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Abstract The exact periodic orbits of a conservative
2-degree-of-freedom vibro-impact system with stereo-
mechanical impact model is studied using a piece-
wise continuation method. Feasible initial guesses are
extracted from grazing solution points so that each
branch of solution can be initiated smoothly from previ-
ously solved ones. Frequency-energy plots (FEPs) are
produced where an emphasis is placed on enumerat-
ing potential bifurcations. Extra critical points are dis-
covered on multiple-period duplicates of existing sta-
ble solution branches and lead to cascades of period-
multiplying bifurcations. The results indicate that the
system’s complete FEP can be viewed through a pro-
cess of infinite fractals toward zero frequency where
pseudo-periodic or chaotic responses are approached.
Finally, it is shown both mathematically and through
the comparison of FEPs that the impacting system can
be represented explicitly as the extreme case of non-
linear systems with an odd-order polynomial inter-
nal force. It is thus proposed that as the counterpart
to the superposition of linear normal modes, the free
responses of a general conservative nonlinear system
can be tracked via bifurcations from its nonlinear nor-
mal modes.
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1 Introduction

Impact is an important phenomenon in mechanical sys-
tems. Severe impacts can be destructive and thus unde-
sired during the operation of machines. Conversely,
impacts can be useful in vibration absorbers, which dis-
sipate energy by the attachment of carefully adjusted
impact oscillators [1,2]. Understanding the dynamics
of vibro-impact (VI) systems is essential in preventing
structural instabilities as well as optimizing mechanical
designs.

The main interest in the studies of VI systems lies
in the strong nonlinearity that is nonsmooth in nature.
However, impacts may differ according to the con-
tact models employed [3-5], e.g., the Hertzian con-
tact model [6], the bilinear model [7-9] as well as the
stereo-mechanical impact model [10]. When a dynam-
ical model is established using any of the aforemen-
tioned models, numerical simulations can then be con-
ducted to demonstrate the behavior of the VI systems.
Numerous studies have been conducted on systems
with different degrees of freedom (DOFs) and parame-
ters, and the general dynamical behavior of VI oscilla-
tors has revealed extremely rich response forms ranging
from periodic to chaotic [11, 12], as well as complicated
bifurcations sensitive to system parameters [13—15].
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Along with numerical findings, considerable effort
has been made to study VI systems analytically. A
widely accepted method to solve periodic responses of
systems containing either bilinear or stereo-mechanical
impacts is to represent the responses by Poincaré maps.
These maps relate the states of the system at succes-
sive impacts by relying on the fact that the trajecto-
ries between impacts are linear and thus solvable. The
equations can be used to construct return maps so that
periodic steady-state responses can be solved. Since
its early development [16], the method has been suc-
cessfully applied to solve periodic responses involv-
ing a single impact per period [7,17], while Nigm
et al. [18] extended its formulation to include more
impacts per period by introducing impact distribution
parameters. However, the equations assembled this way
are typically nonlinear and require numerical meth-
ods to solve. This causes trouble when the number of
impacts involved in each period increases and the equa-
tions become complicated, since it will be difficult to
find available initial guesses from which the nonlinear
solvers will converge.

The present work has two objectives. First, it aims at
overcoming difficulties in solving the assembled equa-
tions for the periodic responses of VI systems by fit-
ting them into a scheme of continuation that has been
widely adopted in studies of nonlinear normal modes
(NNMs), as defined in [19-21]. Previous research has
shown that an efficient way to obtain NNMs is by con-
tinuation based on shooting methods that can be applied
directly to the equations of motion (EOMs) or the
approximate solutions of a system [9]. Several efforts
have been made to solve the NNMs of VI systems.
Using a nonsmooth temporal transform method devel-
opedin [22,23], Lee et al. [24] obtained the frequency-
energy plot (FEP) of a 2-DOF VI system with stereo-
mechanical impact model and studied its potentials in
achieving targeted energy transfers. Moussi et al. [9]
obtained the FEP of a 2-DOF VI system with bilin-
ear model by first regularizing the nonsmooth terms
in equations and then applying a combination of the
harmonic balance method and the asymptotic numer-
ical method. The present work serves as a comple-
ment to the existing studies by employing the return
map equations to solve the exact NNMs and general
periodic responses of a 2-DOF self-impacting oscil-
lator with stereo-mechanical model. Similar work has
been done by Thorin et al. [25], where periodic orbits
involving one and two impacts per period are satis-
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factorily solved but numerical difficulties are met for
more complicated cases. As an attempt to correct such
difficulties, the present study points out that it is feasi-
ble to conduct piecewise continuation by treating peri-
odic orbits involving different numbers of impacts sep-
arately, and starting each section by extracting available
initial guesses out of grazing solution points where two
or more different response forms intersect [26,27].

The second objective is to use the present method
in performing a detailed examination of the FEP struc-
tures for both VI impacting systems and systems with
odd-ordered polynomial internal forces. The method is
efficient in that it is capable of detecting the existence
of potential branches on FEP as much as one specifies.
Moreover, by investigating critical points on the solu-
tion branches, the bifurcations on the FEP are analyzed
in detail. The FEP of a system with an essential nonlin-
earity has been recognized as having a countable infin-
ity of tongues [28], and the present study reveals that
a major class of bifurcations on the FEP can be inter-
preted as cascades of period multiplying that are likely
leading to pseudo-periodic or chaotic responses and
the complete FEP grows in the form of infinite fractals.
This observation suggests that a major family of gen-
eral free responses, if not all, can be tracked along such
bifurcations from the elementary NNMs. Since limita-
tions have been known for the superposition of NNMs
[29,30], such bifurcations can be considered as a coun-
terpart to the linear normal mode superpositions. Same
conclusions are applicable to NNMs and general free
responses of conservative systems with smooth nonlin-
earities appearing in polynomials as well, based on the
fact that rigid impacts can be interpreted as an extreme
case of polynomial nonlinearity [31]. The manuscript
exhibits such similarities by explaining how features
revealed in the VI system can find their counterparts
on the FEP of polynomially nonlinear systems.

2 Methodology

Consider the 2-DOF self-impacting oscillator shown
in Fig. la. Two masses m and my are coupled by a
linear spring of stiffness k», while m is connected to
ground by another linear spring of stiffness kj. The
global displacements of the masses are denoted as u
and u», respectively, with origins defined at the equilib-
rium state when both springs are unstretched. During
any motion of the system, impacts may happen between
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Fig. 1 System schematics: a VI system with stereo-mechanical model; b VI system with bilinear model; ¢ linear oscillator with a

nonlinear attachment (NES)

the masses as m> hits the rigid stops on m 1, which are of
the same distance d away from the original position of
my. The stereo-mechanical impact model is adopted:
impacts are assumed instantaneous and are approxi-
mated by the introduction of a coefficient of restitution
e.

The periodic responses of this system are studied by
piecewise continuation, where damping and external
forcing is temporarily neglected to ensure the conserva-
tion of energy. The method can be regarded as a degen-
erate version of the discontinuous mapping scheme for
general nonlinear VI systems [26].

2.1 Equations of motion

The EOMs for the unforced VI oscillator can be written
as:
muiiy + (k1 + kp)uy — koup =0 0
molin — kouy + koup =0 ’
where impacts happen when |us — u1| > d. After each
impact the velocities of the masses are updated, accord-
ing to the conservation of momentum [15,32], by

MT . 1 mi —mpe my + moe Ml_
M;_ mp+mp | My +mie my —miée Mz_

()
G []
iy

where the superscripts — and + represent the velocities
before and after the impact, respectively, and ¢ is the
coefficient of restitution with 0 < & < 1. To ensure
conservation of energy, the impacts are assumed elastic
during the analysis so that ¢ = 1.

It is convenient to introduce scaled displacements
x;i =u;/d, i = 1,2 andthe EOMs of the vibro-impact
system (1) become

m1X) + (ki +k2)x1 —koxo =0
.. ; 3)
moXs — kyxy +koxy =0

where impacts happen when |x; — x| > 1. Denote the
scaled velocities as y; = X;, i = 1, 2, so that they are
updated after each impact by

. + .- —

[Y;}:a[y.l_] @
Yo )

When ¢ = 1, the scaled energy is conserved and is

simply

E; = [ml)’% + may3 +kyxd 4 ka(xg — xz)z] .

N =

(&)

Since the energy of the physical system (1) before scal-
ingis £, = d” E, the FEP under any clearance d can
be obtained by stretching that of the scaled system (3),
which is unique, along the energy axis by a factor of
d>.

2.2 Analogous systems

Before continuing the analysis, the potential signifi-
cance of studying the system in (3) is illustrated by
putting forward two comparable systems. First consider
a vibro-impact oscillator represented by the bilinear
model, which is very common in literature. As shown
in Fig. 1b, instead of instantaneous impacts, the reac-
tion force upon contact is approximated by a linear
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Fig.2 Nonlinear internal forces: a bilinear vibro-impact system;
b NES system

spring of stiffness &, so that the equations of motion
are

:M1ﬁ1+(k1+k2)ul — koup = Fyi ’ ©)
maiiy — kouy + kouz = —Fyy
where the piecewise reaction force Fj,q is
ks(up —ui +d), uy—u; <—d
Fu=10, lup —ui| <d @)
ks(uo —ur —d), wup—uyr =d

which is briefly plotted in Fig. 2a.

