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Abstract

Heating and cooling buildings cause a large and growing portion of the world’s carbon
emissions. These emissions could be reduced by replacing inefficient or fossil-fueled equip-
ment with efficient electric heat pumps. Recent research has shown that variable-speed
heat pumps (VSHPs) could also provide a variety of power system services, such as price-
or carbon-based load shifting, peak demand reduction, emergency demand response, and
frequency regulation. By providing some or all of these services, VSHPs could facilitate
the integration of wind and solar power into the grid, accelerating decarbonization of other
economic sectors. However, the provision of power system services poses new and challeng-
ing VSHP control problems. Model predictive control (MPC) is a promising approach to
these problems. MPC combines weather and load predictions, online optimization, and a
mathematical model of a VSHP’s performance under varying ambient conditions. With few
exceptions, existing VSHP models neglect two important features that arise in practice: (1)
dependence of efficiency and capacity on compressor speed and indoor and outdoor tem-
peratures, and (2) inability of VSHPs to operate at low compressor speeds. In this paper,
we develop a new VSHP control model that considers both features. The model expresses
the VSHP’s power consumption and heat production as affine functions of the driving tem-
peratures and compressor speed. The model also includes a binary variable that constrains
the VSHP to be either turned off, or operating within a range of acceptable compressor
speeds using mixed-integer programming (MIP). This VSHP model and optimization strat-
egy is combined with neural network based heat load prediction in MPC simulations. These
simulations suggest that this approach could reduce energy costs by 9 to 22% and carbon
emissions by up to 22%, relative to MPC with existing VSHP models.

Keywords: Energy systems; built environment; thermal energy storage; electrification of
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e Mixed-integer programming (MIP) is used for variable speed heat pump (VSHP) con-
trol.
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e MIP allows the use of a more complete VSHP model than the current state of the art.
e The improved model reflects partial-load and temperature-dependent VSHP efficiency.

e MIP reduces operating costs and energy use compared to the current state of the art.

1. Introduction

With rapid growth in population and the floor area of conditioned buildings, global
heating and cooling demand are projected to nearly double by 2050, which have enormous
economic and environmental consequences [1, 2|. In the United States, for example, heating
and cooling residences cost about $88 billion in 2015 [3]. Heating and cooling costs are
particularly burdensome for people living near the poverty line, often comprising 7-15% of
their annual income [4, 5]. Space cooling directly contributes to critical peak load during high
energy demand days, when the marginal electricity generation sources are most expensive and
the atmosphere is most conducive to air pollution formation [6]. Moreover, 60% of United
States homes use natural gas, oil, or propane as their main heating source, contributing
to about 10% of the carbon emissions nationwide [3, 7]. Therefore, renewable heating and
cooling (RHC), i.e., meeting heating and cooling demand with clean, renewable options at
costs competitive to fossil fuels, is a crucial component in the transition to sustainable energy
systems.

Electric heating and cooling technologies such as air- and ground-source heat pumps
have greatly advanced over the last decade. The leading air-source heat pump models have
significantly improved their efficiencies at both extremely low (for heating) and high (cooling)
ambient temperatures [8]. Powered by renewable electricity generation such as wind and
solar, heat pumps can potentially become a viable RHC option. RHC viability increases when
thermal energy storage (TES) is added to the heat pump system. TES decouples heat pump
operation from heating or cooling demand, allowing the heat pump to operate when efficiency
is high and when electricity is clean or inexpensive [9]. Optimal control of heat pumps with
and without TES has become a large area of interest as integration of renewable energy
sources requires more demand flexibility to match the fluctuations in electricity generation
[10]. Several studies have already demonstrated the capability of controlling VSHPs without
energy storage to provide grid frequency regulation [11, 12]. However, researchers have shown
that coupling heat pumps with TES both increases the instantaneous power flexibility for
frequency regulation [13] and enables demand response and load shifting services on longer
time scales [14]. These ancillary services are valuable to grid operators and can provide
new revenue to VSHP operators [15]. Therefore, we posit that effective heat pump system
control mechanisms that have the ability to provide reliable grid services (e.g., frequency
regulation, demand response, etc.) while maintaining thermal comfort are critical to realizing
the potential of renewable-powered heat pumps as a viable RHC option.

