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Abstract—Pedestrian safety continues to be a significant con-
cern in urban communities with distraction being one of the
main contributing factor behind serious accidents involving
pedestrians. The advent of sophisticated mobile and wearable
devices, equipped with high-precision on-board sensors capable of
measuring fine-grained user movements and context, provides a
tremendous opportunity for designing effective pedestrian safety
systems and applications. Accurate recognition of pedestrian
distractions in real-time given the memory, computation and com-
munication limitations of these devices, however, remains a key
technical challenge in the design of such systems. Earlier research
efforts in this direction have primarily focused on achieving high
distraction detection accuracy, resulting in techniques that are
either resource intensive and unsuitable for implementation on
mainstream mobile devices, or computationally slow and not real-
time, or require specialized hardware and thus less likely to be
adopted by most users. Our goal in this paper is to design a
pedestrian distraction detection technique that overcomes some
of these shortcomings (of existing techniques) and achieves a
favorable balance between computational efficiency, detection
accuracy, and energy consumption.

Index Terms—Pedestrian, distraction, mobile, wearables.

I. INTRODUCTION

Pedestrian safety has become a critical concern as the
number of serious and fatal injuries due to pedestrian-related
accidents continue to steadily rise every year [1]. As one of the
major causes of such pedestrian-related accidents, distracted
driving has received significant attention over the past decade
[2], which has resulted in a host of techniques to detect and
overcome distraction during driving. However, nearly 50%
[3] of all traffic related pedestrian deaths can be attributed
to distraction among pedestrians (for example, inattentiveness
while crossing roads and failure to obey traffic signs) rather
than distracted drivers, which highlights the significant role
pedestrian distraction plays in these accidents [4], [S]. Besides
this, distracted pedestrians are also susceptible to other non-
traffic hazards in indoor and outdoor environments, such as,
falling over the edge of a subway platform, walking into obsta-
cles, falling down a stairway, colliding with other pedestrians,
and falling into an uncovered sewer manhole [6]. It is evident
that distracted pedestrians pose a significant threat not only to
their own safety, but also to the safety of other pedestrians (and
drivers), and effective systems and mechanisms to overcome
this threat are critically needed.
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A pedestrian safety system typically comprises of two main
components (Figure 1): (i) a distraction or hazard detection
component, and (ii) an accident prevention component. The
advent of mobile and wearable devices (e.g., smartphones
and smartwatches), equipped with a variety of high-precision
sensors capable of capturing fine-grained user movements
and context, provides a great opportunity to design sound
distraction detection and recognition techniques. However,
designing techniques that are accurate, efficient and real-time,
is not straightforward, due to the memory, computation and
communication limitations of these devices.

Several recent research efforts in the literature have at-
tempted to improve pedestrian safety by detecting hazardous
contexts (e.g., incoming vehicles, obstacles, uncovered man-
holes, etc.) with the help of data available from users’
smartphone camera [7]-[10] or from specialized sensors (e.g.,
ultrasonic sensors or depth cameras) attached to the phones
[11]-[13]. In addition to shortcomings such as reliance on
smartphone camera feed or other specialized sensors and de-
vices which limits their functionality, several of these schemes
employ computationally-intensive data processing techniques
that are challenging to implement on resource-constrained
mobile and wearable devices. More importantly, the above
techniques fail to generalize the problem of pedestrian distrac-
tion detection by not considering a diverse range of complex
and concurrent activities that commonly resemble distraction,
for example, detecting when users are walking, running or
descending staircases and simultaneously reading, eating or
drinking [14], [15]. As a result, the above solutions are unable
to recognize a wide variety of distracting activities.