Next, consider the typical configuration of a non-
linear energy sink (NES) as shown in Fig. 1c, where
the masses are coupled by an extra nonlinear spring.
Without loss of generality the nonlinearity is assumed
polynomial with odd-number powers, so that the EOMs
can be written as:

myiiy + (ky +ko)uy — koup = Fpp
.. , )]
maiiy — kouy +kouy = —Fpa
where the nonlinear force F,;» is formulated as
n
uz —uj
F.» = kod < 7 )
ka(uz — uyp)"
ZT, I’l=3,5,7,... (9)

which is plotted in Fig. 2b. Instead of defining a non-
linear stiffness, a characteristic length d is introduced
which is analogous to the clearance in the VI systems.
According to Fig. 2, it is evident that lim F,; =

kg — 00

lim Fj», so that the bilinear VI system (6) and the
n—>oo

NES system (8) are equivalent at such extreme, and the
characteristic length d approaches the physical clear-
ance in the VI systems at the limitn — oco. ! Shaw and

! Note that k5 in the definition of F,» (9) can actually be replaced
by any fixed stiffness and the equivalence is still valid.
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Holmes [7] showed that the bilinear system (6) with
ks — oo is equivalent to the stereo-mechanical-model
system (1) with e — 1. Thus by comparing to the bilin-
ear system, it can be concluded that the VI system (1),
which is the focus of this work, is equivalent to the
NES system (8) when n — oo and ¢ — 1. Similar
conclusions have already been drawn in [31]. Further-
more, in Sect. 3.3, it is shown that similarities can be
found between the NNMs of the VI system and those of
the NES system with finite power n’s, and that features
of the VI system’s FEPs have their counterparts in the
FEPs of systems with polynomial nonlinearities.

The EOMs of the NES system (8) scaled by x; =
u; /d would become

mi X + (ki +k2)x1 — koxa = ka(x2 — x1)"

, (10
ma¥y — koxi + koxo = —ka(x2 — x1)" (10

whose Hamiltonian is conserved and is expressed as
ka n+1
X) — X , 11
Y (x2 — x1) a1

while the Hamiltonian of the original physical system
(8)is

Hy = E; +

k» 1
H,=E,+ W(uz — ul)n+
kpd"+! . 12
— dzEy + W(x2 _ xl)l’l-‘rl ( )
= d’H;

This shows that similar to the VI case, the FEP of any
physical NES system (8) can be obtained by stretching
that of the scaled system (10) along the energy axis
by a factor of d2. Notice by (9) that in essence either
d or a conventionally defined nonlinear stiffness can
solely represent the nonlinear internal force, one can
always find the FEP of an NES system by expressing
the nonlinear force in the form of (9) and only having
to track the FEP of the scaled system (10). Generally,
when the nonlinear force is expressed by a nonlinear
stiffness such that
ka(up —uyp)"
dan—1 ’
where k. is the nonlinear stiffness, one can obtain the
FEP under any k. by first tracking the FEP of system
(10) and stretching it by the factor d* = (ka/ kc)%,
so that, for example, when n = 3, this stretching factor

Fp2 =ke(ua —u))" = (13)

k
would be d? = k_2 The topologies of the FEP of a sys-

tem with a singlec polynomial internal force, as in (8),
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are totally determined by the linear system parameters
and the order of the nonlinear force, while the nonlin-
ear stiffness only determines the stretching along the
energy (Hamiltonian) axis.

Systems in the form of (10) are considered fun-
damental in that it approaches the vibro-impact sys-
tems in Egs. (3) and (4) when n — oo. Also since it
is strictly constrained in the vibro-impact system that
|x2 —x1| < 1, the FEP of both systems are comparable
in that lim H, = Ej.

n—o0

In the next section, the FEP of the vibro-impact sys-
tem (3) is tracked by piecewise continuation based on
mapping motion states at impacts, and is compared to
the FEPs of system (10) with various n’s obtained by
continuation based on EOMs.

2.3 Continuation of periodic orbits

Instead of directly employing the EOMs, the NNMs
and general periodic free responses of the VI system (3)
are studied based on the Poincaré map from phases at an
impact instant onto those at the next one, as developed
in [7,16,18].

Consider a periodic free response that involves N
impacts in one period 7. Assume the impacts occur at
timeinstants¢;, j = 0, 1, ..., N, where fy corresponds
to the first impact, while ¢y is the time instant of the
first impact in the period that follows. First, the state
vector can be written as z(¢) = [x1 x2 y1 yz]T ,and the
states right after each impact are denoted as z; which
can be written as:

zj = [x1j x2j y1; y2j]T £ [x1 x2 i y;_]T‘z—t- (14)
-]

and periodicity implies that zy = zo and txy =
to + T. Following [18], introduce N impact distri-
bution parameters By, k = 1,2,..., N so that the

travel time between any pair of neighboring impacts
1Sty =t — th—1 = B T.

Since the system is linear between impacts, it can
be solved using a linear modal analysis. Briefly, the
natural frequencies of the linear system in (3) are

k ki +k
w1 = —2+£iA, (15)
’ 2my 2my

1 (ki+k Kk \> kik
where A = \/—<L+—2> — lz,and
4 m my mima

| < wy. Then, the mass-normalized mode shapes X
and X, are assembled into matrix

ai az

\/mlalz + my \/mla% + my
®=[X; X»]= 1 1 ,

\/mlalz + my \/mla% + my
(16)

mza)i2

wherea; =1 — . Also denote ¥ = &~ ! 5o that

2
the system can be written in principal coordinates ¢ =
Wx. Moreover, denote vector 2(1) = [q1 ¢2 §1 217
and extended matrices

= (D0 R A 5> | I2x2 0
<I>_|:0‘I):|,\P_|:0‘Il]andG—[ 0 G]’
(17)

so that Z(r) = Wz(1), z(t) = ®2(r) and particularly at
impacts there is zx = G®Z ™ (7).

Consider the system’s response in time interval ¢ €
[tx—1, tx]. The linear solution is simply

Gi(t) = wjAj cos w; (t — ty—1) — w; By sinw; (t — tx_1)

(18)

{qi(t) = A;sinw;(t — tg—1) + Bj cos w; (t — tg—1)

whose coefficients are determined by initial conditions
Zk—1 as

[A] Ay B By]T = CVzy , (19)

where the constant matrix C is

- [0 c [1er 0
c=[,0 0] =[] e

Thus, at t = #;, there is

2 = H(ti)zp—1 = [G‘i)il(fk)é‘i’] Zk—1 > (21)

where the matrix-valued function H (7) is defined as

S1 0 cl 0
- B 0 $2 0 (o)
H(t) o wiCl 0 —w181 0 ’
0 wrC) 0 —w28)
(22)
with shorthands s; = sinw;T and ¢; = cosw; T, =

1, 2. Also in the following the notation H £ H (tp) =
H (B, T) is used.
Equation (21) gives the desired map so that z; =
1 1

1_[ H jzp and thus zy = 1_[ H ;zo, where the nota-

=k j=N
tion of product is reversed simply to emphasize the
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order of matrix multiplications. At this point, the prob-
lem of solving a particular N-impact periodic response
can be formulated explicitly as follows. The variables
of the problem are taken as:

. T
s = [s1 $2 ... sN+5]T = [Zg BT T] , (23)

where B =[p1 B2 ... ,BN]T. Then, the problem is
equivalent to solving the equations

T pT T
F(s) = [Fz Fj fb] =0, (24)
where F lists the conditions for periodicity so that
1
F,=zy—z20= l_[Hj_I4><4 20, (25)
j=N

and Fg = [fa1 fa2 ... de]T enforces the condition
of impact at time instants #g, #, ..., fy—1 so that

Sfa1 = Azo +r1,

1
Jan = Azp—1 +1rn = A l_[ Hjzo+ry, n>2
j=n—1
(26)

where A = [1 — 1 0 0], and r,, = %=1 defines the side
on which the (n—1)thimpact happens so thatin practice
the form of a response is characterized by both the
number of impacts N and an array 7 = [ry 2 ... ry]
specifying the locations of these impacts. Moreover,
the function f; implies that the sum of all B;’s is one,
so that

N
fo=> B—1 27)
k=1

Notice that there are in total N + 5 elements in
F (s) along with N 45 elements in s, which seemingly
implies that the problem is determinate so that the solu-
tions should appear as points in the space RV Yet,
as shown later, the solutions form curves in the space,
indicating that there is a redundant equation in (24).
Given that the system is Hamiltonian, it is feasible to
take any one element away from F, and the solutions
to the problem remain the same. However, this is not
done here and F(s) is kept unchanged.

The problem can now be approached by the shooting
method as follows. Given an initial guess s ©), Newton’s
method is applied so that iterations proceed by

U+ — () +¢, F’(s(i)); = —F(s(i)), (28)
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where F(s®) =

s

F(s®)
0

- @)
]’a“dF =] 70

where J (s) is the Jacobian matrix of F (s), which can
be expressed as

dF. 9F. 3F.
320 a)é aT
J oF oF; 0F,; 0Fy 29
©=% =| 0 28 0T | =
3y 3y O
920 BB oT

and p is a constant vector that is normal to the desired
search direction, which is determined by the previous
converged solution in continuation, as will be discussed
later.

