 143006 1 B41 46 35–45 0.14 0.18 41.0 5.09 3.90 27.2 0.92 1.9 1.6 0.22 9.2 9.9
HD 143006 2 B65 46 59–72 0.11 0.12 65.2 8.01 7.31 21.6 0.69 2.0 2.4 0.19 24.0 25.6

Note. (2) Internal numbering of the rings in this Letter. (3) Ring name from Huang et al. (2018a). (4) Effective full-width-at-half-maximum beam size (see Appendix H). (5) Radial fitting range. (6) Peak intensity A of the
best-fit Gaussian ring model. (7) Deconvolved peak intensity Adec. (8) Ring radius r0 in astronomical units. (9) Standard deviation width σ in astronomical units. (10) Width wd of the underlying (deconvolved) dust
emission profile, also expressed as standard deviation in astronomical units. (11) Midplane temperature Td of the disk (we assume gas and dust temperature to be equal) computed from Equation (5), assuming a flaring
angle of j=0.02. (12) Planck function at Td in band 6. (13) Deconvolved dust ring width wd in units of the disk pressure scale height hp computed from Td. (14) Ratio of observed ring width σ to standard deviation
beamwidth σb. (15) estimated optical depth tn

peak at the peak of the ring, calculated from Equation (9). (16) Dust mass estimate Md
thin using optically thin approximation. (17) Dust mass estimate Md

true including optical
depth correction. In making these mass estimates we use the DSHARP dust opacity model (Birnstiel et al. 2018) for a grain radius of =a 0.1 cm, which yields an absorption opacity k l = =n

-( )0.125 cm 2.0 cm gabs 2 1.
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For the double-ring objects HD 163296 and HD 143006,
Figure 4 shows that the emission between the rings can largely
be explained by the overlapping Gaussians. In HD 143006 one
could argue that there is some excess (about twice as large as
the scatter along the ring).

4. Radial Dust Distribution

The next step of our analysis is to investigate the spatial dust
distribution responsible for the ring emission. As a first guess,
we will assume that we can ignore optical depth effects, and
afterward we will consider optical depth corrections.

4.1. Optically Thin Approximation

Let us first assume that the thermal emission of the dust is
optically thin. The intensity profiles shown in Section 2, after
deconvolution with the beam, are then linear maps of the spatial
distribution of dust, if we ignore any temperature gradients or
opacity gradients across these rings. The conversion between the

deconvolved observed intensity profile n ( )I rdec and the dust
surface density profile Σd(r) is then

k
S = n

n n
( ) ( )

( )
( )r

I r

B T
, 7d

thin
dec

abs
d

where Td is the temperature of the dust, kn
abs is the absorption

opacity, and n ( )B Td is the Planck function.
By replacing n ( )I rdec with the Gaussian fit n ( )I rgauss,dec given

by Equation (4) we obtain the corresponding S ( )rd
gauss from

Equation (7). From this Gaussian model we can derive the total
dust mass trapped in the ring, ignoring optical depth effects:

ò p
p s
k

= S
n n

¥
( ) ( )

( )
( )M r r dr

r A

B T
2

2
, 8d

thin

0
d
thin

3 2
0

abs
d

where we used the identity s =A A wdec d.
We use the DSHARP opacity model (Birnstiel et al. 2018)

that, for a grain radius of a=0.1 cm, yields a dust opacity of

Figure 3. Gaussian fits to the eight rings of this Letter. The blue curves are the observations, and the orange curves are the best-fit Gaussian profiles. The “fit range”
bar shows the radial range within which the Gauss curve was fitted to the data. The fit range was chosen to fit the part of the curve that, by eye, most resembles a
Gaussian. The “beam” bar shows the FWHM beam size of the observations. The gray band around the blue curve shows the estimated uncertainty of the data.
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k l = =n
-( )0.125 cm 2.0 cm gabs 2 1. The resulting dust mass

estimates are listed in Table 2.
The main uncertainty lies in the opacity value kn

abs. This value
depends on the grain size (or grain size distribution) as well as
many other factors including composition, grain shape, and
uncertainties in the method of computation of the opacity. As
shown in Birnstiel et al. (2018) the value of k =n

-2.0 cm gabs 2 1

that we use here can easily be wrong by a factor of 10 upward or
downward, with correspondingly large changes in the derived
dust mass.

The other uncertainty is the dust temperature Td, as we
discussed before, but this uncertainty is much less severe. For
Equation (7) we need the corresponding value of the Planck
function n ( )B Td , which is listed in column 12 in Table 2.

Given the amplitude of the deconvolved Gauss fit Adec (see
Equation (4)), we can estimate the optical depth tn

peak of the
ring at its peak at r=r0:

t = - -n
n

⎛
⎝⎜

⎞
⎠⎟( )

( )A

B T
ln 1 . 9peak dec

d

This estimate does not depend on the uncertain absorption
opacity of the dust, but it does depend on the dust temperature
Td, which depends on our assumption of the flaring angle j
through Equation (5). Fortunately, because jµTd

0.25, we do
not expect the temperature to be uncertain by more than a factor
of two, resulting in similar uncertainty in the optical depth
estimate. The results are listed in column 15 of Table 2.

We find optical depths of the order of t ~ ¼n 0.2 0.5peak , a
surprisingly narrow range just below unity. For the case of HD
163296 there is independent evidence from the absorption of
CO line emission from the back side of the disk that the optical
depth in the two prominent rings is around 0.7, as shown by
Isella et al. (2018). Evidently, the optically thin assumption is
not entirely wrong, but not quite right either.

4.2. Optical Depth Corrections

We have to verify how much the quantities we derive using
the optically thin assumption are affected by these optical depth
effects. Let us assume that the dust has zero albedo. We replace
Equation (7) with the formal transfer equation:

= -n
t

n
- n( ) ( ) ( ) ( )( )I r e B T1 , 10rdec

d

where τν(r) is the optical depth profile across the ring, and we
ignored any background intensity, either from background
clouds or from the cosmic microwave background.
To obtain the dust distribution we first compute τν(r)

t = - -n
n

n

⎛
⎝⎜

⎞
⎠⎟( ) ( )

( )
( )r

I r

B T
ln 1 . 11

dec

d

The profile for Σd(r) now follows from

t
k

S = n

n

( ) ( ) ( )r
r

. 12d abs

The problem is, of course, that it is not straightforward to
deconvolve the observed Iν(r) profile if the underlying n ( )I rdec

is not a Gaussian.
Strong optical depth effects should lead to flat-topped radial

ring profiles. The radial ring profiles of this Letter do not
appear to show such flat-topped shapes, which means that the
rings in our sample cannot be highly optically thick. This is in
agreement with our estimates of tn

peak being of the order
0.2K0.5.
At the moderate optical depths of our rings, the optical depth

correction mainly leads to an upward correction of the derived
dust surface density Σd(r) and the corresponding dust masses
Md. As one can see in Table 2, this effect is relatively minor, in
particular, compared to the uncertainties of the opacity model.
The most important results we obtained so far are

summarized in Figure 5. The uncertainties of tn
peak and hp are

both estimated from an estimated uncertainty of the dust
temperature Td through Equations (11) and (6), because this is
by far the largest source of uncertainty. We assume a factor of
(0.25, 4) uncertainty of the irradiating flux, yielding roughly an
uncertainty of ( )0.5 , 2 in Td. The uncertainty in the dust
mass is estimated from the uncertainty in the opacity through
Equation (12).

5. The Rings as Dust Traps

The hypothesis we are now going to test is that the rings are
caused by dust trapping in axisymmetric pressure bumps. For
simplicity we will assume that the radial gas pressure profile is
fixed in time, and there is no back-reaction of the dust onto the
gas. The pressure bump is assumed to be so strong that the dust

Figure 4. Sum of the two Gaussian fits for the two sources with two partly overlapping rings: HD 163296 and HD 143006.
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trapping in these rings is perfect: no dust escapes. We then
expect that the dust distribution finds an equilibrium between
dust drift and turbulent spreading.

5.1. Model

Consider the following radial Gaussian profile for the
pressure at the disk midplane:

= -
-⎛

⎝⎜
⎞
⎠⎟( ) ( ) ( )p r p

r r

w
exp

2
, 130

0
2

2

where w is the width, and p0 is the pressure at the peak of the
pressure bump, located at r=r0. The width has to obey
w hp to ensure stability (see Appendix G).
The equilibrium between radial drift and radial mixing leads

to the following radial distribution of the dust (see Appendix F
for the derivation):

S = S -
-⎛

⎝⎜
⎞
⎠⎟( ) ( ) ( )r

r r

w
exp

2
, 14d d0

0
2

d
2

where

y= + - -( ) ( )w w 1 , 15d
2 1 2

with ψ given by

y
a

= ( )
Sc St

. 16turb

Here St is the Stokes number of the dust particles
(Equation (39)), Sc is the Schmidt number of the turbulence
in the gas (the ratio between turbulent viscosity and turbulent
diffusivity), and αturb is the usual turbulence parameter. Note
that this solution is for a single grain size.

