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1 | INTRODUCTION

At this time, conservation and evolutionary geneticists can em-
ploy the power of genomic tools to answer questions in con-
servation that could not be answered using traditional genetics
approaches (Allendorf, Hohenlohe, & Luikart, 2010; Bernatchez
et al., 2017; Garner et al., 2016; Harrisson, Pavlova, Telonis-Scott,
& Sunnucks, 2014; McMahon, Teeling, & H6églund, 2014; Shafer
etal., 2015a, 2015b). Technological and analytical advances
now allow us to use many thousands of loci, gene expression,
or epigenetics to address basic questions of relevance for con-
servation, such as identifying loci associated with local adapta-
tion or adaptive potential in species face changing environments
(Bernatchez, 2016; Flanagan, Forester, Latch, Aitken, & Hoban,
2017; Harrisson et al., 2014; Hoban et al., 2016; Hoffmann et al.,
2015; Jensen, Foll, & Bernatchez, 2016; Le Luyer et al., 2017;
Wade et al., 2016). As conservation genomics matures, new chal-
lenges are arising. It is essential for researchers to keep up with
the rapidly changing methods in appropriate study design, data
quality assessment, and selecting appropriate analyses to obtain
accurate results for conservation and management decisions
(Benestan et al., 2016).

To address arising challenges, 15 experts from diverse areas of
genomic data analysis came together to teach and exchange ideas
about cutting-edge approaches for population genomic data anal-
ysis and interpretation. Students, postdocs, faculty, and agency
researchers (e.g., museums, agency biologists) originating from 15
countries brought an assortment of data to work through various
computational analyses. Of 31 students, 23 had restriction-site as-
sociated DNA (RAD) or genotyping by sequencing (GBS) data, four
had exon capture data, and four students had whole-genome se-
quencing (WGS) data. Interestingly, of the 30 attendees at ConGen
just 4 years ago, only a few students had RAD-seq data, only one
had sequence capture data, and none had WGS data. The main focus
of the 15 experts was on narrow-sense conservation genomics
applications, which require use of conceptually novel approaches
(Garner et al., 2016).

during the workshop included the need for data visualization and its importance in
finding problematic data, the effects of data filtering choices on downstream popula-
tion genomic analyses, the increasing availability of whole-genome sequencing, and
the new challenges it presents. Our goal here is to help motivate and educate a world-
wide audience to improve population genomic data analysis and interpretation, and
thereby advance the contribution of genomics to molecular ecology, evolutionary biol-

ogy, and especially to the conservation of biodiversity.

bioinformatics pipeline, conservation genomics workshop, diversity in STEM, landscape

genomics, population genomics

The week-long workshop, held at the University of Montana’s
Flathead Lake Biological Station, provided training in theory as well
as empirical applications of NGS data production and analyses.
Lectures, discussions, hands-on analysis of empirical data, and one-
on-one assistance from instructors improved students’ knowledge of
conservation and evolutionary genomic projects. Many participants
in the past have taken the knowledge and resources (PowerPoint
slides, worksheets, video recorded lectures) acquired during the
workshop and disseminated it to others in their laboratories, further
extending the educational reach of ConGen among population ge-
nomic researchers (http://www.umt.edu/sell/cps/congen2017/).

In the opening keynote lecture, L. Bernatchez discussed several
mechanisms that may enhance the maintenance of genetic variation
and evolutionary potential in the face of a changing environment.
Among these mechanisms that have been overlooked and should be
considered in future theoretical development and predictive models,
he discussed the prevalence of soft sweeps, the polygenic basis of
adaptation, balancing selection, and transient polymorphisms, as well
as epigenetic variation. A key message was that adaptive evolution in
nature rarely involves the fixation of beneficial alleles. Instead, adap-
tation apparently proceeds most commonly by soft sweeps entailing
shifts in frequencies of alleles being shared between differentially
adapted populations. At last, L. Bernatchez argued that a new para-
dox seems to be emerging from recent studies whereby populations
of highly reduced effective population sizes (N,) and impoverished
genetic diversity can sometimes retain their adaptive potential, and
that epigenetic variation could account for this apparent contradic-
tion (Bernatchez, 2016).

The remaining lectures focused mainly on approaches for data
production or analysis. We discuss highlights from these lectures
with the goal of motivating and educating a worldwide audience
to improve population genomic data analysis and thereby advance
the role of genomics in molecular ecology, evolutionary biology, and
conservation. We describe (a) issues regarding recruiting and retain-
ing a diverse workforce in conservation genomics, (b) impacts of
genotyping error and data quality, and (c) improvements to down-

stream population genomic analyses.
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2 | INCREASING CONTRIBUTIONS BY
WOMEN (SARAH HENDRICKS AND BRENNA
FORESTER)

Following the productive trend at recent ecology and evolution-
ary biology conferences, issues of gender bias were discussed at
ConGen. When this important topic is not widely and openly exam-
ined, it can inhibit the advancement of science generally, and con-
servation and population genomics specifically. Diversity leads to
better problem-solving, expands the talent pool, and promotes full
inclusion of excellence across the social spectrum (Blackburn, 2017;
Nielsen et al., 2017). Among the plethora of topics regarding increas-
ing diversity in STEM fields (Blackburn, 2017; Wellenreuther & Otto,
2015), here we focus on overcoming the biases against women in
computer sciences and the persistence of unconscious gender ste-
reotypes that influence both male and female researchers.

