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Abstract
New	computational	methods	and	next-	generation	sequencing	(NGS)	approaches	have	
enabled	the	use	of	thousands	or	hundreds	of	thousands	of	genetic	markers	to	address	
previously	intractable	questions.	The	methods	and	massive	marker	sets	present	both	
new	data	 analysis	 challenges	 and	opportunities	 to	visualize,	 understand,	 and	apply	
population	and	conservation	genomic	data	in	novel	ways.	The	large	scale	and	com-
plexity	of	NGS	data	also	increases	the	expertise	and	effort	required	to	thoroughly	and	
thoughtfully	analyze	and	 interpret	data.	To	aid	 in	this	endeavor,	a	recent	workshop	
entitled	“Population	Genomic	Data	Analysis,”	also	known	as	“ConGen	2017,”	was	held	
at	the	University	of	Montana.	The	ConGen	workshop	brought	15	instructors	together	
with	knowledge	in	a	wide	range	of	topics	including	NGS	data	filtering,	genome	assem-
bly,	genomic	monitoring	of	effective	population	size,	migration	modeling,	detecting	
adaptive	genomic	variation,	genomewide	association	analysis,	inbreeding	depression,	
and	landscape	genomics.	Here,	we	summarize	the	major	themes	of	the	workshop	and	
the	important	take-	home	points	that	were	offered	to	students	throughout.	We	em-
phasize	increasing	participation	by	women	in	population	and	conservation	genomics	
as	a	vital	step	for	the	advancement	of	science.	Some	important	themes	that	emerged	
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1  | INTRODUC TION

At	this	 time,	conservation	and	evolutionary	geneticists	can	em-
ploy	 the	 power	 of	 genomic	 tools	 to	 answer	 questions	 in	 con-
servation	that	could	not	be	answered	using	 traditional	genetics	
approaches	 (Allendorf,	Hohenlohe,	&	Luikart,	2010;	Bernatchez	
et	al.,	2017;	Garner	et	al.,	2016;	Harrisson,	Pavlova,	Telonis-	Scott,	
&	Sunnucks,	2014;	McMahon,	Teeling,	&	Höglund,	2014;	Shafer	
et	al.,	 2015a,	 2015b).	 Technological	 and	 analytical	 advances	
now	 allow	 us	 to	 use	 many	 thousands	 of	 loci,	 gene	 expression,	
or	 epigenetics	 to	 address	basic	questions	of	 relevance	 for	 con-
servation,	 such	as	 identifying	 loci	associated	with	 local	adapta-
tion	or	adaptive	potential	in	species	face	changing	environments	
(Bernatchez,	 2016;	 Flanagan,	 Forester,	 Latch,	Aitken,	&	Hoban,	
2017;	Harrisson	et	al.,	2014;	Hoban	et	al.,	2016;	Hoffmann	et	al.,	
2015;	 Jensen,	 Foll,	 &	 Bernatchez,	 2016;	 Le	 Luyer	 et	al.,	 2017;	
Wade	et	al.,	2016).	As	conservation	genomics	matures,	new	chal-
lenges	are	arising.	It	is	essential	for	researchers	to	keep	up	with	
the	 rapidly	changing	methods	 in	appropriate	study	design,	data	
quality	assessment,	and	selecting	appropriate	analyses	to	obtain	
accurate	 results	 for	 conservation	 and	 management	 decisions	
(Benestan	et	al.,	2016).

To	address	arising	challenges,	15	experts	from	diverse	areas	of	
genomic	data	analysis	came	together	 to	 teach	and	exchange	 ideas	
about	 cutting-	edge	 approaches	 for	 population	 genomic	 data	 anal-
ysis	 and	 interpretation.	 Students,	 postdocs,	 faculty,	 and	 agency	
researchers	 (e.g.,	museums,	 agency	biologists)	 originating	 from	15	
countries	 brought	 an	 assortment	 of	 data	 to	work	 through	 various	
computational	analyses.	Of	31	students,	23	had	restriction-	site	as-
sociated	DNA	(RAD)	or	genotyping	by	sequencing	(GBS)	data,	four	
had	 exon	 capture	 data,	 and	 four	 students	 had	whole-	genome	 se-
quencing	(WGS)	data.	Interestingly,	of	the	30	attendees	at	ConGen	
just	4	years	ago,	only	a	 few	students	had	RAD-	seq	data,	only	one	
had	sequence	capture	data,	and	none	had	WGS	data.	The	main	focus	
of	 the	 15	 experts	 was	 on	 narrow-	sense	 conservation	 genomics	
applications,	 which	 require	 use	 of	 conceptually	 novel	 approaches	
(Garner	et	al.,	2016).

The	week-	long	workshop,	 held	 at	 the	University	 of	Montana’s	
Flathead	Lake	Biological	Station,	provided	training	in	theory	as	well	
as	 empirical	 applications	 of	 NGS	 data	 production	 and	 analyses.	
Lectures,	discussions,	hands-	on	analysis	of	empirical	data,	and	one-	
on-	one	assistance	from	instructors	improved	students’	knowledge	of	
conservation	and	evolutionary	genomic	projects.	Many	participants	
in	 the	 past	 have	 taken	 the	 knowledge	 and	 resources	 (PowerPoint	
slides,	 worksheets,	 video	 recorded	 lectures)	 acquired	 during	 the	
workshop	and	disseminated	it	to	others	in	their	laboratories,	further	
extending	the	educational	reach	of	ConGen	among	population	ge-
nomic	researchers	(http://www.umt.edu/sell/cps/congen2017/).

