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Abstract:

A single phase, face-centered-cubic (FCC) Alo3CoCrFeNi high entropy alloy usually has
low yield strength. Here, a precipitate-strengthened Alo3CoCrFeNi has been developed,
exhibiting enhanced yield strength while retaining good ductility, which is attributed to a
novel microstructure comprising a finely distributed, needle-like B2 phase within the
grains of the FCC matrix and a granular ¢ phase along the grain boundaries. Such a
microstructure was obtained by a two-step heat treatment of an as-cast Alo3CoCrFeNi,
whose parameters were determined by integrating CALPHAD-based thermodynamic
calculations with microstructural characterization by atom probe tomography. In situ
neutron diffraction, in conjunction with crystal-plasticity finite-element simulations, has
revealed the strengthening effect owing to the load partitioning between the constituent
phases. This work has important implications for understanding phase stability and
deformation mechanisms in multi-principal component alloys, and paves the way for

developing novel microstructures in complex alloys using correlative techniques.

Key Words: High entropy alloys; tensile strength; atom probe tomography; in situ

neutron diffraction; thermodynamic calculations
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1. Introduction

Most structural materials for engineering applications are based on single
principal elements, e.g., Al-, Ti-, Fe-, and Ni-based superalloys. The creation and design
of novel structural materials with enhanced mechanical properties have always been the
goal of many scientists and engineers. Recently, high entropy alloys (HEAs) [1-5], also
known as multicomponent alloys [1], multi-principal element alloys (MPEAs) [6], complex
concentrated alloys (CCAs) [5], compositionally complex alloys (CCAs) [4], baseless alloys
(BAs) [5], or metal buffets (MBs) [7] have revolutionized alloy design approaches by
employing the use of five or more multi-principal elements in an equal or near-equal
atomic percent, which offer a vast alloy compositional space with potential outstanding
properties [ 1-3].

While the reported literatures on HEAs indicate promising enhancements in
mechanical properties, such as higher hardness [1], better yield strengths [8-12],
comparable or greater fatigue resistance [13-16], and superior fracture toughness [17],
relative to conventional alloys, strategic processing is still needed to make HEAs into real
engineering alloys for industrial applications [7]. One of the approaches is the grain
refinement. For example, Otto et al. increased the room temperature (RT) yield strength
of CoCrFeMnNi from 200 MPa to 350 MPa via the grain refinement from 155 to 4.4 um,
utilizing the grain-boundary strengthening mechanism [9]. Similarly, Gangireddy et al.
[18] and Gwalani et al. [19] also employed the grain-boundary strengthening strategy to
the Alp3CoCrFeNi alloy, finding remarkable Hall-Petch strengthening with a Hall-Petch
constant of 811 and 824 MPa/um®?, respectively. Another approach is precipitation

strengthening via heat treatment processing. Recently, the strength increase due to the
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second phase precipitation has been reported through the thermo-mechanical processing
[20, 21]. Due to the formation of the o phase, significant strengthening (from 130 MPa to
330 MPa), accompanied by no ductility, was demonstrated in the CoCrFeNiV alloys [20].
Minor alloy additions of Ti and Al to a single-phase CoCrFeNi HEA can induce the
formation of L1;-coherent precipitates in the FCC matrix, which gives a yield strength of
645 MPa with an elongation of 39 % [21]. Furthermore, through controlling the
transformation pathways of Alp3CoCrFeNi HEA, both grain-boundary strengthening and
precipitation strengthening were utilized to improve the tensile properties of
Alo3CoCrFeNi HEA, resulting in a great enhancement of strength from 230 MPa to 820
MPa without too much ductility reduction [22]. Actually, after the grain refinement and
the introduction of precipitates, not only the tensile properties of Alp3CoCrFeNi can be
optimized, but also the fatigue resistance can be greatly enhanced [23]. Although the
precipitation strengthening has been utilized to improve strengths of the soft single phase
HEASs, more detailed investigations are required to understand the strengthening effect of
precipitates, and micromechanical deformation behavior between the precipitates and the
matrix. In order to solve this critical issue, the present work focuses on the strategically
developing second-phase-strengthened HEAs with the balanced tensile strength and
ductility by coupling experimental and computational efforts.

The three dimensional (3D) atom probe tomography (APT) [24] has been used to
visualize the nano-scaled distribution of alloying elements in AlgsCoCrCuFeNi [25],
AlCoCrCuFeNi [26-28], Al;3CoCrCuFeNi [29], AICrCuFeNiZn [30], AICoCrFeNi [31],
and CoCrFeMnNi [32-34] HEAs, and the nature of interfaces between constituent phases

in the AICoCrCuFeNi HEA [24, 26, 27]. The chemical distribution phenomenon on the
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atomic level has been seldom studied in the Alo3CoCrFeNi HEAs. In situ neutron
diffraction (ND) techniques subjected to continuous tensile loading provides deformation
behaviors and mechanisms as a function of temperature in single-phase CoCrFeMnNi [35,
36]. However, the systematical study of the micro-mechanical deformation behavior of
multi-phase HEAs is still limited [7].

In the current work, we present stable phases and their fractions, as well as the
distribution of each alloying element within different phases, of Alo3CoCrFeNi within the
temperature range from 200 to 1,500 °C, using the calculation of phase diagrams
(CALPHAD) approach [37-43]. Then based on the thermodynamic calculation results, a
two-step heat treatment processing (homogenized at 1,250 °C and then aged at 700 °C)
was designed to achieve optimal microstructure combinations with good mechanical
properties. The micromechanical deformation behavior of the B2, i.e., ordered body-
centered-cubic (BCC) structure, in the FCC matrix is studied using the in situ neutron
diffraction measurements [44]. The grain-level information, e.g., how the applied load is
partitioned among different grain families in the single-phase HEAs and between two
phases in the dual-phase HEAs, are derived from neutron results. The crystal-plasticity
finite-element simulation (CPFEM) was utilized to simulate the elastic-plastic response
of (hkl) lattice strains [44] as a function of stress at RT and to compare the prediction
with the neutron experimental results quantitatively.