Gender biases in computer science training may limit the effec-
tiveness of efforts to attract and retain the best and most diverse
workforce in conservation genomics. As of 2014, just 18.1% of
computer science bachelor’s degrees were awarded to women, and
this proportion has declined by 10% over the last 10 years, further
widening the gender gap (NCSES, 2016). This deficit in female com-
puter scientists has been attributed to a lower sense of belonging by
women than men due to a predominately male culture in the field
(Cheryan, Ziegler, Montoya, & Jiang, 2017). There is also evidence
of gender gaps in self-efficacy that may be due to a lack of sufficient
early education in computer programming (Cheryan et al., 2017).
Although not reported, these issues likely persist in bioinformatics
and genomics. Efforts to maximize gender inclusion in computer sci-
ence may benefit from changing masculine cultures in technological
fields and providing early experiences for all students that signal
a sense of belonging and ability to succeed in these fields. Efforts
led by women, such as “Girls Who Code” (https://girlswhocode.
com/) and “Learn to Code with Me” (https://learntocodewith.me/
posts/13-places-women-learn-code/), aim to decrease the gender
gap by targeting coding courses and workshops to girls and women.
Likewise, short courses such as ConGen, which teach basics in linux,
bash, and R scripting, act to support an inclusive community and ad-
dress limitations due to gendered perceptions in the genomics era.

Unconscious stereotypes persist in the minds of male and fe-
male researchers, as evident in the studies of reference letters for
postdoctoral fellowships and other academic positions (Dutt, Pfaff,
Bernstein, Dillard, & Block, 2016; Madera, Hebl, & Martin, 2009; Trix
& Psenka, 2003). One study of recommendation letters for medical
faculty positions found that letters written on behalf of females dif-
fered from those written on behalf of men in length, negative lan-
guage, and gender-linked terms. Overall, the study found that the
letters, regardless of the gender of the recommender, reinforced
stereotypes that portray men as researchers and professionals and
women as teachers and students (Trix & Psenka, 2003). Another
study found that men, more than women, were described as having
agentic leadership traits, such as being in control of subordinates,
speaking assertively, working independently and competitively, and
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initiating tasks (Madera et al., 2009). Furthermore, women were de-
scribed as having more communal characteristics, which had a neg-
ative association for women with employment decisions (Madera
et al., 2009). Letters of recommendation have been shown to greatly
affect hireability ratings of applicants (Madera et al., 2009). On the
level of personal action, we suggest recommenders edit their own
letters to avoid gender bias (http://www.csw.arizona.edu/LORDbias).
Despite similar proportions of women and men awarded doctoral
degrees in science and engineering disciplines, women are less likely
to obtain tenure-track positions in academia than their male coun-
terparts. Although there are many reasons for this “leaky pipeline”
(Gasser & Shaffer, 2014; Goulden, Mason, & Frasch, 2011; Holmes,
OConnell, & Dutt, 2015), increasing training and avoiding biases in
reference letters may benefit not only women, but also the greater
scientific community by promoting innovation through diversity and
inclusion. Further, there are many topics such as referee opportunity
bias (Lerback & Hanson, 2017), the childcare-conference conundrum
(Calisi & A Working Group of Mothers in Science, 2018), and mis-
conceptions around hiring preferences (Williams & Ceci, 2015) that
should also be addressed to reduce disadvantages to women. With
the brief mention of this topic, we hope to stimulate future studies of
gatekeeping practices in the field of conservation, so institutions can
develop initiatives to recruit, retain, and advance women in STEM
fields as mentorship will be essential for eliminating gender bias in
computer science, bioinformatics, and by extension, conservation
biology. We ask our readers to initiate discussions regarding the per-
sistence of stereotypes and how these stereotypes affect excellence
across our community. We wonder: Can the active and intentional
cultivation of inclusivity help to expand the role of genomics in mo-
lecular ecology, population genomics, and nature conservation?

3 | GENOTYPING ERROR AND IMPROVING
DATA QUALITY

On a more technical level, several authors discussed ways to assess
and prevent genotyping errors and improve data quality. We discuss

several of these here.

3.1 | Back to the basics: finding and visualizing
erroneous data (Eric Anderson and Robin Waples)

3.1.1 | Genotyping errors

Systematic departures from Hardy-Weinberg equilibrium (HWE)
in datasets where HWE is expected can indicate genotyping er-
rors in which heterozygotes are miscalled as homozygotes. A simple
visualization of expected and observed frequencies of homozygote
genotypes across single nucleotide polymorphisms (SNPs) can be
effective in identifying data problems (Figure 1). A simple model
for estimating the heterozygote miscall (dropout) rate was applied
to 12 publicly available RAD-seq datasets (Fernandez et al., 2016;
Hecht, Matala, Hess, & Narum, 2015; Laporte et al., 2016; Larson
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FIGURE 1 Observed (y-axis) versus expected (x-axis)
homozygote frequencies at SNPs in three RAD studies of Chinook
salmon. The solid black line is at y = x, and the dotted lines show
the maximum and minimum possible observed values given the
expected values computed from the observed allele frequencies.
n is number of individuals, L is number of SNPs, and HMR is the
heterozygote miscall rate estimated from the dataset. (a) Korukluk
River, Western Alaska (Larson et al., 2014): a carefully filtered
dataset showing almost no distortions from HWE and with a low
estimated HMR of 0.02. (b) Johnson Creek (Hecht et al., 2015):
Most of the points lie above the y = x line and HMR is estimated to
be 0.17. (c) Low-read-depth data from mature-migrating Umpqua
river Chinook (Prince et al., 2017). Genotypes were called using
ANGSD'’s doGeno option assuming a uniform prior on genotypes.
Profound homozygote excesses are observed with HMR = 0.52
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et al., 2014; Le Moan, Gagnaire, & Bonhomme, 2016; Portnoy et al.,
2015; Prince et al., 2017; Puritz, Gold, & Portnoy, 2016; Ravinet
et al., 2016; Swaegers et al., 2015). While a few had low genotyping
error rates (<5%), in others, allelic dropout, low read depth, PCR du-
plicates, erroneous assembly, and/or poor filtering resulted in much
higher estimated error rates, with between 5% and 72% of heterozy-
gotes apparently being miscalled as homozygotes. Although some
of these apparent high error rates could reflect true heterozygote
deficiencies due to the Wahlund effect or other factors, in all cases