A major challenge in VSHP control is balancing modeling accuracy with computational
efficiency. VSHP power consumption and heat production are governed by coupled nonlin-
ear differential equations, which are unsuitable for control and optimization purposes [16].
Thus, simplified but accurate models are needed for real-time control. Constant coefficient
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of performance (COP) models were adopted in several heat pump control studies [17, 18, 14].
However, constant COP models neglect the dependency of heat pump performance on com-
pressor speed, indoor temperature, and ambient air temperature, thus degrading controller
performance [19, 20]. In [21], a partial-load and temperature-dependent COP model using a
third-order polynomial fit was used to minimize the energy required to cool an office build-
ing. However, this model assumes operability over the entire range of partial-load ratios and
does not consider the reliability constraints associated with running the compressor at low
load ratios.

Recently, Kim et al. [11] demonstrated that in a given compressor speed operating
range, steady-state VSHP performance behaves linearly with respect to ambient air temper-
ature, compressor shaft speed, and indoor air temperature. They formulated a linear model
to describe the steady-state heat pump thermal output and power consumption in their
demonstration of frequency regulation applications. However, this linear model is unable to
capture the true heat pump dynamics at low compressor speeds, as it can imply non-zero
power consumption or heat output at zero compressor speed. More discussion of this aspect
can be found in Section S1 of the Supplemental Information. It should be noted that this
weakness was not an issue for Kim et al., since their study focused on VSHP control in the
operating range and did not consider low compressor speeds [11]. Nevertheless, problems can
arise when these linear formulations are used in VSHP control over long time horizons and
under varying boundary conditions. In such applications, VSHP models must be accurate
over the entire range of possible compressor speeds and driving temperatures.

Furthermore, VSHPs are designed to not operate below the minimum manufacturer-rated
compressor speed. The range of compressor speeds below this value is sometimes referred
to as the dead zone. Operating in the dead zone adversely affects the reliability of the
compressor by reducing lubrication thickness and increasing frictional losses [22]. This can
reduce the VSHP life and is generally not supported by manufacturers. To avoid this issue,
if the desired heat load corresponds to a compressor speed in the dead zone, VSHPs will run
at the minimum compressor speed for a shorter duration, increasing energy costs by cycling
on and off [23].

The main objective of this paper is to present an effective method for VSHP optimiza-
tion and control through mixed-integer programming (MIP). MIP is a method used to solve
optimization problems when the decision variables are a mixture of continuous and inte-
ger variables. While MIP has been used in heat pump studies, the heat pumps are often
considered as single or dual stage thermostatically controlled devices [24, 25]. To our knowl-
edge, no studies have applied this method to VSHPs while considering both partial load
and temperature-dependent COPs. In this paper, we use the linear VSHP model developed
in [11] over the operating range of compressor speeds. This enables the use of online opti-
mization, while capturing the dependence of COP on compressor speed, indoor temperature,
and outdoor temperature. In addition, we introduce a binary variable into the optimization
process to indicate whether the VSHP is turned on. This innovation allows the heat pump
to turn off rather than operate below the minimum rated compressor speed, preventing op-
eration in the dead zone and solving the issue of unrealistic model results at low compressor
speeds. We demonstrate the effectiveness of the proposed MIP approach by applying model
predictive control (MPC) to a realistic heat pump control problem. MPC has been widely
employed in a range of heat pump and TES scenarios and has been shown to be an effective
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way to optimize heat pump costs [26, 27, 28]. This simulation includes real-world electric-
ity rates, historical meteorological conditions, a high-fidelity building thermal model, and a
neural network based heat load prediction method to provide VSHP control performance for
a winter season.

This paper is organized as follows. Section 2 models the heat pump, TES, and building
thermal envelope. Section 3 formulates the control problem, describes the proposed mixed-
integer MPC algorithm, and discusses three simpler but more common controllers. Section
4 compares the performance of the four controllers. Section 5 concludes the paper.

