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Abstract

A new single phase face-centered cubic (FCC) Co9Cr7Cu3zsMn2sNizs (at.%, similar
hereinafter) high-entropy alloy (HEA) was prepared by melting. A mass of
nano-precipitates with several nanometers was uniformly distributed in this alloy. The
tensile yield strength, ultimate tensile strength, tensile elongation were tested as
401MPa, 700MPa and 36% respectively. EDS results show that the nano-precipitates
are rich in Co and Cr elements. In addition, the crystal-forming behavior and the

nanoscale precipitates forming mechanism were revealed.
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High-entropy alloys (HEAs) contain at least four principal elements and were first

proposed by Yeh, J.W. and Cantor in 2004 -2, Today, it continues to attract extensive
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research attention due to its excellent mechanical properties and simple face-centered
cubic and body-centered cubic (FCC/BCC) solid solutions structure . Several
studies about mechanical properties ['%, phase transformation [!7), phase predictions
[18-311 "and phase stability [*2* of HEA had been reported from 2015 to 2017.

In addition, Ma et al. investigated the effect of cooling rate on microstructure and
mechanical properties of Al:Sip2CrFeCoNiCui HEA, and they found that the high
cooling rate restricts the growing space of grains by stimulating more potential
nucleation sites for the primary phase 331, The effect of atomic size on the type of
major intermetallic phase was also studied by Tsai et al. in 2007, and they found that
atomic size difference is a key factor in the selection of major intermetallic phase type
361 Huo et al. investigated the strain-rate effect on the tensile behavior of CoCrFeNi
HEAs, and they found that the tensile strength and ductility of the said HEA increased
along with increasing strain rate and that the dominant deformation mechanism
shifted from the dislocation motion at the lower strain rates to stacking faults at the

higher strain rates 7]

. Furthermore, Liu N et al. studied the rapid solidification
behavior of CoCrCuFe,Ni HEAs and summarized the correlation between
undercooling and microstructures **1. Evidently, HEA has been a popular direction in
materials filed. However, researches on phase-forming behavior in HEA are limited.

In this paper, we introduce a novel CooCr7CuzsMn2sNia3 (at. %) HEA. The mechanical
properties, phase composition, microstructure, and component distribution of the

proposed HEA were characterized. An atom motion model was set up to describe the

behavior of crystal-forming and nanometer precipitates-forming in the proposed HEA.



The alloy was obtained by melting pure metals (purity> 99.8 wt. %) by arc melting
under high-purity argon state and was smelted seven times to ensure chemical
homogeneity. X-ray diffraction (XRD) using CuKa radiation (MXP21VAHF) was
utilized to identify the phase structures of HEAs. Scanning electron microscopy (SEM)
and transmission electron microscopy (TEM) were used to characterize the
microstructure morphology. Moreover, energy dispersive spectrometer (EDS) was
used to inspect the element distribution. For microstructure observation, the samples
were sequentially ground and polished and then underwent electropolishing in a
mixture of 90% acetic acid and 10% perchloric acid at room temperature with an
applied voltage of 27 V for 15 seconds. Flat specimens, with thickness of 1 mm and
gauge length and width of 10 mm and 2 mm, respectively, underwent tensile testing at
a strain rate of 0.6 mm/min at room temperature. The strain was accomplished using
an extensometer.

Figure 1 shows the mechanical behavior and crystal structure of Co9Cr7CuzsMn2sNio3
HEA. Figure 1 (a) presents the XRD patterns of CooCr;CuzsMn2sNizz HEA. It shows
that the CooCr7CuzsMn2sNizz HEA has two crystal structure, FCC(225, Cu riched )and
FCC (225, Co and Cr riched) crystal structure (Comprehensive analysis with the
elements distribution maps). Figure 1 (b) shows the tensile engineering stress—strain
curve, in which the tensile yield strength is 401 MPa, the ultimate strength is 700 MPa,
and the elongation is 36%.

The tensile yield strength, ultimate tensile strength and elongation for the

CoyCr7CuszsMn2sNirs HEA and other HEAs were presented in Figure 1 (c) and (d) [



12,15, 46531 Which shows that the tensile yield strength and elongation have a good
combination, while hase no advantage in the ultimate tensile strength.