The key to designing a pedestrian safety system that has
broad application and usage is to first generalize the problem
of detecting distracted pedestrians as a concurrent activity
recognition (or CAR) problem. Several robust and accurate
CAR frameworks that detect and recognize a variety of
human activities, and their complex combinations, by using
data available from commercial mobile and wearable device
sensors have already been proposed in the literature [16]-
[19]. However, the applicability of these models for pervasive
pedestrian distraction detection applications is unclear and has
not been well-studied. It appears that a majority of these CAR
models proposed in the literature, owing to their use of compu-
tationally expensive data processing and analysis techniques,
could be challenging to implement and/or efficiently operate
on consumer-grade mobile and wearable devices that possess
limited computational and energy resources.
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These shortcomings necessitate further investigation in two
directions, which will be pursued by us in this paper: (i) is it
possible to design a generic pedestrian distraction detection
approach that can operate on existing commercial mobile
and wearable devices and achieve a favorable balance be-
tween computational efficiency, detection accuracy, and energy
consumption? and (ii) how do existing concurrent activity
recognition frameworks perform in a pedestrian distraction
detection scenario? In line with these objectives, we first
design a novel complex activity recognition technique, called
Dominant Frequency-based Activity Matching (DFAM), which
employs a lightweight frequency matching approach on motion
(accelerometer and gyroscope) data available from users’ mo-
bile and wearable devices to accurately and efficiently detect
and recognize a wide variety of complex pedestrian distraction
related activities. Next, we undertake a comprehensive com-
parative evaluation of the proposed technique with well-known
complex activity recognition approaches in the literature by
means of data collected from real human subject pedestrians.

II. RELATED WORK

Pedestrian Safety Systems: Several research efforts in the
literature have employed mobile and/or wearable devices to
improve pedestrian safety by detecting hazardous contexts
using users’ smartphone camera [7]-[10]. One significant
drawback of all these proposals is that they employ costly and
resource-intensive image capture and processing techniques,
which can adversely impact the performance and battery-
life of mobile devices, thus diminishing their chances of
being adopted by users. Reliance on a smartphone’s camera
also restricts the ability of these techniques to operate when
the camera is obstructed, for example, in a user’s pocket.
Techniques for aiding pedestrian safety that do not rely on
the camera input, but rather on a smartphone’s microphone
[20] and GPS [21] have also been proposed. However, these
are useful only in detecting outdoor traffic-related hazards
scenarios. Furthermore, techniques that employ specialized
devices and sensors for improving pedestrian safety have also
been proposed. Lookup [22] uses information from specialized
motion sensors attached to pedestrians’ shoes to profile step
and slope in order to detect curbs, ramps and other obstruc-
tions. Similarly, Ramos and Irani [11] used a depth camera
(paired with a smartphone), while Ahn and Kim [12] and [13]
employed an ultrasonic sensor for detecting pedestrian hazards
and/or for guided navigation. Besides relying on specialized
sensors, these systems attempt to address pedestrian safety by
detecting obstacles or other potential hazards (to pedestrians).
In this paper, we take an orthogonal approach to pedestrian
safety by attempting to detect inattentiveness among pedestri-
ans, after all if pedestrians are not distracted they will be able
to easily navigate away from obstacles and other hazards.

Concurrent Activity Recognition (CAR): The problem
of detecting distracted pedestrians can be generalized as a
concurrent activity recognition or CAR problem where the
goal is to detect concurrent pedestrian activities of being
mobile (e.g., walking, running or climbing/descending stairs)
and being distracted (e.g., texting, eating or reading). CAR
techniques that can distinguish different combinations of ele-
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Fig. 1: A generic pedestrian safety system.

mentary activities have been extensively used in the literature
for complex human activity recognition. For instance, Shoaib
et al. [17], [23] used multi-source and multi-sensor motion
data, from two smartphones, one in trouser pocket and the
other on the wrist, to recognize activities that involve hand
gestures, such as smoking, eating, drinking coffee and giving
a talk. Liu et al. [18] also employed multi-sensor time series
data to recognize sequential, concurrent, and generic complex
activities by building a dictionary of time series patterns
(called shapelets) to represent atomic activities. However,
several shortcomings in these approaches, as outlined below,
prevent them from being effectively used in pedestrian safety
applications. For instance, [23] requires the system to keep
track of time segments that precede and follow the current
one and thus unsuitable for pedestrian safety applications that
require real-time operation and feedback. Others are not suit-
able for implementation on resource-constrained mobile and
wearable devices, primarily due to their use of complex feature
sets and classification functions. As discussed before, one of
the main functional requirement for a mobile/wearable device
based CAR framework for pedestrian safety is computational
and energy efficiency. Earlier research efforts in energy-aware
recognition mechanisms [19] have achieved a favorable bal-
ance between classification accuracy and energy consumption,
but these schemes have been successful in recognizing only
simple activities, such as, standing, walking and sitting, but
not concurrent activities.

