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Abstract— For robots to effectively navigate in the presence
of humans, they must safely leverage the human’s perceived
unwillingness to collide. Drawing on Viability Theory, we pro-
pose a novel approach to robustly anticipate human collision-
avoiding behavior. We assume that rational humans try to
optimally control their motion to avoid collision, but they are
also prone to error, which makes their behavior suboptimal.
We offer a robust control model which varies the level of
optimality expected over time, assuming that humans may act
unpredictably for a brief period of time, but their actions ap-
proach optimal collision-avoiding behavior as time progresses.
We show how the proposed model can be used to produce a set
of initial states for which a rational human will avoid collision.
Further, we produce a robust policy which characterizes the
set of control inputs expected by the human at any state. We
illustrate our approach using two representative scenarios.

I. INTRODUCTION

For high-inertia robots planning in the presence of humans,
making assumptions about human behavior is essential to en-
sure avoidance of collisions. For example, if an autonomous
vehicle operates in the presence of a human-driven vehicle,
both the autonomous vehicle and the human-driven vehicle
can contribute to the success or failure of the collision
avoidance task. To better understand this point of view,
suppose a robot pulls out of a driveway onto a road in
front of a human driver coming its way and at some point
a collision occurs. If near perfect reaction time and hard
braking on behalf of the human would have been required
to avoid collision, one would put nearly all the blame on the
robot. On the other hand, if the human was originally far
away and moving slowly, and thus was given ample time to
react and brake, we would consider the robot to have acted
safely, even if the human were slightly inconvenienced by
having to reduce his/her speed.

In [1] we called a human-robot system rationally safe
if the interaction is always safe under the assumption that
the human acts according to a rational model of behavior.
While it is intuitive to conjecture that the assumptions in this
example constitute rational collision-avoiding behavior, the
specifics of defining rational behavior are not immediately
clear. In this paper, we propose a general technique for
modeling rational human collision avoidance behavior. We
make these intuitive statements concrete and develop a
framework which reduces the complexity of characterizing
rational human behavior.
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Fig. 1: Computed suboptimal safety set Sub
γ−(·),γ+(·)
T for the

intersection problem, the states outside of the thick green line.

We begin by discussing related work in the next section,
noting that this paper unites human factors research in
driving behavior with viability theory approaches for safe
control. We follow by describing a general approach for
modeling suboptimal collision avoidance. Next, we show
how the parameterization of this model forms a partial order
so that the relative conservativeness of the parameterizations
can be determined a priori. We then show how this general
model can be applied to human collision avoidance. Finally,
we discuss how this model can be applied to robot decision
making.

II. RELATED WORK

Early work on modeling human collision avoidance be-
havior comes primarily from the human factors community,
looking for ways to improve vehicle safety in tasks such
as braking for obstacles [2], following moving vehicles [3],
and avoiding vehicles while crossing intersections [4]. For
example, Lee’s collision avoidance model in [2] consists of:
a response period, where the human identifies a threat and
moves to begin braking or steering; an adjustment period,
where the human is actively pressing the brake or turning
the wheel; and a critical period, where the brake needs to
be at full power to avoid collision. Further, he suggests that
humans use a model of time-to-collision (TTC) to assess risk.
TTC is a measure of how long it would take for the vehicle
to collide, given a constant closing velocity.

This paper models humans similarly to [2], acknowledging
that perceptual, motor, and cognitive limitations may cause
humans to react suboptimally during collision avoidance
tasks. Further, we use a similar, but more general, version of
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the TTC to model the risk of a particular state. However, we
also propose a methodology to apply these concepts more
generally to generic models of motion and collision.