2. Thermal modeling

We modeled a single corner apartment in a mid-rise apartment building. The unit is
equipped with a VSHP in series with TES. The VSHP pumps heat from the outside air into
the TES, which then serves the building heating demand. This design allows the TES to
function as a heat battery, giving the VSHP more operational flexibility. While we focused
on heating, our methods can also be used for cooling, as VSHPs are reversible. We model
the three physical components — the VSHP, TES and building envelope — in the remainder
of this section.

2.1. Variable speed heat pump

To capture the dynamics of a VSHP, we adopted the linear model formulated by Kim
et al. [11] Shown in Equation 1, this model gives the steady-state power consumption P
and heat production H; at a time step t as affine functions of the compressor speed, indoor
temperature, and outdoor air temperature:

Power Consumption: Py = aq + agwy +asThy + o1y,
Heat Output: Hy = a5 + agwy + a7y + agTh .

(1)
Here w; (rad/s) is the compressor speed, Tj; (°C) is the TES temperature, and Ty, ; (°C) is
the ambient temperature. The model coefficients «; can be fit to empirical performance data
via multiple linear regression. Experimental results in [29] show that the efficiency reduction
associated with startup and shutdown of a heat pump is 2% or less for a duty cycle of 15
minutes. Therefore, we assume this reduced performance during startup is negligible because
the MPC updates each hour. The VSHP efficiency, referred to as the COP, is defined as the
ratio of the heat output to the power consumption:
b
COP = o (2)
For this simulation, we used performance data from Carrier’s Infinity Series VSHP
(Model: 25VNA024A) [30] to determine the best-fit model coefficients. Table 1 shows the
best-fit coefficients. Figure 1 shows a subset of the manufacturer data and the resulting
linear equations for power consumption and heat output at an indoor air temperature of
21.1°C. The R-squared values for power consumption and heat output are given as .996 and
994 respectively. While publicly available data detailing partial load VSHP performance is
typically very limited, linear performance in the operating range was already experimentally
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verified by Kim et al. [11]. Therefore more detailed partial load data is not required to verify
linearity with respect to compressor speed.

Figure 1 also shows the implied deviation from the linear model at low shaft speeds. As
compressor speed approaches zero, steady-state power consumption and heat output must
also be zero for all driving temperatures. Therefore, there must be some nonlinear behavior
as compressor speed approaches zero to rectify this offset. This implied nonlinear region also
coincides with operation in the dead zone, the region below the manufacturer minimum rated
compressor speed where operation significantly decreases the lifespan of the heat pump.

Attribute Coefficient Value Units

o -.5922 kW
P Qi .0042 kW s rad!
ower as 0321 kW eC-!
ay -.0023 kWs°C!
Qs -.5091 kW
ag 0203 kW s rad™!
Heat Output o 0958 kW eC-!
Qg .1592 kW °C—1

Table 1: Coefficients of Fit for Heat Pump Power Consumption and Heat Output

284 1 Dead Zone
= (region below minimum
L spoot) [Manufacturer Performance Data)

hd
°
1

]
£ =
c ]
2 [Manufacturer Performance Data) < 8+
a =
3 15 >

o
=] =
2 8 6
8 Linear Model T Linear Model
5 1.0 — Tams =19.4°C L — Tamb=19.4°C
2 — Tamy=139°C 44 — Tamp=139°C
e — Tam;=8.3°C — Tamp=8.3°C

- Tamp =0°C Tamp=0°C
05 --- Absolute Lower Limit| 2 --- Absolute Lower Limit
W as compressor speed approaches zero.
04
00 \ \ \ \ i T T T T T T \ T T
0 1000 2000 3000 4000 5000 6000 0 1000 2000 3000 4000 5000 6000
Compressor Speed (rpm) Compressor Speed (rpm)
(a) (b)