In	the	opening	keynote	lecture,	L.	Bernatchez	discussed	several	
mechanisms	that	may	enhance	the	maintenance	of	genetic	variation	
and	evolutionary	potential	 in	 the	 face	of	 a	 changing	environment.	
Among	these	mechanisms	that	have	been	overlooked	and	should	be	
considered	in	future	theoretical	development	and	predictive	models,	
he	discussed	the	prevalence	of	soft	sweeps,	the	polygenic	basis	of	
adaptation,	balancing	selection,	and	transient	polymorphisms,	as	well	
as	epigenetic	variation.	A	key	message	was	that	adaptive	evolution	in	
nature	rarely	involves	the	fixation	of	beneficial	alleles.	Instead,	adap-
tation	apparently	proceeds	most	commonly	by	soft	sweeps	entailing	
shifts	 in	 frequencies	of	alleles	being	shared	between	differentially	
adapted	populations.	At	last,	L.	Bernatchez	argued	that	a	new	para-
dox	seems	to	be	emerging	from	recent	studies	whereby	populations	
of	highly	reduced	effective	population	sizes	 (Ne)	and	 impoverished	
genetic	diversity	can	sometimes	retain	their	adaptive	potential,	and	
that	epigenetic	variation	could	account	for	this	apparent	contradic-
tion	(Bernatchez,	2016).

The	remaining	 lectures	 focused	mainly	on	approaches	 for	data	
production	 or	 analysis.	We	 discuss	 highlights	 from	 these	 lectures	
with	 the	 goal	 of	 motivating	 and	 educating	 a	 worldwide	 audience	
to	 improve	population	genomic	data	analysis	and	thereby	advance	
the	role	of	genomics	in	molecular	ecology,	evolutionary	biology,	and	
conservation.	We	describe	(a)	issues	regarding	recruiting	and	retain-
ing	 a	 diverse	 workforce	 in	 conservation	 genomics,	 (b)	 impacts	 of	
genotyping	error	and	data	quality,	and	 (c)	 improvements	 to	down-
stream	population	genomic	analyses.

during	 the	workshop	 included	the	need	for	data	visualization	and	 its	 importance	 in	
finding	problematic	data,	the	effects	of	data	filtering	choices	on	downstream	popula-
tion	genomic	analyses,	 the	 increasing	availability	of	whole-	genome	sequencing,	and	
the	new	challenges	it	presents.	Our	goal	here	is	to	help	motivate	and	educate	a	world-
wide	audience	to	 improve	population	genomic	data	analysis	and	 interpretation,	and	
thereby	advance	the	contribution	of	genomics	to	molecular	ecology,	evolutionary	biol-
ogy,	and	especially	to	the	conservation	of	biodiversity.

K E Y W O R D S

bioinformatics	pipeline,	conservation	genomics	workshop,	diversity	in	STEM,	landscape	
genomics,	population	genomics
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2  | INCRE A SING CONTRIBUTIONS BY 
WOMEN (SAR AH HENDRICKS AND BRENNA 
FORESTER)

Following	 the	 productive	 trend	 at	 recent	 ecology	 and	 evolution-
ary	 biology	 conferences,	 issues	 of	 gender	 bias	 were	 discussed	 at	
ConGen.	When	this	important	topic	is	not	widely	and	openly	exam-
ined,	 it	can	 inhibit	the	advancement	of	science	generally,	and	con-
servation	 and	 population	 genomics	 specifically.	 Diversity	 leads	 to	
better	problem-	solving,	expands	the	talent	pool,	and	promotes	full	
inclusion	of	excellence	across	the	social	spectrum	(Blackburn,	2017;	
Nielsen	et	al.,	2017).	Among	the	plethora	of	topics	regarding	increas-
ing	diversity	in	STEM	fields	(Blackburn,	2017;	Wellenreuther	&	Otto,	
2015),	 here	we	 focus	on	overcoming	 the	biases	against	women	 in	
computer	sciences	and	the	persistence	of	unconscious	gender	ste-
reotypes	that	influence	both	male	and	female	researchers.

Gender	biases	in	computer	science	training	may	limit	the	effec-
tiveness	of	efforts	to	attract	and	retain	the	best	and	most	diverse	
workforce	 in	 conservation	 genomics.	 As	 of	 2014,	 just	 18.1%	 of	
computer	science	bachelor’s	degrees	were	awarded	to	women,	and	
this	proportion	has	declined	by	10%	over	the	last	10	years,	further	
widening	the	gender	gap	(NCSES,	2016).	This	deficit	in	female	com-
puter	scientists	has	been	attributed	to	a	lower	sense	of	belonging	by	
women	than	men	due	to	a	predominately	male	culture	 in	the	field	
(Cheryan,	Ziegler,	Montoya,	&	Jiang,	2017).	There	 is	also	evidence	
of	gender	gaps	in	self-	efficacy	that	may	be	due	to	a	lack	of	sufficient	
early	 education	 in	 computer	 programming	 (Cheryan	 et	al.,	 2017).	
Although	not	reported,	these	issues	 likely	persist	 in	bioinformatics	
and	genomics.	Efforts	to	maximize	gender	inclusion	in	computer	sci-
ence	may	benefit	from	changing	masculine	cultures	in	technological	
fields	 and	 providing	 early	 experiences	 for	 all	 students	 that	 signal	
a	sense	of	belonging	and	ability	 to	succeed	 in	these	fields.	Efforts	
led	 by	 women,	 such	 as	 “Girls	 Who	 Code”	 (https://girlswhocode.
com/)	 and	 “Learn	 to	Code	with	Me”	 (https://learntocodewith.me/
posts/13-places-women-learn-code/),	 aim	 to	 decrease	 the	 gender	
gap	by	targeting	coding	courses	and	workshops	to	girls	and	women.	
Likewise,	short	courses	such	as	ConGen,	which	teach	basics	in	linux,	
bash,	and	R	scripting,	act	to	support	an	inclusive	community	and	ad-
dress	limitations	due	to	gendered	perceptions	in	the	genomics	era.