Our approach is closely related to work from the reach-
ability community [5]–[7]. For example, Mitchell et. al. [5]
computed backwards reachable sets for continuous dynamic
games, where one agent is trying to optimally avoid collision
and the other one is trying to optimally cause a collision.
Althoff et. al. [6] used probabilistic reach sets to both plan
autonomous driving maneuvers and model the behaviors of
nearby vehicles, while Kaynama et. al. [7] proposed a two-
stage hybrid controller for safely avoiding collisions. When
the state is near the boundary of states considered safe
through reachability analysis, the control is switched from
an unconstrained control law to a safety preserving controller
which keeps the state safe. The safe set is selected such that
safe control can be guaranteed to exist under their policy.
Verma and Del Vecchio modelled humans in an intersection
braking scenario using a hidden mode hybrid control system
[8], [9]. Their idea is that, given a hybrid control model
of human behavior, the robot can infer the human’s mode
by observing their dynamics and by ruling out modes by
comparing observed dynamics to an internal model.

The present paper unites reachability approaches to con-
troller design with human factors models of realistic human
control by proposing a robust human control model. We
focus specifically on how one should characterize ratio-
nal collision-avoiding behavior, whereas many of earlier
techniques either assume it to be specified beforehand [8],
they take an overly conservative approach [5] [7], or use
a probabilistic approach which does not offer hard safety
guarantees [6].

III. MODELING SUBOPTIMAL COLLISION AVOIDANCE

A. Preliminaries

We begin by introducing the dynamics and collision
model for the human. We model the agent’s dynamics as
ẋ = f(x) + g(x)w with state x ∈ Rn and control input
w ∈W ⊆ Rm, where W is a multidimensional interval. That
is, for w+, w− ∈ Rm, W := [w−1 , w

+
1 ]× . . .× [w−m, w

+
m].

The agent is considered to be in collision with an obstacle if
the state leaves a given closed set F . The mapping from an
initial state x0 and a control signal w(·) to state trajectories,
will be denoted by (x0, w(·)) 7→ xx0,w(·)(·). We assume that
the model is well behaved and that f and g are Lipschitz
continuous. Given a set K ⊆ Rn, we will represent this set
using its level set, denoted by ϕK(x), with the properties
ϕK(x) < 0 on its interior, ϕK(x) > 0 on its complement,
and ϕK(x) = 0 on the boundary of K.

We call a set-valued function U(t, x) : [0, T ] × F → 2W

an agent’s control model. The focus of this section is to
produce, from a particular implicit description of a control
model, both an explicit control model description and what
we call a safety set, that is, a set where all initial conditions
x0 ∈ F have the property

w(·) ∈ U(·, xx0,w(·)(·))⇒ ∀s ∈ [0, T ], xx0,w(·)(s) ∈ F (1)

and thus labeled safe.

Fig. 2: Top: Computed suboptimal safety set Sub
γ−(·),γ+(·)
T

for the braking scenario. The contour curves represent constant
θ(x) = t (or ϕ(t, x) = 0) for times 0.2 s apart. Bottom: The
suboptimal control parameterization. Lines are γ−(·), γ+(·), and
the plus markers correspond to contour lines in the top figure.
Colors delineate the three modes defined in Section V.

B. Viability and Invariance Kernels

We state some classic connections to Viability The-
ory, which motivate our approach. Suppose our con-
trol model assumes the agent, when necessary to avoid
collision, will act optimally to do so, but will oth-
erwise choose any control. The duration-T viability
kernel ViabT := {x0 : ∃w(·), ∀s ∈ [0, T ], xx0,w(·)(s) ∈ F}
[10] would be a safety set for this implicit con-
trol model. To the other extreme, suppose our control
model makes no assumptions about the agent’s behav-
ior, i.e., U(t, x) ≡ W . The duration-T invariance ker-
nel InvT := {x0 : ∀w(·), ∀s ∈ [0, T ], xx0,w(·)(s) ∈ F} [10]
would be a safety set for this control model.

For many systems, InvT is too small to be practical
and ViabT is not nearly conservative enough for imperfect
agents. For example, for many x0 ∈ ∂ViabT , perfectly opti-
mal control for some duration is required to avoid collision.
For rational yet imperfect agents like humans, it would be
more useful to use a control model that varies over time
to blend between these two extremes. That is, we would
like a control model that makes few assumptions about the
agent’s behavior for an initial period of time, but assumes
that eventually the agent will act near optimally to avoid
collision.