Although J (s) can be calculated symbolically, when
N is large it is efficient to assemble it explicitly as
follows.
Step 1 Partial derivatives that are easily obtained
include

oF

1
<= [ ) — Lasas (30)
020 ;
j=N
and
1
dfa1 0fdn
—— = A, =A H;,, n>2, 31
az0 320 l:[_l ! G
and
afp afy _ o _
8—20_[0000], BB =[11 ... 1ljxn, 3T =0.
(32)
Step 2 Denote
OH; - .0H(t)) ~ -
=M _ e ey i1 N
J 31,'/' 31,'/'

oF
Then, a—f can be evaluated by assembling

1
8FZ_ * * va J?ék

. oF,
and similarly aT can be evaluated by

N

oF,

oT Z :
k=1 j

Hj;, j#k

1
] Hify =k

H;kZOv Hj'k = {
N
(35)
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Step 3 Using the same notations, 274 canbe evaluated Table 1 Possible response forms of A3[R]
0 - - .
. N B E 1
by assembling otation Selrrlzzy tOqulva ent
1
ofan _ | A J] Hizok<n—1 Ry 001 -
= ) J , 36) 1
aﬂk j=n—1 Rl 100 Ry
0, k>n-—1 R2 010 R,
. oF R 110 R
and similarly, 27d can be evaluated as ! !
oT “RT! 011 R
n—1 1 2
R 101 R;
o 1
Ui {2 A ] Hizon=2. Gn R 000 -
= j=n— _
R 111 R
0, n = 1 2 2

With the scheme of shooting method established
above, the curves in space RN composed of solu-
tions to the periodic responses are tracked by pseudo-
arc-length continuation as in [33,34]. Briefly, denote
s as the ith iteration in search of the jth solution
point and s’; as the converged jth solution point. Then,
the initial guess for the (j + 1)th point is given by
sﬁa | = sj. +apj, where « is a predefined step length
and p;, which is the tangent vector at sjf, lies in the
null space of J (sjf), and p; is assigned as the normal
direction vector in F /(s (/.ijrl) for all iterations syjr I

It needs to be reiterated that the method developed
above deals with different forms of responses sep-
arately, which are classified by both the number of
impacts N and the predefined locations of the impacts.
Thus, in the following, a solution form is described as
AN[R], where R is an N-bit binary series defining the
impact locations. Denote impacts at side x; — x; = 1
as ‘0’ and impacts at side x; —xp = 1 as ‘1’. Then, for
example, A4[0101] refers to the responses that have 4
impacts per period, where the 1st and 3rd impacts hap-
pen at side xo — x; = 1, while the 2nd and 4th impacts
happen at side x| — xp = 1.

Notice that the letter ‘A’ in the above notation indi-
cates the asymmetric nature of the solution that the
impacts in each period can be distributed arbitrarily.
Yet in fact, as will be demonstrated, a major subset of
solutions satisfy the symmetric condition z(t +7/2) =
— z(t). In the following, a symmetric response form is
denoted as Sy [R], similar to the definition of a general
asymmetric solution. It is clear that for a symmetric
response form N must be even, and the second half of
R is the binary negation of the first half.

Moreover, a response form A y[R] can have one or
more equivalent forms. First, Ay[R] is always equiv-
alent to Ax["R], where "R is the binary negation

of R, due to the symmetry of the clearances in the
system configuration. Then since any R starting with
‘1’ can always find its equivalent negation form start-
ing with ‘0’, in the following the first bit in R is
assumed ‘O’ for convenience. Meanwhile, Ay[R] is
also equivalent to all solution forms that appear as
AN[RT”™,m = 1,2,..., N — 1, where R~ refers
to R rotated by m bits forward. And finally, Ay[R] is
equivalent to Ay [~ R™"™]. Define two response forms
as independent if they are not equivalent in any manner.
Then, for example, Table 1 shows that there are only 2
independent forms A3[R1] and A3[Ry] for N = 3.
Furthermore, denote P(N) as the number of pos-
sible independent forms of R for a given number of
impacts N, and according to Pélya enumeration theo-
rem [35], an estimation of P(NN) can be given by:

. 1] 1 AN/ A
PN =5 | 5 o2 +pW/2) |, G38)
JIN

where j|N states that j is a positive integer divisor
of N, ¢(j) is Euler’s totient function that counts the
positive integers up to j that are coprime with j, and
p(N/2) counts the number of positive integer divisors
of N/2 when N is even and p(N/2) = 0 when N is
odd. It turns out that ﬁ(N) = P(N) when N is odd,

but f’(N) is a lower bound of P(N) when N is even.

2.4 Details of implementation
2.4.1 Admissibility of solutions

It should be noted that the method assumes linear flight
between time instants of impact, which may be violated
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in many solutions. When a solution is given, the linear
response between each pair of neighboring impacts is
tested to see whether the condition |x, — x| > 1is met
at any time instant, and if so the solution is tagged as
inadmissible.

Inadmissible solutions do not exist physically and
are just redundant mathematical solutions to the equa-
tions. However, the transition points at which a branch
of solution turns from admissible to inadmissible are
critically useful for the method to work. Note that
since the continuation is done piecewise, a feasible ini-
tial guess is required each time a new branch Ay[R]
is to be tracked, this becomes computationally inef-
ficient as N gets large. To overcome this, the fol-
lowing shows that a reasonable starting point can be
achieved by estimating the initial guesses from the
admissibility transition points of previously solved
branches.

Suppose at a transition point the solution involves
N regular impacts (where the masses touch with non-
zero relative velocity) while meeting the condition
|x2 — x1| = 1 at p time instants where grazing occurs
so that the masses touch with zero relative velocity.
Such a point with N regular impacts and p grazing
instants is the end of branch Ax[R], and it is antic-
ipated that another branch Ay p[R’ ] also ends (or
starts) at the same point, where R’ is the new (N + p)-
bit binary array with the sides on which the graz-
ings occur are inserted into R. Suppose one tracks
Ap[R] till this transition point and wants to shift to
the Ay p,[R’] branch. This can be done by inheriting
the same zo and 7 while obtaining the new N + p
impact distribution parameter 8’s from the previous
solution of A 5[ R] at the transition point, thereby form-
ing the initial guess for the new branch Ay ,[R’].
Similarly, if one tracks the Ay p[R’ ] branch first, a
feasible initial guess for Ax[R] can be extracted by
releasing the conditions for impacts at the p grazing
instants.

In the following, such admissibility switching points
are called as grazing solution points. Moreover, it
will be shown later that there may be more than two
branches coming out of a same grazing solution point
since one can loose the impact condition for any one of
the p grazing instants and obtain a new response form.
Theoretically, a grazing solution point with p grazing
instants can be the intersection of at most 2” branches
of different solution forms.
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2.4.2 Stability of solutions

A solution that passes the admissibility test is regarded
as an existing periodic orbit of the system and will
appear on the FEP. However, an admissible solution
can be unstable so that any perturbation will lead the
system response to other forms. The stability of the
solutions are examined as follows. .
Given an admissible solution s = [zg B g T] , the
valuesof zyand 1, =t — tr_1, k=1,2,..., N, can
be extracted. Next, construct the Poincoré map of vari-
; T,j:O,l,...,N,thenthesta—
bility of the given solution is determined by the eigen-
values of the Jacobian matrix of a return map

ables v; = [ZT- tj]

T
v]f\), = [117\} IN — T:I = Fr(vo) =0, (39)

where the superscript ‘P’ refers to the subtraction of
period T from ¢y . Thus, the desired Jacobian matrix is

dvf  doy !
Ivo=—2=—=T] Jrs1. (40)
dvo dv()
k=N
where
dzp  dzx
dvk _ de—l dtk_l
Jhk—1= do | dn dn | (41)
dzr—1 dfr—
oH oH
Recall that zx = Hyzi—1 and H) = 28k _ 28k
0Ty ot
OH . o o
- , by taking the derivatives of the implicit equa-
k—1

tion Az; = =£1, there are
dAzy _ dAHz;—

dzi—1  dzk—
0AHz;,— dt
= Kol Sk AH, 42)
oty dzx—1
, dr
=AHzy_1—— +AH =0,
dzi—1
and
dAzy  dAHjzi-)
dte_y  dyg
0AHz;_1 dt 0AHz)_
_ T kZk—1 3)
aty dr_ otr_1
dt
=AH zi_ —1)=0,
kRk—1 <dlk_1 )
yielding
dz AH dt,
ko _ - kK and Lo, (44)
dzg—1 AHzj dtg—1
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giving the bottom row of J x—1, while the rest are then
calculated by

djjfl = LZk—lek_l + Hy, (45)
and

dzg  OHjzk—1 diy | OHyzk—y

dty_y e dyy Otg—1 (46)

=Hjz, (1-1)=0.