the samples were thought to be from a single population. Hence,

this provides a cautionary note that it is good practice to visualize
your data to ascertain if more homozygotes are called than expected

under Hardy-Weinberg equilibrium.

3.1.2 | Probabilistic genotype calling

Probabilistic genotype calling, as conducted by the software program
ANGSD (Korneliussen, Albrechtsen, & Nielsen, 2014), is a principled
method for dealing with low-coverage sequencing data; however, it
should be applied carefully. With low-coverage sequencing, because
there is so little information at any individual site, the statistical
model and the prior distributions are relatively more influential than
they are with high-read-depth data. A good example can be seenin a
recent paper by Prince et al. (2017) which features lower-depth sam-
pling than many other contemporary RAD-seq studies. In analyses
of their RAD-seq data, Prince et al. used ANGSD to integrate over
the genotype uncertainty rather than directly calling genotypes.
Even more importantly, when they were able to, they were careful
to use population-specific allele frequency-based genotype priors
for their analyses rather than a simple uniform prior distribution on
genotypes. The choice of prior is important: If one uses ANGSD to
call genotypes from the Prince et al. data using the uniform prior on
genotypes, the result shows a strong tendency to incorrectly infer
heterozygotes as homozygotes (Figure 1c). This is not simply a con-
sequence of forcing ANGSD to call genotypes. Rather, the posterior
probabilities, themselves, of the genotypes carry extra weight on
the homozygote classes, because the uniform prior does not use al-
lele frequency information to help infer the genotypes.

In an increasing manner, recent publications have suggested
that probabilistic genotyping obviates the need for high mean depth
of coverage (>10 to 20x). For example, Prince et al. (2017) found
that PCA analysis applied to their full dataset yielded a first princi-
pal component driven largely by variation in read depth (M. Miller,
personal communication, February 7, 2018). Randomly subsam-
pling reads from each individual to the same depth eliminated that
technical variation, and, though it led them to discard almost 70%
of their sequencing reads, with probabilistic genotyping they were

still able to recover meaningful population structure. To evaluate
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FIGURE 2 Plots of the first two principal components from PCA of unpublished RAD data showing population structure among four
subspecies of a North American passerine. Each point is an individual bird. Top left panel shows the result obtained in the original study,
which used 105,000 SNPs called with an average read depth of 36x across 175 birds analyzed with SNPRelate (Zheng et al., 2012). Remaining
panels show results obtained by subsampling the original dataset to depths of 0.65x, 1%, 2x, 5%, and 10x, and analysis with ANGSD
(Korneliussen et al., 2014) and ngsCovar (Fumagalli et al., 2014). Subspecific structure in the 0.65x data is much less distinct than in the full
dataset, but is generally concordant with it. However, at higher read depths the clustering is clearly inconsistent with subspecies affiliation

how effectively probabilistic genotype calling can retrieve the same
inference with ever-smaller amounts of sequencing, Anderson pre-
sented an analysis using subsampled versions of a high-depth RAD
dataset. He first performed PCA using SNPRelate (Zheng et al., 2012)
to resolve population structure of a North American songbird using
SNPs called from high-quality, high-read-depth RAD data using a
GATK pipeline (mean read depth at 105,000 SNPs across 175 in-
dividuals was 36). He then used ANGSD and ngsCovar (Fumagalli,
Vieira, Linderoth, & Nielsen, 2014) a probabilistic genotyping ap-
proach to PCA, on the BAM files for the same 175 birds after sub-
sampling so that the mean read depth at each of those 105,000 loci
was expected to be 0.65, 1, 2, 5, and 10. ANGSD was not restricted
to using only the previously discovered 105,000 SNPs, and, in fact
called between 29,331 SNPs at 0.65x and 898,320 SNPs at 10x.
Figure 2 shows that clusters in the first two principal components
from SNPRelate on the high-read-depth data resolve subspecies and
show structure within subspecies that corresponds to state of origin.
Remarkably, at 0.65x%, ngsCovar identifies roughly similar groupings,
albeit with looser clustering. However, at all other read depths, ngs-

Covar identifies clusters that are clearly inconsistent with subspecies

designations and become dominated by Lissajous curves (Novembre
& Stephens, 2008).

Overall, the results suggest that some probabilistic methods de-
veloped for low-coverage data might behave unpredictably when
provided with high-quality, high-read-depth RAD data. However,
new methods based on probabilistic genotyping are continually
emerging. For example, the ANGSD methods PCAngsd and PCA_
MDS are both reported to outperform ngsCovar with variable se-
quencing depth (see http://www.popgen.dk/angsd/index.php/
PCA). Probabilistic inference from next-generation sequencing data
is an important advance; however, one should not assume that it will
automatically overcome shortcomings in sequence data caused by
unsatisfactory sample quality, poor library preparation, or insuffi-
cient sequencing. As with many approaches for next-generation se-
quencing, user-specified settings of models, priors, and filtering can

have strong effects on the results.