C. γ-Suboptimal Control Model

We provide an implicit description for our proposed con-
trol model we call a γ-suboptimal control model, which is
used to generate what we call a γ-suboptimal safety set. The
control model is developed recursively, backwards in time,
by considering how the worst-case trajectories xx0,w

∗(·)(·)
would behave. At time T , the worst-case terminal state would
be xx0,w(·)(T ) ∈ ∂F . Likewise, the worst-case initial state
would be on the boundary of the γ-suboptimal safety set.
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Now, consider that a worst-case trajectory is at the state
xt = xx0,w

∗(·)(t) at time t ∈ (0, T ). Suppose, further, that
we have a vector λt,xt

∈ Rn which indicates which direction
drives the current state towards collision the fastest. Pro-
jecting the system dynamics onto this vector, 〈λt,xt

, ẋt〉 =
〈λt,xt

, f(xt)〉+
∑m
i=1〈λt,xt

, gi(xt)〉wi, we see that the sign
of 〈λt,xt

, gi(xt)〉 determines whether larger wi or smaller wi
is safer, independently for each control dimension. We intro-
duce a pair of worst-case controls γ+

i (t), γ
−
i (t) ∈ [w−i , w

+
i ]

for each control dimension for when the scalar is positive or
negative, respectively. We assume for the control model that
the agent will execute any control as safe, or safer than the
worst-case control. Thus, the implicit γ-suboptimal control
model can be expressed as

W ∗(t, xt) :=
m×
i=1

{
[γ−i (t), w

+
i ], 〈λt,xt , gi(xt)〉 < 0,

[w−i , γ
+
i (t)], 〈λt,xt , gi(xt)〉 > 0.

When the sign is zero, modelling is irrelevant because system
safety is uncontrollable with respect to that dimension.

For a concrete example, suppose we have a vehicle that
can steer left (wi < 0) or right (wi > 0) with control input
wi. At time t and state xt, steering left will push the state
towards collision faster, indicated as 〈λt,xt , gi(xt)〉 < 0.
Thus, we look to γ−i (t) as the worst-case steering, assuming
the agent will execute a control wi ∈ [γ−i (t), w

+]. Setting
γ−i (t) = 0, the model assumes the agent will steer right or,
at worst, keep straight. Setting γ−i (t) = w+ − ε for small
ε > 0 assumes the agent will steer right nearly as hard as
possible. Setting γ−i (t) = w− makes no assumptions about
the agent’s control, including the possibility that they will
steer aggressively towards collision.

D. Hamiltonian Characterization

We now discuss how λt,xt
is determined. It is known

that we can characterize the level sets of the duration-T
viability and invariance kernels as solutions of Hamilton
Jacobi Bellman (HJB) equations, namely,

−∂ϕ
∂t

(t, x)−max{0, H(t, x,
∂ϕ

∂x
(t, x))} = 0, (2)

ϕ(T, x) = ϕF (x), (3)

where ϕViabT (x) = ϕInvT (x) = ϕ(0, x) with the Hamilto-
nian H set as

HViab(t, x, λ) = 〈λ, f〉+
∑
i

min
wi∈[w−

i ,w
+
i ]
〈λ, gi(x)〉wi, (4)

HInv(t, x, λ) = 〈λ, f〉+
∑
i

max
wi∈[w−

i ,w
+
i ]
〈λ, gi(x)〉wi, (5)

respectively [11]. Consider λt,xt
= ∂ϕ/∂x(t, xt) to be the

direction which drives the state towards collision the fastest.
In light of the analysis from the previous section, note that
the viability kernel always selects the optimal control for
avoiding collision, while the invariance kernel selects the
optimal control for causing collision.