III. PEDESTRIAN DISTRACTION DETECTION

As outlined earlier, any pedestrian safety system typically
comprises of two main components (Figure 1): (i) a distraction
or hazard detection component, and (ii) an accident prevention
component. In this paper, we primarily focus on the former.
Figure 1 depicts the design of a generalized learning based
framework which is the main building block for pedestrian
distraction detection in such systems. As shown in the figure,
the distraction detection framework comprises of: (i) a data
processing module (includes, noise removal, segmentation, and
feature generation), and (ii)) a CAR model building phase
(includes design of an appropriate activity classification func-
tion and training it using processed labeled training data).
Once a trained CAR model is available, it can be used to
recognize (or classify) distracted pedestrian activities. Such a
design of the distraction detection framework is commonly
employed in the literature (and in practice) for pedestrian
safety and other applications, and will also be employed by
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us in this paper. Our distraction detection framework relies
on multi-sensor data obtainable from multiple mobile devices
carried by the pedestrians, specifically, motion (including, data
from accelerometer and gyroscope sensors) and contextual
information from the pedestrian’s smartphone and smartwatch.
The data processing module in our framework filters this
multi-sensor data (to eliminate errors and inconsistencies),
segments it into fixed-size blocks or windows, and extracts
relevant features from it. It should, however, be noted that
the data processing task may vary depending on the chosen
CAR technique. The extracted features are then used to
train appropriate CAR models within a supervised learning
paradigm. These trained CAR models are utilized by our
framework for distracted activity classification or recognition
tasks. As an appropriate CAR technique is central to the
design of a pedestrian distraction detection framework that can
attain a practicable balance between computational efficiency,
detection accuracy and energy consumption, in this section
we focus on designing such a technique. Technical details
of our proposed CAR technique, referred to as DFAM, are
presented next. We also outline other well-known techniques
that have been employed in the literature [17], [23] for
similar activity classification tasks, as we later empirically
compare the performance of our DFAM technique against
these classical activity classification techniques.

A. Dominant Frequency-based Activity Matching (DFAM)

A majority of the time domain features utilized for con-
current activity recognition [17], [23] are computationally
intensive and thus not suitable for real-time pedestrian dis-
traction detection. Moreover, with multi-source (smartphone
and smartwatch) data, data fusion (before feature extraction)
proves to be a challenging task owing to source (time)
synchronization issues in high-precision data streams. Our
proposed DFAM CAR technique addresses this problem, and
is capable of computing features (frequency domain, partic-
ularly dominant frequencies) directly and independently on
the different devices, such as smartphone and smartwatch.
Moreover, DFAM can utilize multiple frequency bins to extract
more than one dominant frequency, which can be used to
characterize and recognize activities more accurately. As a
result, by using frequency domain features, we can avoid
resource intensive sample-to-sample synchronization required
before computing multi-source time domain features.