Unconscious	 stereotypes	 persist	 in	 the	minds	 of	male	 and	 fe-
male	researchers,	as	evident	 in	the	studies	of	reference	 letters	for	
postdoctoral	fellowships	and	other	academic	positions	(Dutt,	Pfaff,	
Bernstein,	Dillard,	&	Block,	2016;	Madera,	Hebl,	&	Martin,	2009;	Trix	
&	Psenka,	2003).	One	study	of	recommendation	letters	for	medical	
faculty	positions	found	that	letters	written	on	behalf	of	females	dif-
fered	from	those	written	on	behalf	of	men	in	 length,	negative	lan-
guage,	 and	gender-	linked	 terms.	Overall,	 the	 study	 found	 that	 the	
letters,	 regardless	 of	 the	 gender	 of	 the	 recommender,	 reinforced	
stereotypes	that	portray	men	as	researchers	and	professionals	and	
women	 as	 teachers	 and	 students	 (Trix	 &	 Psenka,	 2003).	 Another	
study	found	that	men,	more	than	women,	were	described	as	having	
agentic	 leadership	 traits,	 such	as	being	 in	 control	of	 subordinates,	
speaking	assertively,	working	independently	and	competitively,	and	

initiating	tasks	(Madera	et	al.,	2009).	Furthermore,	women	were	de-
scribed	as	having	more	communal	characteristics,	which	had	a	neg-
ative	 association	 for	 women	 with	 employment	 decisions	 (Madera	
et	al.,	2009).	Letters	of	recommendation	have	been	shown	to	greatly	
affect	hireability	ratings	of	applicants	(Madera	et	al.,	2009).	On	the	
level	of	personal	action,	we	suggest	recommenders	edit	 their	own	
letters	to	avoid	gender	bias	(http://www.csw.arizona.edu/LORbias).

Despite	similar	proportions	of	women	and	men	awarded	doctoral	
degrees	in	science	and	engineering	disciplines,	women	are	less	likely	
to	obtain	tenure-	track	positions	in	academia	than	their	male	coun-
terparts.	Although	there	are	many	reasons	for	this	“leaky	pipeline”	
(Gasser	&	Shaffer,	2014;	Goulden,	Mason,	&	Frasch,	2011;	Holmes,	
OConnell,	&	Dutt,	2015),	 increasing	training	and	avoiding	biases	in	
reference	letters	may	benefit	not	only	women,	but	also	the	greater	
scientific	community	by	promoting	innovation	through	diversity	and	
inclusion.	Further,	there	are	many	topics	such	as	referee	opportunity	
bias	(Lerback	&	Hanson,	2017),	the	childcare-	conference	conundrum	
(Calisi	&	A	Working	Group	of	Mothers	 in	Science,	2018),	and	mis-
conceptions	around	hiring	preferences	(Williams	&	Ceci,	2015)	that	
should	also	be	addressed	to	reduce	disadvantages	to	women.	With	
the	brief	mention	of	this	topic,	we	hope	to	stimulate	future	studies	of	
gatekeeping	practices	in	the	field	of	conservation,	so	institutions	can	
develop	 initiatives	 to	 recruit,	 retain,	and	advance	women	 in	STEM	
fields	as	mentorship	will	be	essential	for	eliminating	gender	bias	in	
computer	 science,	 bioinformatics,	 and	 by	 extension,	 conservation	
biology.	We	ask	our	readers	to	initiate	discussions	regarding	the	per-
sistence	of	stereotypes	and	how	these	stereotypes	affect	excellence	
across	our	community.	We	wonder:	Can	the	active	and	intentional	
cultivation	of	inclusivity	help	to	expand	the	role	of	genomics	in	mo-
lecular	ecology,	population	genomics,	and	nature	conservation?

3  | GENOT YPING ERROR AND IMPROVING 
DATA QUALIT Y

On	a	more	technical	level,	several	authors	discussed	ways	to	assess	
and	prevent	genotyping	errors	and	improve	data	quality.	We	discuss	
several	of	these	here.