For a more intense investigation on the phase-forming behavior of the proposed HEA
system. Microstructure attained by SEM and elements distribution maps of
Co9Cr7CuzsMn2sNiz; HEA through EDS were shown in Figure. 2. The crystal grains
appeared to be peritectic-structure with a core on the inside (see Figure. 2 (a)). The
EDS maps (see Figure. 2 (b-f)) revealed that a large number of Co and Cr elements
with higher melting point segregations existed in the primary phase area; however, the
Cu element, which has a lower melting point, was scanty in this area. The Ni and Mn
elements were lightly segregated in the primary phase and crystal areas, respectively.
The abovementioned results demonstrate the relationship between melting point of
alloy elements and phase-forming order. These cores were used as the primary phase;
the atoms with lower melting point attached themselves to the primary phase based on
the original arrangement mode, which prompted the grains to gradually increase in
size and form a whole grain without changing the crystal structure.

To clearly observe the nanometer precipitates and identify their crystalline structure,
the sample was observed through TEM. As shown in Figure. 4(a), a mass of
nanometer precipitates were found in the Co9Cr;CuzsMn2sNiz3 HEA. The nanometer
precipitates, which were several nanometers in size, were diffusely distributed in the
matrix. The electron diffraction spot illustrated in Fig. 4(b) shows that the proposed
HEA has a single FCC (1 2 2) crystalline structure. Figures 4(c) and (d) show the

bright-field TEM image with high magnification and the corresponding electron



diffraction spot for Fig. 4(c), in which the nanometer precipitates are seen to be 3-8
nm in diameter and have a FCC (1 1 1) structure. Figures 4(e-j) show the HAADF
image and the corresponding STEM-EDS elemental maps of Co, Cr, Cu, Mn, and Ni,
which reveals that the nanometer precipitates were rich with Co and Cr elements but
not with Cu. The nanometer precipitates were mainly generated as the solid solubility
of the elements Co and Cr in the matrix were decreased when the temperature
dropped and when a part of the atoms of these elements were separated from the
supersaturated solid solution as well. As mentioned before, there has been difficulty in
increasing the size of the grain due to the sluggish diffusion effect and the formation
of nanometer precipitates. Furthermore, a mass of nanometer precipitate is pivotal in
improving the strength of the proposed HEA, which demonstrated greater strength as
compared to others FCC HEAs.

As shown in Figure. 4(a), an atom motion model was set up to describe the
crystal-forming behavior in HEA. The atoms with higher melting point (Co, Cr, and
Ni) preferentially precipitated as the primary phase when mixed with small amount of
atoms with low melting points (Cu and Mn) as the temperature decreased: this
observation can be verified through the elements distribution maps presented in
Figure. 2. When the temperature was further reduced, the atoms with lower melting
points separated out attached themselves to the primary phase, which prompted the
grains to gradually increase in size and form a whole grain with peritectic-structure
(as shown in Figure. 4(a)). After the liquid metal solidified and as the temperature

dropped, the Co and Cr atoms were separated from the supersaturated solid solution.



Moreover, there has been difficulty in increasing the size of the precipitated phase due

to sluggish diffusion effect and forming nanometer precipitates (as shown in Figure.
4(b)).

ASmix (entropy of mixing), AHmix (enthalpy of mixing), Tm (The average melting
point), Q (the scald ratio of ASmix to AHmix), 6 (atomic size difference), and VEC

(valence electron concentration), these physical parameters are considered as the key

factor for predicting the structural stability and phase formation in HEAs [321731,39-42],

Yang and Zhang proposed that when Q > 1.1 and & < 6.6%, the stable solid-solution

§[5.21,23,42

phase is formed in multi-component HEA system 1.8 (atomic size difference)

can be attained by equation (1) [>21.23:41.42],

°T \/Zn=1 (1= ri/zzzl(cm))z 1)

Where 1; is the atomic radius of the ith constituent element, c¢; represents the atomic

percentage of the ith component element, based on equation (1), the o (atomic size
difference) of CooCr7CuzsMn2sNiz; HEA is 3.1%.

Q is the scald ratio of ASmix to AHmix, it can be attained by equation (2) [-21:23:41.42],

_ TmASmix
Q N |AHmix| (2)

Where T is the average melting point, ASmix is the entropy of mixing, AHmix is the
enthalpy of mixing.

Tm can be calculated by equation (3) [521:23:41.42],

n
Tm = anl(ci(Tm)i) (3)
Where n represents the number of component elements, (T;,); is the melting point of

the ith constituent element.



AHmix can be calculated by equation (4) %2123 41.42],

n
AHpix = Zn=1 Qijcicjiij “4)
Where Q;; usually equals to 4 AHij miX where AHij™* is the enthalpy of mixing of
the ith and jth component element, it can be attained in this paper ).