DFAM is inspired from the audio matching algorithm pro-
posed by Avery Wang [24]. Proprietary versions of Wang’s
algorithm are commonly used in popular song searching
applications, such as Shazam. Due to the significant differences
between audio (found in audio files) and motion data (sampled
from the smartphone and smartwatches), it is non-trivial to
use Wang’s audio matching algorithm directly for activity
recognition using motion data. In the audio matching applica-
tion, matching features in the test audio file occur at almost
identical relative time offsets from the beginning of the audio
file being matched to. In contrast, motion data from pedestrian
activities generally does not occur at exactly fixed time offsets,
therefore requiring a new matching algorithm. Other differ-
ences between motion and audio data include a significantly

lower sampling rate of smartphone and smartwatch motion
sensors (compared to audio data which is generally sampled
at a much higher frequency) and distinctly different dominant
frequency ranges of both types of data. Recently, Sharma et al.
[25] successfully applied dominant frequency-based activity
matching for simple (non-concurrent) activities, using fixed
threshold-based classifiers. In this paper, we use preprocessing
techniques used by Wang [24] and extend Sharma et al.’s work
significantly in order to recognize concurrent activities related
to pedestrian distractions.

DFAM Training: During the training phase, (low-pass)
filtered time-series motion data from the smartphone and
smartwatch, denoted as T, and T,,, respectively, corresponding
to each activity of interest is first segmented into smaller fixed-
sized windows of W samples in a sliding fashion with possible
overlap for maximum data utilization. Let’s assume that this
motion data is sampled at a frequency f.

Tp = {'bp.2bps ., "bpl; Tow = 'y, *bu, ., "Dy} )
sizeof(T)) sizeof(Ty)
where m = —— and =
w w

After this pre-processing step, the frequency response of
each window in T}, and T,, is independently calculated using
a discrete Fourier transformation technique such as a fast
Fourier transform (or FFT [26]). Let the frequency responses
corresponding to 7, and T,, be represented as F, and F,,
respectively.
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where ir, = FFT(b,) and 'r,, = FFT(b,)

Each of the frequency response blocks 'r), € F,, and 'r,, € F,,
are then analyzed for a dominant frequency in g (empirically
determined) frequency bins, with one dominant frequency in
each bin:
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All of the observed dominant frequency in each of the g
bins are then hashed (or compressed) to create a ‘signature’
for the activity. As we are employing multiple devices and
sensors, with each sensor possibly outputting measurements
across multiple dimensions (e.g., each accelerometer sensor
measurement is across three dimensions), each training data
point will consist of measurements across multiple dimen-
sions. For example, a dominant frequency analysis on three-
dimensional (x, y, z) time series data window will result in a
three-dimensional training point (Hx, H,, H;), where H, H,,
and H, are the hashes of dominant frequencies on respective
axes. Now, let us denote the set of all distracted activities as
D, and the set of all pedestrian activities as P. For each activity
a, € P, a training dataset made of equalized data points
is created during the training phase, and stored along with
the corresponding label a,,. Similarly, for the each concurrent
activity a,, € PxD, another training dataset made of equalized
data points is created during the training phase, and stored
along with the corresponding label a,,.

DFAM Activity Classification: To correctly classify the
current or test user activity (say, a.), DFAM employs a
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dominant frequency matching technique using the labeled
training data (from the previous phase), as described below.
Given a test window with s-axis signatures, the activity is
matched using the following scoring function:

0 it X5, F(CH, "H ) =0
(})v if Zizl F(CHk,"ai“H]i"’) =1
(%)s if Zi:] F(CHk,‘”i"H,i‘J) )

if 3% F(CH, "0 H) =5 -1
if $5_ FCH, ™" H7 =

where §; j(a.) is the matching score per training instance
J in each activity a; € P x D, “Hi is the current activity
signature from k-th sensor axis, “ai“H;{’] is the signature from
k-th sensor axis of j-th training instance of activity a;, and

0 a#b

The above scoring function gives exponentially more weight
to multi-dimensional signature matches, which will intuitively
result in a higher score when matching with the ground truth
activity. Finally, the activity is classified after matching against
the entire training dataset of all activities as follows:

argmax »'S; j(ac) Va; €PxD 3)
i

The current activity a. is then classified as that activity a;
which achieves the maximum aggregated score as shown in
Equation 3.