3.1 | Back to the basics: finding and visualizing 
erroneous data (Eric Anderson and Robin Waples)

3.1.1 | Genotyping errors

Systematic	 departures	 from	 Hardy–Weinberg	 equilibrium	 (HWE)	
in	 datasets	 where	 HWE	 is	 expected	 can	 indicate	 genotyping	 er-
rors	in	which	heterozygotes	are	miscalled	as	homozygotes.	A	simple	
visualization	of	expected	and	observed	frequencies	of	homozygote	
genotypes	 across	 single	 nucleotide	 polymorphisms	 (SNPs)	 can	 be	
effective	 in	 identifying	 data	 problems	 (Figure	1).	 A	 simple	 model	
for	estimating	 the	heterozygote	miscall	 (dropout)	 rate	was	applied	
to	12	publicly	available	RAD-	seq	datasets	 (Fernández	et	al.,	2016;	
Hecht,	Matala,	Hess,	&	Narum,	2015;	 Laporte	et	al.,	 2016;	 Larson	
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et	al.,	2014;	Le	Moan,	Gagnaire,	&	Bonhomme,	2016;	Portnoy	et	al.,	
2015;	 Prince	 et	al.,	 2017;	 Puritz,	 Gold,	 &	 Portnoy,	 2016;	 Ravinet	
et	al.,	2016;	Swaegers	et	al.,	2015).	While	a	few	had	low	genotyping	
error	rates	(<5%),	in	others,	allelic	dropout,	low	read	depth,	PCR	du-
plicates,	erroneous	assembly,	and/or	poor	filtering	resulted	in	much	
higher	estimated	error	rates,	with	between	5%	and	72%	of	heterozy-
gotes	 apparently	 being	miscalled	 as	 homozygotes.	Although	 some	
of	 these	apparent	high	error	 rates	could	 reflect	 true	heterozygote	
deficiencies	due	to	the	Wahlund	effect	or	other	factors,	in	all	cases	
the	 samples	were	 thought	 to	 be	 from	 a	 single	 population.	Hence,	

this	provides	a	cautionary	note	that	 it	 is	good	practice	to	visualize	
your	data	to	ascertain	if	more	homozygotes	are	called	than	expected	
under	Hardy–Weinberg	equilibrium.

3.1.2 | Probabilistic genotype calling

Probabilistic	genotype	calling,	as	conducted	by	the	software	program	
ANGSD	(Korneliussen,	Albrechtsen,	&	Nielsen,	2014),	is	a	principled	
method	for	dealing	with	low-	coverage	sequencing	data;	however,	it	
should	be	applied	carefully.	With	low-	coverage	sequencing,	because	
there	 is	 so	 little	 information	 at	 any	 individual	 site,	 the	 statistical	
model	and	the	prior	distributions	are	relatively	more	influential	than	
they	are	with	high-	read-	depth	data.	A	good	example	can	be	seen	in	a	
recent	paper	by	Prince	et	al.	(2017)	which	features	lower-	depth	sam-
pling	than	many	other	contemporary	RAD-	seq	studies.	 In	analyses	
of	their	RAD-	seq	data,	Prince	et	al.	used	ANGSD	to	integrate	over	
the	 genotype	 uncertainty	 rather	 than	 directly	 calling	 genotypes.	
Even	more	importantly,	when	they	were	able	to,	they	were	careful	
to	 use	 population-	specific	 allele	 frequency-	based	 genotype	 priors	
for	their	analyses	rather	than	a	simple	uniform	prior	distribution	on	
genotypes.	The	choice	of	prior	is	important:	If	one	uses	ANGSD	to	
call	genotypes	from	the	Prince	et	al.	data	using	the	uniform	prior	on	
genotypes,	the	result	shows	a	strong	tendency	to	 incorrectly	 infer	
heterozygotes	as	homozygotes	(Figure	1c).	This	is	not	simply	a	con-
sequence	of	forcing	ANGSD	to	call	genotypes.	Rather,	the	posterior	
probabilities,	 themselves,	 of	 the	 genotypes	 carry	 extra	weight	 on	
the	homozygote	classes,	because	the	uniform	prior	does	not	use	al-
lele	frequency	information	to	help	infer	the	genotypes.

In	 an	 increasing	 manner,	 recent	 publications	 have	 suggested	
that	probabilistic	genotyping	obviates	the	need	for	high	mean	depth	
of	 coverage	 (>10	 to	 20×).	 For	 example,	 Prince	 et	al.	 (2017)	 found	
that	PCA	analysis	applied	to	their	full	dataset	yielded	a	first	princi-
pal	component	driven	largely	by	variation	in	read	depth	(M.	Miller,	
personal	 communication,	 February	 7,	 2018).	 Randomly	 subsam-
pling	reads	from	each	individual	to	the	same	depth	eliminated	that	
technical	variation,	and,	 though	 it	 led	them	to	discard	almost	70%	
of	their	sequencing	reads,	with	probabilistic	genotyping	they	were	
still	 able	 to	 recover	 meaningful	 population	 structure.	 To	 evaluate	

F IGURE  1 Observed	(y-	axis)	versus	expected	(x-	axis)	
homozygote	frequencies	at	SNPs	in	three	RAD	studies	of	Chinook	
salmon.	The	solid	black	line	is	at	y = x,	and	the	dotted	lines	show	
the	maximum	and	minimum	possible	observed	values	given	the	
expected	values	computed	from	the	observed	allele	frequencies.	
n	is	number	of	individuals,	L	is	number	of	SNPs,	and	HMR	is	the	
heterozygote	miscall	rate	estimated	from	the	dataset.	(a)	Korukluk	
River,	Western	Alaska	(Larson	et	al.,	2014):	a	carefully	filtered	
dataset	showing	almost	no	distortions	from	HWE	and	with	a	low	
estimated	HMR	of	0.02.	(b)	Johnson	Creek	(Hecht	et	al.,	2015):	
Most	of	the	points	lie	above	the	y = x	line	and	HMR	is	estimated	to	
be	0.17.	(c)	Low-	read-	depth	data	from	mature-	migrating	Umpqua	
river	Chinook	(Prince	et	al.,	2017).	Genotypes	were	called	using	
ANGSD’s	doGeno	option	assuming	a	uniform	prior	on	genotypes.	
Profound	homozygote	excesses	are	observed	with	HMR	=	0.52