We use a similar construction to obtain the γ-suboptimal
safety set, using the same HJB equations but with an al-
ternative Hamiltonian HSub. This Hamiltonian selects the

worst-case control in the model described in the previous
section,

HSub(t, x, λ) = 〈λ, f〉+
∑
i

max
wi∈W∗

i (t,x,λ)
〈λ, gi(x)〉wi. (6)

The max operator simplifies to

max
wi∈W∗

i (t,x,λ)
〈λ, gi(x)〉wi =

{
〈λ, gi(x)〉γ−i , 〈λ, gi(x)〉 ≤ 0,
〈λ, gi(x)〉γ+

i , 〈λ, gi(x)〉 > 0,

selecting the relevant worst-case control, as expected. For the
solution ϕ to these equations, we set ϕSubT (x) = ϕ(0, x),
the γ-suboptimal safety set Subγ

−(·),γ+(·)
T .

We choose γ+
i : [0, T ] → [w−i , w

+
i ] to be non-increasing

and γ−i : [0, T ] → [w−i , w
+
i ] to be non-decreasing. By

doing so, we can anticipate that the worst-case inputs will
get closer to optimal as time progresses. Continuing the
steering example, for early t1, γ−i (t1) might be chosen to be
negative, suggesting that even steering left towards collision
is permissible at first. But for t2 > t1, γ−i (t2) should
get closer to the optimal w+, suggesting that the agent is
expected to begin an evasive action by steering hard to the
right. Of course, this assumes that the sign of 〈λ, gi(x)〉
remains the same, which does not always happen. However,
if the sign does flip, the analysis would continue with γ+

i
once that occurs.

E. Relationship to Differential Games
We should recognize that the derivation of a γ-suboptimal

control can be formulated as a differential game. That
is, if we consider two-player controlled state dynam-
ics ˙̃x = f(x̃) + g(x̃)(u+ v) with time-varying control con-
straints U(·), V (·) defined as

(Ui(t), Vi(t)) :=

{
({0}, [γ−i (t), γ

+
i (t)]), γ−i (t) ≤ γ

+
i (t),

([γ+
i (t), γ

−
i (t)], {0}), γ−i (t) > γ+

i (t),

then the solution of the zero-sum differential game

ϕDG(t, x̃t) = max
v(·)∈V (·)

min
u(·)∈U(·)

max
s∈[t,T ]

ϕF (x̃x̃t,u(·),v(·)(s))

satisfies the γ-suboptimal HJB equations. We omit the proof
for the sake of brevity.

F. Closed Loop Control Model
If trajectories follow the worst-case profile used in the

construction, we expect that the state will be in ∂F at time
T . However, in practice, trajectories will not follow this
profile. Nor is the agent guaranteed to follow the control
model precisely. Thus, we need a closed-loop control model
which removes the time parameter used in the control model.

First, note that the level sets ϕSubT (t)(x) = ϕ(t, x)

represent a time-varying set Sub
γ−(·),γ+(·)
T (t) which labels

states as safe/unsafe as model time progresses. For any given
state x ∈ F , define the worst-case time elapsed function as

θ(x) := sup{t ∈ [0, T ] : ϕ(t, x) ≤ 0}.

The value of θ(x) indicates, that among the times of worst-
case trajectories that would have passed through this state,
which time would have been the latest. Higher values are a
rough way of determining nearness to collision.
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Choose the closed loop explicit control model to be

W ∗CL(x) :=W ∗(θ(x), x). (7)

By using θ(x) to determine what is expected from the agent,
we have put the responsibility on the agent to be more
aggressive in controlling to avoid safety when it exceeds
expectations earlier in its behavior.

IV. PARAMETERIZATION OF γ BOUNDS

A. Conservative Partial Order

When designing control models, it is of interest to compare
the fitness of using a particular setting of the γ-suboptimal
control model parameters (γ+(·), γ−(·)) to an alternate set-
ting (γ̃+(·), γ̃−(·)). If the model is too conservative, like the
invariance kernel’s model, it might be less useful. On the
other hand, if the model is not conservative enough to capture
real-world rational behavior, it will over estimate the safety
of some states. We define a “conservative” partial order over
pairs of γ parameters to attempt to capture this notion. We
say (γ̃−, γ̃+) is more conservative than (γ−, γ+), denoted
(γ−, γ+) ≤Γ (γ̃−, γ̃+), if

∀t ∈ [0, T ], γ̃−(t) ≤ γ−(t), γ+(t) ≤ γ̃+(t).