B. Traditional Classifiers

Traditional supervised learning-based classification func-
tions, such as Naive Bayes (NB), Decision Tree (DT), Ran-
dom Forests (RF), Support Vector Machine (SVM), k-Nearest
Neighbours (k-NN), have been successfully used in the liter-
ature (and in practice) for detecting complex and concurrent
human activities [17], [23]. Given that distracted pedestrian
activities are inherently concurrent activities, these supervised
learning-based techniques comprise of a suitable candidate set
for a comparative performance evaluation with our proposed
DFAM technique. Below, we outline how these classification
techniques are employed within our pedestrian distraction
detection framework, and provide details on the related data
pre-processing, feature extraction and model training tasks.

Data Processing: The (low-pass) filtered time-series motion
data from the smartphone and smartwatch, denoted as 7}, and
T,, respectively, corresponding to each activity of interest is
first segmented into smaller fixed-sized windows, as discussed
earlier for DFAM. Each of the motion data stream 7), and T,
comprises of both the accelerometer and gyroscope sensor data
sampled along all the three axes at some frequency f;. A set
of time and frequency domain features, as have been employed
in the literature [17], [27]-[30] for activity recognition (and
briefly outlined below), are then computed from each window
of the time series motion data streams.

o Mean, minimum, maximum, standard deviation, variance,
along with energy and entropy of discrete FFT components
for each of the three axes of both the accelerometer and
gyroscope time-series data.

« Root mean square (RMS) correlation measures among the
three axes for each of the accelerometer and gyroscope data.

o Mean, median, and maximum of the instantaneous speed
(only for the accelerometer data)

o Mean, median, and maximum of roll velocity (only for the
gyroscope data)

As the motion time-series of an activity comprises of several
windows, features computed for all the windows are com-
bined to create a feature set for that activity. This process
(filtering, segmentation, and feature extraction) is repeated for
all the considered distraction-related activities in D and non-
distraction activities in P in the training dataset to create a
labeled feature set for all the activities. Such a labeled training
(feature) set is then used to train each of the concurrent
activity classification models. The above data pre-processing
and feature extraction tasks remain the same for all the
supervised learning based classification functions considered.

IV. EVALUATION AND RESULTS

Next, we present a comprehensive comparative evaluation
of the performance of the proposed DFAM technique against
traditional classification techniques for distracted pedestrian
activity recognition.

A. Experimental Setup

We collect motion sensor data of distracted pedestrian
activities using a wrist-worn smartwatch and a paired smart-
phone (Motorola Moto XT1096). To test the versatility of
our technique, we test it across two different smartwatches,
namely a Sony Smartwatch 3 and a LG Urbane W150. A
combination of smartwatch and smartphone was placed on
participating pedestrians!, for a total of four different device
placement scenarios. For the same-side placements, either both
smartwatch and smartphone are worn on the right wrist and
placed inside right hip pocket (RR), or worn on the left wrist
and placed inside the left hip pocket (LL). The remaining
two scenarios alternate the placements to the opposite sides,
i.e., smartwatch on right wrist along with phone in left hip
pocket (RL), smartwatch on left with phone in right pocket
(LR). Each participant performed a pre-defined but random-
ized set of activities for one or more of the scenarios. The
set of activities consisted of non-pedestrian, pedestrian and
distracted-pedestrian related activities outlined in Table 1. All
concurrent activities except the starred (¥) activities form a set
of distracted pedestrian activities.

We developed a custom Android application using Android
Studio IDE v2.2.3 running on Java 8 platform, to record
activity related motion sensor data from the Moto T1096
running on Android 6.0 and the smartwatches running on
Android Wear 1.5, at a sampling rate of 50 Hz. The ac-
tivity data collected includes three-dimensional accelerometer
and gyroscope sensor data from the aforementioned devices.
Throughout the data collection, we took several precautionary
measures to ensure participant safety during certain distracted
activities, due to potential falling and injury risks. For example,
we placed a safety harness on the participant when descending

I'A total of 23 participants took part in our study, which was approved by
Wichita State University’s Institutional Review Board (IRB).
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TABLE I: Activities performed by the participants.