Umpqua Mature,   n = 27,   L = 15,228,   HMR = 0.53

Johnson Creek,   n = 68,  L = 13,764,   HMR = 0.21

Korukluk,   n = 57,   L = 10,944,   HMR = 0.02
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how	effectively	probabilistic	genotype	calling	can	retrieve	the	same	
inference	with	ever-	smaller	amounts	of	sequencing,	Anderson	pre-
sented	an	analysis	using	subsampled	versions	of	a	high-	depth	RAD	
dataset.	He	first	performed	PCA	using	SNPRelate	(Zheng	et	al.,	2012)	
to	resolve	population	structure	of	a	North	American	songbird	using	
SNPs	 called	 from	 high-	quality,	 high-	read-	depth	 RAD	 data	 using	 a	
GATK	 pipeline	 (mean	 read	 depth	 at	 105,000	 SNPs	 across	 175	 in-
dividuals	 was	 36).	 He	 then	 used	ANGSD and ngsCovar	 (Fumagalli,	
Vieira,	 Linderoth,	 &	 Nielsen,	 2014)	 a	 probabilistic	 genotyping	 ap-
proach	to	PCA,	on	the	BAM	files	for	the	same	175	birds	after	sub-
sampling	so	that	the	mean	read	depth	at	each	of	those	105,000	loci	
was	expected	to	be	0.65,	1,	2,	5,	and	10.	ANGSD	was	not	restricted	
to	using	only	the	previously	discovered	105,000	SNPs,	and,	in	fact	
called	 between	 29,331	 SNPs	 at	 0.65×	 and	 898,320	 SNPs	 at	 10×.	
Figure	2	shows	that	clusters	 in	 the	first	 two	principal	components	
from	SNPRelate	on	the	high-	read-	depth	data	resolve	subspecies	and	
show	structure	within	subspecies	that	corresponds	to	state	of	origin.	
Remarkably,	at	0.65×,	ngsCovar	identifies	roughly	similar	groupings,	
albeit	with	looser	clustering.	However,	at	all	other	read	depths,	ngs-

Covar	identifies	clusters	that	are	clearly	inconsistent	with	subspecies	

designations	and	become	dominated	by	Lissajous	curves	(Novembre	
&	Stephens,	2008).

Overall,	the	results	suggest	that	some	probabilistic	methods	de-
veloped	 for	 low-	coverage	 data	might	 behave	 unpredictably	 when	
provided	 with	 high-	quality,	 high-	read-	depth	 RAD	 data.	 However,	
new	 methods	 based	 on	 probabilistic	 genotyping	 are	 continually	
emerging.	 For	 example,	 the	ANGSD	methods	PCAngsd	 and	PCA_
MDS	are	both	 reported	 to	outperform	ngsCovar	with	variable	 se-
quencing	 depth	 (see	 http://www.popgen.dk/angsd/index.php/
PCA).	Probabilistic	inference	from	next-	generation	sequencing	data	
is	an	important	advance;	however,	one	should	not	assume	that	it	will	
automatically	overcome	shortcomings	 in	sequence	data	caused	by	
unsatisfactory	 sample	 quality,	 poor	 library	 preparation,	 or	 insuffi-
cient	sequencing.	As	with	many	approaches	for	next-	generation	se-
quencing,	user-	specified	settings	of	models,	priors,	and	filtering	can	
have	strong	effects	on	the	results.

3.1.3 | Relatedness

Many	researchers	have	concluded	that	it	is	important	to	remove	pu-
tative	siblings	from	population	genetics	datasets	before	conducting	

F IGURE  2 Plots	of	the	first	two	principal	components	from	PCA	of	unpublished	RAD	data	showing	population	structure	among	four	
subspecies	of	a	North	American	passerine.	Each	point	is	an	individual	bird.	Top	left	panel	shows	the	result	obtained	in	the	original	study,	
which	used	105,000	SNPs	called	with	an	average	read	depth	of	36×	across	175	birds	analyzed	with	SNPRelate	(Zheng	et	al.,	2012).	Remaining	
panels	show	results	obtained	by	subsampling	the	original	dataset	to	depths	of	0.65×,	1×,	2×,	5×,	and	10×,	and	analysis	with	ANGSD 

(Korneliussen	et	al.,	2014)	and	ngsCovar	(Fumagalli	et	al.,	2014).	Subspecific	structure	in	the	0.65×	data	is	much	less	distinct	than	in	the	full	
dataset,	but	is	generally	concordant	with	it.	However,	at	higher	read	depths	the	clustering	is	clearly	inconsistent	with	subspecies	affiliation
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downstream	analyses	(Corlett,	2017;	Johnson	et	al.,	2016),	but	there	
are	several	good	reasons	why	this	can	create	more	problems	than	
it	solves	(Waples	&	Anderson,	2017).	First,	siblings	occur	naturally	
in	all	natural	populations,	at	 frequencies	 that	are	 inversely	 related	
to	effective	population	size;	therefore,	removing	siblings	erases	sig-
nals	characteristic	of	small	populations	and	makes	the	populations	
appear	 to	 be	 larger.	 Second,	 removing	 individuals	 reduces	 sample	
size	and	decreases	statistical	power,	perhaps	greatly,	so	any	benefits	
must	be	large	to	offset	this	cost.	Third,	methods	for	sibling	inference	
are	not	infallible,	so	it	is	important	to	consider	the	consequences	of	
imperfect	pedigree	reconstruction.	At	last,	sibling	removal	cannot	be	
used	to	convert	a	nonrandom	sample	into	a	random	sample,	unless	
one	has	independent	information	about	the	degree	to	which	the	pro-
portion	of	siblings	in	the	sample	exceeds	the	random	expectation.