For large grains and/or weak turbulence one finds ψ=1,
which leads to w wd . In this case the dust is strongly trapped
near the peak of the pressure bump. The opposite is the case for
small grains and/or strong turbulence, for which one gets
y  1, which leads to w wd . In this case the trapping is very
weak and the dust-to-gas ratio within the pressure bump stays
nearly constant.
It is interesting to note that this parameter ψ also determines

the degree of vertical settling of the same dust:

y= + - -( ) ( )h h 1 . 17pd
2 1 2

In other words: dust particles that are radially trapped in a narrow
ring are also vertically settled. This does not mean, however, that
dust that is not settled can always radially drift through any dust
trap. In fact: even for y  1 our model still assumes that all the
dust remains trapped, albeit in the far wings of the Gaussian
pressure trap. This has relevance for dust trapping in the edges of
planetary gaps, which we will discuss in Section 6.
Equation (14) has only three parameters: Σd0, wd, and r0. As we

have shown in Sections 3, 4.1, and 4.2, all three parameters can be
extracted from the observations. The main uncertainty lies in Σd0,
due to the uncertainty in the dust opacity. The values of wd for the
rings in our sample can be directly taken from Table 2.
The width of the dust ring wd is physically set by αturb, Sc,

St, and w through the above equations. We therefore have one
observational value for four unknown parameters. This is
heavily degenerate. All we can do is test if the measured value
of wd is consistent with expected values of αturb, Sc, St, and w.

5.2. Limits to αturb, Sc, St, and w

Reasonable values of αturb, Sc, St, and w obey certain
restrictions. First of all, the Schmidt number Sc is merely a way
to relate the turbulent viscosity with the turbulent mixing. If we do
not strive to learn about the turbulent viscosity, and instead are
satisfied with learning only about the turbulent mixing, then we
are only interested in the combination a Scturb . For simplicity we
set Sc=1, which is a reasonable value (Johansen & Klahr 2005).
The value of the turbulence parameter αturb is usually

considered to be between  a- -10 106
turb

2.
The width of the pressure bump cannot be smaller than about a

pressure scale height, but also not smaller than the width of the
dust ring. Therefore, = ( )w h wmax ,pmin d . In the case of the
double rings (AS 209, HD 163296, and HD 143006), the full
width at half maximum w2.355 should not exceed the radial
separation of the rings. For the two single ring sources we take the
distance from the peak to the deepest point of the gap to the inside
of the ring as the upper limit on the half width at half maximum

w1.178 . These lower and upper limits on w are listed in Table 3.
The Stokes number St can be any value. But it is directly

related to the grain size a and the gas density rg, where the gas
density is directly related to the gas surface density Σg via

p rS = h2 pg g. If we have observational constraints on the
grain size agrain and a good estimate of the gas surface density
Σg, then we can eliminate this uncertainty, and we are left with
two unknown parameters (αturb and w) for one measurement
(wd). Unfortunately, while estimating agrain from observations
may be doable, it is far more difficult to estimate Σg. Standard
disk gas mass estimates are of limited use, as they are based on
measuring the dust mass and multiplying it by the estimated
gas-to-dust ratio. Since we are testing the hypothesis of dust
trapping, we cannot assume a standard gas-to-dust ratio.

Figure 5. Summary of the numbers resulting from the Gaussian fitting of the
radial profiles of the rings, as listed in Table 2. Top: the optical depth of
the ring at the peak of the intensity (tn

peak). Middle: the relative size, in units of
the ring radius r0, of the dust ring width wd, the pressure scale height hp, and
the standard deviation beam size σb.
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One can, however, set an upper bound on Σg by demanding
that the disk is gravitationally stable, i.e., that the Toomre
parameter obeys

p
º

W
S

> ( )Q
c

G
2. 18s K

Toomre
g

Otherwise nonaxisymmetric features, such as spiral arms,
would develop (see, e.g., Kratter & Lodato 2016), which would
also be seen in the continuum emission. Here m=c k T ms pB g

is the isothermal sound speed (with Tg being the gas

temperature), *W = GM rK
3 is the Kepler frequency, G is

the gravitational constant, and Σg is the gas surface density.
Taking the disk midplane temperature from Table 2, which was
calculated using Equation (5), we can compute the upper limits
on Σg for all of the rings. The results are listed in Table 3 as
Σg,max.

One can estimate a lower limit to the gas density by
demanding that the gas surface density must be at least as large
as the dust surface density, because dust trapping is unlikely to
achieve a larger concentration of dust than that. For the dust
surface density we use Equation (12) at r=r0, with

t t=n n( )r0
peak from Table 2. By demanding that

 t
k

S S = n

n

( ) ( )r 19g d 0

peak

abs

and using our standard opacity of k =n
-2.0 cm gabs 2 1 we arrive

at values for S =( )r rg,min 0 listed in Table 3 as Σg,min.
It is likely that even for larger values of the gas surface

density the dust–gas mixture becomes unstable to the
streaming instability and other types of instabilities, because
the dust will likely settle to the midplane, increasing the ratio
r rd g. We can quantify this. For a given ratio αturb/St, we
can compute the ratio hd/hp from Equations (16) and (17),
which tells us how strongly the dust is settled. The new
(and more stringent) lower limit to the gas density is
then S = S( )h hpg,min

sett
d g,min.

If the grains are much larger than l p ( )2 0.02 cm, the
opacity drops and the resulting dust surface density estimate
increases, also yielding larger values of Σg,min. Along this line
of thinking one can compute the largest grain radius for which
S < Sg,min g,max, i.e., for which the Σg,min is consistent with

>Q 2Toomre . This gives a lower limit to the dust opacity kn
abs

Table 3
Limits on the Free Parameters of the Dust Trapping Model

Source Ring Name wmin wmax Σg,min Σg,max amax =( )St a 0.02 cm wd/w a St a St αexmp

( )au ( )au -( )g cm 2 -( )g cm 2 ( )cm (for Σg,max) (for wmax) (for wmax) (for wmin)
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13)

AS 209 1 B74 5.6 19.6 2.3e–01 1.6e+01 4.7 3.2e–03 0.17 3.1e–02 5.7e–01 9.9e–05
AS 209 2 B120 10.3 19.6 2.6e–01 6.9e+00 1.2 7.6e–03 0.21 4.6e–02 1.9e–01 3.5e–04
Elias 24 1 B77 7.2 17.1 2.1e–01 1.8e+01 5.8 3.0e–03 0.27 7.7e–02 6.6e–01 2.3e–04
HD 163296 1 B67 6.8* 13.8 2.2e–01 4.0e+01 15.4 1.3e–03 0.50 3.3e–01 L 4.2e–04
HD 163296 2 B100 7.1 13.8 1.7e–01 2.0e+01 9.5 2.6e–03 0.34 1.3e–01 7.7e–01 3.3e–04
GW Lup 1 B85 7.5 9.9 1.6e–01 7.8e+00 2.7 6.7e–03 0.48 3.1e–01 6.8e–01 2.1e–03
HD 143006 1 B41 3.9* 10.1 1.1e–01 7.5e+01 60.6 7.0e–04 0.39 1.8e–01 L 1.2e–04
HD 143006 2 B65 7.3* 10.1 9.4e–02 3.4e+01 30.8 1.6e–03 0.72 1.1e+00 L 1.7e–03

Note. Columns 1 to 3 are the same as those in Table 2. (4) Lower limit to the pressure bump width wmin (for w hpd this is hp; for >w hpd , marked with the symbol *,
this is wd). (5) Upper limit to the pressure bump width wmax, derived from the separation between the rings (for AS 209, HD 163296, and HD 143006) or from the
separation of the ring to the nearest minimum (for Elias 24 and GW Lup). (6) Lower limit on the gas surface density Σg derived by demanding S Sg d. Note that this
involves the uncertainty inSd due to the uncertainty of the dust opacity model. (7) Upper limit on the gas surface density derived from demanding that the gas disk is
gravitationally stable. (8) Maximum grain size amax for which the derived dust surface density (based on the DSHARP opacity model) together with the gas surface
density remain gravitationally stable. (9) Example value of the Stokes number St for grains with a radius of 0.02 cm. (10) Estimate of the degree of dust trapping given
by the ratio wd/w (assuming that =w wmax). The smaller this number is, the stronger the dust trapping. (11) Value of a St derived for the widest gas bump.
(12) Value of a St derived for the narrowest gas bump. (13) Example value of αturb, computed for =w wmax, S = Sg g,max, and a=0.02 cm.