3.1.3 | Relatedness

Many researchers have concluded that it is important to remove pu-

tative siblings from population genetics datasets before conducting
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downstream analyses (Corlett, 2017; Johnson et al., 2016), but there
are several good reasons why this can create more problems than
it solves (Waples & Anderson, 2017). First, siblings occur naturally
in all natural populations, at frequencies that are inversely related
to effective population size; therefore, removing siblings erases sig-
nals characteristic of small populations and makes the populations
appear to be larger. Second, removing individuals reduces sample
size and decreases statistical power, perhaps greatly, so any benefits
must be large to offset this cost. Third, methods for sibling inference
are not infallible, so it is important to consider the consequences of
imperfect pedigree reconstruction. At last, sibling removal cannot be
used to convert a nonrandom sample into a random sample, unless
one has independent information about the degree to which the pro-
portion of siblings in the sample exceeds the random expectation.

An alternative to removing individuals is to use a best linear unbi-
ased estimator approach (BLUE; McPeek, Wu, & Ober, 2004), which
gives each individual a weight that reflects its degree of relatedness
to others in the sample. As shown by Waples and Anderson (2017),
however, performance of the BLUE also depends on having accurate
pedigree information. When sample identification is not reliable, the
use of the full dataset outperforms BLUE. Because of these poten-
tial adverse effects, researchers should be cautious about adjusting
their datasets for putative siblings unless they have a good reason to
believe that doing so will not actually make things worse.

3.2 | Effects of filtering on downstream analyses
(Paul Hohenlohe and Tiago Antao)

Methods for producing reduced representation libraries, such as
RAD-seq, are rapidly evolving, and more than 15 methods exist with
variations in data quality, genotyping errors, cost, and the number
of loci discovered (reviewed in Andrews, Good, Miller, Luikart, &
Hohenlohe, 2016). Furthermore, filtering choices (see figure 2 in
Benestan et al., 2016) can greatly influence downstream summary
statistics. A recent study testing the impact of data processing on
population genetic inferences using RAD-seq data observed large
differences between reference-based and de novo approaches
in population genetic summary statistics, particularly those based
on the site frequency spectrum (Shafer etal., 2016). In addition,
the recent debate over the effectiveness of RAD-seq for discov-
ering loci under selection (Catchen et al., 2017; Lowry et al., 2016;
McKinney, Larson, Seeb, & Seeb, 2017) has highlighted the impor-
tance of testing the extent of linkage disequilibrium (LD) over the
genome, whenever possible, in order to assess the power of genome
scans to detect selected loci (e.g., Kardos, Taylor, Ellegren, Luikart,
& Allendorf, 2016).

To further explore the impacts of filtering on downstream analy-
ses, students at ConGen used various minor allele frequencies (MAF;
0.01, 0.05, 0.1, and 0.2) to filter a RAD-seq dataset and computed
F¢r using the populations function in Stacks (Catchen, Hohenlohe,
Bassham, Amores, & Cresko, 2013). Participants detected a gen-
eral trend of increasing estimates of genomewide mean Fy; with
higher MAF thresholds. This may be the result of the relationship

between expected heterozygosity and maximum possible Fy; at
SNP loci; given the variation in F¢; across loci, a subsample of loci
with lower MAF may be expected to have a lower maximum and
therefore lower mean F; (Roesti, Salzburger, & Berner, 2012). Thus,
some filtering by MAF can be used to remove sequencing errors and
avoid bias in genome scans (Roesti et al., 2012) and may also remove
rare alleles that are less informative for estimating F.;. On the other
hand, imposing MAF filters that are too strict (e.g., above 0.05 or 0.1)
could skew metrics based on the site frequency spectrum or inad-
vertently remove loci under selection or with functional significance.
As others have recommended, testing the effects of a range of ana-
lytical (filtering) parameters is critical to produce robust population
genetic and demographic inferences (Mastretta-Yanes et al., 2014;
Paris, Stevens, & Catchen, 2017; Shafer et al., 2016).

3.2.1 | Stringent filtering

The Anopheles gambiae 1,000 Genomes Project (Ag1000G) is a large-
scale project to sequence the main vector of malaria, mosquitoes
(Anopheles gambiae; The Anopheles gambiae Genomes Consortium,
2017), and it has conducted extensive empirical verification of error
rates and filtering rules. Parents from different mosquito colonies
were mated and produced ~19 offspring for each of four crosses.
WGS of all individuals produced a minimum mean coverage of at
least 14x. The error rate of SNP variant calling (inferred from par-
ent-offspring inheritance) without filtering was between 13.0% and
21.7%. After filtering, the Mendelian error rate fell to 0.3%-0.9%.
The filtering rules devised from this empirical dataset were then ap-
plied to the WGS analysis of 765 mosquitoes sampled across Africa.
Not using any filtering with GATK would have produced 95,335,499
SNPs, but with optimized filtering rules the number of SNPs fell to
52,525,957 (see Supplementary material of The Anopheles gambiae
Genomes Consortium (2017) for filtering parameters). Filtering pa-
rameters are dataset dependent and should be modified based on
multiple criteria (e.g., depth of coverage, mapping quality, and strand
bias) to reduce the number of false discoveries (see GATK forms on
applying hard filters for detailed information).