The coupled experimental and computational efforts can optimize engineering
properties and significantly facilitate the application of HEAs as future high temperature

materials. At the same time, the study could deepen our fundamental understanding of the
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phase stability and strengthening mechanisms of both single-phase and multi-phase

HEAs through the integration of experimental and theoretical approaches.

2. Methods

2.1.  Sample preparation

The Alp3CoCrFeNi with a nominal chemical composition of 7.00A1-23.26Co-
23.26Cr-23.26Fe-23.26Ni (atomic percentage (at. %)) was fabricated by vacuum-
induction melting to a plate (~ 127 mm % 305 mm x 19 mm). Then the specimen has
undergone the hot-isostatic-pressing (HIP) process at 1,204 °C and 103 MPa for 4 hours.
After that, Alp3CoCrFeNi was quartz-tubed with the triple-pumped argon and underwent
two different heat treatments. One is the homogenization treatment at 1,250 °C for 2
hours (h), followed by water quenching (as-homogenized). Another is aging at 700 °C for
500 h after the 1,250 °C homogenization and then, water quenched (as-aged). Note that
the annealing parameters were selected based on the CALPHAD predictions, as described

in more details in Section 3.1.

2.2.  Microstructural characterization

Atom probe tomography (APT) was performed at the Oak Ridge National
Laboratory (ORNL) Center for Nanophase Materials Sciences (CNMS) [45]. The region
of interest was extracted as a wedge, and mounted to a Si-post array, using an FEI Nova
200 focused ion beam (FIB) system and micromanipulators. Then the specimen is further
sharpened into a needle, with a diameter of less than 100 nm by a series of annular
milling patterns. The APT experiments were conducted with a local electrode atom probe

(CAMECA Instruments LEAP 4000X HR) at the base temperature of ~ 50 K (- 223 °C).
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At least 5 million ions were collected for each sample to ensure adequate data statistics.

The datasets were reconstructed and analyzed using the IVAS 3.6.8 software [45].

The 700 °C aged state was characterized by the scanning electron microscopy
(SEM), using the FEI Nova instrument. The SEM specimen was prepared by a vibration
polishing method after a finer grinding with a 1,200 grit SiC paper. The size (i.e., width
and length) and volume fraction of needle-like B2 precipitates distributed in the FCC
matrix was measured, using the software package Image-Pro Plus (version 6.0; Media
Cybernetics, Baltimore, MD). Total 300 needles were counted for the size analysis and
all the needle-like region observed in the SEM image was used for the volume fraction

analysis.

2.3.  Mechanical Testing

Before the in situ neutron tensile testing, tensile tests experiments conducted in
advance on the as-homogenized and as-aged HEAs at RT with a strain rate of 5 x 107 s™!,
using an MTS Model 810 servohydraulic machine. The dimensions of the cylindrical
dog-bone specimen for the laboratory tensile test were 28 mm in gage length and 3.175
mm in diameter.
2.4.  In situ tensile tests performed in the neutron diffraction facility

In situ neutron diffraction (ND) experiments were performed at the VULCAN
Engineering Materials Diffractometer of the Spallation Neutron Source (SNS), Oak
Ridge National Laboratory (ORNL). VULCAN [46, 47] is a time-of-flight (TOF) neutron
diffractometer using neutron pulses with a range of wavelengths (~ 0.5 - 8 A), which is
optimized to measure elastic strains at precise locations in bulk specimens. The
experimental loading rig is mounted with its loading axis oriented horizontally and at 45°

7
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to the incident beam, with two detectors oriented at 90° to this beam (see Fig. 1). The two
stationary detector banks collect simultaneously two complete diffraction patterns in the
axial and radial directions, respectively. Diffraction from the crystal lattice of grains,
whose plane normal (that is, <hkI>) is parallel to the axial or radial directions, will be
detected, and the lattice spacing, dnki, can, thus, be measured from the diffraction peak,
corresponding to the (hkl) reflection. The dimensions of the cylindrical dog-bone
specimen for the in situ tensile test were 50 mm in length and 6.35 mm in diameter.
Figure 1(a) is the schematic of the real time in situ neutron diffraction setup at VULCAN,
SNS, ORNL. The incident beam size is 5 mm x 5 mm. About 700 grains should be able
to be included within the 5 mm x 5 mm beam size. The measuring time for each stress
level is ~ 10 min. The strain is determined parallel to the applied load, using an
extensometer. Figure 1(b) presents the enlarged gauge volume under neutron diffraction.
2.5.  Thermodynamic modeling

The phase diagrams and thermodynamic properties of the Alo3CoCrFeNi HEAs
are predicted by the phenomenological Calculation of Phase Diagrams (CALPHAD)
approach, using PanHEA database [37-42]. The CALPHAD approach is based on the
thermodynamic law that a system reaches its equilibrium when it attains the lowest Gibbs
energy for a given composition, temperature, and pressure. The thermodynamic
description for higher-order HEA systems is obtained via the extrapolation from its
constituent lower-order systems, such as binary and ternary systems [48]. A
thermodynamic database for the AlI-Co—Cr—Fe—Ni system was developed in the entire
composition region. Details of these thermodynamic models can be found in References

[37-42].
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Both BCC and FCC phases are described by the substitutional solution model (Al,
Co, Cr, Fe, and Ni). The B2 phase is described by the compound energy formalism: (Al,

Co, Cr, Fe, and Ni)os: (Al, Co, Cr, Fe, and Ni)os. The Gibbs energy is expressed as,

G =Y > yy'GI+RT(0.5) y/Iny; +0.5) y'Iny")+ G (1)
J i i

where y; and y!' are the species concentrations of the component, i, in the first and
second sublattices, respectively. Giiz is the Gibbs energy of the B2 phase. The first term

on the right hand of the equation represents the reference state with a mechanical mixture
of the stoichiometric compound with a B2 structure: io.5jo.5. The second term is the ideal
mixing term with a gas constant, R, and the temperature, T, in Kelvin. The last term is the
excess Gibbs energy of mixing, The PANDAT software [37-41, 43] was performed under
the PanPhaseDiagram module for the present work.