Table 4
The Gaussian Fit Values with Their Error Estimates

Source Ring A r0 σ

AS 209 1 -
+0.141 0.002

0.002
-
+74.180 0.074

0.072
-
+3.976 0.108

0.119

AS 209 2 -
+0.114 0.001

0.001
-
+120.429 0.076

0.078
-
+4.616 0.120

0.131

Elias 24 1 -
+0.228 0.002

0.002
-
+76.654 0.072

0.068
-
+4.927 0.134

0.133

HD 163296 1 -
+0.358 0.003

0.003
-
+67.741 0.055

0.056
-
+7.185 0.057

0.061

HD 163296 2 -
+0.215 0.002

0.002
-
+99.962 0.065

0.068
-
+5.169 0.117

0.126

GW Lup 1 -
+0.054 0.001

0.002
-
+85.552 0.315

0.443
-
+5.810 0.484

0.672

HD 143006 1 -
+0.138 0.003

0.003
-
+40.993 0.191

0.238
-
+5.092 0.318

0.403

HD 143006 2 -
+0.107 0.002

0.002
-
+65.161 0.261

0.247
-
+8.006 0.539

0.676

Note. Error estimates are obtained from the MCMC procedure described in Appendix B.
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and, as a result, an upper limit to the grain size. Given that the
total surface density is then twice the gas surface density (the
dust contributing the other half), we have to introduce a factor
of 2. The condition on the opacity is then:

k
t

Sn
n ( )2

. 20abs
peak

g,max

We now use the DSHARP opacity model (Birnstiel et al. 2018)
to translate this kn

abs into a grain radius. We arrive at values of
centimeters to half a meter (Table 3). These are conservative
limits, with real values likely to be substantially smaller.
Indeed, in the next subsection we will derive, from the values
of αturb/St in Table 3, much more stringent upper limits on the
grain size.

5.3. Application to the Observed Rings

We now apply the model of Section 5.1 with the limits on
the parameter ranges derived in Section 5.2 to the observed ring
widths wd listed in Table 2. The goal is to see which constraints
the observations can put on the physics of the observed rings of
this Letter.

From an assumed value of w and the measured value wd we
can directly compute the ratio αturb/St

a
yº = -

-⎡
⎣
⎢⎢
⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥ ( )w

wSt
1 , 21turb 2

d

2 1

where we used Equations (15) and (16), and set Sc=1. We will
consider two choices of w: the wmin and wmax from Table 3.

For the choice =w wmax (the widest possible pressure
bump) the dust rings are all narrower than the gas rings:

<w wd , as can be seen from the wd/w column in Table 3. This
implies that, under the assumption that =w wmax, the dust
trapping is operational. The ratio wd/w gives an indication
of the degree of dust trapping: the smaller this value is, the
closer the dust has drifted to the peak of the pressure bump
before turbulent mixing halts further narrowing of the dust ring.
The strength of the turbulence for this case is given by the
αturb/St column for =w wmax in Table 3.

One important result from this analysis is that, although
these rings are the narrowest that have been observed so far, the
ratio wd/w is never smaller than 17%, usually substantially
larger. This means that in all these rings turbulence prevents the
dust from forming even narrower dust rings. Perhaps this is
self-induced turbulence due to the largeS Sd g ratio in this dust
trap. Or it could mean that the dust is still not yet in drift-
mixing equilibrium, which would require the grains to be very
small (i.e., to have a very low value of St). In Section 6 we will
discuss an example of the latter scenario.

For the choice =w wmin (the narrowest possible pressure
bump) we can only use Equation (21) for the rings for which

<w hpd . The reason is that for those rings with >w hpd
(marked with a ∗ in Table 3) the minimal pressure bump width
is =w wmin d, and the dust ring is as wide as the pressure bump,
implying that dust trapping is weak or nonoperational. Any
increase of αturb/St will keep =w wd min, so one cannot derive
any value for αturb/St. But for other rings (those not marked
with ∗) we can compute αturb/St. The resulting values for both
choices of pressure bump width are given in Table 3, columns
11 and 12. They can be understood as the lower and upper
limits on αturb/St.

We conclude that for those rings not marked with the
∗-symbol in Table 3, our data is clear proof of dust trapping
occurring. For the rings marked with ∗ the narrowness of the
dust ring can also be explained simply by the narrowness of the
underlying gas ring without the need for dust trapping,
although it does not exclude dust trapping either.
The next task is to convert from Stokes number St to grain

radius agrain. The Epstein regime is valid for grain sizes of the
order of millimeters or centimeters, in which case agrain and St
are related by

p x
=

S
( )

a
St

2
, 22dust grain

g

where Σg is the gas surface density and xdust is the material
density of the dust grains. For the DSHARP opacity model
(Birnstiel et al. 2018) the average material density of the dust
aggregates is x - 1.67 g cmdust

3.
To get a feeling for the results, let us choose the grain size to

be =a 0.02 cmgrain , which corresponds to l p2 for
λ=0.125 cm (the wavelength of ALMA band 6). The
corresponding Stokes numbers, for the most massive possible
gas disk (S = Sg g,max), are listed in Table 3, column 9. This
then allows us to convert the value of αturb/St into a value of
αturb, which we shall call αexmp, indicating that it is an example
value for a particular choice of agrain. For the case =w wmax
this leads to values a = ¼ ´- -10 few 10exmp

4 3, listed in
Table 3, column 13.
These low values of αturb are consistent with the low values

or upper limits reported recently (Pinte et al. 2016; Flaherty
et al. 2018). However, it has to be kept in mind that the values
of a a=turb exmp were derived for an extremal choice of
parameters: =w wmax, S = Sg g,max, and only for grain radius
a=0.02 cm. For a smaller value of w, a lower value of Σg, or
larger grains, the computed value of αturb will increase. If we
take ring 1 of AS 209 as an example, and take =w wmin, we
see from Table 3 that a =St 0.57. Using S = Sg g,min (but
keep =a 0.02 cmgrain ) we get St=0.23 from Equation (22),
yielding a = 0.13turb . This is much higher than the value of
αexmp, and it demonstrates that it is hard to set a true upper limit
on αturb from these observations.
Can we derive a lower limit to αturb? This depends on

whether we have information about the grain size. The value of
αexmp is the smallest possible value of αturb consistent with the
data, for an assumed grain size of a=0.02 cm. Since
Equation (22) shows that agrain and St are linearly related, we
can generalize this to the smallest possible value of αturb

consistent with the data, for any given grain size agrain:

a a⎜ ⎟⎛
⎝

⎞
⎠ ( )

a

0.02 cm
. 23turb

grain
exmp

With the values of αexmp listed in Table 3 this shows that, even
for disks so massive that they are nearly gravitationally
unstable, we can exclude the combination of very low
a ´ - 5 10turb

4 and very large grains a 0.1 cmgrain for
all the rings of our sample. In many of the rings this constraint
is much more strict (i.e., toward smaller grains and/or stronger
turbulence).
To obtain estimates of the grain size we need spectral

information. At present we have only the high resolution data
for band 6, so we do not yet have information about the radial
profile of the spectral slope. But in several recent observations
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of the spectral index across ringed disks (ALMA Partnership
et al. 2015; Tsukagoshi et al. 2016; Huang et al. 2018) one
clearly sees that aspec varies across these rings, being closer to 2
at the ring center and substantially larger between the rings.
This makes sense in terms of the dust trapping scenario in
which we expect larger grains to be trapped more efficiently
(and thus dominate the peak of the ring) than smaller grains,
because the smaller grains will be more subject to turbulent
mixing. It is clear that we need such data to be able to constrain
agrain, and then, via Equation (23), set limits on the turbulence.

5.4. Including a Grain Size Distribution

So far we have only looked at a single grain size, for which
the solution is a Gaussian radial grain distribution centered
around the point of zero gas pressure gradient. The model fits
fairly well the near-Gaussian profiles that we observe.
However, in several rings we find a deviation from Gauss in
the form of an excess emission in the wings of the profile.
Could this be a result of a grain size distribution? To find out,
let us apply our model to the following power-law size
distribution:

= µ( ) ( )m a
dN

d a

dM

d a
a

ln ln
, 24p

where a is the grain size, m(a) is the corresponding grain mass,
N is the cumulative particle number, and M is the cumulative
dust mass. The parameter p is the size distribution power-law
coefficient, and it is p=1/2 for the usual MRN distribution
(this corresponds to µ =- -dN da a ap 4 3.5). We also need to
define limits amin and amax. The radial surface density solution,
Equation (45), then becomes:

p
S

= -
-⎛

⎝⎜
⎞
⎠⎟

( )
( ) ( )

( )
( )

( )d r

d a r w a

dM

d a

r r

w aln

1

2 ln
exp

2
. 25d

3 2
0 d

0
2

d
2

At each radius r the local size distribution is different from
other radii, with larger grains dominating near r=r0 and
smaller grains dominating in the wings.

To demonstrate the effect we will try to apply this multi-size
dust trapping model to ring 1 of AS 209. We set the gas ring
width to w=19.6 au, and gas surface density to

S = -16 g cmg
2, i.e., the maximum w and Sg as listed in

Table 3. We set a = ´ -1.1 10turb
3, p=1/2 (MRN slope),

= -a 10 cmmin
2 , and =a 1 cmmax . We take 10 grain size bins

logarithmically spaced in a. For the rest we take the same
parameters as those listed in Table 2. Since the relation between
the observed emission and the underlying dust mass is different
if we take a size distribution, we adjust the dust mass such that
the model yields a peak optical depth equal to the tn

peak value
from Table 2. We use the DSHARP opacities, which vary
strongly over the grain size range [ ]a a,min max we take.
The total optical depth profile of this model is shown in

Figure 6. To see if this profile displays excess emission in the
wings, we fitted a Gaussian to the core of the profile, in
the same manner as we did in Section 3. We find indeed that
the core behaves nicely as a Gaussian, while the wings have
excess, as expected. The total required dust mass increases to
110 M⊕.
However, the model is symmetric, so it cannot explain the

asymmetric excess of most rings. Some rings even show excess
only on one side. In Section 6 we will address another scenario
for the excess emission, which can also explain the asymmetry.
The most important results we obtained in this section are

summarized in Figure 7.