3.3 | Retaining haplotypes in amplicon and RAD
datasets (Eric Anderson)

Common approaches for dealing with multiple SNPs across an am-
plicon or RAD locus can result in low power or incorrect inference
in subsequent analyses. When multiple SNPs are detected, these
SNPs are handled as either unlinked (likely untrue) or only one of the
SNPs is used in downstream analyses. However, retaining each hap-
lotypic combination as an allele can increase power for relationship
inference and pedigree reconstruction (Baetscher, Clemento, Ng,
Anderson, & Garza, 2017). Further, haplotype calling allows for the
retention of low-frequency variants, which may be useful for popu-
lation structure assessment in recently diverged populations. Rare
alleles (or haplotypes) reveal recombination events that generated
alternative sequences of ancestry and thereby identify fine-scale
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structure that would be missed when using independent marker ap-
proaches (Lawson, Hellenthal, Myers, & Falush, 2012).

The software microhaplot (https://github.com/ngthomas/mi-
crohaplot) takes a variant file and designates nucleotides that occur
together on the same read as “microhaplotypes” and allows for the
visualization, filtering, and exporting of the data. The Stacks software
package (Catchen et al., 2013) can also export multi-SNP haplotypes
from RAD-seq data. Unlike single SNP assays, the microhaplotype
data collection method uses assays designed with multi-allelic loci
and can yield useful data for nontarget species phylogenies and for
genealogical inference (Sunnucks, 2000).

3.4 | Draft genomes to improve data analyses (Ben
Koop)

Some molecular biologists have claimed that we are in the post-
genomic era (Wu, 2001); however, only a very small proportion
of reference genomes are assembled to the chromosomal level.
Despite this, having even a draft genome (in 1000s of scaffolds)
can help improve data analyses in many ways including the follow-
ing: (a) reliable discovery of SNPs (e.g., avoiding duplicated loci), (b)
reducing genotyping error rates (Hand et al., 2015; Shafer et al.,
2016), (c) detecting loci under selection by allowing sliding-window
approaches along scaffolds (Hohenlohe, Phillips, & Cresko, 2010),
and (d) finding the underlying genes associated with phenotype
or adaptation (facilitated by mapping scaffolds to related species
with well-annotated genomes; e.g., Ekblom & Wolf, 2014; Kohn,
Murphy, Ostrander, & Wayne, 2006; McKinney et al., 2016). In
addition, it is possible with this information to estimate effective
population size (N,; e.g., Li & Durbin, 2011) or effective number of
breeders (Nb) using LD-based methods, as comparisons can be re-
stricted to pairs of loci on different scaffolds, which should reduce
or eliminate LD due to physical linkage. Depending on the genome
size and complexity, an investment of $10k to $20k could achieve
a useful reference genome with an N50 of ~100 kbp, which can
be sufficient to improve data analysis as mentioned above (see
Goodwin, McPherson, & McCombie, 2016) for costs per Gb for
various sequencing platforms). Furthermore, the reference as-
sembly could likely be provided by a commercial company (e.g.,
DoveTail, https://dovetailgenomics.com/) for this price, as long as
the genome is not too large (>3 GB) or complex (e.g., duplicated,
numerous repeats), and if the initial DNA is of high molecular
weight (many fragments >15-20 kb).

There are a growing number of approaches for genome assembly
using “single molecule real-time” sequencing (SMRT-seq) or “syn-
thetic long-read” sequencing (SLR-seq) technology (Fuentes-Pardo
& Ruzzante, 2017; Goodwin et al., 2016). The SMRT-seq technology
offered by PacBio (http://www.pacbh.com/) produces read lengths of
~10 kbp (some >60 kbp). Oxford Nanopore (https://nanoporetech.
com/) and minlON also use a single molecule approach to nucleo-
tide identification that passes an ionic charge through a nanoscale
hole and measures the changes in current as each molecule passes
through (see Michael et al. (2017) for assembly comparison). SLR-seq
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technologies, such as 10x Genomics (https://www.10xgenomics.
com/) or Dovetail Genomics (https://dovetailgenomics.com/), still
rely on short read technology and, using statistical phasing algo-
rithms, have the capacity to assemble continuous haplotypes and
scaffolds that can span whole chromosomes with high accuracy.
While the per sample cost of WGS is still relatively high, the per
locus cost is low compared to reduced representation library costs
(see table 1 in Oyler-McCance, Oh, Langin, & Aldridge, 2016). A
greater proportion of positions within the genome are covered with
WGS, which lowers the per base sequencing costs, but increases the
costs per individual. With sequencing prices still falling, it is becom-
ing more likely that most ecologists and evolutionary biologists will
have access to genome assemblies for their study species (or sister

taxa) in the near future (Ellegren, 2014).

3.5 | Experimental design: which method to choose
(Paul Hohenlohe)

The diversity of options for experimental design of population
genomic studies continues to expand as sequencing costs continue
to drop and new technologies emerge. As discussed in previous
ConGen workshops (Benestan et al., 2016), a general guideline is to
consider carefully the biological question, and the downstream anal-
yses and statistical power that will be required to most efficiently
address it. This should guide all aspects of experimental design, in-
cluding the genomic approach, type of genetic markers, number of
markers, sequencing depth, number of individuals and populations
sampled, spatial distribution of individuals, and tissue type (for tran-
scriptome sequencing). For all of these factors, there is a wide range
of options for most population genomic studies, as well as trade-offs
among methods and sampling approaches that are important to con-
sider (Andrews et al., 2016; Benestan et al., 2016).