An	alternative	to	removing	individuals	is	to	use	a	best	linear	unbi-
ased	estimator	approach	(BLUE;	McPeek,	Wu,	&	Ober,	2004),	which	
gives	each	individual	a	weight	that	reflects	its	degree	of	relatedness	
to	others	in	the	sample.	As	shown	by	Waples	and	Anderson	(2017),	
however,	performance	of	the	BLUE	also	depends	on	having	accurate	
pedigree	information.	When	sample	identification	is	not	reliable,	the	
use	of	the	full	dataset	outperforms	BLUE.	Because	of	these	poten-
tial	adverse	effects,	researchers	should	be	cautious	about	adjusting	
their	datasets	for	putative	siblings	unless	they	have	a	good	reason	to	
believe	that	doing	so	will	not	actually	make	things	worse.

3.2 | Effects of filtering on downstream analyses 
(Paul Hohenlohe and Tiago Antao)

Methods	 for	 producing	 reduced	 representation	 libraries,	 such	 as	
RAD-	seq,	are	rapidly	evolving,	and	more	than	15	methods	exist	with	
variations	 in	data	quality,	genotyping	errors,	cost,	and	the	number	
of	 loci	 discovered	 (reviewed	 in	 Andrews,	 Good,	Miller,	 Luikart,	 &	
Hohenlohe,	 2016).	 Furthermore,	 filtering	 choices	 (see	 figure	 2	 in	
Benestan	et	al.,	2016)	can	greatly	 influence	downstream	summary	
statistics.	A	recent	study	testing	the	 impact	of	data	processing	on	
population	 genetic	 inferences	 using	RAD-	seq	 data	 observed	 large	
differences	 between	 reference-	based	 and	 de	 novo	 approaches	
in	 population	 genetic	 summary	 statistics,	 particularly	 those	 based	
on	 the	 site	 frequency	 spectrum	 (Shafer	 et	al.,	 2016).	 In	 addition,	
the	 recent	 debate	 over	 the	 effectiveness	 of	 RAD-	seq	 for	 discov-
ering	loci	under	selection	(Catchen	et	al.,	2017;	Lowry	et	al.,	2016;	
McKinney,	Larson,	Seeb,	&	Seeb,	2017)	has	highlighted	the	 impor-
tance	of	 testing	 the	extent	of	 linkage	disequilibrium	 (LD)	over	 the	
genome,	whenever	possible,	in	order	to	assess	the	power	of	genome	
scans	to	detect	selected	loci	(e.g.,	Kardos,	Taylor,	Ellegren,	Luikart,	
&	Allendorf,	2016).

To	further	explore	the	impacts	of	filtering	on	downstream	analy-
ses,	students	at	ConGen	used	various	minor	allele	frequencies	(MAF;	
0.01,	0.05,	0.1,	and	0.2)	to	filter	a	RAD-	seq	dataset	and	computed	
FST	 using	 the	populations	 function	 in	Stacks	 (Catchen,	Hohenlohe,	
Bassham,	 Amores,	 &	 Cresko,	 2013).	 Participants	 detected	 a	 gen-
eral	 trend	 of	 increasing	 estimates	 of	 genomewide	 mean	 FST	 with	
higher	MAF	 thresholds.	This	may	be	 the	 result	of	 the	 relationship	

between	 expected	 heterozygosity	 and	 maximum	 possible	 FST	 at	
SNP	loci;	given	the	variation	 in	FST	across	 loci,	a	subsample	of	 loci	
with	 lower	MAF	may	 be	 expected	 to	 have	 a	 lower	maximum	 and	
therefore	lower	mean	FST	(Roesti,	Salzburger,	&	Berner,	2012).	Thus,	
some	filtering	by	MAF	can	be	used	to	remove	sequencing	errors	and	
avoid	bias	in	genome	scans	(Roesti	et	al.,	2012)	and	may	also	remove	
rare	alleles	that	are	less	informative	for	estimating	FST.	On	the	other	
hand,	imposing	MAF	filters	that	are	too	strict	(e.g.,	above	0.05	or	0.1)	
could	skew	metrics	based	on	the	site	frequency	spectrum	or	 inad-
vertently	remove	loci	under	selection	or	with	functional	significance.	
As	others	have	recommended,	testing	the	effects	of	a	range	of	ana-
lytical	(filtering)	parameters	is	critical	to	produce	robust	population	
genetic	and	demographic	 inferences	 (Mastretta-	Yanes	et	al.,	2014;	
Paris,	Stevens,	&	Catchen,	2017;	Shafer	et	al.,	2016).