Concurrent Activities

‘Walking + Using Smartphone
Climbing stairs + Eating

Descending stairs + Eating

Climbing stairs + Drinking

Climbing stairs + Using Smartphone
Descending stairs + Using Smartphone
Running + Using Smartphone
Standing + Using Smartphone*
Descending stairs + Drinking

Simple Activities
Standing
Walking
Climbing stairs
Descending stairs
Sitting

Running

Walking + Reading

Walking + Eating

Walking + Drinking
Standing + Drinking*
Standing + Reading*
Standing + Eating*

Sitting + Using Smartphone*
Descending stairs + Reading
Climbing stairs + Reading

stairs and reading at the same time, while ensuring these safety
measures did not interfere with the activities. On an average,
each participant took about 2 hours to complete all the activi-
ties. The physical demands of our experiments, together with
these additional constraints in selecting participants thereby
limited our ability to recruit a larger number of participants,
or obtain data for all possible device placements from the same
participant.

We implemented the proposed DFAM technique using Java
on (i) a 64-bit Debian Linux PC with an Intel Core i5 processor
and 8 GB RAM and (ii) the Motorola Moto XT1096 smart-
phone. Implementations for the traditional classifiers were
derived from the Weka 3 machine learning toolkit [31] and
its Android counterparts. The PC implementation was used to
extensively analyze the performance of DFAM, which is not
possible on a resource constrained smartphone. On the other
hand, the smartphone implementation is helpful in evaluating
on-device response times and resource utilization in real-life
usage. Next, we explore how different training sets can affect
the classification accuracy of the proposed DFAM and other
classification schemes. This step is crucial for the pedestrian
safety application, because not all users would be willing to
setup a personally trained model. In other words, personalized
datasets may not be a realistic scenario, and thus the proposed
DFAM scheme should work well with unseen test sets.

B. DFAM Performance

We first validate the feasibility of detecting distracted pedes-
trian using DFAM, by creating personalized models for each
participant using their individual datasets, and then performing
a Leave-One-Out Cross Validation (LOOCV) using the trained
model. In LOOCY, one block is allotted as test data, while
the rest remain in the training set. The individual participant
accuracies are then averaged out for each group, where the
datasets are grouped based on the smartwatch used, and
further grouped based on the device placements (Table II).
For different window W and bin sizes (g) of the collected
data, we evaluate DFAM performance across three different
averaging methods — weighted, micro and macro — based on
metrics such as classification accuracy, precision, recall and
F1 score as shown in Figures 2 and 3a.

Figures 2a and 2b show the precision, recall and F1 scores
for same-side (LL, RR) and different side (LR, RL) device
placement. We observed that the precision and recall improve
with increasing number of frequency bins. The mean F1 score
for g = 3 was 0.75, compared to 0.66 and 0.73 for g = 1,2,
respectively, for all four placement scenarios combined. We
did not observe any significant performance difference using
weighted, micro and macro averaging methods between the
Sony+Moto and LG+Moto datasets. The mean classification

TABLE II: Datasets collected per placement scenario.

RR LL RL LR | Total

LG+Moto 5 6 4 4 19
Sony+Moto 6 6 5 5 22
Total 11 12 9 9 41

accuracy (for g = 3 and W = {32,64,128,256,512}) for
Sony+Moto and LG+Moto datasets are 0.79 and 0.75, re-
spectively, with a standard deviation of 0.07 and 0.06, respec-
tively. This implies that the proposed DFAM is implementable
across different wrist-based wearables. We also observed slight
performance difference between the same-side and different-
side datasets. The mean classification accuracy (for g = 3
and W = {32,64, 128,256,512}) for same-side and different-
side datasets are 0.81 and 0.72, respectively, with a standard
deviation of 0.04 and 0.05, respectively. This implies that
DFAM works slightly better for same-side smartphone and
smartwatch placement.