Focusing on the choice of sequencing method, a particular point
of discussion at the ConGen 2017 workshop was the recent set of
papers addressing the limitations of RADseq to illuminate the ge-
netic basis of adaptation (Catchen et al., 2017; Lowry et al., 2016;
McKinney et al., 2017). The primary criticism raised by Lowry et al.
(2016) is that RAD loci, depending on the choice of restriction en-
zyme(s) and the specific protocol used (Andrews et al., 2016), may
be sparsely distributed across the genome, so that selected loci may
lie some distance away from the nearest genotyped RAD marker. By
definition, all reduced representation approaches face this issue, al-
though RADseq approaches are more limited than other techniques
(such as sequence capture) in their ability to specifically target pre-
viously identified candidate loci. In a RADseq study (and most other
marker-based population genomic studies), the key factor is linkage
disequilibrium (LD), which determines the extent to which geno-
types at a genetic marker are correlated with those of a functionally
important locus, and therefore, the signal of selection that can be
detected from marker data.

If the scale of LD is larger than the distance between markers,
a RAD-seq study has a high probability of identifying functionally
important loci across the genome. The extent of LD can be directly
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estimated if a reference genome is available (Catchen et al., 2017),
and it is recommended that LD should be estimated whenever possi-
ble in population genomic studies. Moreover, many conservation and
population genomic questions can be answered without exhaustive
sampling of the genome or detection of all functionally important
loci, and alternative techniques such as WGS may impose substan-
tial costs and other trade-offs (Catchen et al., 2017). In particular,
increasing the density of markers may necessitate reducing the
number of individuals or populations sampled, and choosing meth-
ods that target candidate loci can bias against detecting selection at
previously unknown loci. Overall, there is no universally applicable
genomic method, and the biological question and details of the study

system should drive the choice of technique.

4 | IMPROVING DOWNSTREAM
COMPUTATIONAL ANALYSES

4.1 | Genomic analysis of inbreeding and
demographic history (Marty Kardos)

In a traditional manner, individual inbreeding has been measured with
the pedigree inbreeding coefficient (Fp) via path analysis (Pemberton,
2008). More recently, large numbers of genetic markers (Berenos,
Ellis, Pilkington, & Pemberton, 2016; Hoffman et al., 2014; Huisman,
Kruuk, Ellis, Clutton-Brock, & Pemberton, 2016) and whole-genome
sequences (Kardos et al., 2018; Palkopoulou et al., 2015; Xue et al.,
2015) have been used to estimate individual inbreeding directly from
the genome by analyzing parameters like multiple-locus heterozygo-
sity, genomic relatedness matrices, and Runs Of Homozygosity (ROH;
Kardos et al., 2016). Genomic approaches capture variation in realized
inbreeding that is missed by pedigree analysis due to the stochastic ef-
fects of linkage and unknown common ancestors of parents (Franklin,
1977; Thompson, 2013). Thus, while deep and accurate pedigrees can
often precisely measure individual inbreeding in species with many
chromosomes and/or high recombination rates (Kardos et al., 2018;
Knief, Kempenaers, & Forstmeier, 2017; Nietlisbach etal., 2017),
genomic approaches are expected to more reliably measure inbreed-
ing and inbreeding depression (Kardos, Luikart, & Allendorf, 2015a;
Kardos et al., 2018; Keller, Visscher, & Goddard, 2011; Wang, 2016).
Given that many studies have used only shallow pedigrees or few
DNA markers, it is possible that power to detect inbreeding depres-
sion has been low; therefore, inbreeding depression could be more
common, widespread, and severe than previously thought.

Analyses of ROH can also be used to understand the genetic basis
of inbreeding depression. Candidate regions for loci contributing to
inbreeding depression can be identified as chromosome segments
containing fewer ROH in a sample of individuals than expected by
chance (Kardos et al., 2018; Pemberton et al., 2012). Homozygosity
mapping (Charlier et al., 2008) and association analyses based on
the correlation of phenotype with the presence/absence of ROH in
particular genome regions (Keller et al., 2012; Pryce, Haile-Mariam,
Goddard, & Hayes, 2014) can be used to identify loci affecting in-
breeding depression. Genomic approaches have the potential to

greatly advance our understanding of the strength and genetic basis
of inbreeding depression in natural populations.

Analyses of identity-by-descent (IBD) can also be used to infer
historical effective population size (N,). Differences in historical N,
among populations can be qualitatively inferred by analyzing the abun-
dance of ROH. The abundance of very short ROH is informative of N,
in distant history, while long ROH is informative of more recent N,
(Kardos, Qvarnstrom, & Ellegren, 2017; Kirin et al., 2010; Pemberton
et al., 2012). A limitation of this approach is that it is only qualitative
and requires data on multiple populations to be informative.

A particularly exciting new approach for studies of recent de-
mographic history in natural populations is to explicitly estimate a
time series of recent N using inference of IBD. The program IBDSeq
(Browning & Browning, 2013) searches the genomes of all pairs of
individuals to identify chromosome segments of shared ancestry
between individuals. The program IBDNe (Browning & Browning,
2015) then uses the inferred pairwise IBD segments to find the most
likely recent time series of N, given the IBD data. A limitation of this
approach for most natural populations is that it requires a minimum
of approximately 100 individuals and the genetic mapping locations
(i.e., on a linkage map) of at least several hundred thousand SNPs
(Browning & Browning, 2015). However, the approach has great
potential to infer recent demographic history (i.e., to test for and
quantify recent population bottlenecks and expansions) in natural
populations where it would be difficult or impossible to evaluate re-
cent N, otherwise (Kardos et al., 2017).