6. Planet Gaps As Dust Traps and Deviations from
Gaussian Shape

So far our models of dust trapping were quite idealized, in
particular, the assumption of a Gaussian pressure bump. In
reality the radial pressure profile is presumably better described
by a smooth background profile with perturbations imposed on
it. The background profile could be, for instance, a power-law-
like µ -( )p r r k with index k being k=−2.5. The perturbation

Figure 6. Total optical depth profile of the dust trapping model with a size
distribution (solid line). The dashed line shows the Gauss curve that best fits the
core of the profile.

Figure 7. Summary of the numbers resulting from the Gaussian dust trapping
model analysis, as listed in Table 3. Top: the values of αturb/St found for the
rings. Middle: the values of a aturb grain for two choices of grain size, for the
choice of =w wmax (leading to lowest possible values of a aturb grain). Bottom:
inferred range of gas surface density (bottom limit: S Sg d, top limit:
gravitational instability).
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could then be a pressure bump or a pressure dip, the latter being
the case for a planetary gap. Given that the overall background
pressure declines with increasing r, such a dip/gap, if strong
enough, could lead to a local pressure maximum at the outer
edge of the gap. That would then be where the dust gets trapped
(e.g., Rice et al. 2006; Pinilla et al. 2012a; Zhu et al. 2012).
This pressure maximum would then not be symmetric like the
Gaussian pressure bump model of Section 5, but instead is
likely to be shallower on the outside and steeper on the inside.

As we know from the analysis of Section 5, the widths of the
dust rings of our sample are, in most cases, not very much
narrower than the widths of the gas pressure bumps (see wd/w
column in Table 3). That means that the deviation of the gas
pressure bump from a Gaussian profile may affect the shape of
the dust ring profile too. If wd/w were to be very small, the dust
is only sensitive to the very peak of the pressure bump profile.
The larger wd/w is, the more the dust “feels” any non-Gaussian
deviations in the wings of the bump. For AS 209, with wd/w of
the order of 0.2 for both rings (for the choice =w wmax, see
Table 3, column 10), we thus expect the dust ring profiles to be
closer to Gaussian shape (modulo grain size distribution
effects) than for HD 163296, for example.

The question is: what do the wing-excesses in our ring
sample tell us about the shape of the underlying pressure
bump? And can we learn about its origin?

Rather than addressing this question in a very general
manner, we will start straight from the scenario of a gap-
opening planet. In another Letter of this series (Zhang et al.
2018), this hypothesis is investigated with detailed hydro-
dynamic simulations of planet–disk interaction. Here, instead,
we will reduce this hypothesis to a very rudimentary model: a
Gaussian dip in an otherwise smoothly declining pressure
profile. This produces an asymmetric pressure bump at the
outer edge of the gap.

The problem is now no longer a local one, but a global one:
all the dust beyond the gap may, in time, drift into the dust trap
and add to its mass. We are forced to leave analytical modeling
behind and employ numerical techniques.

Our model is a 1D viscous disk evolution model with a
single dust component added, which can radially drift and will
be prone to radial turbulent mixing. The equations of this
model are standard, and have been repeated numerous times in
the literature (e.g., Adachi et al. 1976; Brauer et al. 2007;
Garaud 2007; Birnstiel et al. 2010; Zhu et al. 2012; Sato et al.
2016). Here we repeat the basic ones. The gas surface density
obeys
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and the turbulent diffusion constant n= +( )D 1 Stturb
2 .

We will show here only a single example model, applied to
ring 2 of HD 163296. An extensive study, applied to all the
rings of this sample, will be presented in a forthcoming paper.
For our example model we set up a disk according to the classic
Lynden-Bell & Pringle model (Lynden-Bell & Pringle 1974;
Hartmann et al. 1998) with an initial radius of 100 au, an initial
disk mass of -

M10 1 . The temperature profile follows the
flaring angle recipe (Equation (5)) with j=0.02 at all times,
and the turbulence parameter is set to a = -10turb

2. We make a
Gaussian dent into the disk model at =r 85 aup by defining a
factor F(r)

= - -
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such that

S = S( ) ( ) ( ) ( )r r F r , 31gg 0

where S ( )rg0 is the unperturbed disk. We take the width of the
gap to be =w 6 augap and the depth to be f=2. If we would
viscously evolve the disk without accounting for the contin-
uous gap-opening force by the planet, this initial gap would
quickly be closed. To keep the gap open, without having to
include the complexities of planet–disk interaction (which
anyway would require at least a 2D analysis), we apply the
trick to replace the disk viscosity (but not the turbulent mixing
parameter) with

n n=( ) ( ) ( ) ( )r r F r . 32turb turb,0

Now we add the dust with an initial dust-to-gas ratio of 1:100.
As a grain size we take = ´ -a 4 10 cmgrain

3 . We do not
include grain growth in this model.
The results of this model are shown in Figure 8. One can see

that, as expected, the dust drifts into the local pressure peak
located at =r 101 au0 . As time goes by, more and more dust
piles up there. The dust trap essentially collects all the dust
from the outer disk regions. At 4Myr the dust pile-up is still
ongoing and no steady state is reached yet. This is due to our
choice of relatively small dust grains. Had we chosen larger
ones, the shape would have more quickly found its equilibrium
shape, but it would have been significantly narrower, which is
inconsistent with the observed dust ring width of ring 2 of HD
163296.
Overplotted is the analytic solution of Section 5. This

solution needs a value of w, which we numerically compute
from the second derivative of the midplane pressure profile:

= - =( ) ( ( ) )w p r d p r dr r r0
2 2

0 . We see that the width of the
numerical profile of the dust surface density is more or less
consistent with the analytic result, but its shape is much steeper
inside of r0, and much shallower outside. This has two causes.
One cause is the fact that the pressure profile is not a Gaussian,
but is asymmetric. The other is that even at 4 Myr there is still
dust flowing into the dust trap, in particular, from the outside.
The continuing steepening on both sides shows that the influx
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of dust declines with time, as the dust inside and outside of the
bump gets depleted.

This section shows the limitations of the analytic solutions of
Section 5. While the overall derived quantities such as the
width of the dust ring are fairly well described by the analytic
model, the deviations from Gaussian shape may not only be a
result of the grain size distribution, but, as we see in this
section, also due to the non-Gaussian shape of the pressure
bump and to the fact that the dust has not yet reached an
equilibrium state.

Given that the complexity of the numeric model is much
higher than our analytic models, we defer a more detailed
parameter study and application of this model to the DSHARP
sample to a follow-up paper.

7. Discussion

7.1. Why are Most Rings so “Fine-tuned”?

It is rather striking that in the analysis of the rings up to this
point we have found several rather “fine-tuned” properties. For
instance, the rings in the disks around AS 209, Elias 24, GW
Lup, and the inner ring in the disk around HD 143006 have a
width that is only roughly twice the beam size (between 1.6 and
2.7 times, to be precise), but none are unresolved. Given the
small sample, and the fact that we selected isolated rings, it is
very well possible that this is just coincidence. The fact that
some rings (in particular, the inner ring of HD 163296) are
clearly much wider, lends some support to this.

The derived peak optical depths for most sources (except HD
143006), assuming our model of the dust temperature is
correct, hover around 0.4, i.e., just in between the optically thin
and optically thick regimes. This also appears rather fine-tuned.
Part of the explanation could be the fact that we selected the
strongest-contrast rings in the DSHARP sample for our
analysis. That may explain why none of our rings have very
low optical depth. But it does not explain why none of them are
very optically thick (flat-topped).

Finally, many of the ring profiles are remarkably similar to a
Gaussian shape. This may be due to the fact that the rings are
only a few beams wide, which may make non-Gaussian

profiles appear more Gaussian after convolution. But it is
unclear whether this explanation is sufficient.
We therefore conclude that we do not know for sure whether

the “fine-tunedness” of the rings in our sample is a real signal
with a physical meaning, or an artifact of some kind. The
question is, to what extent this uncertainty could affect our
conclusions.
One of the main conclusions of our study is the fact that all

the rings in our subsample are spatially resolved, which shows
that the dust trapping is not effective enough to produce very
thin dust rings with w hpd . This is an important conclusion,
which is also reflected in the typical values of αturb/St we
derived (Table 3). Fortunately, this conclusion does not rely
only on the measurement of wd. It is also supported by a flux
argument: The intensity before convolution cannot exceed the
Planck function. So assuming that our temperature estimate is
correct, the minimal full width Dr of the dust ring would then
be psD = n ( )r A B T2 d , where the factor p2 originates
from the integral over the Gauss curve. For ring 1 of AS 209,
for instance, this gives a widthD r 3.36 au. This is about half
the FWHM of the current Gauss estimate. In other words: even
if, hypothetically, our measurement of the width of the rings is
entirely wrong, the fact that the rings are so bright (only about a
factor of 2 below the Planck function) shows that the rings
cannot be much narrower than the beam.