An important consequence of this partial order is that the
set of safe initial states shrinks for more conservative γ pairs.

Proposition 1: The following holds

(γ−, γ+)T ≤Γ (γ̃−, γ̃+)T̃ ⇒ Sub
γ̃−(·),γ̃+(·)
T ⊆ Sub

γ−(·),γ+(·)
T

Proof: Let x̃ ∈ Sub
γ̃−(·),γ̃+(·)
T , and let ϕ and ϕ̃ be

bounded continuous viscosity solutions to the HJB equations
(2), (3), and (6), where HSub and H̃Sub are the Hamiltoni-
ans, assumed continuous and well behaved 1, defined with
the parameters (γ−, γ+)T and (γ̃−, γ̃+)T̃ , respectively. If
〈λ, gi(x)〉 ≤ 0,

max
wi∈W∗

i (t,x,λ)
〈λ, gi(x)〉wi = 〈λ, gi(x)〉γ−i ≤ 〈λ, gi(x)〉γ̃

−
i

= max
wi∈W̃∗

i (t,x,λ)
〈λ, gi(x)〉wi

The inequality also holds when 〈λ, gi(x)〉 > 0. Thus, it fol-
lows that for all x, λ ∈ Rn, HSub(t, x, λ) ≤ H̃Sub(t, x, λ).
Using this inequality, basic viscosity theory, and Theorem 6.2
in [12], yields that ϕ ≤ ϕ̃ on [0, T ]×Rn. Also, by definition,
we have that ϕ̃(0, x̃) ≤ 0. Thus, we conclude ϕ(0, x̃) ≤ 0

so x̃ ∈ Sub
γ−(·),γ+(·)
T .

The comparison between the control models for each pair
is more difficult to analyze. Since ϕ ≤ ϕ̃, it is easily
shown that θ̃(x) ≤ θ(x). For the states where the signs
of 〈λθ(x),x, gi(x)〉 and 〈λ̃θ̃(x),x, gi(x)〉 agree, we have that
W ∗i (θ(x), x) ⊆ W̃ ∗i (θ̃(x), x).

If we choose (γ+, γ−) to be very conservative for early
t, the model can tolerate brief periods where the model’s
expectations about the safe control direction are incongruous
with the agent’s actions. However, it is generally the case
that when collision is imminent, the ambiguity disappears
entirely.

1It satisfies the necessary regularity properties of Theorem 6.2 in [12].

Fig. 3: Simulating worst-case trajectories for the braking scenario
by sampling x0 ∈ ∂ Sub

γ−(·),γ+(·)
T and executing worst-case

control trajectories. Since decelerating is always the optimal control
direction for x1 ≤ 0, w∗(·) = γ+(·). In these cases, the human
just barely touches the boundary of the collision set.

Fig. 4: If the human executes trajectories slightly more optimal than
the worst-case γ+(·), the human will avoid collision with a signif-
icant margin. These examples were generated in the same way as
γ+(·), but with its parameters (σdet, w

+
avo, σrea, w

+
nom) independently

reduced.

V. MODELING HUMAN AVOIDANCE BEHAVIOR

In this section, we discuss how we can simplify the pa-
rameterization of (γ+, γ−) by selecting them as continuous
piecewise linear functions. We justify the parameter selection
using analysis from the human factors literature.