4.2 | Genomewide association studies (Marty
Kardos)

Genomewide association studies (GWAS) have recently identified
loci with large effects on several ecologically important phenotypic
traits. For example, single loci have explained a large fraction of
the variance in age of maturation in Atlantic salmon (Barson et al.,
2015) and horn development in free-ranging Soay sheep (Johnston
etal, 2011, 2013). In an intelligible manner, some traits are governed
largely by variation at individual loci, but these are likely rare among
all traits of interest to evolutionary biologists. Many adaptive traits
are likely driven by a large number of loci with small effect sizes, low
minor allele frequency, and/or epistatic interactions (Visscher et al.,
2017). GWAS of complex traits will therefore often fail to identify
enough genotype-phenotype associations to explain a useful frac-
tion of the heritability of traits of interest. This is particularly true
of studies on populations with very large N, or high recombination
rates where strong linkage disequilibrium (LD) extends only very
short distances from the genotyped loci, or where relatively few loci
are analyzed, thus resulting in low power to detect loci even with
relatively large phenotypic effects (Kardos et al., 2015b). However,
encouraging for studies in small or fragmented populations, the
power to detect large effect quantitative trait loci (QTL) is expected
to be higher in populations with small N, because strong LD extends
over longer chromosomal distances in such populations. Therefore,
the design and interpretation of GWAS are greatly improved by
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evaluating the extent of strong LD and the power to detect large
effect QTL.

By good fortune, GWAS failing to explain a large fraction of the
heritability in loci with statistically significant genotype-phenotype
associations are still highly useful. It is arguably more important in
ecological and conservation genetics to understand the heritability
of a trait than to identify some of the loci responsible for heritable
variation in the trait, as it is the heritability of a trait that determines
the magnitude of the expected response to selection. The additive
genetic variance and heritability can readily be estimated using lin-
ear mixed effects models (Rénnegard et al., 2016; Santure etal.,
2013; Yang, Lee, Goddard, & Visscher, 2011) in GWAS, even in cases
where no individual loci pass the stringent thresholds of statistical
significance. In addition, heritability can be partitioned among chro-
mosomes to determine whether the trait of interest is likely to be
polygenic (i.e., affected by a very large number of loci), in which case
chromosome-specific heritability is expected to increase with the
number of genes on a chromosome (Santure et al., 2013).

Participants at ConGen used the R package, RepeatABEL
(Rénnegard et al., 2016), to test for loci associated with clutch size
using previously published data from a long-term study of collared
flycatchers (Ficedula albicollis; Husby et al., 2015). This helped to fa-
miliarize students with data structures, available software, and inter-
pretation of results from GWAS. In addition, analyzing the collared
flycatcher data allowed students to consider the importance of ac-
counting for repeated phenotypic measurements when conducting
a GWAS. Students were encouraged to critically evaluate effect size
estimates from GWAS in light of the Beavis effect (Beavis, 1998),
and the “winner’s curse” (Kraft, 2008), which state that the effect
sizes of loci passing a stringent statistical significance thresholds in
QTL mapping or GWAS analyses are often upwardly biased, particu-

larly in studies with low statistical power.

4.3 | Landscape genomics (Brenna Forester)

Landscape genomics is an emerging analytical framework that investi-
gates how environmental and spatial processes structure the amount
and distribution of neutral and adaptive genetic variation among pop-
ulations (Balkenhol et al., 2017). Landscape genomics is sometimes
conflated with genotype-environment association (GEA) analysis,
which includes a wide variety of statistical approaches for identify-
ing candidate adaptive loci that covary with environmental predictors
(Rellstab, Gugerli, Eckert, Hancock, & Holderegger, 2015). However,
landscape genomics includes many other techniques for identifying
and analyzing spatially structured, selection-driven variation, including
GWAS across multiple environments, simulation studies, experimental
approaches such as environmentally stratified common gardens, epi-
genetic and transcriptomic studies, and innovative approaches that
combine analytical techniques (Berg & Coop, 2014; Lasky, Forester, &
Reimherr, 2018; Storfer, Antolin, Manel, Epperson, & Scribner, 2015).

Most importantly, landscape genomics is not just the application
of these statistical techniques to identify candidate adaptive variation,
but is an approach with a developing theoretical framework linking
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genomic variation, spatial complexity, environmental heterogeneity,
and evolutionary processes (Balkenhol, Cushman, Waits, & Storfer,
2015). The wide range of ecological and evolutionary questions and
management issues that can be addressed through this framework
was highlighted with recent published examples (Brauer, Hammer, &
Beheregaray, 2016; Creech et al., 2017; Lasky et al., 2015; Manthey &
Moyle, 2015; Razgour et al., 2017; Swaegers et al., 2015).

With this introduction to landscape genomics, ConGen partic-
ipants worked on applications of GEA analysis, currently the most
widely used landscape genomic technique (Balkenhol et al., 2017).
The reasons for the popularity of GEA analyses are practical: They
require no phenotypic data or prior genomic resources, do not re-
quire experimental approaches (such as reciprocal transplants) to
demonstrate local adaptation, and are often more powerful than
differentiation-based outlier detection methods (De Mita etal.,
2013; de Villemereuil, Frichot, Bazin, Francois, & Gaggiotti, 2014;
Forester, Lasky, Wagner, & Urban, 2018; Lotterhos & Whitlock,
2015). In particular, participants considered how and why detection
rates differed between univariate and multivariate GEAs, exploring
the use of latent factor mixed models (Frichot, Schoville, Bouchard,
& Francois, 2013) and redundancy analysis (Forester, Jones, Joost,
Landguth, & Lasky, 2016; Lasky et al., 2012), respectively. Recent
work has shown that RDA is an effective means of detecting adap-
tive processes that result in weak, multilocus molecular signatures
(Forester et al., 2018), providing a powerful tool for investigating the
genetic basis of local adaptation and informing management actions
to conserve evolutionary potential (Flanagan et al., 2017; Harrisson
et al., 2014; Hoffmann et al., 2015). Finally, participants were en-
couraged to move beyond simply documenting candidate adaptive
loci in their datasets, and instead focus on the ecological, evolution-
ary, and management-relevant questions that can be addressed by

more fully integrating a landscape genomic analytical framework.