2.6.  Crystal-plasticity finite-element modeling (CPFEM)

A CPFEM is developed to predict the lattice strain evolution during the tensile
test in HEA materials. The slip-based crystal-plasticity model considered the slip
deformation inside each grain, and the yielding sequence of different grains is governed
by the grain orientation, elastic constants, and Schmid factors of specific slip systems.
The constitutive parameters include elastic constants, Cii, Ci2, and Ca4, the critical
resolved shear stress, 1o, and those describing the strain rate dependence and strain
hardening behavior. The concise description of the crystal plasticity theory and its
constitutive equations can be found in the references [49-51]. Two representative volume
element (RVE) models were constructed, respectively, due to the different
microstructures of the HEAs studied in the tensile tests. For the Alo3CoCrFeNi (after

homogenization at 1,250 °C for 2 h) preserving a single FCC phase, the RVE was built

9
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by 1,000 cubic grains with each cubic grain containing 4 three dimensional eight node
brick elements in the random crystallographic orientation distribution. The RVE model
for the Alo3CoCrFeNi (after aging at 700 °C for 500 h) was created, based on the
microstructure observation (as will be shown in Fig. 10(a)) showing the mixture of an
FCC matrix and needle-like B2 phase. This model aggregates 1,000 cubic grains, in
which a collection of 3 x 3 x 3 cubic units are composed of an FCC matrix grain and a
B2 grain. Specifically, the needle-like B2 phase is embedded into the FCC matrix in the
middle of the 3 x 3x 3 cubic unit. Similarly, the grain orientation is random for both FCC
and B2 phases. The faces of both RVE models with normal directions of x, y, and z, as
will be shown in Fig. 10(a) are prescribed to the symmetric boundary conditions. A
ramping displacement with a constant rate is applied on the surface with a z normal
direction. The diffraction vector is parallel to the loading direction, which is the z
direction. This simulation has been implemented in a commercial finite element software,
ABAQUS, through the modified user-defined material (UMAT) subroutine [52] to
investigate the lattice strain evolution in a polycrystalline aggregate. The calculated {hkl}
lattice strain was a volume average of the projected elastic strains in a subset of grains,

whose {hkl} plane normal direction was parallel to the diffraction vector.

3. Results

3.1.  CALPHAD analysis and phase stability at both 1,250 °C and 700 °C

Figure 2(a) presents the equilibrium phase diagram of the Alp3CoCrFeNi HEA,
provided by the CALPHAD thermodynamic calculations. One can see that under an

equilibrium condition, its melting temperature is about 1,427 °C. Then the liquid was

10
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transformed into the FCC solid phase, which is the only one stable phase in the
temperature range from 1,028 to 1,427 °C. Below 1,028 °C, the ordered B2 phase
precipitates out from the FCC matrix. As the temperature goes down to 725 °C and
606 °C, o and L1» phases start to form, respectively. According to phase diagram (Fig.
2(a)), the alloy is composed of a pure FCC phase, when the annealing temperature is
1,250 °C. When it is annealed at 700 °C for a sufficient time, the alloy consists of FCC,
B2, and © phases. More detailed information, e.g., chemical compositions of each phase
at two annealing temperatures (1,250°C and 700°C), from our thermodynamic
calculations, is listed in Fig. 2(b), which indicates that the FCC phase is homogenous
with the nominal chemical composition of the Alp3CoCrFeNi, the ordered B2 phase is
NiAl rich, and the o phase is Cr rich. The comparison between thermodynamic

calculations with APT experimental results will be discussed in Section 4.3.

3.2. Microstructures of the Alp;CoCrFeNi after annealing at 1,250 °C for 2 hours

The 3D APT elemental maps of the Alp3CoCrFeNi HEA after annealing at
1,250 °C for 2 hours in Fig. 4(a) show that the distributions of Al, Co, Cr, Fe, and Ni

elements within the analyzed volume, 35 x 35 x 75 nm’

, are homogeneous with no
indication of segregation or clustering on the atomic scale. Shown in Fig. 4(b), the
concentrations of the different elements, Al, Co, Cr, Fe, and Ni, along with the black
arrow in Fig. 4(a), represent small concentration fluctuations. In order to quantify the
concentration fluctuations, the frequency distribution of nanoscaled atomic clusters
obtained from the experimental APT data is compared with the classical binomial
frequency distribution, f(n) [53]. The deviation of the experimentally measured

distribution from the binomial can be quantified, by means of the normalized y? statistics,
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p [53]. u can track the changes in the degree of solute segregation. When p is equal to 0,
it means a random distribution. But when p is 1, it suggests a complete association in the

occurrence of the solute atoms.

f(n)= [ )p (1-p)"™* )

where n is the number of solute atoms.

R CORNO) 3
; £ ©

where e(n) is the number of blocks containing n solute atoms in the experimental data.

0< = <1 (4)

where N is the number of blocks sampled.

The p values for Al, Co, Cr, Fe, and Ni were found to be 0.1138, 0.0389, 0.0520,
0.0349, and 0.1042, respectively, which confirm that the Al, Co, Cr, Fe, and Ni

distributions are indeed homogenous after annealing at 1,250 °C for 2 hours.