Figure 1: VSHP performance curves at Tj,go0r = 21.1°C for (a) power consumption and (b) heat output.
The shaded dead zone in (b) shows where the model breaks down and gives unrealistic heat output at zero
compressor speed. (Print in color)

2.2. Thermal energy storage

Heat is typically stored in TES by filling an insulated tank with a storage material
and then changing the material’s temperature or phase. Common storage materials include
water, rocks, bricks, paraffins, fatty acids and salt hydrates. In this paper, we adopted a
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general model that can represent a variety of temperature- and phase-change thermal storage
technologies. The basic model is a first-order continuous-time linear system:

B(1) = BE() + Q1) 5
0 < E(t) < Emax.
Here t (h) denotes time, E (kWh) is the stored heat, and @ (kW) is the net heat flow into
storage. For a given storage technology, the parameter 5 (1/h) and the storage capacity Fiax
(kWh) can be defined in terms of the storage dimensions and thermophysical properties. For
control purposes, we considered a continuous time span ¢ € [0, K At], divided into K discrete
steps of duration At (h), indexed by k = 0,..., K. Assuming that the net heat flow Q is
constant over each time step, Q(t) = Q(kAt) for all t € [kAt, (k + 1)At). With F and
Q at a time step k denoted by Ej and Qk, respectively, the discrete-time analog of the
continuous-time storage model (3) is

Eri1 = aBy +0Qg, k=0,...,K—1

_ (4)
0< B < EBpae, k=1,... K.

The discrete-time parameters are defined in terms of § and At:

—1
par =

a=e’"",
g

These definitions follow from the solution of the governing differential equation (3).

2.3. Building envelope

To determine space heating load, we simulated a mid-rise corner apartment facing south-
east in Binghamton, NY, using EnergyPlus [31]. EnergyPlus is an open-source whole-
building simulation software package that considers indoor and outdoor air temperatures,
solar radiation, and other weather values, as well as internal heat loads and building oc-
cupancy. The simulated building is the mid-rise commercial reference building developed
in [32], which uses the most common construction materials, energy usage, and occupancy
schedules. The indoor thermostat setpoint is 21.7 °C. The outside weather conditions came
from three weather files for Binghamton, NY: a Typical Meteorological Year (TMY3) and
real data from the years 2001 and 2014 [31, 33]. The TMY3 file for Binghamton is derived
from 24 years of historical weather data and provides a weather profile that represents a typ-
ical year [33]. The TMY3 and 2001 weather files provide a range of conditions that we used
to train our model. We then simulated the controller performance under the 2014 weather
data.

2.4. State-space system model

By combining the linear model in Equation 1 with the discrete time energy storage
formulation in Equation 4, a state space model is developed:

Thy1 = ATy + Oéﬁbuk + Wg. (5)
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Here the state z; (kWh) is the stored TES energy Ej, the control input wy (rad/s) is the
compressor speed wy, and the disturbance wy is a function of the outdoor air temperature
(°C) and building heat demand (kW).

Specific disturbances can be defined for different TES types and system configurations.
In our simulation, we modeled a stratified water tank, the most common form of residential
TES. Stratified water tanks can be closely approximated to have two layers: a hot layer and
cold layer with time-invariant temperatures 7, and T, respectively [34]. Depending on the
amount of thermal energy stored, the thermocline separating these layers will move up and
down in the tank, where the maximum and minimum energy storage limits correspond to
the minimum and maximum operating height of the thermocline. For a stratified water TES
in series with a VSHP, the system’s disturbance is defined as

Wp = b [Oé5 —|— a7Th — TC/R + (Oég —|— 1/R) Ta,k — Qd,k] .

Here R (°C/kW) is the thermal resistance of the thermal storage tank wall and Qgx (kW)
is the space heating demand.

3. Control and prediction

In this section, we formulate the problem of optimally operating the combined heat
pump and thermal storage system using MPC. MPC is a control method that predicts
system behavior to develop an optimal control schedule for a receding time horizon. MPC
is constructed of three main components: (1) a system control model, (2) an optimization
framework, and (3) an accurate prediction model for future system inputs.