A solution is stable if all the eigenvalues of the Jaco-
bian matrix J y o, i.e., the Floquet multipliers, lie inside
the unit circle on the complex plane. However, J v .0
always has an eigenvalue at 1, so that all the stable
solutions are in fact marginally stable, which means
that the system’s response under initial conditions in the
neighborhood of zp will not be attracted to the solved
periodic orbit, but instead appear in a pseudo-periodic
form. This is analogous to the case of linear normal
modes.

2.4.3 Critical points

Recall that when a solution point s;f for a response
form Ay[R] is obtained, the tangent vector p; of the
solution curve at this point in the RV *> space lies in the
null space of matrix J (s;‘.). Normally, the dimension of
such null space is 1, so that J (sj) has a unique eigen-
value atO and p ; is simply the corresponding eigenvec-
tor. However, during continuation critical points have
been observed, where J (s;‘.) has more than one zero
eigenvalue, so that the dimension of the null space may
become greater than 1 and instead of being the tangent
vector, the corresponding eigenvectors can only give a
basis for potential tangent vectors. Denote the algebraic
multiplicity of the zero eigenvalue A = 0 as a and its
geometric multiplicity as b, by which the critical points
that have been observed can be categorized below.

Case1a =2or 3, b = 1. The tangent vector is still
directly given by the repeating eigenvector so that there
are no bifurcations, but typically the stability of the
solutions changes at such critical points, corresponding
to a saddle-node bifurcation.

Case 2 a = 2 or 3, b = 2. The solution curve
bifurcates into two branches, typically corresponding
to a pitchfork bifurcation.

Case 3 a = 3, b = 3. The solution curve bifurcates
into four branches, whose tangent vectors cannot be
directly obtained. In such case, the method developed

in [36] is applied to solve for the four available tangent
directions, which involves the evaluation of the Hessian
matrices for all functions in F (s).

3 Results
3.1 Elementary structure of FEP

In this section, the frequency-energy plot of the vibro-
impact system is generated piecewise by the continua-
tion method developed above, where the scaled energy
E of admissible solutions are plotted against the angu-
lar velocity corresponding to their shortest period. Note
that a solution in the form A 5 [ R] with period T can also
be extended to satisfy the equations for the response
form Ay y[R¥] with period kT, where k is any positive
integer and R is R repeated k times. However, it should
only appear on the FEP as A y[R] with frequency o =

b : ~r 7T, .
T.Forexample, ifs) = [zg B T] is a solution for

~T ~T T
(.8 B -
A>[01], thenss = | z; 5 7 2T | isasolution for
~T ~T =T T
A4[0101] and s3 = | 2} % % % 37 | willbea

solution for Ag[010101], etc. The 3 solutions 51, s7 and
s3 will correspond to three points on the FEP with iden-

2r &
tical energy but T 7 and T as frequencies. Note
that the latter two points are invalid because 27 and 3T

are not their shortest periods. In what follows, a branch
that is a k-time repeating form of A y[R] is called its k-
duplicate and is notated as Alfv [R], while AN [R] which
is not a lower-frequency duplicate of any other branch,
and thus is plotted right at the shortest periods, is called
an original branch. On the FEP, duplicate branches will
be shown in dashed lines and they are in fact the corre-
sponding original A y[R] branches shrunk by a factor

of — along the frequency axis.

The FEP is demonstrated step by step so that the
previously mentioned details of the method can be
clarified. Referring to Eq. (3), the system parameters
adopted are

mi =2, my=2kg, ki =8k = 8N/m, & = 1. (47)

Meanwhile, several notations are used in the plots.
First, a critical point is notated as C; b where a and
b are the algebraic and geometric multiplicities of the

@ Springer



2972

H. Tao, J. Gibert

zero eigenvalue of the Jacobian matrix, respectively,
while i is simply its number in the C,j family. (In fact
a = b = 1 for all regular points on the curves.) Next,
a grazing solution point is notated as Gl}v, » where N
is the number of regular impacts during one period and
p is the number of grazing instants, and i is similarly
its number in the Gy, family. Specifically, branches
meeting at a bifurcating critical point should share the
same response form Ay[R], but may be different in
symmetry, while branches meeting at a non-critical
grazing solution point typically have different forms.
Moreover, define a segment Ay[R]|P; P> as the part
of solution branch A y[R] bounded between points P;
and P, on the FEP, where P; (i = 1, 2) is any defined
point. Furthermore, three intrinsic frequencies are high-
lighted as reference for all FEPs shown below, includ-
ing the natural frequencies of the 2-DOF linear system
that are calculated under the chosen system parame-
ters to be w; = 0.9287rad/s and wy = 2.1535rad/s,
respectively, and a third frequency defined as

k
wy = | —— = 1.6330rad/s, (48)
mi +my

which is the natural frequency of a single-DOF system
with parameters inherited from the original 2-DOF sys-
tem, where m is fixed on m and connected to ground
by the linear spring with stiffness k.

The initialization of continuation is shown in Fig. 3.
At low energies, there exist only the linear normal
modes involving no impacts, which can be denoted
as Ao or, by their symmetric nature, Sy. Particularly,
denote SO+ as the in-phase mode corresponding to
X1, and S as the out-of-phase mode corresponding
to X». These linear modes are admissible and sta-
ble until they reach the grazing solution points G(l)’2
and G(2),2’ respectively, the time histories of which are
also given in Fig. 3. At either grazing solution point, 2
grazing instants appear simultaneously, indicating the
potential existence of 2 independent solution branches:
A1[0]and A>[01]. However, all A[0] solutions passing
through these grazing solution points turned out inad-
missible, so that only the A;[01] branches are observed.
The initial guesses for the continuation of the A[01]
branches are obtained by first plugging in the motion
states at the first grazing instant as zg, using the same
time period T of the grazing solution, and finally read-
ing the impact distribution parameters from the time
history at the grazing solution points, which are, in
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Fig. 4 Bifurcation at critical point C 312: a FEP; b projections of
the solution curves



Periodic orbits of a conservative 2-DOF vibro-impact system

2973

displacements

-2
/2 T 08 -06 -04 02 0 02 04 06 08
time Ty

displacements

2
/2 T 08 06 04 02 0 02 04 06 08

time
2
15
o 1
2
g 05
Z 0
&
<05
o
Z 4
<
-15
2 2
0 /2 T 208 -06 -04 02 0 02 04 06 08
time (C) Ty
— T1+1 — Phase Portraits

Ly

Fig. 5 Time histories and phase portraits at selected solution
points on the FEP shown in Fig. 4a: a C;z; b regular point Pj; ¢
regular point P>

1
such case, 1 = B = > The two A,[01] branches

thus initiated have inherited the symmetric nature and
can be correspondingly denoted as S2+ [01]and S, [O01].

The S, [01] branch is unstable and decreasing in
energy at the beginning until it hits the critical point
C321, which stands for a local minimum of energy, and
then becomes stable while extending to infinite fre-
quency and energy without meeting any critical or graz-
ing solution points afterward. Similarly, the S; [01]
branch turns stable after hitting the energy-minimizing
critical point C 311. However, it becomes unstable again
after hitting another critical point C 312, which indicates
a potential bifurcation into 2 branches since the geo-
metric multiplicity of the zero eigenvalue is 2. More-
over, instead of extending to infinity, the Sz“ [01] branch
meets the grazing solution point G%’ 4 and turns inad-
missible beyond it.

The bifurcating critical point C312 is treated first.
While one of the two independent eigenvectors gives
the direction along S; [01], the other leads to another
A>[01] branch where symmetry breaks down but sta-

displacements

0 ty ty /2 ts ty T
time

Fig. 6 Time history at grazing solution point Gi 4» With grazing
instants and sides labeled on graph

bility is restored, as shown in Fig. 4a, which ends at
the grazing solution point Gé - Meanwhile, Fig. 4b
depicts the 2 solution curves in the neighborhood of
C 312 as projections from R onto the subspace consisted
of variables [x] yj 71T 1tis interesting to observe that
this new segment A,[01] |C312G;’2 is horizontal on FEP
so that it is frequency-invariant. Furthermore, the time
histories and phase portraits of 2 randomly selected
points P; and P> marked in Fig. 4 as well as those at
C3, are shown in Fig. 5 to illustrate the evolutions of
the responses’ shape around this critical point.