3.3.  Precipitate phases and morphologies after the heat treatment at 700 °C for 500 h

In order to increase the yield strength of the Alp3CoCrFeNi HEA, two-step heat
treatments were performed, with the assistance of thermodynamic modeling (Section 3.1).
The microstructure after aging at 700 °C for 500 h within a grain is shown in Fig. 4. The
SEM image shows that needle-like second phases appear in the matrix (Fig. 4(a)). The

average width of the needle-like phases is ~162 nm determined by Image-Pro Plus.
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Moreover, the determined volume fraction of these second precipitate is ~14%, which is
very consistent with the CALPHAD prediction (~12%). APT is used to obtain the
chemical distribution and interfacial configuration of the needle-like precipitates on the
nanometer level. The atom maps of the constituent elements for the Alo3CoCrFeNi HEA
after aging at 700 °C for 500 h are shown in Fig. 4(b). The dimension of the second phase,
~ 140 nm, is consistent with the SEM results. The concentration profile of all alloying
elements within both the second phase and the matrix is shown in Fig. 4(c). The results
indicate that the second phase is the Al-Ni-rich phase. Due to the present of BCC based
structure revealed by the diffraction patterns (Fig. 8(b) and 8(c)), the Al-Ni rich phase is
the B2 phase, despite of the unobserved (001) superlattice peak for B2. The comparison
between the APT experimental results and thermodynamic calculations will be discussed

in Section 4.5.

The distribution of chemical compositions after aging at 700 °C for 500 h from
the grain boundary region is shown in Fig. 5. The atomic maps (Fig. 5(a)) and the
proximity histogram across the interface between the FCC matrix and grain boundary
precipitates (Fig. 5(b)) indicate the presence of Cr-rich ¢ precipitates (Figure 5(b)). In the
FCC matrix, it has a concentration of 0.276 at.% Al, 40.480 at.% Co, 8.466 at.% Cr,
47.902 at.% Fe, and 2.876 at.% Ni. In the o phase, it has a concentration of 0.016 at.% Al,

25.112 at.% Co, 54.240 at.% Cr, 18.277 at.% Fe, and 0.236 at.% Ni (Table 3(a)).

3.4.  Tensile properties of Alp3CoCrFeNi after homogenization at 1,250 °C for 2 h and

aging at 700 °C for 500 h

13
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The full stress-strain curves of both as-homogenized and as-aged HEAs are
provided in Figs. 6 (a) and (b). The yield strength and ductility of as-homogenized state
are about 167 MPa and 62%, respectively. After the aging at 700 °C for 500 h, the yield
strength of this HEA increase to 321 MPa, but the ductility decreases to 29%. The
observed tensile yield strength and ductility of the 1,250 °C-homogenized HEA are very
similar to the previously reported values [19, 54]. However, the tensile yield strength and
ductility of the 700 °C-aged one are very different from those reported results [19, 22].
This is because the very different volume fraction, morphology of B2 precipitates, and
the grain size of FCC matrix [19, 22]. One can note that the serrated flow happened in the
1,250 °C-homogenized single-phase FCC HEA, but not 700 °C-aged B2 precipitated
strengthened HEA, which is related to the localized heterogeneous deformation [55, 56].
It should be also noted that the serrated flow in the 1,250 °C-homogenized single-phase
FCC HEA is not observed during the in situ neutron tensile testing, which is due to the
limited data acquisition frequency during in situ testing. One will notice that the
laboratory measured yield strengths of both states will be slightly higher than those
measured during the in situ neutron tensile tests (~ 20 MPa). The small difference can be
ascribed to the different mechanical testing machine, testing strain rate, and sample size.
In order to utilize the information captured by in situ neutron diffraction and explain the
effect of B2 strengthening, all the yield strengths that we used will from the results during

the in situ neutron tensile testing.

3.5. In situ Characterization of Lattice Strain Evolution during Tension of

Alg3CoCrFeNi after Homogenization at 1,250 °C for 2 h
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In situ neutron diffraction techniques [35, 36] subjected to continuous tension are
used to study lattice strain changes as a function of stress in Alp3CoCrFeNi after
homogenization at 1,250 °C for 2 h. The macroscopic stress-strain behavior during in situ
tension at RT was measured (Fig. 7(a)). In the elastic region, the machine is under a
stress-control mode, i.e., the tension tests are interrupted and hold for 10 minutes at 20,
40, 60, 80, 100, 120, and 140 MPa, respectively. Then the machine is under a strain-
control mode. The macroscopic stress-strain curve is shown in Fig. 8(a). The yield

strength is around 145 MPa.

The neutron scattering geometry allows for simultaneous measurements of two
scattering vectors, which are parallel and perpendicular to the tensile axis, respectively.
Diffraction from the crystal lattice of grains, whose plane normal (that is, <hkI>) is
parallel to the loading direction and satisfies Bragg’s law, is detected by Bank 1. At the
same time, the diffraction pattern from the crystal lattice, whose plane normal is
perpendicular to the loading direction and satisfies Bragg’s law, is detected by Bank 2
(Fig. 1). Figures 7(b) and 7(c) show the typical diffraction patterns of the Alo3CoCrFeNi
HEA after homogenization at 1,250 °C for 2 h from Banks 1 and 2, respectively,
measured at RT, with a 10-minute data collection. All peaks are indexed to an FCC
structure, presented in Figs. 7(b) and 7(c). The intensity difference between Figs. 7(b)

and 7(c) indicates that the material has a strong texture.

The hkl plane-specific lattice strain is grain orientation dependent and described
as the average lattice strain accumulated in the diffracted grains, whose hkl plane normal
is parallel to the diffraction vector, Q. In the Alp3CoCrFeNi HEA, the hkl plane-specific

lattice strain is determined by
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Ep = (dhkl _dl(z)kl)/d}?kl ()

where ¢, is the lattice strain in the hkl-oriented grains, d,, is the reference lattice

spacing before deformation under the unloaded state, and d,, is the d spacing as a

function of the applied stress, for the respective phases.