ASmix can be calculated by equation (5) [-21:23:41.42],

ASpix = =R Xn-1(ciIn¢y) (5)
Where R is the universal gas constant (8.314 kJ"! mol!), based on equations (2-5), the
Q (the scald ratio of ASmix to AHmix) of CooCriCuzsMnosNizz HEA is 9286.6.
According to the criterion of Yang and Zhang [*)], the CooCr7CussMnasNiz; HEA
should be a stable solid-solution phase, which agree with the prediction.
Guo et al. reported that VEC is another important parameter for predicting phase
structure of HEA [2*2¢1_ The criterion is that a sole solid-solution phase with an FCC
structure is formed when VEC > 8, both the FCC and BCC structured solid-solution
phases are denatured when 6.87 < VEC < 8, a single BCC solid-solution phase is
present when VEC < 6.87 [242°]_ Tsai et al. proposed that ¢ phase was formed when
alloys having VEC values between 6.88 and 7.84 either in the as-cast state or during

s 2821 In addition, our previous studies also exhibited

aging at suitable temperature
that, element with a VEC lower than the average VEC of the matrix is added in HEA,
it is helpful to improve the strength, while ductility could be improved by selecting
another element with a VEC higher than the average VEC for the matrix [,

VEC can be calculated by equation (6) (242628, 29, 43-49],

VEC = )" _ c;(VEC); (6)



Where (VEC); is the VEC of the ith component element. Based on equation (6), the
VEC (valence electron concentration) of CooCr7CuzsMnzsNizz HEA is 9.24.
According to the criterion of Guo et al. and Tsai et al. [2#26 28 29 the
Co9Cr7CuzsMnysNizz HEA would form a stable single FCC solid-solution phase, the
experimental result agrees with the prediction.

We are the first to investigate the CooCr7CuszsMn2sNizs HEA. Our proposed HEA had
the tensile yield strength and ultimate strength was 401 MPa and 700 MPa,
respectively; the tensile elongation was 36%. A mass of super-nanoscale precipitates,
which were several nanometers (3-8 nm) in size, abundant in Co and Cr, and scarce in
Cu, were found in the novel HEA. Based on the EDS analysis result, in the
crystal-forming behavior of HEA, the atoms with higher melting points preferentially
precipitated as the primary phase whereas atoms with lower melting points were
separated out and attached themselves to the primary phase as the temperature was
reduced. This prompted the grains to gradually increase in size and form a whole
grain. As the temperature dropped, a part of atoms of Co and Cr were separated from
the supersaturated solid solution, which, on the other hand, encountered difficulty in

increasing its size due to the sluggish diffusion effect and the forming nanometer

precipitates.
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Figure. 1. Mechanical behavior and crystal structure of CooCr7CussMn2sNi2s HEA. (a) XRD patterns. (b) Tensile

engineering stress-strain curve. (c) The tensile yield strength and elongation for the CooCr7CussMn2sNi2; HEA and

other HEAs [12. 15 16,19, 26,45-49, 64, 65] ({) The ultimate tensile strength and elongation for the CooCr7CussMn2sNiz3

HEA and other HEAs [12, 15, 16, 19, 26, 45-49, 64, 65].

13



Melting point 1495 ‘C Melting point 1890 ‘C

(H Melting point-1455.-'C

Figure. 2. Microstructure and elements distribution maps of CosCr7CuzsMn2sNizs HEA through EDS. (a)

Microstructure of CooCr7CuzsMn2sNizs HEA. (b-f) Elements distribution maps of Co, Cr, Cu, Mn and Niin

Co09Cr7CuzsMn2sNi2z HEA.
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Fig. 3. TEM image of Co9Cr7CuszsMn2sNizs HEA. (a) Bright-field TEM image with low magnification. (b) The

electron diffraction spot of a. (c) Bright-field TEM image with high magnification. (d) The electron diffraction

spot of c. (e-j) High-angle annular dark-field (HAADF) image and the corresponding STEM-EDS elemental maps

of Co, Cr, Cu, Mn, and Ni.
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Fig. 4 (a). Atom motion model of the crystal-forming behavior of CogCr7CussMna2sNiz3 HEA. Co, Cr, and Ni atoms
have higher melting points as compared to Cu and Mn atoms, which have lower melting points in the proposed

HEA system. (b). The forming behavior of nanometer precipitates.
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