Next, we investigate the effect of combining datasets from
different participants from the same group to obtain a trained
model, and validate it using k-fold cross validation where k =
10. In 10-fold cross validation, the dataset is split into 10
equal parts, one of which becomes the testing set, and the
remaining nine folds constitute the training set. We compute
the classification accuracies for different window W and bin
g sizes as shown in Figure 3a. DFAM achieved classification
accuracy of 0.70 for g = 3 and W = 32 (0.64 seconds at 50
Hz). As intuitively expected, classification accuracy improves
as the window size is increased to W = 512 (10.24 seconds at
50 Hz), although at a cost of increased detection time as we
evaluate later in Section IV-D.

In a real world implementation, it may not be practical to
combine data exclusively from participants having the same
hardware. Moreover, not all wearables may have both ac-
celerometer and gyroscope sensors, compelling us to examine
whether DFAM can classify the activities in the absence
of either gyroscope (GYR) or accelerometer (ACC) data as
shown in Figure 3b. We observed that classification accuracy
dropped to 0.57 when using only accelerometer data, for g = 3
and W = 32 (compared to 0.70 in ACC+GYR datasets).
Similarly, classification accuracy was 0.66 when using only
gyroscope data, for g = 3 and W = 32. This implies that
DFAM works better in the presence of both accelerometer and
gyroscope sensors. We also reinforce our earlier observation
that classification accuracy is highest for g = 3. As a result,
we set bin size g = 3 for all following experiments.

C. Comparison with Traditional Classifiers

A realistic setting involves using already trained models to
recognize activities of a previously unseen participant. We
evaluate and compare DFAM in such a setting by leaving
out one participant’s dataset for testing purposes and training
using the rest. This Leave-One-Subject-Out (LOSO) approach
validates the generalization performance of the CAR schemes.
We compare the classification accuracies of DFAM, and other
CAR schemes for different window sizes as shown in Table
III. Results show that DFAM’s classification accuracy is com-
parable with SVM, DT, RF, NB and 1-NN. However, 2-NN
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Fig. 3: Classification accuracy of DFAM for (a) combined

datasets, and (b) individual sensors.

TABLE III: Classification accuracy of DFAM compared with

traditional classifiers.

DFAM SVM DT RF NB 1I-NN 2-NN 3-NN

W=32 0.45 0.43 0.47 0.51 0.52 0.52 0.47 0.51
W =064 0.48 0.44 057 0.58 0.46 0.64 0.52 0.64
W =128 0.54 0.48 042 051 0.48 0.52 0.52 0.52
W =256 0.51 0.48 0.49 0.67 0.54 0.51 0.52 0.52
W=512 0.54 054 054 052 0.54 0.54 0.54 0.53

and 3-NN performs better than DFAM in most cases, but they
also impose higher resource utilization as we evaluate next.

D. Response Time and Resource Utilization

We next evaluate the response time, CPU, RAM and power
consumption of the CAR models on the Motorola XT1096
smartphone paired with the Sony Smartwatch 3. The XT1096
with a 2300mAh Li-ion battery was running Android 6.0,
while the Smartwatch 3 with a 420mAh Li-ion battery was
running Android Wear 1.5. For this analysis, we use the same
participant data and pre-trained classification models from
Section IV-B. However, the signature (or feature) generation
and matching (or classification) is executed on the mobile and
wearable device, unlike the previous evaluation (Section IV-B)
where they were executed on a PC. Table IV compares the
response time and resource utilization of DFAM compared
with traditional classifiers, with ranges signifying varying
window sizes. The response time excludes the communication
delays, time taken to obtain a data block and consumed
time not related to generation of block-related features, which
would be same for all the techniques. The time taken to obtain
the data blocks remained constant across the different CAR

models for a window size W, along with the time taken to
generate features across the traditional CAR models. The CPU
utilization, power consumption and RAM utilization were also
recorded in these trials over a period of two minutes and
repeated 10 times. The RAM usage is measured in megabytes
(MB), whereas the CPU utilization is in percentage indicating
the fraction of available processing power used.