The lattice strain evolution of <200>, <220>, <311>, and <331> within the
Alo3CoCrFeNi after homogenization at 1,250 °C for 2 h during tensile deformation at
room temperature is shown in Fig. 7(d). The results illustrate that the lattice strain change
is strongly dependent on grain orientations, indicative of the strong elastic anisotropy.
The {200} grains exhibit the largest elastic strain along the loading direction and a
significant shift, relative to their linear elastic response, which manifests the elastic-
plastic transition. The {311} grains have the second largest elastic strain but maintain
nearly a linear response. The {220} and {113} grains, on the other hand, have a lower

elastic strain, indicating that they have a larger elastic stiffness.

3.6. In situ Characterization of Lattice strain Evolution during Tension of

Alp3CoCrFeNi after aging at 700 °C for 500 h

In situ ND techniques are also utilized to investigate the deformation behavior of
the multiphase Alo3CoCrFeNi after aging at 700 °C for 500 h. The macroscopic stress-
strain behavior during in situ tension at RT is presented in Fig. 8(a), where the 0.2 %
proof stress of Alp3CoCrFeNi (after aging at 700 °C for 500 h) was determined as 300
MPa. Figures 8(b) and 8(c) show typical diffraction patterns of Alp3CoCrFeNi after aging

at 700 °C for 500 h, measured by the Bank 1 and Bank 2 detectors, respectively, at RT
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with a 10-minute data collection. Besides FCC peaks, at least three peaks, <110>, <200>,

and <211> of a secondary phase, a B2 phase, are present.

The evolution of the specific {hkl} lattice strains of the FCC matrix and B2 phase
as a function of average stress at room temperature are displayed in Fig. 8(d). At 300
MPa, the slope of the elastic strain of the FCC matrix is increased, relative to the linear

elastic response, while the slope of the elastic strain of the B2 phase is reduced.

3.7.  Crystal-plasticity finite-element modeling

Details of the hardening law and other constitutive parameters can be found in the
Table 1, where Cy1, Ci2, and Caq are elastic constants, n is the rate sensitivity exponent, ho
is the initial hardening modulus, s is the saturation slip strength, 1o is the initial slip
strength, and q is the ratio of latent over self-hardening behavior. The input elastic
constants are obtained by fitting the Kroner model [57, 58] and our simulation will
further fine tune these values so as to fit the initial lattice strains when all grains and
phases are in the elastic deformation. Note that the initial lattice strain splitting is
primarily determined by the Schmid factor (which is controlled by the choice of slip
systems) and the directional modulus (which is governed by the elastic anisotropy). The
slip system is chosen as the {110} <111> system for the B2 phase, and as the {111} <110>
for the FCC phase. The initial slip strength, to, can be estimated from the deviation of the
lattice strain from linearity, as the applied stress increases and exceeds the elastic stage.
In single phase polycrystalline materials, 1o relates to the macroscopic yield stress by the

Taylor factor, being about 3.0 for random textured FCC and BCC polycrystalline
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materials. This is how we estimate 1o for the soft FCC phase. It is assumed that the B2

phase does deform elastically in the overall tensile test.

The predicted results of the macro stress-strain curve and lattice strain evolution
are illustrated in the Figs. 9 and 10 for single-phase and dual-phase HEAs, respectively.
The scattered spots denote experimental data, and the solid line represents simulation
results. From Fig. 9(c), the stress-strain curve can estimate macro-deformation behavior,
illustrating that calculated lattice strains accurately predict the experimental results.
Lattice strain splitting in the elastic deformation indicates the elastic anisotropy of
different {hkl} grain families, which agree with the observed behaviors. After yielding,
the stresses transfer among different {hkl} grain families. Some hard-oriented grains
undergo higher stresses (thus having larger lattice strains) and soft-oriented grains
undertake lower stress (thus having lower lattice strains), which results in lattice strain

increases nonlinearly during plastic deformation.

Figure 10(b) shows the stress distribution in the RVE after deformation for
Alp3CoCrFeNi (after aging at 700 °C for 500 h). The highlight green cubic units
represent grains of the B2 phase, which indicates that the B2 phase undergoes much
higher stress than the FCC phase after plastic deformation. The lattice strain evolution of
two-phase HEAs as a function of stress predicted by CPFEM is shown in Fig. 10(c), in
comparison to the experimental measurement during in situ tension at RT. The solid lines
in Fig. 10(c) are predictions, while the symbols are experimental data. In Fig. 10(c), the
predicted results capture the stress partitioning. After yielding, the increase rate of the
lattice strain of the B2 phase drops dramatically. However, the lattice strain of the FCC
phase still increases linearly. The huge splitting of FCC and B2 phases explain the stress
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partitioning in this kind of the dual-phase HEA. As a hard phase, the B2 phase has not
yielded during the tensile test. Consequently, the stresses transfer to the B2 phase, which
will enable an overall higher degree of plastic deformation. The strengthening B2 phase
delays the localized failure by the stress transfer. Some deviation between the predicted

and experimental results is likely due to the microstructure simplification.

4. Discussion

4.1.  Formation of the B2 and o phases at 700 °C

As shown in Fig. 4(a), the material after aging at 700 °C for 500 h is full of
needle-like B2 precipitates formed in the FCC matrix, and these precipitates are expected
to produce hardening. The chemical information shown in Figs. 4(b) and 4(c)
demonstrates that these B2 precipitates are of a NiAl-type. The similar morphology of the
B2 phase and its orientation relation with the parent FCC matrix have been reported in
several papers [19, 59, 60]. A Kurdjumov-Sachs (K-S) orientation relationship is present

between the B2 precipitates and the FCC matrix [19, 59-61]. The large lattice misfit

a -a
(S P20 £19.9% ) between the FCC matrix and B2 phase indicates that the

aFCC,lll
interface between FCC and B2 phases is incoherent. Accordingly, it explains the reason
why the needle-like B2 phase was precipitated in the FCC matrix because of the large
strain energy if it were round shaped. Due to the large lattice misfit, the effect of the
elastic strain energy becomes dominating the influence of the interfacial energy when the
B2 phase begins to precipitate. Thus, the needle-like B2 phase with the relatively large
interfacial energy was formed to relieve the large strain interaction between FCC and