As in [2], we assume that collision avoidance behavior is
broadly composed of a few discrete modes: nominal control,
reaction, and avoidance. The nominal control is the default
behavior of the human before an obstacle is detected. During
this period, we make the most conservative assumptions
about how the human is acting because we assume that the
human is not yet aware of the obstacle and thus (s)he is not
attempting to avoid it. Let [w−nom, w

+
nom] ⊆W be the nominal
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control set2.
At some point, the human will detect the obstacle. Note

that there will be a significant delay between the appearance
of the obstacle and when the human begins reacting to it. We
should assume nominal control up until the human begins
reacting. Let σdet ≥ 0 be the worst-case detection delay.
Reaction is the behavior period during which the human
switches between nominal control and avoidance control. Let
σrea ∈ [0,∞) be the worst-case switching time.

Finally, the avoidance behavior is the period during which
the human acts strongly to avoid collision, following the
reaction period. It should be recognized that for humans,
perfectly optimal control might not be possible, even if they
have had plenty of time to react. For example, humans might
not brake as hard as possible and they might momentarily
let up on the brake. We pick a threshold for avoidance that
we believe the human can persistently maintain avoidance
control. Let [w−avo, w

+] ⊆ W be the suboptimal control set
when positive controls are better, and [w−, w+

avo] ⊆W be the
suboptimal control set for when negative controls are better.

We assume that once a collision avoidance maneuver
begins, it does not stop until the state of the system returns
to safety. Thus, we simply assume that the human executes
an avoidance maneuver for a “long time”, σavo � 0. For
appropriately chosen parameters w+

avo, w
−
avo, σavo, the HJB

solution converges to a stationary level set in the region of
interest of the state space. The thick red lines where the
level set curves accumulate in Figures 2 and 1 demonstrate
this effect. In fact, this set is like a viability kernel (called a
controlled invariant set in literature [13]) such that, as long
as an avoidance control of w+

avo, w
−
avo or better is always used

upon hitting the boundary, the trajectory is guaranteed to stay
within that set for infinite time.

Finally, we define the γ+ as continuous piecewise linear
spline with time knots (0, σdet, σdet + σrea, T ) corresponding
to function values (w+

nom, w
+
nom, w

+
avo, w

+
avo) where T = σdet+

σrea + σavo. We define γ− similarly. The bottom of Figure 2
shows the γ curves generated by this construction. In all
figures, each color signifies one of the three model periods.

It is easy to see that increasing w+
nom, w

+
avo, σdet, σrea and

decreasing w−nom, w
−
avo will produce more conservative mod-

els. This is a useful result because it means that we can easily
hand-tune the models to improve the conservativeness of the
control model. Figure 4 demonstrates how the chosen model
is robust to variations in these parameters.

VI. NUMERICAL SIMULATIONS

A. Braking Scenario

We motivate our approach by investigating two collision-
avoidance scenarios. The first is a braking scenario, where
the human must brake for a static obstacle. The dynamics are
assumed to be those of a double integrator ẋ = [x2, kaw]

T

with w ∈ [−1, 1], indicating that the human can accelerate
or brake. We focus on states where the human is moving
with positive velocity x2 ≥ 0 and has not yet collided with
the obstacle F = {x : x1 ≤ 0}.

2Without loss of generality, we assume m = 1 for this section.

Fig. 5: Slices of the intersection scenario state space for various
human velocities.

Figure 2 illustrates how the parameterization of the previ-
ous section produces a suboptimal safe set.

Recall that the HJB equations are solved backwards in
time from the collision set, so the level set curves are
propagated left during computation, but represent time points
starting with t = T decreasing to t = 0. Note how thick red
curve is formed from the convergence of the level sets during
the avoid phase. However, as soon as γ switches into reaction
mode, it propagates away again.

Figure 3 demonstrates how worst-case trajectories behave
with respect to the value function ϕ. An interesting result
to note here is that all of these trajectories execute the
same control signal, regardless of the initial position. This
shows how the γ parameterization is performed in the control
space, but the safety guarantees generalize to other states. It
is worth emphasizing that worst-case behavior should not
be expected of rational agents, even in exceptional cases.
This behavior should represent the firm boundary beyond
which there should be no doubt that the agent’s behavior
was irresponsible or irrational. In Figure 4 we see how
trajectories behave under more realistic scenarios, where the
human acts more optimally than the worst-case. Though it
is not shown, a control trajectory which briefly exceeds the
control model might still avoid collision. For example, if the
state were to pass over the thick red line, a braking control
of w = w− = −1 might still avoid collision. However, this
model does not provide guarantees for those cases.