7.2. Can a Resolved Ring Be in Fact a Blend of Several
Unresolved Rings?

Are the rings we see truly single rings, or could they also be
made up of a concentric series of radially unresolved rings that
are blended into a single ring due to the beam convolution? It
is, of course, hard to answer in general, because we have no
observational means to resolve structures of sub-beam size.
But from the perspective of particle trapping by a pressure

bump this question can be rigorously answered. A long-lived
radial pressure perturbation in a protoplanetary disk cannot be
much narrower than about a pressure scale height hp(r) (Ono
et al. 2016). A dust ring produced by dust trapping in this
pressure bump may become rather narrow, dependent on a
variety of parameters, as discussed in Appendix F. But there
cannot be more than a single such dust ring in each
pressure bump.
For the wide rings of HD 163296, even under the most

optimistically low disk temperature (e.g., 10 K) the pressure
scale height at rings 1 and 2 are 2.4 au and 4.3 au, respectively,
which correspond to FWHM widths of 55 and 101 mas,
respectively. Clearly the ALMA observations in band 6, with
FWHM beam size of 51 mas, spatially resolve the pressure
scale height. This means that the ring separation will be
spatially resolved by ALMA, ruling out the possibility that the
wide rings are made up of a multitude of narrow rings, at least
in the dust trapping scenario.
However, the rings may be made up of many unresolved

clumps, such as those produced by the streaming instability.
Whether the presence of such clumpy structure has observable
consequences, in spite of the clumps being spatially unre-
solved, is an issue that requires deeper study. But one may
speculate that the self-regulation mechanism of the streaming
instability, as discussed above, may also lead to a self-
regulation of the optical depth or, equivalently, the covering
fraction of unresolved optically thick clumps.

Figure 8. Result of the numerical dust drift model described in Section 6.
Shown is the dust surface density of the dust near ring 2 of HD 163296 as it
piles up in the pressure bump induced by the gap centered at 85 au. The dotted
line shows, in a rescaled manner, the midplane gas pressure profile. The
dotted–dashed line shows the analytic solution of Section 5, normalized to the
final curve of the numerical model.
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7.3. Condition for the Streaming Instability

The “streaming instability” and related processes (Youdin &
Goodman 2005; Johansen & Youdin 2007; Bai & Stone 2010;
Kowalik et al. 2013; Schäfer et al. 2017; Schreiber &
Klahr 2018) play a fundamental role in the theory of planet
formation. Dust traps may be ideal places for this process to
operate, because in those regions one can expect the local dust-
to-gas ratio to be strongly enhanced over the background.
There is the concern that at the precise location of the pressure
maximum the streaming instability is killed because the gas
orbits exactly with keplerian velocity there. But slightly
adjacent to the pressure peak the deviation from Keplerian
motion is strong, and may drive such an instability. To keep
dust in those adjacent regions, turbulence is required to
counteract the trapping. If this turbulence is caused by the
streaming instability itself, this is a bit of a “chicken-or-egg”
issue. Auffinger & Laibe (2018) report a linear stability
analysis that indicates that the streaming instability can occur in
pressure bumps. Raettig et al. (2015) present simulations of
particle trapping and streaming instability in a vortex, which is
in many ways similar to the dust traps we study in this Letter.
But the final word on this matter has not yet been said. Let us,
for the purpose of the argument, assume that the streaming
instability, and the related process of gravoturbulent planete-
simal formation (Johansen et al. 2007), can indeed occur in a
pressure bump.

In the literature it is often mentioned that the streaming
instability requires a dust-to-gas surface density ratio of

S S 0.02d g or higher to operate (Bai & Stone 2010). This
can, however, not be directly compared to our models, because
this value of 0.02 was found for models without any
predetermined turbulence. The turbulence in those models
was induced by the streaming instability itself. In our analytic
model, on the other hand, we set the turbulence strength by
hand, by setting αturb to some value. In essence, we assume that
there is another source of turbulence, such as the magnetorota-
tional instability or the vertical shear instability, that determines
the mixing of the dust in the disk (see, e.g., Lyra &
Umurhan 2018).

According to Youdin & Goodman (2005) the true criterion
for the onset of the streaming instability is the ratio of dust and
gas volume densities r r 1d g . The midplane volume density
ratio for a single grain species with midplane Stokes number
St 1, and given surface density ratio S Sd g, depends on the

turbulent strength as

r
r a
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S
S
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33d

g turb
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(see Equation (17), and setting Sc=1). The criterion of
S S 0.02d g mentioned in the literature thus relates to the

criterion r r 1d g via the turbulent strength and the Stokes
number. Given that we do not compute the turbulent strength,
but prescribe it, we should rely on the more fundamental
volume density criterion of Youdin & Goodman (2005) to
assess whether the dust in our model triggers the streaming
instability or not.

To get some numbers, let us take ring 1 of AS 209. Let us
assume the widest possible pressure bump, i.e., =w wmax, for
which the ratios a = ´ -St 3.1 10turb

2, as listed in Table 3.
This leads, with Equation (33), to a dust-to-gas volume density
ratio that is 5.8 times larger than the dust-to-gas surface density

ratio. This means that the criterion by Youdin & Goodman
(2005) is triggered if S S 0.17d g . Given that S = Sd g,min
(by definition of the latter), we can look up its value in Table 3
and find that for S -1.4 g cmg

2 the streaming instability will
be triggered. Given that the disk becomes gravitationally
unstable for S -16 g cmg

2, this leaves only little more than a
factor of 10 room for Σg to avoid either the streaming
instability or the gravitational instability. Note that if we take a
narrower pressure bump (e.g., =w wmin), the ratio αturb/St
increases, making it harder for the streaming instability to
set in.
In the end we cannot, therefore, say with any certainty

whether the streaming instability is operating in these rings or
not. But we do find that the likelihood that the conditions are
triggered are realistic. The rings we see may therefore consist
of unresolved clumps, in which planetesimals may form
(Johansen et al. 2007).
However, one may then wonder why this does not

immediately convert all dust into planetesimals. This may be
due to a self-regulation effect: once a certain fraction of the
dust is converted into planetesimals, the remaining dust is no
longer dense enough to trigger strong enough clumping
(Drążkowska & Dullemond 2014).

7.4. Caveats of the Models

This Letter is meant as the initial step of a bottom-up
investigation of the ringlike structures found in the DSHARP
campaign: starting with the simplest analytic estimates, and
building up the complexity and realism of the models, so that it
becomes clearer what the data tell us—and what not.
Among the important aspects we have not treated in this

Letter are the dust back-reaction onto the gas (e.g., Gonzalez
et al. 2017; Johansen & Youdin 2007; Kanagawa et al. 2017b),
the origin of the pressure bumps and/or gaps (e.g., Pinilla et al.
2012a; Béthune et al. 2016; Takahashi & Inutsuka 2016;
Dullemond & Penzlin 2018), the detailed shape of planetary
gaps (e.g., Kanagawa et al. 2017a; Zhang et al. 2018), 2D and
3D effects, full radiative transfer (e.g., Bitsch et al. 2013; Flock
et al. 2013), dust growth and fragmentation (e.g., Birnstiel et al.
2010; Okuzumi et al. 2012), and many other things.
Also, if we include, for the analytic models of the dust traps,

a temperature gradient and a background density gradient, the
results may be affected. In particular the exact location of the
pressure peak may shift.
This Letter is therefore not meant to give definitive numbers or

conclusions. Rather, it is meant as a starting point for more
complex modeling campaigns. One such more complex model-
ing campaign is the hydrodynamic planet–disk interaction Letter
by Zhang et al. (2018).

8. Conclusions

We studied the radial structure of the eight most prominent
dust rings from the DSHARP sample, and investigated to what
extent they are consistent with, and/or indications of, being
dust traps.
We can summarize our conclusions as follows.

1. For the rings in AS 209, Elias 24, the outer ring of HD
163296, and the ring of GW Lup, the width is narrower
than the estimated pressure scale height. This is strong
evidence for dust trapping being at work.
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2. For the eight rings studied in this Letter we did not find
evidence against dust trapping.

3. The dust trapping may explain their longevity, given the
fact that dust grains tend to drift into the star on a short
timescale in the absence of dust traps (Pinilla et al.
2012b).

4. All rings are radially resolved, by factors σ/σb ranging
from 1.6 (ring B41 of HD 143006) to 3.2 (ring B67 of
HD 163296). When comparing the implied width of the
dust ring wd to the largest plausible width of the gas
pressure bump w, we find that the strongest dust trapping
occurs in AS 209, with wd/w ratios of 0.17 and 0.21 for
rings 1 and 2, respectively. For the other rings we find
larger wd/w values. This indicates that turbulent mixing
is at play, preventing the dust from being compressed into
an even narrower ring. Or it could mean that the dust
grains are so small, that they have not yet reached drift-
mixing equilibrium.