3.1. Control policies

MPC requires a detailed system control model to determine optimal control schedules.
Increasing the physical accuracy of the control model should generally increase MPC per-
formance. However, increasing complexity can cause models to switch from convex to non-
convex. While convex optimization algorithms can quickly provide absolute optimal control,
non-convex optimization is generally more computationally expensive and relies on heuristic
solution methods that can only provide near optimal control. Therefore, the challenge is
to design a physically realistic control model that does not significantly hurt optimization
time and performance. In our study, we analyzed four VSHP control policies, each with
decreasing complexity. The proposed MIP control is used in Policy 1, while Policies 2, 3,
and 4 are used as a comparison and represent simpler, more commonly used VSHP con-
trol models. The minimum compressor speed constraint in Policy 1 is embedded into the
optimization through MIP, which allows the VSHP to turn off when below the minimum
compressor speed. For Policies 2, 3, and 4, this constraint is applied by post-processing the
control schedule after the optimization process. If the optimization calls for a compressor
speed below the minimum speed, the speed is set at the minimum and run for a percentage
of the time step to provide an equivalent amount of heat. The true dynamics of the ther-
modynamic system are updated using Equation 1, which was experimentally verified in [11]
to be applicable across the range of operating compressor speeds. Table 2 summarizes the
details of each of the control policies.
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3.1.1. Policy 1: Mized-integer MPC

MIP is used to solve optimization problems when a portion of the decision variables are
constrained to be integer values. Constraining some variables to be integer values causes
the problem to become non-convex, and a global optimal solution becomes more difficult to
find. Common algorithms for solving MIP problems include branch and bound as well as
heuristic methods such as tabu search and simulated annealing [35].

Despite the increased difficulty of finding an optimal solution, MIP allows the use of
a more physically realistic control model that considers COP dependence on compressor
speed, outdoor air temperature, and TES temperature. It solves the issue of unrealistic
model results at low compressor speeds by using a binary variable in the optimization to
allow the heat pump to turn off when below the minimum compressor speed. When the
heat pump is on, it operates between the minimum and maximum compressor speeds and
calculates power consumption and heat output using Equation 1. When the heat pump is
off, power consumption and heat output are zero, satisfying the boundary condition at zero
compressor speed. This model is shown in Equation 6 with wy;, and wya, as the minimum
and maximum rated compressor speeds, respectively,

Pta Ht Wmin S w S Wmax
0 0 < w < Wnin

P, virp, Hevirp = { (6)

3.1.2. Policy 2: MPC with linear COP

Policy 2 does not consider COP dependence on compressor speed and only considers
COP as a linear function of outdoor air temperature and TES temperature. This model
is therefore convex and can provide an absolute optimal solution. To determine the linear
function for COP, Equation 1 was evaluated at the maximum compressor speed over the
operating range of winter temperatures to create a linear regression model with the resulting
linear equation:

COP = 0446 Ty, + 2.77. (7)

3.1.3. Policy 3: MPC with Constant COP

Policy 3 assumes a constant COP model regardless and neglects COP dependence on
compressor speed and driving temperatures. While seasonal average VSHP COPs are often
given by the manufacturer in the form of the heating seasonal performance factor (HSPF), it
is important that the constant COP used in the optimization is sized much lower to account
for times of low ambient air temperature. Since VSHP COP and capacity are small when
ambient temperatures are low, using an inflated COP can cause the control scheme to be
unable to meet the required heat load at those times. For this reason, the constant COP
for Policy 2 was conservatively set at 2.0, which corresponds to the COP at the low range
of operating temperatures.

3.1.4. Policy 4: No TES or optimization

Policy 4 uses only a VSHP without optimization or thermal energy storage to provide
a baseline comparison. In this policy, the VSHP exactly provides the heat load from the
residence, which is the most common way for VSHPs to operate. Any control optimization
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worth implementing should first be able to outperform Policy 4. We assumed that the indoor
air temperature remains constant at the same setpoint used in the EnergyPlus simulation
at 21.7 °C.