3.2.1 | Stringent filtering

The	Anopheles gambiae	1,000	Genomes	Project	(Ag1000G)	is	a	large-	
scale	 project	 to	 sequence	 the	main	 vector	 of	malaria,	mosquitoes	
(Anopheles gambiae;	The	Anopheles	gambiae	Genomes	Consortium,	
2017),	and	it	has	conducted	extensive	empirical	verification	of	error	
rates	 and	 filtering	 rules.	Parents	 from	different	mosquito	 colonies	
were	mated	 and	produced	~19	offspring	 for	 each	of	 four	 crosses.	
WGS	 of	 all	 individuals	 produced	 a	minimum	mean	 coverage	 of	 at	
least	14×.	The	error	 rate	of	SNP	variant	calling	 (inferred	from	par-
ent–offspring	inheritance)	without	filtering	was	between	13.0%	and	
21.7%.	After	 filtering,	 the	Mendelian	error	 rate	 fell	 to	0.3%–0.9%.	
The	filtering	rules	devised	from	this	empirical	dataset	were	then	ap-
plied	to	the	WGS	analysis	of	765	mosquitoes	sampled	across	Africa.	
Not	using	any	filtering	with	GATK	would	have	produced	95,335,499	
SNPs,	but	with	optimized	filtering	rules	the	number	of	SNPs	fell	to	
52,525,957	(see	Supplementary	material	of	The	Anopheles	gambiae	
Genomes	Consortium	(2017)	for	filtering	parameters).	Filtering	pa-
rameters	are	dataset	dependent	and	should	be	modified	based	on	
multiple	criteria	(e.g.,	depth	of	coverage,	mapping	quality,	and	strand	
bias)	to	reduce	the	number	of	false	discoveries	(see	GATK	forms	on	
applying	hard	filters	for	detailed	information).

3.3 | Retaining haplotypes in amplicon and RAD 
datasets (Eric Anderson)

Common	approaches	for	dealing	with	multiple	SNPs	across	an	am-
plicon	or	RAD	locus	can	result	in	low	power	or	incorrect	inference	
in	 subsequent	 analyses.	When	multiple	 SNPs	 are	 detected,	 these	
SNPs	are	handled	as	either	unlinked	(likely	untrue)	or	only	one	of	the	
SNPs	is	used	in	downstream	analyses.	However,	retaining	each	hap-
lotypic	combination	as	an	allele	can	increase	power	for	relationship	
inference	 and	 pedigree	 reconstruction	 (Baetscher,	 Clemento,	 Ng,	
Anderson,	&	Garza,	2017).	Further,	haplotype	calling	allows	for	the	
retention	of	low-	frequency	variants,	which	may	be	useful	for	popu-
lation	structure	assessment	 in	 recently	diverged	populations.	Rare	
alleles	 (or	haplotypes)	 reveal	 recombination	events	 that	generated	
alternative	 sequences	 of	 ancestry	 and	 thereby	 identify	 fine-	scale	
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structure	that	would	be	missed	when	using	independent	marker	ap-
proaches	(Lawson,	Hellenthal,	Myers,	&	Falush,	2012).

The	 software	 microhaplot	 (https://github.com/ngthomas/mi-
crohaplot)	takes	a	variant	file	and	designates	nucleotides	that	occur	
together	on	the	same	read	as	“microhaplotypes”	and	allows	for	the	
visualization,	filtering,	and	exporting	of	the	data.	The	Stacks	software	
package	(Catchen	et	al.,	2013)	can	also	export	multi-	SNP	haplotypes	
from	RAD-	seq	data.	Unlike	single	SNP	assays,	 the	microhaplotype	
data	collection	method	uses	assays	designed	with	multi-	allelic	 loci	
and	can	yield	useful	data	for	nontarget	species	phylogenies	and	for	
genealogical	inference	(Sunnucks,	2000).

3.4 | Draft genomes to improve data analyses (Ben 
Koop)

Some	molecular	biologists	have	claimed	that	we	are	 in	 the	post-
genomic	 era	 (Wu,	 2001);	 however,	 only	 a	 very	 small	 proportion	
of	 reference	 genomes	 are	 assembled	 to	 the	 chromosomal	 level.	
Despite	 this,	having	even	a	draft	genome	 (in	1000s	of	scaffolds)	
can	help	improve	data	analyses	in	many	ways	including	the	follow-
ing:	(a)	reliable	discovery	of	SNPs	(e.g.,	avoiding	duplicated	loci),	(b)	
reducing	genotyping	error	 rates	 (Hand	et	al.,	 2015;	 Shafer	 et	al.,	
2016),	(c)	detecting	loci	under	selection	by	allowing	sliding-	window	
approaches	along	scaffolds	(Hohenlohe,	Phillips,	&	Cresko,	2010),	
and	 (d)	 finding	 the	 underlying	 genes	 associated	with	 phenotype	
or	adaptation	(facilitated	by	mapping	scaffolds	to	related	species	
with	well-	annotated	genomes;	 e.g.,	 Ekblom	&	Wolf,	2014;	Kohn,	
Murphy,	 Ostrander,	 &	Wayne,	 2006;	 McKinney	 et	al.,	 2016).	 In	
addition,	it	is	possible	with	this	information	to	estimate	effective	
population	size	(Ne;	e.g.,	Li	&	Durbin,	2011)	or	effective	number	of	
breeders	(Nb)	using	LD-	based	methods,	as	comparisons	can	be	re-
stricted	to	pairs	of	loci	on	different	scaffolds,	which	should	reduce	
or	eliminate	LD	due	to	physical	linkage.	Depending	on	the	genome	
size	and	complexity,	an	investment	of	$10k	to	$20k	could	achieve	
a	useful	 reference	genome	with	 an	N50	of	~100	kbp,	which	 can	
be	 sufficient	 to	 improve	 data	 analysis	 as	 mentioned	 above	 (see	
Goodwin,	McPherson,	 &	McCombie,	 2016)	 for	 costs	 per	Gb	 for	
various	 sequencing	 platforms).	 Furthermore,	 the	 reference	 as-
sembly	 could	 likely	 be	 provided	 by	 a	 commercial	 company	 (e.g.,	
DoveTail,	https://dovetailgenomics.com/)	for	this	price,	as	long	as	
the	genome	is	not	too	large	(≫3	GB)	or	complex	(e.g.,	duplicated,	
numerous	 repeats),	 and	 if	 the	 initial	 DNA	 is	 of	 high	 molecular	
weight	(many	fragments	>15–20	kb).