The level sets in all figures are computed and visualized
using the Level Set Toolbox [14].

B. Intersection Scenario

The second scenario involves two cars at an intersection,
where the robot vehicle has the right-of-way. The rational
human assumes the robot vehicle is moving with constant
velocity and will not react to the human’s actions. The human
has the same double integrator dynamics as before, but (s)he
must decide whether to pass first, or let the robot vehicle pass
first. The dynamics are ẋ = [x2, kaw, kv]

T, where x1, x2 are
identical to the braking scenario, but x3 is the position of
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the robot vehicle.
Figure 1 illustrates how points in the state space cor-

respond to configurations of the two vehicles, as well as
demonstrating the suboptimal safety set. Since the state space
is 3-dimensional, we only illustrate 2D slices for given
human velocities. We can get a sense how the safety set
changes with the velocity of the human driven vehicle by
looking at Figure 5. Figure 6 shows worst-case trajectories
for various initial configurations of the two cars. If the human
has already gotten close to the intersection, (s)he decides to
accelerate through, otherwise, (s)he decides to come to a stop
and let the robot pass first. Note that some of the trajectories
which ended up coming to a stop may have also ended up
accelerating through, depending on the human’s behavior
near the beginning. However, as the trajectory approaches
the red states, regardless of previous behavior, the human
should commit to one or the other.

VII. INFORMING ROBOT BEHAVIOR

A robot can use the γ-suboptimal control model of rational
human behavior to inform its own decisions about how to act.
Take the example from the introduction, where a robot-driven
vehicle is pulling out in front of a human-driven vehicle
coming towards it. The robot might encounter an unexpected
obstacle in the middle of this maneuver forcing it to stop, and
has now become a static obstacle for the human driver. Thus,
the robot should consider whether a rational human would
be able to stop in time. The robot can make its decision by
simply checking if the current state of the human’s vehicle
is in the γ-suboptimal safe set, that is x0 ∈ Sub

γ−(·),γ+(·)
T . If

not, the robot should choose not to pull out, thereby removing
the possibility of an obstacle altogether.

For the intersection scenario, even though the robot vehicle
has the right of way, it can choose to deviate from its constant
velocity to either brake or accelerate. If the state of the
system is in Sub

γ−(·),γ+(·)
T when the robot detects the human,

the robot should not alter its course. Otherwise, it should
consider evasive measures. If a robot decides to brake hard
for unexpected human drivers at intersections every time they
occur, it may cause more accidental rear-ends, when most
people would have realized that the driver ahead would have
easily cleared the intersection by the time they had reached
it.

Of course, even if the initial state begins in the safety set, it
may leave the safety set at some point. As long as the human
behavior falls within the closed-loop set policy model, safety
should be ensured for up to a duration T from the start of
the interaction. An observer can be implemented to ensure
that the human driver control signal stays consistently within
its bounds. If the human’s control signal violates the policy
model for some time period, the robot can begin an evasive
maneuver.

VIII. CONCLUSION

We have presented a novel model for anticipating human
collision-avoidance maneuvers. By varying the level of sub-
optimality over time, we are able to conservatively anticipate
such maneuvers, while still accounting for various sources
of human error. We have demonstrated how the proposed

Fig. 6: Simulating worst-case trajectories for the intersection
scenario by sampling x0 ∈ ∂ Subγ

−(·),γ+(·)
T and executing worst-

case closed loop control trajectories.

control model can be tuned by objectively comparing the
conservativeness of relative parameterizations. We have ap-
plied this model to two simulation scenarios, and discussed
how the results can be used to make safe robot decisions.
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