Policy %OOI;E';] Convexity ThersrilsiaZIelergy
1 Mixed-integer  Non-convex Yes
2 Linear COP Convex Yes
3 Constant COP Convex Yes
4 None N/A No

Table 2: Summary of Optimization Policy Details

3.2. Optimization framework

The optimization framework must ensure that the VSHP electricity cost is minimized
while maintaining thermal comfort of the occupants. The discretized VSHP electricity cost
Jer at a time step k can be written as:

ek (Uk, Wi) = Ye s AL Pyy. (8)

Here 9. ($/kWh) is the utility’s hourly residential time-of-use rate given deterministically.
In this simulation, we use New York State Electric and Gas Corporation’s (NYSEG) time-
of-use electricity supply rate [36]. We only considered the electricity supply rate since taxes
and delivery charges contributing to the total electricity cost are time invariant and vary
geographically. The time step is given by At (h). The heat pump power consumption at
a time step k is given by P, (W) and is calculated using Equation 1. The binary variable
used to implement MIP is given by vy, and can have values of zero or one. When y;, is zero,
the heat pump is turned off and the electricity cost is zero. When y,, is one, the compressor
must operate between the minimum and maximum speeds. For Policies 2, 3, and 4, y, was
set constant at one and the minimum compressor speed was set at zero, since the control
post-processing described in Section 3.1 satisfies the compressor speed constraint.

In addition, the TES should not be over or undercharged, as this could be unsafe, decrease
efficiency, and decrease occupant comfort. Therefore, an upper limit and lower limit to
the amount of energy stored in the thermal storage was imposed, given by Ey and Ep,
respectively. Moreover, having a certain amount of energy storage stored at all times is
preferable, as prediction and model uncertainties can cause the scheduled heat supply to be
insufficient to meet heat load. Therefore, a tunable penalty parameter v, was included to
penalize when thermal energy is below a desired percentage of TES capacity 7,

gar(zr) =V (YEy — k)4, (9)

Together, these constraints and cost functions construct the optimization framework and
are shown in Equation 10, where N is the control horizon. To minimize this function we
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used the Gurobi solver [37] in the convex optimization software CVX [38], which are capable
of efficiently solving mixed-integer linear programs.

N

Z(ge,k + gax),

k=1
subject to Ep < xpy1 < Ey, k=1,...,N,
YrWmin S U S YrWmax k= 1,...,N.

minimize
u

(10)

3.3. Data-Driven Heat Load Predictions

To efficiently plan the future control scheme, MPC requires predictions of future heat
load requirements and outdoor air temperature. We assumed a perfect temperature forecast
since publicly available day-ahead temperature forecasts are often within 1°C' of the actual
temperature values [39]. To predict heat load, we used a Long Short Term Memory (LSTM)
recurrent neural network. LSTM networks excel in learning patterns in sequence data by
encoding important information into memory cells that can be used many time steps in the
future. This memory cell mitigates the problem of exploding and vanishing gradients when
using a large number of previous time steps as an input to the network.

The main neural network architecture consists of an LSTM layer followed by three fully
connected layers and an output layer. The previous 22 hours are used as an input into the
LSTM layer, which has an auxiliary output layer to facilitate the LSTM layer training. This
auxilliary output ensures that the LSTM layer can learn the patterns of the time-series data
without them being distorted by the fully connected layers. The 24-hour ahead temperature
predictions are then concatenated with the LSTM output as input into the fully connected
layers. The main output layer then outputs the 24-hour ahead heat load predictions. The
network is trained using the mean squared error loss function. Figure 2 shows the full neural
network architecture. Optimal hyperparameters were determined through a randomized grid
search and are shown in Table 3.