5. All rings have absorption optical depths in the range
0.2–0.5. When scattering is included, the total optical
depth may even be higher. But we can exclude complete
saturation: none of the rings are completely optically
thick. But until we have spectral information we cannot
exclude the rings to consist of unresolved optically thick
clumps with a beam filling factor in the range 0.2–0.5.

6. The narrow range in optical depth suggests that some sort
of self-regulation mechanism is operating, perhaps related
to planet formation processes.

7. The radial shape of the dust emission rings can mostly be
described by a Gaussian profile, consistent with dust
trapping of a single grain size in a Gaussian pressure
bump, in which the trapping force is in equilibrium with
turbulent spreading. In the wings some profiles have
excess emission, which may be an indication of a grain
size distribution, with small grains being spread out wider
than big ones. However, the excess is more often seen on
the outside than on the inside in the rings in our sample.
This may be an indication of ongoing influx of dust from
larger radii into the dust trap. Our simple numerical
model of dust trapping in the outer edge pressure bump of
a planetary gap also indicates that the asymmetry of the
gas pressure bump, being steeper on the inside than on
the outside, may be reflected in the dust as well.

8. The dust masses stored in the rings are of the order of tens
of Earth masses. The gas surface density is limited from
below by the demand that it should be at least larger than
the dust surface density. From above it is limited by the
gravitational stability criterion. This leaves a range of two
orders of magnitude for the gas surface density.

9. The high dust mass trapped in these rings makes it
plausible that the conditions for the streaming instability
are met (if the streaming instability indeed works in a
pressure trap). This could perhaps be the source of
turbulence that prevents the dust ring from becoming
ultra-narrow.

10. We estimate a lower limit of a - 10turb
4, but much

larger values of αturb are also consistent with our data. We
need spectral information to constrain the grain size and
dynamic information to constrain the width of the gas
pressure bump.

11. Given the not so small values of wd/w inferred for most
rings, the combination of very low a ´ - 5 10turb

4 and
very large grains a 0.1 cmgrain can be excluded by the
data. To be more precise, we can exclude aturb

a( )a 0.02 cmgrain exmp, with αexmp given in Table 3.
12. In addition to the dynamical arguments from conclusion

11, from opacity arguments we can put strong upper
limits on the grain size of 1 cm to half a meter, depending
on the ring.

13. Our analysis does not generate conclusions as to the
origin of the gas pressure maxima that trap the dust.
However, our scenario is completely consistent with their
origin being the formation of a planetary gap. If the
unperturbed disk has <dp dr 0, then a planetary gap
would produce a pressure bump at the outer edge of the
gap. See Zhang et al. (2018) for a detailed discussion of
this scenario in the context of the DSHARP survey.
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Appendix A
Symbols

As this Letter contains many equations and symbols, we
present in Table 5 a summary of the symbols used.
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Appendix B
Gauss Fitting Procedure

The radial intensity profiles were extracted from the images
using a procedure similar to that described by Huang et al. (2018a).
This procedure involves the fitting of an ellipse to describe the
inclined ring shape, the deprojection into a circular ring, and the
averaging of the intensity along the ring. This averaging procedure
enhances the signal-to-noise ratio considerably, by a factor of N ,
where N is the number of beams that fit along the ring. We
estimate the intrinsic noise simply by computing the standard
deviation along the ring. The resulting averaged radial intensity
profile Iν(r) thus also obtains an error estimate e( )r , which is
typically of the order of ∼1% of the peak intensity.

The rings display themselves as bumps in Iν(r). We choose
by eye a radial domain around the bump where we believe a
Gaussian description is justified. The inner and outer radii of
this domain are listed in Table 2. By choosing this domain we
can select a specific ring to fit, which is not possible when
doing the fitting procedure in the uv-plane.

We now fit a Gaussian profile to this bump

s
= -

-
n

⎛
⎝⎜

⎞
⎠⎟( ) ( ) ( )I r A

r r
exp

2
. 34gauss 0

2

2

We use the code emcee (Foreman-Mackey et al. 2013) to
perform a Markov Chain Monte Carlo (MCMC) procedure to
find the set of parameters s( )A r, ,0 that have the highest
likelihood. The sampling of n ( )I rgauss is about N 70 points
per beam in the radial direction. But of course these data points
are not independent: there is only one independent measure-
ment per beam (the multiple beams along each ring are already
accounted for by the accordingly reduced error). We therefore
have to multiply the error estimate of the data points by 70
before feeding it into emcee.
We use 100 walkers with 500 steps, and use the last 250

steps for our statistics. The most likely parameter values and
their error estimates are given in Table 5.

Table 5
Symbols and Their Meaning

Symbol Meaning Eq. of Definition

ν, λ Frequency and wavelength of the observation l n= c 0.125 cm

nI
gauss, nI

gauss,dec Gaussian fit to intensity profile, and its deconvolved version Equations (1) and (4)
A, Adec Amplitude A of Gaussian fit and its deconvolved version Adec Equations (1) and (3)
r0 Radius of ring at pressure peak Equation (1)
σ Width (standard deviation) of radial intensity profile of ring in astronomical units Equation (1)
bfwhm,as, σb Beam FWHM in arcsec, and its standard deviation in astronomical units s = d b 2.355b pc fwhm,as

dpc Distance in parsecs
wd Width of the dust ring in astronomical units Equations (2) and (15)
w, wmin, wmin Width of the gas ring, and its lower and upper limits Section 5.2
Tg, Td Midplane temperature in gas and dust Equation (5)
cs Isothermal sound speed m=c k T ms pB g

WK Kepler frequency *W = GM rK
3

hp, hd Pressure scale height of the gas, and vertical height of the dust layer Equation (6) 17)
kB, mp, G Natural constants: Boltzmann constant, proton mass, and gravitational constant
Sd, Sd

thin, Sd
gauss Dust surface density, its optically thin estimate, and its Gaussian fit Equation (7)

Σg, Σg,min, Σg,max Gas surface density, and its lower and upper limits Equations (19) and (18)
rd, rg Dust and gas volume density at the midplane

Md, Md
thin Dust mass in the ring, and its optically thin estimate Equations (8) and (36)

Bν Planck function
kn

abs Dust absorption opacity
a, amin, amax Dust grain radius, and its limits (for size distribution)
tn

peak Optical depth at the peak of the ring Equation (9)
τν(r) Optical depth profile of the ring Equation(11)
QToomre Toomre parameter Equation (18)
αturb, αexmp The turbulence α-parameter, and its value for a=0.02 cm Equation (41)
St Stokes number of the dust particles
Sc Schmidt number of the turbulence (usually set to 1)
ψ If y  1: constant dust/gas ratio; if y  1: strong dust trapping Equation (16)
xdust Material density of the dust grains

vgr, vdr Radial velocity of gas and dust, respectively Equations (27) and (29)

p Gas pressure at the midplane
nturb Turbulent viscosity coefficient n a= Wcs Kturb turb

2

D Turbulent diffusion coefficient n= +( )D 1 Stturb
2

wgap Width of the gap carved out by a planet
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Appendix C
Comments on the Gaussian Fitting in the Image Plane

versusthe uv-plane

For the interpretation of these rings in terms of dust trapping
it is critical to know the true width of the rings: whether they
are radially resolved or not. The ratio of the ring width in units
of the effective beam size is listed as σ/σb listed in Table 2.
This shows that all rings are radially resolved, most of them by
about 2K3 beam widths. Some rings are, however, only
marginally resolved, such as ring 1 of HD 143006, which is
only 1.6 beams wide. The closer σ/σb is to 1, the harder it is to
derive the true width, because it requires an increasingly
precise understanding of the convolution kernel.

By comparing our inferred ring widths to those inferred in
the uv-plane, we can get an estimate of the reliability of our
numbers. In the DSHARP series, three Letters analyze rings
from our subsample using model fitting in the uv-plane:
Guzmán et al. (2018) for AS 209, Isella et al. (2018) for HD
163296, and Perez et al. (2018) for HD 143006.

For AS 209 Guzmán et al. (2018) derive a ring width that is
10% narrower for ring 1 and 20% narrower for ring 2 than in
this Letter. For HD 163296 Isella et al. (2018) find roughly the
same width for ring 1, but a 18% wider ring 2. Finally, for HD
143006 Perez et al. (2018) find a 8% wider ring 1, and a 30%
wider ring 2.

For HD 143006, however, the rings are not very well
separated, meaning that the different fitting criteria between the
method of this Letter and that of Perez et al. (2018) is likely
responsible for the differences.

It is clear that the Gaussian fitting in this Letter has its
limitations. First of all, it lies in the nature of fitting a Gaussian
profile to something non-Gaussian that there will be a region
close to the peak where the curve fits the Gaussian reasonably
well, while the deviation will increase the farther away from the
peak one looks. This is particularly so in the present case,
because the fitting range was chosen to maximize the similarity
to the Gaussian shape near the peak. Second, we fit the
Gaussians in the image plane, not in the uv-plane. This means
that we do not fit to the actual data, but to a reconstruction of
the data, which may add additional sources of errors that are
hard to identify.

In Appendix I we show the results of a simple mock ring
test, showing that in principle the results derived from the data
in the image plane should be accurate enough for our purposes.