BCC phases.
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Combining the thermodynamic calculations (Fig. 2) with the APT results (Fig. 5),
the Cr-rich precipitate of Alo3CoCrFeNi aged at 700 °C for 500 h is referred to be the o
phase . Through the detailed thermodynamic calculations (Fig. 2), the o phase appears to
be stable at intermediate temperatures, between 350 °C and 720 °C for Alp3CoCrFeNi.
The formation of ¢ phase is observed in the Alp3CoCrFeNi is owing to the following
reasons: first, Cr is known as a strong ¢ phase former, and the ¢ phase has also been
shown to form in binary systems of the Cr-Co, Cr-Fe, and Cr-Ni [62]; second, other
substitutional elements such as Al, Co, Fe, and Ni, having similar atomic radii with Cr,
do not destabilize the o phases for Alp3CoCrFeNi HEAs. The Co- and Cr-rich ¢ phases
were also observed in the as-cast Alo44CoCrFeNi alloy by the Z-contrast technique in a
scanning TEM (STEM) mode [63], in Al-Co-Cr-Fe-Ni alloys containing around 15 to 23
at.% Al [64], in Cr-Fe-Co-Ni-Al-Ti alloys [65], in CoCrFeMnNi at grain boundaries after
annealing at 700 °C for 500 days [62], and stainless steels [66]. The hardness of the
alloys increases with increasing the content of the ¢ phase in Fe-based composites [67].
However, the ¢ phases are known to deteriorate the ductility of materials at high
temperatures. Thus, the understanding of the ¢ precipitation will allow for some control

over the properties of HEAs in the future.

Figure 11(a) gives the schematic representation of the microstructure in the
studied HEA after aging at 700 °C for 500 h. The aged HEA comprises the FCC matrix,
needle-like B2 phase within grains, and granular ¢ phase along the grain boundary. To
achieve an enhanced combination of strength and ductility, the future efforts should focus
on the optimization of constituent phases in terms of the morphology and volume fraction

through the integration of experiments and CALPHAD thermodynamic predictions.
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4.2.  Comparison between thermodynamic calculations and experimental results

The thermodynamically calculated results (Fig. 2) help us better understand the
experimental results. It facilitates the identification of the NiAl-rich phase (Figs. 4(b) and
4(c)) and the Cr-rich phases (Figs. 5(a) and 5(b)) as the B2 and & phase in Alp3CoCrFeNi,
respectively. There are great agreements of the phase fractions between the measured and
calculated values for Alp3CoCrFeNi. The experimental results show that the FCC phase
fraction after homogenization at 1,250 °C for 2 hours is ~ 100 %, which agrees well with
our calculated result (~ 100 %) accordingly. At 700 °C, the calculated phase fractions of
FCC phase, B2 phase, and o© phase, are 85, 12, and 3 %, respectively (Fig. 2(b)), while
our experimental results are about 86 and 14% for FCC and B2 phases, respectively
(Figs. 4 (a)). Note that the o phase is neglected when counting the volume fraction,
because of its minor amount and the inadequate represented region in the SEM image
(Fig. (4a)). One may also notice that there are some differences between the compositions
predicted by CALPHAD (Fig. 2(b)) and those measured by APT (Figs. 3(b) and 4(c)) of
FCC (1250 °C homogenized state) and B2 phases (700 °C aged state). For example, in
the 1250 °C homogenized state, the measured concentrations of Fe and Al are about 27
at.% and 4.5 at.%, while the nominal concentration of Fe and Al should be ~23 at.% and
7 at.%. This difference could be due to the evaporation of Al element at that high
temperature (1250 °C). Moreover, in the 700 °C aged state, the elemental concentrations
in NiAl-type B2 phase predicted by CAPHAD (Al: 22.16 at.%, Co: 3.63 at.%, Cr: 0.69
at.%, Fe: 4.41 at.%, and Ni: 69.11%) are different from those measured by APT (Al: ~ 37
at.%, Co: ~ 12 at.%, Cr: ~ 2 at.%, Fe: ~ 8 at.%, and Ni: ~42%). Such a discrepancy may

be due to the inaccuracy of the current thermodynamic database, the non-equilibrium
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state of B2 phase, or the selected area dependence of the SEM observations (Fig. 4(a)).
Overall, the thermodynamic calculations provide basically accurate predictions on phase
fractions, phase chemical compositions, etc., and effectively accelerate the new alloy

design through adjusting heat-treatment processing parameters.

4.3.  Elastic anisotropic behavior

Since there were no available experimental data for the single crystal elastic
constants of Alp3CoCrFeNi, we estimated their elastic constants from the experimental
polycrystalline neutron diffraction data. This calculation is of practical importance,
because single crystal elastic constants are usually not available for newly designed
alloys. The Alp3CoCrFeNi material is loaded uniaxially in the elastic regime, and each
hkl-specific lattice strain as a function of the applied stress in the loading and transverse
directions, respectively, is measured simultaneously using neutron diffraction (seen in Fig.

1). Then 1/ E,,and v,,, / E,,, are calculated, using the Kroner model [68], by setting Cj;

as free parameters from the following Equations (6) and (7). Finally, single crystal elastic
constants, Cjj, are determined by the least squares fitting covering the different measured
hkl directions, ranging from the (200), (220), (331), and (111) for Alp3CoCrFeNi after

being aged at 700 °C for 500 h [Eq. (8)] [68].