Main Input:

Load

Figure 2: Neural network architecture

(Past Heat Load and Layer Neurons Activation
Temperature) LSTM 399 tanh
Aux Input: Aux Output Layer: Fully Connected 1 139 sigmoid
(Future Temperature 24-hour Ahead Heat Fully Connected 2 84 si gm oid
Predictions) Load
Fully Connected 3 323 relu
Hyperparameters Value
Optimizer Adam
Learning Rate .003
Input Value
Mai Layer: - -
) :_1:110(3:' ;‘;;d ;yez Previous Time Steps 22

Table 3: Neural network hyperparameters
obtained through randomized grid search

200 Hourly training data came from the EnergyPlus simulation for an average mid-rise corner
apartment in Binghamton, NY, over the the course of the TMY3 and 2001 winter seasons

10



300

305

310

315

320

(December 1 to February 28). The model was trained on 3,592 hourly samples with 634
hourly samples used for model validation and hyperparameter tuning. The model was then
used to predict the hourly heat load for the same simulated building using real weather data
from the specific year 2014 in a continuous learning model. Each week, the previous week’s
hourly samples were added to the training dataset, and the neural network was retrained on
the slightly larger dataset. This most closely models a real world scenario where prediction
models can continuously improve from the constant stream of new data. Figure 3 shows the
February 2014 heat load predictions for 1 hour ahead, 12 hours ahead, and 24 hours ahead.
These figures show that apart from extremely high or low values, the prediction error is low
and therefore does not compound to significantly effect heat load predictions many hours in
the future.

4. Results and discussion

Simulations provided optimal control schedules for each of the control policies for the win-
ter of 2014. The simulations were run continuously from December 1st, 2013 until February
28th, 2014 with an MPC horizon of 24 hours updating each hour. Figure 4 shows a subset
of the optimal control schedules and the corresponding temperature and electricity price for
a five day range in January. Table 4 gives the total energy consumption and electricity cost
for the entire winter. It is important to note that this table shows the electricity supply cost,
which is only about 30% to 50% of the total electricity cost depending on residence location
and taxes.

4.1. Control policy performance

Policy 1 (MIP) provided both the lowest energy consumption and the lowest electricity
cost because it can optimize using all relevant knowledge: dynamic electricity price, com-
pressor frequency, and ambient air temperature. Figure 4b shows Policy 1’s preference for
running less often but with higher power consumption, since Equation 1 results in a higher
COP at higher compressor speeds. Policy 2 behaved similarly to Policy 1, concentrating
power consumption toward high efficiency, low cost hours. However, the linear COP model
of Policy 2 does not capture the COP dependence on compressor speed and therefore oper-
ated at low compressor speeds for some hours, reducing the efficiency. Policy 3 concentrated
operation toward times of low electricity cost during the night. However, this is often the

. Total Energy Electricity Supply
Policy Model Consumption (kWh) Cost ($)
1 MIP 846 32.28
2 Linear COP 921 35.43
3 Constant COP 1086 41.66
4 No TES or 1086 48.77
optimization

Table 4: Total simulation results for winter of 2014: Using MIP in Policy 1 significantly reduces electricity
usage compared to simpler, more commonly used VSHP control policies.

11
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Figure 3: Heat load predictions for (a) 1 hour ahead and (b) 12 hours ahead, and (c) 24 hours ahead. Apart
from extreme values, the prediction error is low and does not accumulate for predictions many hours ahead.

least efficient time to operate due to low outdoor air temperatures, resulting in no decrease

in energy consumption compared to the baseline Policy 4. The non-convexity of Policy 1

also incurred only a marginal increase in average computational time of 19% when compared
15 to the convex models in Policies 2 and 3.

Without any optimization or TES, Policy 4 performed significantly worse than the mod-
els using TES and MPC, showing that MPC can have a large positive impact on reducing
operating costs. However, this reduction in operating costs is limited by the accuracy of the
prediction model. For example, a perfect prediction model of future heat load and outdoor

;0 temperature can further reduce the operating cost by up to 6% when compared to the pro-
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Figure 4: A subset of the control plots for a five day period in January for each control policy. Policy 1
(MIP) runs less frequently at a higher average speed compared to each of the comparison studies, giving a
higher average COP and less total energy consumption and cost.
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posed prediction model. Therefore, an accurate prediction model is required to capture the
full potential benefit of MPC. While the proposed mixed-integer MPC significantly reduces
operating costs, the total economic viability of implementing TES and MPC into a home
heated by a VSHP requires a more detailed economic analysis on capital costs specific to the
residence.