Appendix D
Computing Dust Mass Including

Mild Optical Depth Effects

Given that the shapes of the radial profiles are nearly Gaussian,
we have been tempted to assume that the dust emission is
optically thin, in which case Equation (8) gives the mass of dust in
the ring Md

thin. In reality the ring contains more mass, hidden by
the optical depth effects. If we assume that the real dust radial
profile is truly Gaussian (i.e., tn ( )rgauss ), this means that the
putative Gaussian shape we observe is apparently not real. We see
the function t- - n( ( ( )))r1 exp gauss instead of tn ( )rgauss . How-
ever, using numerical experimentation one can show that for mild
optical depths, such a profile can be fitted reasonably well by an
alternative Gaussian shape, with only minor deviations. This
alternative Gaussian curve is slightly broader than tn ( )rgauss and
has a substantially lower peak. For peak optical depths below

unity the fit is remarkably good. We call this “Gaussian mimicry,”
because a non-Gaussian radial profile poses as a Gaussian.
This means that we may think we are dealing with a

Gaussian shape, but the Gaussian parameters (width and
amplitude) are, in a manner of speaking, “fake.” The peak of
the real optical depth profile is, by definition, tn

peak. The peak of
the mimicked Gaussian is approximately t- - n( ( ))1 exp peak .
If the width of the real Gaussian is wd

true, then the widths of the
mimicked Gaussian has to be obtained through numerical
calculation. We use the scipy.optimize.minimize()
function of the SciPy library of Python to fit a Gaussian to the

t- - n( ( ))1 exp peak profile, which is the mimicked Gaussian.
The numerically obtained widths wd

mimick can be approximated
by the following formula:

 tº + +n ( ) ( )w

w
2.15 ln 1 0.148 1 . 35d

mimick

d
true

peak

This ratio is typically between 1 and about 1.15. The Gaussian
fitting of Section 3 evidently yields wd

mimick. So using
Equation (35) we can then compute from that wd

true. The
optical-depth-corrected dust mass is then


t

=
-

n
t- n

( )M M
e

1

1
, 36d

true
d
thin

peak

peak

where Md
thin is the optically thin mass estimate of Equation (8).

This optical-depth-corrected mass is also listed in Table 2. It is
only up to 20% higher than the optically thin mass.
These optical depth corrections are of course only valid if we

assume a smooth distribution of dust. If the dust is distributed
into a multitude of spatially unresolved optically thick clumps,
then much more mass could conceivably be hidden in these
clumps.
Note also that in dealing with the optical depth issues, we

have so far only concentrated on the absorption opacity. Dust
grains of sizes larger than a few hundred micron will, however,
have a substantial scattering albedo (see the discussion on the
DSHARP opacity model in Birnstiel et al. 2018). How this
affects the results is discussed in Appendix E.

Appendix E
Effect of Scattering Albedo

If the dust grains have a radius a comparable to the
wavelength of our observations, the scattering albedo can be
quite high. This means that the absorption optical depth can be
substantially lower than unity, even if the full extinction optical
depth (absorption plus scattering) is unity or larger. The
extinction of t  0.65 for ring 1 and t  0.75 for ring 2 found
in HD 163296 by Isella et al. (2018) from the CO maps could
thus be compatible with the absorption optical depth of
t  0.44 for ring 1 and t  0.33 for ring 2 we derived in
our Gaussian fitting procedure of the thermal dust emission (see
Table 2).
In fact, staying with the case of HD 163296, if we would

assume that the albedo is zero, i.e., that the measured extinction
optical depth from the CO maps equals the absorption optical
depth, then we would find rather low dust temperatures at the
location of the rings, which may be hard to explain
theoretically. If, however, part of the extinction is due to
scattering, then it is easier to remain consistent with the dust
temperature estimated from the flaring angle recipe.
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However, when scattering is included, the radiative transfer
becomes more complex than a simple use of a factor - t- ne1 .
In Birnstiel et al. (2018) we describe an approximate solution to
this problem for a thin slab model. In principle one would have
to replace in the above sections all instances of - t- ne1 with
the more detailed radiative transfer model of Birnstiel et al.
(2018).

Appendix F
Steady-state Dust Distribution in a Ringlike Trap

F.1. Analytic Approximate Solution of Dust Trapping

Let us consider a narrow gas ring around the star at radius r0
with a midplane pressure given by

= -
-⎛

⎝⎜
⎞
⎠⎟( ) ( ) ( )p r p

r r

w
exp

2
, 370

0
2

2

where w=r0 is the parameter setting the width of this
Gaussian gas ring. We assume that the gas is turbulent with
turbulent diffusion coefficient D. Dust grains get trapped in this
ring, and the dust will acquire a radial density profile that is in
equilibrium between the radial dust drift pointing toward the
peak of the gas pressure and radial turbulent diffusion pointing
away from that position. The radial dust drift velocity is (see,
e.g., Birnstiel et al. 2010):

=
+

+
+ W

⎜ ⎟⎛
⎝

⎞
⎠ ( )v v

d p

d r

c

r

1

1 St

St

1 St

ln

ln
, 38s

K
dr 2 gr 2

2

where cs is the isothermal sound speed and the Stokes number
St is defined as

= W ( )tSt , 39K stop

where tstop is the stopping time of the grains. We assume that
the gas radial velocity is zero: vgr=0, but we will briefly
discuss below how the solution shifts slightly away from the
peak of the pressure bump for ¹v 0gr .

The diffusion coefficient for the dust is (Youdin &
Lithwick 2007):

=
+

( )D
D

1 St
. 40d 2

We take D to be equal to the turbulent viscosity ν divided by
the Schmidt number Sc, which we usually set to Sc=1. We
use the usual α-prescription for the turbulence:

n
a= =

W
( )D

c

Sc Sc
. 41s

K
turb

2

If D is sufficiently small, the dust will get concentrated into a
ring with width wd that is substantially smaller than the width
of the gas ring w. In the following, we will ignore any terms
arising from the curvature of the coordinates. The steady-state
radial dift-mixing equation for the dust then becomes, in its
approximate form:

S -
S

=⎜ ⎟⎛
⎝

⎞
⎠ ( )d

dr
v D

d

dr
0. 42d dr d

d

Integrating this equation once, with integration constant zero
(which amounts to a zero net radial flux), yields

S =
S ( )v D

d

dr
. 43d dr d

d

From Equations (38) and (37) we can express vdr as

= -
W +

-
-

⎛
⎝⎜

⎞
⎠⎟( )

( ) ( )v
c

w
r r

St St
. 44s

K
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2

2 1 0

With this expression we can solve Equation (43) for Sd,
leading to the following simple analytic solution to the dust
trapping problem:

S = S -
-⎛

⎝⎜
⎞
⎠⎟( ) ( ) ( )r

r r

w
exp

2
, 45d d0

0
2

d
2

with

a
=

W +
=

-( ) ( )w w
D

c
w

St St

Sc St
. 46K

s
d

d
1

2
turb

As a side remark, we note that if vgr is non-zero and inward-
pointing, this solution shifts inward. We then replace -( )r r0

in Equation (45) by d- -( )r r r0 , with

d =
+


⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟( )

( )r
w v

D

w

h

v

v
r

1 St

1

St
. 47

p K

d
2

gr

d
2

2
gr

0

One can see that this shift is independent of the width of the
dust ring set by the turbulence. Note that in the above shift it is
assumed that vgr is constant across the pressure bump, which
breaks mass conservation for the gas. The above treatment of

¹v 0gr is therefore only a rough approximation. We will from
here onward return to our assumption that vgr=0.
The normalization constant Σd0 in Equation (45) can be

approximately expressed in terms of the total dust mass trapped
in the pressure bump:

ò òp p= S S
¥ ¥

( ) ( ) ( )M r rdr r r dr2 2 , 48d
0

d 0
0

d

which leads to

p
S 

( )
( )M

r w2
. 49d0

d
3 2

0 d

The approximation is best for narrow dust rings.
Note that this analytic solution is only valid as long as

a  Sc Stturb , or in other words as long as wd is substantially
smaller than w. This solution is, in fact, the radial version of the
vertical settling–mixing equilibrium solutions of Dubrulle et al.
(1995).
Unfortunately, the condition that a  Sc Stturb (and equiva-

lently w wd ) is easily broken for small grains and/or
nonweak turbulence. In that case our assumption of a constant
St becomes invalid. Dust will be turbulently mixed to distances

-∣ ∣r r w0 , where the Stokes number of the grains increases
due to the decreasing gas density. This invalidates the simple
Gaussian solution, at least in principle.
Given the similarity between the radial dust trapping

problem and the vertical settling problem, one can show that
the radial version of the solution of Fromang & Nelson (2009)
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reads:

a
S = S -

D
- -

D⎡
⎣
⎢⎢

⎛
⎝⎜

⎛
⎝⎜

⎞
⎠⎟

⎞
⎠⎟

⎤
⎦
⎥⎥( ) ( )r

r

w

r

w
exp

Sc St
exp

2
1

2
, 50d d0

0

turb

2

2

2

2

where we defined Dr as

D º -( ) ( )r r r 510

and St0 is the value of the Stokes number at the peak of the
pressure bump. The solution Equation (50) is valid for any
value of a Sc Stturb 0, as long as αturb and Sc remain constant
along the radial width of the dust trap, the grains remain in the
Epstein regime, and w=r0, to prevent geometric terms from
the cylindrical coordinates from dominating. One can easily
verify that Equation (50) reproduces the simpler Gaussian
solution Equation (45) for D r w. One can also verify that
for a  Sc Stturb 0 the shape of S ( )rd follows the shape of the
gas pressure profile p(r) (Equation (37)).