L - ! T (6)
9K 6thl Ehkl
1 1 v
=2(——+-"%) (7
thl Ehkl Ehkl
n 1 1 no VvV v
2 2 2 hkl hkl 2 2
Z = Zi— ((_)ex i _(_)model,i) /e S + Zi— (( )ex i (_)model,i) /82,1' (8)
TUE, T E,, 1 CUE, T E,,
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where K is the bulk modulus [ = (C11+2C12)/3]; Enki, vnki, and Gni are Young's modulus,

Poisson's ratios, and shear moduli in the hkl direction, respectively; n is the number of

(hkl) diffraction planes used to fit the Kroner model; then (EL) [the linear slopes of

exp
hkl

Bank 1 within Fig. 8(d)] and (%) [the linear slopes of Bank 2 within Fig. 8(d)] are

hkl

exp

determined from the neutron diffraction; e; and e; are the corresponding experimental
errors. The calculated elastic moduli, C11, C12, and C44 (listed in Table 1), is used for

CPFEM. The calculated G (88 GPa) is for Section 4.4.

4.4.  Strengthening effect of B2 Phase

The lattice strain versus stress relationship (Fig. 10(c)) provides key features in
understanding the governing deformation mechanisms. Qualitatively, the splitting of
lattice strains (Fig. 10(c)) indicates load sharing between the hard B2 phase and soft FCC
phases. The in situ neutron lattice evolution of the specific {hkl} lattice strains of the
FCC matrix and B2 phase as a function of average stress (Fig. 11(c)) shows that at 300
MPa, the slope of the FCC matrix is increased, relative to the linear elastic response,
while the slope of the elastic strain of the B2 phase is reduced. This phenomenon directly
proves that B2 is the strengthening phase. The increased linear slope of the FCC matrix
indicates that the matrix cannot assume the further elastic strain and begins to plastically
deform. Therefore, the yielding of the matrix leads to the plastic strain with the reduced
rate of the increase of the elastic strain (i.e., lattice strain). In contrast, the reduced slope

of the elastic strain of the precipitate reflects that the precipitate is still deforming
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elastically, and the majority of the total strain is now transferred to the precipitate, which

induces the decrease in the slope of the elastic strain of the precipitate.

The precipitation strengthening model is proposed to relate the size and volume
fraction of precipitates with mechanical properties of the Alo3CoCrFeNi alloy. Two main
deformation mechanisms, either through a dislocation bypass (Orowan-type) or particle
shearing mechanism [69, 70], exist for precipitation hardening. Shearing mechanism is
more common when precipitates are coherent and small, whereas Orowan bypassing
mechanism generally occurs when precipitates are large or incoherent with the matrix.
After aging at 700 °C for 500 h, the needle-like B2 precipitates become much large with
an average width and length of 162 and 652 nm, respectively, which cannot be sheared
anymore. Thus, the dislocation in Alp3CoCrFeNi can only bypass through looping around
them. This trend leaves an Orowan loop around the precipitates, which enhances the
mechanical properties of the Alp3CoCrFeNi alloy. When the B2 precipitates behave like
non-shearable particles, the mean precipitates (obstacle) strengthening, which is defined
as the interaction force between the obstacle and the dislocation, is given by the

following equation [71],

F =25Gb’ (9)

where 3 is a constant close to 0.5, G is shear modulus [~ 88 GPa (calculated in Section.

4.3)] of the FCC matrix, b is the Burgers’ vector of the dislocation within the FCC matrix.

For non-shearable B2 precipitates (the shape of B2 is shown in Fig. 11(b)), the
effective obstacle spacing is the center-to-center distance between precipitates, L, which

can approximately use the position relation in the Al-Mg-Si alloy [72].
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L:[;—Zj <r> (10)

where fp4 is the volume fraction of the B2 precipitates, while <r> is the cylindrical radius

of the B2 precipitates.

Thus, the contribution of B2 precipitates to the strength through aging, as shown

below [71],

o, =2PGbM (@j b (11)

2 <r>

where M is Taylor factor. The final strengthening increment from the B2 precipitation,

o is determined to be 126 MPa, using = 0.5, G = 88 GPa (calculated in Section. 4.3),

ppt
b=+/2 X arcc /2 =0.2535 nm, M = 3.06, < » > =81 nm, and fpa = 0.14, which is close
to the experimental results of &? =300—145 =155 MPa. The minor different (~ 29 MPa)

could be attributed to the strengthening contribution from the ¢ phase precipitated along

grain boundaries (see Fig. 4(a)).

In the present study, both the homogenized and aged Alo3CoCrFeNi HEAs have
an extremely large grain size (> 600 pum) [73]. According to the reported Hall-Petch
constant of this alloy (~ 824 MPa/um®?) [19], the contribution from the grain-boundary
strengthening (< 33 MPa) can be neglected. Therefore, it is not surprising to observe
much higher yield strength in other reported Alo3CoCrFeNi alloys that have very finer
grain sizes leading to the remarkable grain-boundary strengthening effect [18, 19, 22, 23].

The precipitation strengthening from the B2 phase is the main reason causing the
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enhancement of the yield strength of this alloy after aging at 700 °C for 500 h. The
experimental value of the precipitation strengthening of the B2 precipitates is about 155
MPa, which is much higher than that reported by Gwalani et al (Aog2 ~ 56 MPa) and by
Yasuda et al [19, 54]. The strengthening difference can be attributed to the volume
fraction and morphology of B2 precipitates. If the volume fraction of B2 precipitates is
small or B2 mainly precipitates along the grain boundaries, the effect of precipitation

strengthening will become weak.

5. Conclusions

In summary, we have studied (1) the phase stability of Alp3CoCrFeNi HEA after
heat treatments and (2) the deformation mechanisms of the single-phase and multiphase
Alo3CoCrFeNi HEAs. Comprehensive approaches by both experiments (APT and in situ
neutron aided tensile tests) and theoretical prediction (thermodynamic calculations and
crystal-plasticity finite-element modeling) have been used jointly for drawing the

following conclusions:

(1). New alloys with the balanced yield strength and ductility have been designed.
After two-step heat treatments (homogenized at 1,250 °C for 2 hours and aged at 700 °C
for 500 hours) with the assistance of thermodynamic calculations, the optimal
microstructure combinations, the FCC matrix, needle-like B2 phase within grains, and

granular ¢ phase along the grain boundary, is achieved for Alp3CoCrFeN:i.