Finally, reducing energy consumption can have a direct impact on reducing carbon emis-
sions. A recent report from the New York Independent System Operator (NYISO) stated
that the marginal energy source in Binghamton and Central New York is almost always
natural gas [40]. In this case, assuming that a decrease in energy consumption corresponds
to a proportional reduction in carbon emissions, Policy 1 (MIP) reduces carbon emissions
by 8.1%, 22.1%, and 22.1% relative to Policies 2, 3, and 4, respectively.

4.2. Infeasibility of the linear model without MIP

Additional simulations were run using the linear program relaxation of the MIP formula-
tion of Policy 1. This control policy used the linear model of Equation 1 without the integer
variable, allowing the compressor speed to range from zero to the maximum. If the optimal
compressor speed fell below the minimum, the compressor speed was post-processed in the
same format of Policies 2 through 4. However, this formulation proved to be unrealistic and
caused feasibility errors during the optimization process. This is because the linear model
gives non-zero heat output at zero compressor speed, disallowing the heat pump to turn
off. Under certain boundary conditions, this causes the TES to charge indefinitely, violating
the TES limit constraints. Therefore, this type of control policy does not provide a valid
comparison to Policies 1 through 4.

4.8. Effect of TES on control performance

The potential benefit of TES on MPC performance is highly dependent on the variance of
both outdoor air temperature and electricity time-of-use rates. All else equal, with a higher
difference between the maximum and minimum of these values, the optimization can take
advantage of times of even higher efficiency or lower electricity costs. When compared to the
baseline Policy 4, the addition of cost-based optimization in Policy 3 provided a large decrease
in energy cost of 14.6%. However, the addition of the complete efficiency-based optimization
in Policy 1 resulted in a further cost reduction of 22.5% when compared to Policy 3. This
difference implies that the efficiency-based optimization is more effective than the cost-
based optimization for this scenario. Binghamton, NY, with an above average number of
cloudy days, experiences relatively small temperature swings, limiting the potential benefit
of efficiency-based optimization. Therefore, simulating the climate in Binghamton serves as
a baseline to show that including the complete cost- and efficiency-based optimization of
Policy 1 should outperform other control policies even more in most other climates.

The size of the TES had relatively little effect on the efficiency of the control schemes
as long as the TES has the capacity to provide heat load for the control horizon. The
energy stored in the TES is optimized to be low to reduce energy loss to the ambient, as
well as to minimize costs across the control horizon. Increasing the control horizon could
take better advantage of increased TES capacity; however, this comes with a reduction
in forecasting accuracy and increased computational time. Other effects that involve the
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unsteady thermodynamics of the TES could have an effect on the optimization but were
assumed to be negligible due to the relatively long hourly time scale of the optimization.

5. Conclusion

This paper presents a computationally efficient but realistic variable speed heat pump
control optimization model using MIP that solves the unphysical characteristics of linear
VSHP models at low compressor speeds. In addition, it prevents the operation of the heat
pump in the compressor dead zone, which reduces the life span of the heat pump. By using
machine learning methods to predict future heat load and ambient air temperatures, this
method can provide optimal VSHP control schedules for a given time horizon using MPC.
While existing VSHP control models often do not consider all variables affecting VSHP COP,
using MIP allows the use of a more complete VSHP model that captures COP based on
outdoor air temperature, indoor temperature, and compressor speed. The proposed method
outperforms existing VSHP control policies by reducing electricity costs by 9 and 22% and
reducing carbon emissions by up to 22%. Since VSHPs and TES can provide ancillary
services to the grid in the form of load shifting or frequency regulation, future work can
explore expanding this control scheme to include grid signals on faster time scales. Overall,
this control method can go toward reducing electricity costs for residences with VSHPs and
TES, diminishing barriers to more efficient and renewable heating and cooling options.
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