Although this solution is more complete than the simple
Gaussian solution, it turns out that the differences are only in
the very wings of the profile. It will be very hard, if not
impossible, for ALMA to distinguish.

For that reason we will in this Letter stay with the simpler
solution. To allow the simpler solution to also remain
reasonably valid for high turbulent strength, we will replace
Equation (46) with y= + - -( )w w 1d

2 1 2, where ψ given by
y a= Sc Stturb , which turns out to be a very good
approximation.

Appendix G
Stability of Gas Ring

We have assumed a simple model of a pressure bump: a
Gaussian radial pressure profile given by Equation (13).
However, it is known that if the radial pressure gradient is
too steep, a Rossby wave instability can occur (Li et al. 2000),
which will destroy the axial symmetry of the ring. The stability
of Gaussian gas rings in a potential well has been studied
extensively by Ono et al. (2016). From their Figure 6 it can be
inferred that for the ring to remain stable, it cannot be much
narrower than its vertical extent.

Let us quantify this using the Solberg–Hoiland stability
criterion. Define SH as

k= + ( )NSH . 522 2

If >SH 0 then the disk is stable. If <SH 0 then the disk is
unstable. We follow Li et al. (2000), their Equation (22),
though with midplane density and pressure. The κ is given by
the derivative of the specific angular momentum in the
following way:

k = ( )
r

dl

dr

1
, 532

3

2

where = fl v r is the angular momentum of the gas. Due to the
pressure gradient, this is not exactly the Keplerian angular
momentum, but:

= + ⎜ ⎟⎛
⎝

⎞
⎠ ( )l l c r

d p

d r
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, 54K s

2 2 2 2

where = Wl rK K
2. The Brunt–Vaisala frequency is given by:
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r
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dr p
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1 1 1
, 552

where γ is the adiabatic index. Let us, for the sake of simplicity,
assume that the dimensionless scale height of the disk, hp/r, is
constant with r, which implies that µ µc T r1s

2 . The
pressure profile is given by Equation (13). With some algebra
we find:

k = W - -⎜ ⎟
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This leads us to

gW
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Close to r0 the first two terms between the {} brackets are
roughly 1. For γ=7/5 we get 1–1/γ=2/7.
We see that if h wp , then the Gaussian pressure bump is

stable ( >SH 0). However, for h wp we find <SH 0, and
the ring becomes unstable.

Appendix H
An Effective 1D Kernel Consistent

with 2D Beam Convolution

The convolution of the emission from a 1D axisymmetric
disk model is a 2D process due to the inclination of the disk
and the ellipticity of the interferometrically synthesized beam.
This means that, in order to compare such a 1D model to the
data, we need to convert it into a 2D model (or even a 3D
model if the disk’s vertical thickness is non-negligible), and
then put it at an inclination, project it onto the sky, and perform
a 2D convolution with the elliptic beam. This image can then
be compared to the measured image. While straightforward,
this is a computationally costly procedure.
For the limiting case of a geometrically extremely thin layer

of thermally emitting dust it is, however, possible to describe
this 2D convolution procedure analytically, as long as we focus
on radii r much larger than the beam size. This leads to an
“effective 1D convolution kernel” that can be applied directly
to the 1D model emission and compared directly to the 1D
radial intensity profiles extracted from the observations.
The procedure involves a linear average of convolutions

along radial rays in the image plane. Due to the inclination of
the disk and the ellipticity of the beam, each of these
convolutions smears out ringlike structures in the disk to a
different degree. Typically the smearing, relative to the radial
coordinate r in the disk plane, is more severe along the minor
axis of an inclined disk by a factor i1 cos compared to the
major axis. Likewise it is more severe along the major axis of
the beam by a factor of s smaj min compared to the minor axis,
where smaj and smin are the standard deviation beam widths
along the major and minor axes of the beam, respectively.
We first deproject the annulus, thereby stretching the beam in

the direction of the minor axis of the disk. Then we perform a
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linear coordinate transformation to make the beam circular again.
The annulus has, by then, become elliptic once more. The task is
to calculate the width of the segment of the annulus in this
skewed coordinate system along a given ray. The relative width
of the circularized beam to the width this segment is a measure of
how strongly the beam affects the annulus along this ray.

The averaging will be done in the coordinate f, which is the
azimuthal coordinate in the plane of the disk. We denote the
inclination as i, the position angle of the disk’s major axis as α,
measured east-of-north. The position angle of the beam is
denoted as ξ, and is defined in the same manner as α. The
azimuthal coordinate f is clockwise when viewed at inclination
i=0, and f=0 lies along the minor axis, east of the center
when α=0. These definitions are the same as those used by
Huang et al. (2018b).

We start with an annulus width of dr in the plane of the disk,
the annulus being the radial range d+[ ]r r r, . After deprojec-
tion this width has changed to

d d
f f

¢ =
+

∣ ∣ ( )r r
i

i

cos

cos cos sin
. 59

2 2 2

This projection also changes the angle of the annulus segment on
the sky. If b f= is the original angle between the segment and
the major axis of the projected disk, then the new angle b¢ obeys

b b¢ = itan cos tan . Next we rotate the coordinate system such
that the elliptic beam lies horizontal. The new angle of the annulus
segment b is now b b x a p = ¢ + - - 2, measured clock-
wise from positive x-axis. The final projection leads to a width:

d d
s s

b s s b
 = ¢

 + ( )
( )r r

cos sin
. 60

min maj

2
min maj

2 2

From this we can say that the smearing-out of the annulus
segment by the beam (the ratio by which the beam segments
gets wider by the convolution) is d d ( )r r times stronger than if
a circular beam with s s´min min would be applied in the
deprojected disk plane. In the coordinate r the radial beam
standard deviation width along this ray is then

s f
d
d

s=
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( ) ( )r

r
. 61ray min

The effective 1D convolution kernel, to be used in
conjunction with the r-coordinate in the disk plane, is then:

òp
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where s¢ -( )K r r i, , b is the Gaussian kernel with standard
deviation σb. The 2D convolution then becomes again a 1D
convolution, but with the effective kernel:

ò= ¢ ¢ - ¢n n
¥

( ) ( ) ( ) ( )I r i I r i K r r i dr, , , . 63conv

0
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In most cases this complex effective kernel can be
approximated fairly well with a Gaussian kernel with average
width given by:

s
s s

=
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( )
icos

. 64av
min maj

Only when the disk has a large inclination and the beam is
strongly elliptic will this approximation fail.

Appendix I
Mock Ring Test

Strictly speaking, comparing a model to interferometric data
is best done in the uv-plane. But the high quality of the ALMA
data allows also a model comparison in the image plane.
The advantage is that one can select individual features while
ignoring the rest. In this Letter we analyze our data close to
the spatial resolution limit. To check the reliability of this, we
perform here a simple test: We set up a single mock ring
inspired by ring 1 (B74) of AS 209, with the width

=w 3.07 aud from Guzmán et al. (2018), add some reasonable
noise, simulate the ALMA visibilities, put these data through
the DSHARP imaging pipeline, and extract the radial profile.
We compare this result to a simple 2D convolution of the mock
ring, as well as to the 1D convolution with the effective kernel
discussed in Appendix H.
The mock ring, its 2D convolved version, and the end result

of the imaging pipeline (after noise was added) are shown in
Figure 9. The resulting 1D extractions are shown in Figure 10.
The optical depth effects made the unconvolved mock ring
emission a bit wider than the underlying dust ring:

Figure 9. Mock ring test. Left: the input mock ring, inspired by ring 2 of AS 209, assuming a width of =w 3.07 aud . Inclination and position angle are the same as those for
AS 209. Middle: the mock ring convolved with the Gaussian beam appropriate for AS 209. Right: the mock ring, with noise added, put through the DSHARP imaging pipeline.
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s = 3.27 au. For the 1D-convolved ring (using the effective
kernel) we find s = 3.76 auconv , for the 2D-convolved ring
we find s = 3.85 auconv , and for the full pipeline we
find s = 3.86 auconv .

These results show that in principle there should be no
appreciable difference between the spreading of the emission
by the simulated observation and the 2D and 1D convolutions.

The fact that the uv-plane fitting results of Guzmán et al.
(2018) for AS 209, Isella et al. (2018) for HD 163296, and
Perez et al. (2018) for HD 143006 result in widths that are not
exactly the same as those in this Letter may be due to the
different fitting criteria used. The fitting in the present Letter
focuses on the shape near the peak of the radial intensity
profile, while the fitting in the uv-plane acts on the the full data
set. Whether this fully explains the differences remains unclear.
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