(2). In situ neutron diffraction experiments were conducted to study the
strengthening effect of the B2 phase on tensile properties of Alp3CoCrFeNi HEAs

directly. The results show that the heat treatment introduces the secondary B2 phase into
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the FCC matrix, which increases the yield strength from 145 MPa to 300 MPa. During
tensile deformation, the reduced slope of the elastic strain of the B2 phase reflects that the
precipitate is still deforming elastically, and the additional plastic strain from the FCC

matrix is transferred to the B2 phase.

(3). The Orowan bypass mechanism is expected to take the strengthening control
in Alo3CoCrFeNi after aging at 700 °C for 500 h, when the B2 particles are incoherent
with the FCC matrix. The stress increment (126 MPa), calculated based on the Orowan

theory, is close to the experimental results (155 MPa).

(4). The phase stability and strengthening mechanisms of both single-phase and
multi-phase HEAs has been fundamentally understood through the integration of
experimental and theoretical approaches, which can provide insights for the discovery

and development of other engineering materials in the future.
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Table Captions

Table 1 Input material parameters for FCC and B2 phases in the crystal-plasticity finite-
element simulation (CPFEM) of the lattice strain evolution during tension at RT. Material
1 is the Alp3CoCrFeNi after homogenization at 1,250 °C for 2 h, and Material 2 is the

Alp3CoCrFeNi after aging at 700 °C for 500 h).
Figure Captions

Fig. 1 Schematic of the sample dimension (unit in mm) and position for neutron
diffraction measurements of lattice strain distributions during in situ tensile loading for

the Alp3CoCrFeNi HEA. The beam size is 5 mm.

Fig. 2 Thermodynamic Calculation of the Alo3CoCrFeNi HEA. (a) Calculated phase
diagram in the temperature range from 200 °C to 1,500 °C. (b) Stable phases, phase

fractions, and phase chemical compositions at two annealing temperatures.

Fig. 3 APT analysis of the Alp3CoCrFeNi alloy after annealing at 1,250 °C for 2 hours. (a)
3D reconstruction of a 35 x 35 x 75 nm? volume, showing a homogeneous distribution of
all constituted elements, Al, Co, Cr, Fe, and Ni; (b) One-dimensional chemical
concentration profile along the arrowed direction in a; (c¢) Binominal frequency

distribution analysis of all alloying elements, Al, Co, Cr, Fe, and Ni.

Fig. 4 Microstructures with grains of Alo3CoCrFeNi after the heat treatment at 700 °C for
500 h. (a) SEM image. Needle-like second phases (white) appear in the FCC matrix
(Black). (c) Elemental profiles across the second phase along the black arrow in (b), as

obtained from the APT data.
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Fig. 5 Microstructure along the grain boundary after aging at 700 °C for 500 hours of the
Alp3CoCrFeNi. (a) Elemental maps showing that the Cr-rich cluster (in the left-hand
corner) in the FCC matrix. (b) Concentrations of the elements, Al, Co, Cr, Fe, and Ni,

along the interface (30 at. % Cr) between the FCC matrix and ¢ phase. The error bars

represent the 2o standard deviation.

Fig. 6 The full engineering stress-strain curves of the Alo3CoCrFeNi HEA alloy after

homogenization at 1,250 °C for 2 hours (a) and after aging at 700 °C for 500 hours (b).

Fig. 7 Neutron diffraction pattern of the Alo3CoCrFeNi HEA alloy after homogenization
at 1,250 °C for 2 hours. (a) Tensile stress-strain curve; (b) neutron diffraction pattern,
detected by the Bank 1 Detector. (b) neutron diffraction pattern, detected by the Bank 2
Detector; and (d) evolution of lattice strain of the current HEA as a function of applied

stress during tension.

Fig. 8 Neutron diffraction pattern of the Alo3CoCrFeNi HEA alloy after aging at 700 °C
for 500 hours. (a) Tensile stress-strain curve; (b) neutron diffraction pattern, detected by
the Bank 1 Detector. (¢) neutron diffraction pattern, detected by the Bank 2 Detector; and
(d) evolution of lattice strains of the current HEA as a function of applied stress during

tension.

Fig. 9 The finite element simulation is conducted on a tension specimen after
homogenization at 1,250 °C for 2 hours with cubic elements in the ABAQUS model.
Refer to Alloy 1 in Table 1. Each grain of (a) is represented by 8 cubic elements in the

overall setup in (b). The lattice strain evolution is given in (c).
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Fig. 10 The finite element simulation is conducted on a tension specimen after aging at
700 °C for 500 h with cubic elements in the ABAQUS model. Refer to Alloy 2 in Table 1.
(a) Needle-like second phase (purple) is represented in each grain. (b) The entire model
of polycrystals with cubic elements. (c) Lattice strain evolutions for the two phases with

respect to a number of grain families.

Fig. 11 The schematic representation of the newly designed HEAs with the balanced
yield strength and ductility after aging at 700 °C for 500 h. (a) material configurations,
comprising the FCC matrix, needle-like B2 phase within grains, and granular c phase
along the grain boundary; (b) cylindrical morphology for the B2 phase, where the aspect

ratio (A) of the precipitate is defined as A = h/r.
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Table 1

Material | Phases | C11(GPa) | C12(GPa) | Cas(GPa) | n (hﬁ’,a) Mpa) | (Mpay |
1 FCC | 229 168 122 | 10| 85 | 185 | 44 |1.0

,  |FCcC | 210 165 129 | 10 | 1,000 | 630 | 120 | 1.0
B2 220 151 %0 | 10| - i - -
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