Results show that DFAM has significantly lower response
time compared to traditional classifiers, which is beneficial
for alerting distracted pedestrian in real-time. CPU utilization,
power consumption and RAM utilization are also on the lower
side for DFAM, which means users will notice minimal impact
on performance of their smartphone. Notably, 2-NN and 3-NN
which achieved slightly better classification accuracy earlier,
also have the highest response times and generally consumes
more system resources. Good classification response time
is vital in determining the effectiveness of any pedestrian
safety framework, because any delay in alerting distracted
pedestrians can be decisive in potential accident preventions.
Our evaluation results so far positions DFAM as a sound
and most suitable CAR technique for pedestrian distraction
detection in a pedestrian safety system that employs motion
data from mobile devices.

V. DISCUSSION AND FUTURE WORK

Accident Prevention: In this work, we limit ourselves to
solely studying the viability of using a CAR-based framework
for improving pedestrian safety. In order to prevent unwanted
distraction related injuries and fatalities, we plan to develop
an on-device alert module for users’ mobile and/or wearable
devices, to remind distracted pedestrians that they should pay
more attention to their surroundings while they are in motion.
Additionally, we plan to implement a cloud-based alert module
that will employ crowd-sourced contextual information from
distracted users to alert other users in the vicinity about the
presence of distracted pedestrians. The design of these alert
modules, however, is not trivial and requires a careful analysis
of the associated human-factors issues. An alert mechanism
that is not carefully designed may annoy users with frequent
notifications, who may in turn decide not use it anymore, or
may become a source of distraction themselves. We plan to
accomplish this as part of our future work.

Other Future Work: In this work, we validated the
performance of the proposed CAR technique (DFAM) and
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TABLE IV: Average response time and resource utilization of DFAM compared with traditional classifiers.

DFAM SVM DT RF NB 1-NN 2-NN 3-NN

Response Time (ms) 640-1150  2000-6000  1200-4480  2800-10630  890-2980  2800-8600 1900-8600  2900-6600

CPU Utilization 0.5-4.5% 1.3-8% 0.3-1.6% 0.5-7.4% 0.7-2.4% 1.5-3.8% 1.2-3% 1.2-2.9%

Power Consumption (mW) | 33.3-129.5  33.3-188.7 33.3-85.1 85.1-222  40.7-96.2  85.1-214.6  85.1-188.7  85.1-218.3
RAM Utilization (MB) 20-24 26-53 17-67 56-108 19-29 15-26 29-53 30-92 MB

its Android implementation across different wearable device
hardwares, i.e., smartwatches. It will also be interesting to
study how the performance of the proposed CAR technique
and its implementation varies across different smartphone
hardwares. Also, we reckon that the CAR techniques can be
employed in a hierarchical CAR model, where the viability
and efficiency of integrating these techniques would depend
on their feature sets used (for classification) in each state of
the model. As part of future work, we plan to conduct a com-
prehensive comparative evaluation of one such hierarchical
model.

VI. CONCLUSION

We outlined and comprehensively evaluated a novel frame-
work that detects and recognizes distracted pedestrian ac-
tivities using motion data available from users’ mobile and
wearable devices. As part of our framework, we designed and
evaluated a novel dominant frequency matching based concur-
rent activity recognition model, called DFAM, and compared
the performance and execution efficiency of the DFAM model
with other well-known learning-based classification functions,
such as Random Forests, SVM, k-NN, Naive Bayes and De-
cision Trees. Our evaluation results showed that the proposed
DFAM model is a suitable candidate for detecting concurrent
activities, such as that of distracted pedestrians, and that it has
reasonable concurrent activity recognition accuracy compared
to traditional classification functions. We also observed that
DFAM has comparatively lower power consumption rates and
quicker response time(s). In summary, we have not only com-
prehensively evaluated the efficacy and feasibility of various
concurrent activity recognition techniques for detecting and
recognizing pedestrian distraction, but have also proposed a
novel concurrent activity recognition technique that achieves a
good balance between recognition accuracy and alert response
time, while being energy efficient.
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