Next, the typical grazing solution point Gé’ 4 at
which S;r [01] ends is studied in detail. The time his-
tory at this point is given in Fig. 6, where the 4 graz-
ing instants are notated as t;, i = 1,2, 3,4, respec-
tively, and the binary notations of the grazing sides
are labeled on graph. Particularly at this point, the
2% = 16 possible branches can be denoted as binary
series [R;] = [Or{‘r§ 1r§rff], where the variable rl.k cor-
responds to the ith grazing instant, and can be either
empty (denoted as /) or the bit representing the graz-
ing side as shown in Fig. 6. Due to the symmetry of
the response, some of the 16 branches are equivalent
and there are in total 7 independent possible solution
forms:

[Ri]1=10//1//1— Sy[01]

[R2] = [010101] — Ae[010101] (S6[010101])
[R3] = [0/0101] — A5[00101]

[R4] =1[0//10/] — A3[010] (49)
[R5] =[0//101] — A4[0101]

[Re] = [0/01/1] — A4[0011] (S4[0011])

[R7] =[0/010/] — A4[0010]

and continuation has to be carried out for each of them.
It turns out that all these 7 independent solution
forms have their admissible branches setting out from
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15 i 4
this grazing solution point, so that the FEP around ;
G%’ 4 1s surprisingly complicated, as shown in Fig. 7. ]
The other terminals of these branches are depicted in o
Fig. 8. Briefly, branches A3[010] and A4[0010] both : ’
end at the previously revealed grazing solution point i
G% ,. Branches A4[0101] and A5[00101] end at Gﬁ 5
o, . 2 3
and transit into a short segment Ag[010101]/G ,C3,, 4,010 Asl0010]
which meets the S¢[010101] branch at critical point Y
C332. It is also at this point that Sg[010101] turns
stable until hitting another critical point C313, which
e

should be the junction of 4 branches satisfying the form
Ag[010101]. In fact, 3 of the 4 branches are identical on
FEP, which are symmetric and extend to grazing solu-
tion point G411,2’ while the 4th branch is the 3-duplicate
of S, [01] so that it is denoted as Sg_[Ol] and shown
in dashed line in Fig. 8. Finally, an S4[0011] branch
starts from 6411,2 and changes stability at critical point
C?%z where it meets the frequency-invariant S4[0011]
segment coming from G% 4~ The time histories at rep-
resentative solution pointé are depicted in Fig. 9.

The above has revealed two significant issues regard-
ing the completeness of an obtained FEP. First, grazing
solution points can be the junction of surprisingly many
solution branches that lead to different ends. Although
the method is capable of tracking all possible forms, it
will be very time consuming to conduct similar anal-
ysis for all grazing solution points as the continua-

tion goes on with more and more impacts involved.
Second, extra critical points can emerge on the dupli-
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Fig. 8 FEP including full segments that end at Gé#‘

cated branches, while they do not exist on the origi-
nal branch, as in the case of S, [01] and its duplicate
Sg_[Ol] on which a critical point C§3 appears. Since
theoretically any branch that is already obtained can
have infinitely many duplicates in the lower-frequency
domain, it may be nearly impossible to predict the exis-
tence of all branches, let alone tracking them. Though,
in what follows emphasis will be laid on uncovering
the underlying patterns in the infinite FEP and it will
be shown how the nature of the FEP can be related to
fractals.
Among all existing solution branches on the FEP,
of most significance are those satisfying the condition
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FEP shown in Figs. 7 and 8: a Regular point on
segment A3[010]|G;’4G£2; b regular point on segment
A4[0010]|G} 4G} 55 ¢ G} 53 d Gi,5 e Cop3 f Clys g Gyys h
C§2§ i regular point on segment S4[001 1]|G£4C322

of symmetry, including previously illustrated branches
So, S2[01], Se[010101] as well as S4[0011]. In fact, it
is observed that the path connecting all the successive
symmetric branches extending from the original Sar lin-
ear branch represents the main body of the FEP within
frequency range [w; w;], which gradually approaches
infinite energy while converging to wq in frequency.
Meanwhile, the asymmetric branches are either trivial
deviations accompanying the major symmetric path,

which is the case for the asymmetric branches starting
from Gé 4» OT continuous tongues that are localized in
energy and frequency, which will be shown later. Pick-
ing up the continuation in Fig. 8 that paused at branch
S4[0011], the path consisted of succeeding symmetric
branches is depicted in Figs. 10 and 11 where labels and
marks are omitted for the trivial branches and some of
the critical/grazing solution points at high energy lev-
els.

Two major families of branches are dominant in the
symmetric path, while other trivial ones serve as con-
nections among them. The first major family includes
solutions in the form Sy [01]%, where k > 3 is an odd
number and the superscript k stands for [01] repeated
k times. Commonly, each S2x[017% branch intersects
the duplicate branch Slz‘f [01] at an energy-minimizing
critical point in the C33 family. Meanwhile, there exists
another Csp critical point on each of them and the
branch is only stable on the segment between these two
critical points. Furthermore, the ends of each S [Ol]k
branch are two grazing solution points, one of which
is Gox—2,2 and is at higher frequency, while the other
one is Gox—4 4 at lower frequency. The branches corre-
sponding to k = 3,5, 7 and 9 in this family have been
shown in Figs. 10 and 11, and it is predicted that sim-
ilar branches exist for k > 9. The second major fam-
ily of solutions include those in the form S;; [O/ 1/],
where j > 2 is an integer and the superscripts j rep-
resent ‘0’ and ‘1’ repeated j times, respectively. Typ-
ically, an Sy [0/17] branch has 3 critical points where
the first one is C3, at high frequency that can bifur-
cate into another symmetric side branch leading to a
grazing solution point that is one end of the previous
S2(j—1)[0/ =11/~ 1] branch, while the second one is C3;
that only indicates a change of stability and the third
one is another C3; that may bifurcate into asymmet-
ric branches, which will be discussed later. The ends of
such a branch are grazing solution points that are either
the ends of an S»;[01]¥ branch or a branch that extends
from an Sy [01]% branch. In other words, after all, by
defining a common index i > 3 which is odd, the main
body of the path of symmetric branches are constructed
by successively connecting (directly or through short
trivial symmetric branches) these 2 major families of
branches in the order

i+
2

$: 1011 — Si41[07 1

ﬂ .
71— Saio)[01712

43 it3 ,
- Sim02172]— Sz(i+4)[01]l+4 — ...
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Fig. 10 FEP of the path consisted of symmetric branches succeeding Sg'

To provide more insight of the FEP’s structure, the
time histories and phase portraits at selected points on
these major branches are shown below. First, responses
at critical points ng, ng’ C3121 and C;% on branches
corresponding to, respectively, k = 3,5,7 and 9 in
the S5, [01]% family are plotted in Fig. 12. Such solu-
tions have impacts happening successively on the two
sides so that the time histories appear in a ‘chatter-
ing’ manner, and such branches seem to appear only
above the frequency level wg while approaching wg

with increasing number of impacts involved in a period.
Meanwhile, responses at critical points Cg‘2, ng, C392
and Cég on branches corresponding to, respectively,
j = 2,3,4and 5 in the S;[0/1/] family are plot-
ted in Fig. 13. Such responses share the feature that
impacts happen continuously on the same side in half
period so that the time histories appear in a sticking
manner, and the lowest frequency on such branches
is always below w( and approaches wy with increas-
ing number of impacts. In some sense, the main body
of the symmetric path of FEP is clamped between
the frequency-maximizing points on S [01]¥ branches

and the frequency-minimizing points on Sp; [0/1/]

branches. As energy approaches infinity while fre-

quency is limited around wq, the clearance will be
ignorable compared to the amplitude of vibration, and
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both Sy [Ol]k and Sp; [0/17] solutions approach the
response form where the masses vibrate synchronously
as if one is fixed on another so that the system collapses
to a single-DOF linear system whose natural frequency
is exactly wg, corresponding to a predicted convergence
to wo at infinite energy on the FEP.

Among all observed critical points, those in the C33
family deserve particular attention. In the FEPs shown
above, such points appear only as the bifurcation points
where a duplicate branch S§ “[01] meets its counter-
part in the Sar[01]F family, as is the case for C313,
C_%, C§3 and C§3. Notice that £ must be an odd num-
ber for a duplicate branch Slg_[Ol] to bifurcate into a
symmetric branch, since the condition for symmetry

z(t + T /2) = — z(t) can never be met by an A [017%
branch when k is even. However, it is worth noting
that similar critical points can also emerge on dupli-
cate branches Sé‘_[Ol] when £ is even. An example is
given as the bifurcation on duplicate branch S;' ~[o1],
as shown in Fig. 14, where a piece of the symmet-
ric path is taken by omitting the branches beyond the
grazing solution point G}L 4~ Emphasis is laid on the
critical point Cg‘z on branch S4[0011], where it bifur-
cates into another asymmetric branch A4[0011] that
was previously omitted in discussions about the sym-
metric path. The A4[0011] branch is then connected
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Fig. 11 FEP of the path consisted of symmetric branches suc-
ceeding SO+ : details at high energy levels, labels omitted for trivial
branches and critical/grazing solution points

through an Ag[001011] branch to an Ag[01010101]
branch, which meets the duplicate branch Sg ~[01] at
the critical point C§3. When the Ag[01010101] branch
bounces back from C§3, it leads to a tongue consisted
of branches that increase successively in the number of
impacts but are localized both in frequency and energy
on the FEP. Details of this region as framed by dashed
lines in Fig. 14 are depicted in Fig. 15. Every branch
in such tongue shares the features that it has two short
stable segments at low frequency levels, it bifurcates
once at a Cy; critical point and all of its ends meet its
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Fig. 12 Time histories and phase portraits at selected solution
points on branches in the S [01]F family: a ng; b C;z; c C3121;
dci?

neighbors’ at certain grazing solution points. The time
histories and phase portraits at critical points C 212, C%z,
ng, ng are shown in Fig. 16, indicating that such
a local tongue of asymmetric branches represents a
family of responses that are sticking at one side while
maintaining only 2 impacts at the other side. Regarding
such tongue as an extension from the symmetric branch
S4[0011], itis predicted that similar tongues will extend
from all branches in the previously defined S;;[0/1/]
family, and they each should involve the bifurcation
from a corresponding duplicate branch S§_[01] with
k = 2j which is even.