4.4 | Ancestral demography with migration (Arun
Sethuraman)

Estimation of ancestral demography, particularly under an Isolation
with Migration (IM) model (Nielsen, 2001), is useful for many molec-
ular ecologists and conservation geneticists. A prominent set of tools
for this analysis includes IM, IMa, IMa2, and IMa2p (Hey, 2010; Hey,
Chung, & Sethuraman, 2015; Hey & Nielsen, 2007; Sethuraman &
Hey, 2015). In general, these methods utilize a Bayesian Metropolis-
coupled Markov Chain Monte Carlo (MCMCMC) method to estimate
effective population sizes, migration rates, and divergence times
under the IM model from haplotypic data. In its latest edition, IMa2p
offers parallelized estimation under this framework, providing al-
most linear improvement in computational time by increasing the
number of processors utilized. This in turn allows the analyses of a
large number of genomic loci to estimate demographic history, a task
that was previously intractable owing to computational overhead.
These tools assume that genomic loci are independent, freely re-
combining between loci, nonrecombining within loci, and putatively
neutral (summarized in Strasburg & Rieseberg, 2010). When datasets
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fit these assumptions, the methods give robust results (summarized
in Sousa & Hey, 2013). As of late, Hey et al. (2015) simulated data
where the number of loci sampled was small and exhibited very low
divergence between populations to detect an excess of false posi-
tive for the presence of migration (also described in Cruickshank &
Hahn, 2014). This study points to high false-positive rates for detect-
ing migration using likelihood ratio tests while using the IM suite of
tools on data that show low divergence (i.e., very low FST), and while
using a small number of loci. In addition, much like other MCMC
methods (e.g., STRUCTURE; Pritchard, Stephens, & Donnelly, 2000),
the length of a “run” of the IM tool used is paramount (longer and
many duplicate runs preferred) in ensuring mixing, convergence, and
adequate sampling of genealogies.

Recent studies that have estimated demography under the IM
model as applied to conservation include McKelvy and Burbrink
(2017) that tests 24 nested models of evolution and species delinea-
tion across the North American range of the yellow-bellied kingsnake
(Lampropeltis calligaster), and Vazquez-Miranda et al. (2017) study of
Le Conte’s thrashers (Toxostoma lecontei) in estimating negligible mi-
gration among subspecies to recommend conservation status across
their Western North American range. Other tools to test complex de-
mographic models using genomic data include coalescent simulation-
based methods (e.g., FASTSIMCOAL; Excoffier & Foll, 2011; Excoffier,
Dupanloup, Huerta-Sanchez, Sousa, & Foll, 2013), Approximate
Bayesian Computation (ABC; Beaumont, Zhang, & Balding, 2002;
Robinson, Bunnefeld, Hearn, Stone, & Hickerson, 2014)-based meth-
ods that compare summary statistic distributions in simulated ver-
sus observed populations, and diffusion approximations to the joint
allele frequency spectrum for demographic inference (e.g., dadi,
Gutenkunst, Hernandez, Williamson, & Bustamante, 2009). In general,
model-based estimation of evolutionary demographic history (both
ancient and recent) when applied in combination with summary pop-
ulation genetic statistics as described above (including Fr, inbreed-
ing coefficients, and homozygosity), and non-model-based methods
(including STRUCTURE and ADMIXTURE; Alexander, Novembre, &
Lange, 2009; Pritchard et al., 2000) can prove to be useful means to

bridge genomics and conservation in particular.

5 | BROAD RECOMMENDATIONS AND
CONCLUSIONS

Common advice among instructors was to gain extensive experi-
ence in computer programming. Students were encouraged to seek
out online resources and to work in interdisciplinary teams, where
through mentorship and close collaboration they can learn the ba-
sicsin an applied setting. A key theme was the importance of contin-
uing to develop and teach programming at all levels (e.g., elementary
through graduate), with a specific focus on better integrating bio-
informatics instruction into undergraduate life sciences education.
The advent of “big data” presents a critical challenge in the fields
of population and conservation genomics. Interdisciplinary collab-
oration is a key as it becomes more difficult for researchers to be

experts in both data production (e.g., field work, biological sampling)
and bioinformatics or mathematical modeling. Koop acknowledges
that he fills his team with bioinformaticians as well as biologists, but
“when you find the rare individual who understands both the popu-
lation genomics and the bioinformatics, you do everything you can to
hold onto them.” Furthermore, the “Ten Simple Rules for a Successful
Cross Disciplinary Collaboration” by Knapp et al. (2015) is a useful
resource for gaining skills for a successful, synergistic collaboration.
In conclusion, the genomic era presents both new data analy-
sis challenges and opportunities to visualize, understand, and apply
population genomic data to conservation in novel ways. Here, we
emphasize producing and visualizing erroneous datasets, possible
effects of filtering on downstream analyses, and how to improve
downstream computational analyses to prevent drawing erroneous
conclusions. The experts at ConGen instructed students to under-
stand and use reliable biological models and to develop clear ques-
tions and hypotheses rooted in evolutionary and ecological theory.
In summary, ConGen and this article present problems and solutions
with the goal of improving the use of genomics in the fields of popu-

lation genomics, molecular ecology, and conservation biology.
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