It has been revealed above that branches bifurcat-
ing from the duplicate branches S’2‘_[01], k > 3 are

@ Springer



2978

H. Tao, J. Gibert

displacements
L& b ho - ow e
Xy
L& b oo ow e

N
&
‘o
o
w
w

772

time (a)

K3

displacements

S L b o e e
Ty

b o e e

/2 T 5 0 5

time (b) 1

displacements

@
2
§ 5
@ 0 ]
g B
3
= 5
A7)
< a0 -10
-15 15
0 T/2 T 5 -0 5 0 5 10 15
time (d)
£l
Xy

Fig. 13 Time histories and phase portraits at selected solution
points on branches in the S;[0/1/] family: a C§2; b C;Z; c ng;
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connected together to form the major body of FEP
within frequency range [w; ], including both the
symmetric path and the asymmetric single-side stick-
ing tongues. Besides, a special case is discovered when
dealing with the bifurcation happening on duplicate
branch S%_ [01], as shown in Fig. 17. Unlike the cases
of other S’z‘f[Ol] branches when k is even, there are
no tongues of single-side sticking branches. Instead, a
closed loop composed of asymmetric branches exclu-
sively appears, with selected time histories and phase
portraits shown in Fig. 18. It is thus concluded that
all duplicate branches Slz‘ “[01], kK > 2 each meet a C33
critical point within frequency range [wo w>] and bifur-
cate into branches that further construct the main body
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of FEP within frequency range [w; w>]. In the follow-
ing, this part of the FEP along with branch S, [01] is
dubbed the elementary structure, which is composed
of all components shown in Figs. 3, 8, 10, 14 and 17
plus all further branches extending from them (includ-
ing those on the symmetric path, on local single-side
sticking tongues, on the closed loop bifurcating from
S5 [01], and trivial asymmetric side branches). The
above presents all observations on the FEP within fre-
quency range o > wi, and the section is concluded
by a partial view of the entire elementary structure as
shown in Fig. 19.
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3.2 Complete FEP as infinite fractals

3.2.1 Bifurcations at grazing solution points and
extra critical points on duplicated branches

The elementary structure depicted till this point, how-
ever, is not the whole picture. The Cs3 critical points
discovered so far are not the only ones on the dupli-
cate branches SIZ‘_[OI], and in fact, it is observed that
a duplicate branch S’z‘_[Ol] typically has k — 1 critical
points in the C33 family, as shown in Fig. 20a, where
the duplicate branches corresponding to k from 2 to 9
along with the original S, [01] branch are shown. As
marked in red arrows, some of the extra C33 points are
duplicates, i.e., a duplicate branch S§ ~[01] will always
contain the duplicate C33 points whose origins lie on
duplicate branches S% “[01], where j is an integer divi-
sor of k. There are, however, still extra C33 points that
are original, such as CZ3, C§3, C§3 and Cég in Fig. 20a.
These points are about to give birth to new branches
that are in general more complicated in nature and are
not duplicates of any branch already found. Further-
more, so far only duplicates of the S, [01] branch are
studied, and there is nothing preventing similar extra
critical points to appear on duplicates of all the other
original branches. For example, the duplicates of the
original S; [01] branch are investigated and shown in
Fig. 20b, where the frequency axis is also given in log
scale. It seems to share the same feature that a duplicate

branch S§+ [01] has k& — 1 critical points in the C33 fam-
ily. However, such feature is no longer true when the
duplicates of the original A[0] branch (as in Fig. 17)
are investigated, as shown in Fig. 20c. It appears that
the first extra C33 point, labeled as C§31, did not appear
on the admissible branches until k = 4. However, it
turns out that C33 points may have already shown up
on the inadmissible part of the branches, as plotted in
red lines in Fig. 20c, but are omitted until they fall on
the admissible part. Such fact makes it nearly impossi-
ble to predict the number of extra C33 points on each
duplicate branch, and it is thus assumed that the number
of extra critical points on duplicate branches is highly
dependent on the form of the original branch.

At the same time, it deserves particular attention that
the loop shown in Fig. 17 ends at the grazing solution
point G(l)y 4» Which s also the end of the duplicate branch

Sg_ [01]. Such fact passes the message that a duplicate
grazing solution point on duplicate branches may trig-
ger new branches that cannot be found on the original
one. Specifically, suppose that an original branch ends
at a grazing solution point in the Gy , family, which is
the potential end of up to 27 separate branches, and as a
result a k-duplicate of the branch will end at a duplicate
of the grazing solution point, which will naturally be
in the Gy kp family and thus can be the potential end
of up to 2kP branches. Therefore, due to the existence
of extra critical points and duplicate grazing solution
points, it is then expected that there exist extremely
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points on branches depicted in Figs. 14 and 15: a C2'2; b C%z; c

3. 4
C22’ d C22

complicated hidden topologies in the lower-frequency
domain on the FEP, including the extra branches start-
ing from the duplicates of the grazing solution points
that have been found as well as those starting from extra
(33 critical points that theoretically may emerge on the
duplicates of any branch. Moreover, it is observed that
the C33 critical points only appear on the stable parts
of a duplicate branch.

3.2.2 Fractal bases on FEP
The entire FEP can be then visualized as follows. Con-

sider any original branch Ay[R] that has been found,
C33 points may emerge on any of its k-duplicates, and
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each C33 point leads to a bifurcation. Then, any new
original branch Arn[RI* bifurcated from a Ca3 point
on a k-duplicate of A[R] can find its own j-duplicate
bifurcating from the (kj)-duplicate of Ay[R]. Any j-
duplicate of Arn[RT¥ can now give birth to new orig-
inal branches A jkN[R]kj , and so on. Therefore, it is
claimed that the FEP should be generated following a
pattern of infinite fractals toward zero frequency. In
order to illustrate this, several notations need to be
introduced. First, a general notation is used for both
original and duplicate branches as A’I‘V[R]{F 1{ }, where
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N and R define the number and sides of the impacts in
the response form of its corresponding original branch,
respectively, and k states that the current branch is the
k-duplicate of its origin so that k = 1 for any original
branch. Define fractal bases F iﬁ, p = 1,2, as sets of

branches. An F i/ base consists of S{ +[01], which is the
Jj-duplicate of the S;’ [01] branch, and all branches that
can be connected to it through a path that successively
connects any number of branches, no matter original or
duplicate, but does not include any duplicate or origi-
nal S, [01] or S; [01] branches. An sz base consists of

Sé_ [01] and all branches that can be connected to it in
a similar way, but are not included in any F 1’ base. As
an example, the elementary structure shown previously
should be the combination of fractal bases F 11 s F21 and

F22 And finally, the notation A'I‘V[R]{F ,{ } for a branch
states that its origin lies in the F 1]7 base, and typically

an AK [R]{F}} branch itself should lie in base F".
The complications in the notations can be viewed as a
consequence of the interactions between the two basic
backbone branches 52jE [01], which are further due to
the dislocations in frequency between their duplicates.

For example, the fractal base F26 is depicted in
Fig. 21. The backbone is notated as S26_ [01]{F21 %
which is simply S26 ~[01] in previous notations. As men-
tioned before, it has in total 5 C33 critical points, among
which C% and ng lead to original branches that should
be denoted as A},[010101010101]{F¢}. Meanwhile,
referring to Fig. 20, C3632 is the 2-duplicate of C313, Cg’g’
is the 3-duplicate of C§’3 and C36§‘ is the 2-duplicate
of C z3. Notice that by definition, branches bifurcating
from C3632 and C 3631 in fact belong to fractal bases F’ 12 and
F 11, respectively, but are plotted here for clarification.
Referring to Fig. 19, C3631 leads to the second single-
side sticking tongue in the elementary structure. Mean-
while, branches bifurcating from C3632 are 2-duplicates
of the first ‘chattering’ branches in the symmetric path
and Cg’g’ leads to 3-duplicates of branches in the closed
loop in the elementary structure. Moreover, C36§‘ leads
to the 2-duplicate of a closed loop in base F5, and C36§
leads to an original loop. All these loops end at dupli-
cates of the grazing solution point G(l), 4» and it is pre-
dicted that there would be an infinite number of loops
appearing in the infinite fractal base F7°. In fact, an

sz base shall only include the bifurcated branches that
form loops since others typically will connect to Fj
bases, like the bifurcations at C g% and C 3?31 Yet a more
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exciting observation is made on the duplicate branches
bifurcating from C3632 and C36§’ , shown in Fig. 21d and
e. As expected, sub-level critical points ng and ng
emerged and led to original local closed loops whose
topologies are similar to the larger-scale loops shown in
Fig. 21b. The potential fractal structure can be partially
illustrated by the observations above if one assumes

bifurcations will continue to occur on further dupli-
cates of the original branches in the loops shown in
Fig. 21d, e, and so on.

Conventionally, the bifurcations at such C33 points
are understood as internal resonances [33], due to
observations on the elementary structure that these
points correspond to locations where the frequency of
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bifurcations out of C§’31; d and e: original sub-level closed loops

branches on the symmetric path is an odd-number divi-
sor of the §, [01] backbone, as is the case for points
C313, C§3, C§3 and C§‘3. However, this may not be gen-
eral enough since it is found that these bifurcations
can also lead to closed loops that don’t correspond to
obvious interactions between the two families of fractal
bases F, 1’ and sz . Therefore, the following discussions
will be focused on their period-multiplying nature, i.e.,
a C33 bifurcation where the k-duplicate AII‘V[R]{F I’;} of
any original branch A}V[R]{F [’;} bifurcates into orig-
inal branches A} ,[RI*{F IJ,,} is an instance of k-time
period multiplying so that, for example, k = 2 gives
period doubling and & = 3 gives period tripling. Fur-
thermore, since a C33 point itself can be a duplicate,

as is the case for C36§, C§33 and C%‘ in Fig. 21, in gen-
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Fig. 21 FEP including branches in fractal base F26 along with related branches in F 1’ bases: a overview; b closed loops in cm‘; c

eral a C33 bifurcation on a k-duplicate branch could
represent a j-time period multiplying where j is an
integer divisor of k. For demonstration, the time his-
tories and phase portraits corresponding to 5 selected
regular solution points P to P5 on the FEPs in Fig. 21
are depicted in Fig. 22, where they each represent a C33
bifurcation. Meanwhile, the idea can be explained best
by plotting all the responses at the corresponding C%
points, i = 1,2, 3,4, 5, but by assuming that response
shapes along the backbone branch Sg_[Ol]{le} are
similar in appearance, only that at Cg; is picked as
example. Notice that though the periods (original or
multiplied) at these points are essentially different, they
are scaled to have the same number of impacts on the
plots in order to show intuitive comparisons among
the response shapes. Briefly, P; and Ps are original in
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base Ff so that they both correspond to period sextu-
pling, while P, and P are 2-duplicates of their original
points, respectively, so that they correspond to period
tripling and finally P; is the 3-duplicate of its origin so
that it stands for period doubling. By this point, it needs
to be clarified that only the bifurcations where duplicate
branches transit into original branches are instances of
period multiplying, which typically occur at C33 critical
points, while period is continuously maintained during
bifurcations at other critical or grazing solution points
that only involve original branches.

An interesting aspect of interpreting the C33 bifur-
cations as period multiplying lies in its further potential
to form cascades. Consider an original branch which is
the result of a first-level period multiplying, and then
C33 bifurcations on its own duplicates will represent a

second-level period multiplying, and so on. To clearly
present the concept, a slice of the deep fractal base F' 18
is investigated, as shown in Fig. 23. Briefly, the lower
part of the 8-duplicate of the first ‘chattering’ branch
S6[010101] in the elementary structure, referring to
Fig. 10, is investigated, corresponding to a C33 bifur-
cation from the 24-duplicate of the backbone S, [01].
This branch, Sé[OlOlOl]{F 11 }, appears to also hold the
feature that it has 8-1=7 extra C33 points, labeled as
C%, i from 1 to 7. Since the divisors of 8 are 2 and 4,
it only inherits 3 critical points from the 4-duplicate
which are C §32 C _,% and C §_,? , Where C _% is further
inherited from the 2-duplicate and its origin is exactly
C3636 in Fig. 21d, and thus, all the other 4 points C%,
Cé‘;’, C§§ and ng lead to original branches that are in
the form AJg[01]°*{F3}, which corresponds to period
octupling. Focusing on point C%‘ (the 4-duplicate of
C3636 ), anew critical point C %3 emerges on the duplicate
branch A?z [0118{F 12} and leads to original branches in
the form of A }‘8[01]24{F 18}. Then, an example cascade
of period multiplying can be tracked along the path
markedinredin Fig. 23a. According to previous discus-
sions, the bifurcations at ng (which is the 8-duplicate
of C313), C% and C§38 will involve transitions in the form
of period tripling, period doubling and period quadru-
pling, respectively. Similar to Fig. 22, the time histo-
ries and phase portraits at the 3 critical points as well
asat G zltﬁ,z’ the end of the path, are given, where the
time axes are scaled so that the depicted responses each
include 48 impacts. Moreover, the cascade is exhibited
as bifurcation diagram in Fig. 23c, where the displace-
ment x; at all impacting instants within one period are
plotted against the accumulated distance travelled on
frequency axis along the path marked in red.

3.2.3 Summary of observations

In conclusion, the entire FEP of the impacting sys-
tem should include all fractal bases F Ilﬁ, p = 1,2,
k=1,2,3,...,andeachbase F []§ should include dupli-

cates of all branches in all bases F' ,ﬁ , where j is an inte-
ger divisor of k. Meanwhile, new C33 critical points
(that have no counterparts in any parent base F ,ﬁ) will
emerge on these duplicate branches in F Ilﬁ , so that bifur-
cations corresponding to period multiplying will lead to
new original branches in F' [lj which will further transit
(at grazing solution points) into original branches until
connecting with an existing branch, which may involve
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cation diagram generated by recording x; at impacting instants
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interactions among different bases. In other words, the
structure of F' [’,‘ should be richer than the union of all

duplicated F ,ﬁ’s. Till this point, assumptions may be
made regarding features of the two infinite bases F'S°,
p = 1,2, which should be infinitely close to zero fre-
quency on the FEP. First, any stable branch correspond-
ing to periodic orbits in F ;,’O would be a duplicate that
have an infinite number of C33 critical points on it.
Thus, an infinite number of paths can be found that
represent cascades of period multiplying, similar to the
one in Fig. 23a. The end of any of these pathes will
correspond to pseudo-periodic responses that have an
infinite period so that they can be considered as the only
original branches in F ]‘)’Q and are likely in the form of
chaos. In other words, any periodic response, no mat-
ter how large the period is, should lie in either infinite
base F,° as a duplicate solution point and any pseudo-
periodic response that is the product of cascades of
period multiplying should be found as an original solu-
tion point. Yet conversely, it is still unclear whether all
pseudo-periodic or chaotic response triggered by arbi-
trary initial conditions are in essence the outcome of
such bifurcations.

3.3 Analogy to systems with polynomial
nonlinearities

As mentioned before, a potential significance of the
present work lies in that the impacting system is essen-
tially related to a family of systems with polynomial
nonlinearities. Recall the general EOMs for such sys-
tems

k _ n
myiip + (k1 +ko)uy — koup = 2(14;”7_1141)
" . (50
iy — ot + oty — ko(uy — uy)
maiiy — ko +kpuy = ———

which can be scaled, by x; = u;/d, into

mi¥ + (ki + k2)x1 — koxo = ka(xp — x1)" 51)
maXy — koxy + koxo = —ka(x2 — x1)" ’

where 7 is odd, and previous discussions on the impact-
ing system should correspond to n — o0. In this sec-
tion, the similarities between the FEPs of the impacting
system and systems with finite n’s will be briefly inves-
tigated.

First, the initial part of the symmetric path in the ele-
mentary structure is considered, including successive

branches S, S5 [01] as in Fig. 3 as well as S5[010101]
and S4[0011] as in Fig. 10. Their counterparts in the
FEPs of system (51) with orders n = 3, 7 and 21, under
same system parameters (47), are tracked using exactly
the same techniques described in [33], as depicted
in Fig. 24 in comparison with the impacting system
(n — 00). The shape of the FEPs shows a rather smooth
transformation, where it spans more along the energy
axis but less on the frequency as n decreases. The sta-
bility analysis shows good consistence except around
the C313 points that the branches with n = 3 and 7 are
stable after the turning, while branches with n = 21
and n — oo are stable before it. It is worth noticing
that around these bifurcation points, the stable part is
always that at lower frequency. Meanwhile, some of the
critical points are inherited through the transformation
while maintaining the same algebraic and geometric
multiplicities for the zero eigenvalue, as is the case for
C313, C312, C331 and C;‘Q. Yet others are shifted due to
the deformation of FEP. Moreover, the transformation
of the closed loop in the elementary structure along
with the 2-duplicate of the backbone S, [01], referring
to Fig. 17, is depicted in Fig. 25. It is shown that a
system with order n as high as 21 is already able to
reveal the twisting corner around G(z)’2 in the impacting
system’s FEP where the linear mode S, transits into
S, [01], featuring a short section of unstable solutions
and a C31 point. Moreover, as there are fewer twists in
the shape of FEP as n decreases, some of the bridges
cease to exist, leading to generally simpler topologies
for lower-order systems.

While the transformations shown above appear to be
straightforward, particularly interesting are those hap-
pening on the grazing solution points. In general, graz-
ing solution points can only occur when n — oo, and
one may wonder what will be their counterpart when n
is finite. In theory, a grazing solution point can hardly be
represented by a single critical point since the number
of branches bifurcating from a critical point is limited
by the geometric multiplicity of the zero eigenvalue,
while the number of branches crossing a grazing solu-
tion point can be unlimitedly huge depending on the
number of grazing instants. Then, it turns out that a
grazing solution point in the impacting system’s FEP
is scattered into a series of critical points in that of sys-
tems with finite order n’s. In order to show this, the
counterpart of the typical grazing solution point G% 4
investigated previously is sought for n = 21, as shown
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Fig. 25 Deformation of the closed loop in FEPs of systems with finite order n’s, in comparison with n — oo in Fig. 17

in Fig. 26. Referring to Figs. 7 and 8, there is expected
to be 5 more branches crossing Gé 4 that accompany
the symmetric path as trivial side branches. However, it
seems that only 3 of them have counterparts atn = 21.
First, the end of the horizontal S4[0011] bridge is now
at Cé’z, which was supposed to be the other ends of two
vanished trivial branches A4[0101] and A5[00101] in
Fig. 7. (To avoid confusions, critical points for systems
with polynomial nonlinearities are labeled by super-
scripts in letters.) Meanwhile, there is expected to exist
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two branches, as counterparts of A4[0010] and A3[010]
in Fig. 8, that connect to C{z on the backbone branch.
As shown in Fig. 26, the ends of these two branches are
now separated, where one lies at Cgiz while the other
branch actually bifurcates out of this one at C%,.

Due to the deformation of FEP and, especially, the
scattering of grazing solution points, it is difficult to
explicitly describe the map from each solution point
of the impacting system onto its counterpart in sys-
tems with polynomial nonlinearities. However, intu-
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itive comparisons can be made among responses that
show clear correspondences. Referring to Fig. 24, the
responses at two critical points C313 and C;’l for the
impacting system and their counterparts (marked by
red arrows) in systems with n = 3, 7 and 21 are com-
pared in Fig. 27. At high orders such as n = 21, the
responses approximate those of the impacting system
so that impact-like reactions are observed when the rel-
ative displacement approaches the general clearance
d = =£1. As the order gets lower, such impact-like
reactions gradually disappear and d = =+1 loses its
physical meaning, as when n = 3. Yet the generally
hardening feature of the internal force has ensured sim-
ilarities in the topologies of the responses. Moreover,
the manifolds corresponding to responses refined on the
stable segment C ??1 Cg‘z in the impacting system along
with their counterparts in the polynomial systems are
depicted in Fig. 28, for illustrating the deformation of
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n-—->oo

n=21

Fig. 28 Manifolds corresponding to the stable segment C g’ C gz
and its counterparts as marked in Fig. 24

orbits. Despite such inherited feature points, the pre-
vious notations for branches in the impacting system’s
FEP may not be general enough to represent FEPs of
systems with finite n’s. For convenience, in the follow-
ing, any segment on the FEP will simply be denoted
as AK|P| P){F I}, where Py and P, are its end points,
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k indicates that the segment is the k-duplicate of its
origin, and F [’, is the fractal base where its origin lies.
Similar to the case for the impacting system, the frac-
tal bases F l’;, p = 1,2 are constructed according to
connections to the i-duplicates of the in-phase and out-
of-phase backbone branches.

Given the evidence for similarities in the NNMs of
the impacting system and its analogous systems with
finite order n’s, it is assumed that the fractal nature is
also inherited and one can follow the similar procedures
to track C33 bifurcations on the duplicate branches at
lower-frequency levels for systems with any order n.
Consider any original solution point that is already
located by continuation, one can simply copy the solu-
tions for initial conditions while multiplying the solu-
tion for period by any integer k, and redo the continua-
tion. In this way, a k-duplicate of the original branch can
be found, where extra C33 bifurcations are expected to
happen, leading to new original branches and so on. As
counterpart to the bifurcations shown in Fig. 23a, a slice
of fractal base F 18 is studied for n = 3, starting along
the 8-duplicate of segment A' |C5,C5{F 1]} shown in
Fig. 24. As depicted in Fig. 29, the critical points with
labels ng, Cg’f, Cé’f and C§’28 are 8-duplicates of points
C55, C5), Cé’l and C%, in Fig. 24, respectively. Recall-
ing that C33 bifurcations only occur on stable parts, by
intuition one may expect them to emerge on segment
A8|C§38 Cé‘lg{F 11}, where unfortunately none is found,
probably due to the fact that the turning at this loca-
tion is flipped upside-down when n decreases from
oo to 3. Instead, the bifurcations are observed on the
segment A8|C§’§C§§{Fll} which does not exist in the
impacting system since it is part of the scattered graz-
ing solution point G%’ 4+ Exactly 8 — 1=7 C33 points
are observed, among which C§3 further leads to C§3,
and the beginnings of the bifurcations at these points
are plotted. Thus, a period-multiplying cascade can be
tracked along the path marked in red and, similar to
Fig. 23, a bifurcation diagram is generated to illustrate
the cascade, as shown in Fig. 29, which is constructed

by a Poincaré map where the displacements x; at the
. kT 2k
time instants t = — = —— kK = 1,2,...,24, are
24 24w
recorded for each solution point on the path, because the
cascade eventually shows a 3 x 2 x 4 = 24-time period
multiplying. Note that when continuation is done for
the periodic orbits of system (51) with n = 3, an addi-
tional constraint is applied so that the initial condition

for x; is 0, as a result of which 0 is always recorded
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Fig. 29 An example of period-multiplying cascade at n = 3 in fractal base F 18: a FEP; b bifurcation diagram; ¢ phase portraits at

selected points

on the bifurcation diagram. At the same time, phase
portraits at C33 points along the selected path as well
as a temporary point P selected as the end of the path
are depicted in Fig. 29c.

In conclusion, nonlinear systems in the family
defined by Equation (50) share similar FEP features.
While some NNM sections show clear inheritance with
varying order n, the grazing solution points in the
impacting limit are scattered into critical points in sys-
tems with finite order n’s. Meanwhile, the fractal struc-
ture consisted of cascades of period-multiplying bifur-
cations exists for both finite n’s and n — oo. In gen-
eral, the theoretical background of such bifurcations is
briefly explained as follows. Along certain stable seg-
ments on the FEP, a pair of complex conjugate Floquet
multipliers (as described in Sect. 2.4.2) travel along
the unit circle on the complex plane so that they can
be represented as ety y € R. Consider that at a

solution point P there is y = p/q, where p and ¢
are coprime integers with 0 < p < g. Then, the g-
duplicate of P will have a pair of Floquet multipliers at
1, resulting in a g-time period-multiplying bifurcation.
If the two Floquet multipliers each traverse the whole
unit circle, then p has g — 1 possible values which
naturally explains the previous observation of k — 1
bifurcations on a k-duplicate of certain segments. Since
the distribution of solution points possessing rational
y’s is dense on a given segment, when approaching
zero frequency it will be infinitely rough, i.e., any frac-
tion of the segment will include a Cz3 bifurcation in
one of the fractal bases. Moreover, on a new stable
segment that bifurcates out of this g-duplicate of P,
the pair of Floquet multipliers of interest restart from
1 and again travel along the unit circle, resulting in
cascades of such period-multiplying bifurcations. For
instance, the evolution of two complex conjugate Flo-

@ Springer



2992

H. Tao, J. Gibert

4 Imag

(82"
Cs3

Real

Fig. 30 The evolution of a pair of complex conjugate Floquet
multipliers (in red and blue, respectively) on the unit circle along
solution segment S6[010101]|C3'3C§2, with origins of the C33

points on its 8-duplicate labeled. (Color figure online)

quet multipliers along the segment Sg[010101]|C 313 C _%2
(which is original, as shown in Figs. 8 and 10) are
depicted in Fig. 30. Denote the origins of critical points
C¥. p =1,2,...,7 (in Fig. 23) as C5/ , which lie
on Se[010101]|C 313 C332, and the corresponding Floquet

multipliers are exactly 2" §’ as labeled in Fig. 30.

4 Conclusions

The periodic orbits of a 2-DOF conservative VI system
are tracked by fitting the return map equations into the
scheme of continuation. The method has shown satis-
factory efficiency in that instead of involving numeri-
cal integrations in iterations, the equations are regular
and explicit so that the continuation runs much faster.
Meanwhile, it gives the exact solutions for systems with
stereo-mechanical impact models instead of approxi-
mating the problem. Practically investigating critical
and grazing solution points, in theory one can avoid
missing any existing solution as long as it is somehow
connected to any branch already found, either directly
or to their multiple-period duplicates. A potential obsta-
cle in implementation lies in that the shooting method
may meet rank deficiency problems near critical points,
due to numerical limitations, which in the future may
be compensated by adopting pseudo-Newton methods.

@ Springer

It is illustrated that the FEP of the VI system expe-
riences extremely complex trajectories due to period-
multiplying bifurcations and complicated interactions
among modes and their duplicates. It is shown that
as a result the solutions develop in the form of infi-
nite fractals so that the numerous cascades of period-
multiplying bifurcations will lead to pseudo-periodic
and likely chaotic responses that correspond to infinite
periods and should lie at zero frequency on the FEP.
Furthermore, it is shown that such fractal feature holds
for counterpart systems with polynomial nonlinearities
as well. However, though it is assumed that some of
the stable branches of periodic solutions of such sys-
tems, when duplicated, can lead to an infinite number
of bifurcations so that an infinite number of chaotic or
pseudo-periodic responses can be located as the end of
a cascade, it is not proved that any pseudo-periodic or
chaotic response can be located in this way.
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