There	are	a	growing	number	of	approaches	for	genome	assembly	
using	 “single	 molecule	 real-	time”	 sequencing	 (SMRT-	seq)	 or	 “syn-
thetic	 long-	read”	 sequencing	 (SLR-	seq)	 technology	 (Fuentes-	Pardo	
&	Ruzzante,	2017;	Goodwin	et	al.,	2016).	The	SMRT-	seq	technology	
offered	by	PacBio	(http://www.pacb.com/)	produces	read	lengths	of	
~10	kbp	 (some	>60	kbp).	Oxford	Nanopore	 (https://nanoporetech.
com/)	and	minION	also	use	a	single	molecule	approach	to	nucleo-
tide	 identification	that	passes	an	 ionic	charge	through	a	nanoscale	
hole	and	measures	the	changes	in	current	as	each	molecule	passes	
through	(see	Michael	et	al.	(2017)	for	assembly	comparison).	SLR-	seq	

technologies,	 such	 as	 10×	 Genomics	 (https://www.10xgenomics.
com/)	 or	 Dovetail	 Genomics	 (https://dovetailgenomics.com/),	 still	
rely	 on	 short	 read	 technology	 and,	 using	 statistical	 phasing	 algo-
rithms,	 have	 the	 capacity	 to	 assemble	 continuous	 haplotypes	 and	
scaffolds	that	can	span	whole	chromosomes	with	high	accuracy.

While	the	per	sample	cost	of	WGS	is	still	relatively	high,	the	per	
locus	cost	is	low	compared	to	reduced	representation	library	costs	
(see	 table	 1	 in	 Oyler-	McCance,	 Oh,	 Langin,	 &	 Aldridge,	 2016).	 A	
greater	proportion	of	positions	within	the	genome	are	covered	with	
WGS,	which	lowers	the	per	base	sequencing	costs,	but	increases	the	
costs	per	individual.	With	sequencing	prices	still	falling,	it	is	becom-
ing	more	likely	that	most	ecologists	and	evolutionary	biologists	will	
have	access	to	genome	assemblies	for	their	study	species	(or	sister	
taxa)	in	the	near	future	(Ellegren,	2014).

3.5 | Experimental design: which method to choose 
(Paul Hohenlohe)

The	 diversity	 of	 options	 for	 experimental	 design	 of	 population	
genomic	studies	continues	to	expand	as	sequencing	costs	continue	
to	 drop	 and	 new	 technologies	 emerge.	 As	 discussed	 in	 previous	
ConGen	workshops	(Benestan	et	al.,	2016),	a	general	guideline	is	to	
consider	carefully	the	biological	question,	and	the	downstream	anal-
yses	and	statistical	power	 that	will	be	 required	to	most	efficiently	
address	it.	This	should	guide	all	aspects	of	experimental	design,	in-
cluding	the	genomic	approach,	type	of	genetic	markers,	number	of	
markers,	sequencing	depth,	number	of	 individuals	and	populations	
sampled,	spatial	distribution	of	individuals,	and	tissue	type	(for	tran-
scriptome	sequencing).	For	all	of	these	factors,	there	is	a	wide	range	
of	options	for	most	population	genomic	studies,	as	well	as	trade-	offs	
among	methods	and	sampling	approaches	that	are	important	to	con-
sider	(Andrews	et	al.,	2016;	Benestan	et	al.,	2016).

Focusing	on	the	choice	of	sequencing	method,	a	particular	point	
of	discussion	at	the	ConGen	2017	workshop	was	the	recent	set	of	
papers	 addressing	 the	 limitations	of	RADseq	 to	 illuminate	 the	 ge-
netic	basis	of	 adaptation	 (Catchen	et	al.,	 2017;	 Lowry	et	al.,	 2016;	
McKinney	et	al.,	2017).	The	primary	criticism	raised	by	Lowry	et	al.	
(2016)	 is	that	RAD	loci,	depending	on	the	choice	of	restriction	en-
zyme(s)	and	the	specific	protocol	used	 (Andrews	et	al.,	2016),	may	
be	sparsely	distributed	across	the	genome,	so	that	selected	loci	may	
lie	some	distance	away	from	the	nearest	genotyped	RAD	marker.	By	
definition,	all	reduced	representation	approaches	face	this	issue,	al-
though	RADseq	approaches	are	more	limited	than	other	techniques	
(such	as	sequence	capture)	in	their	ability	to	specifically	target	pre-
viously	identified	candidate	loci.	In	a	RADseq	study	(and	most	other	
marker-	based	population	genomic	studies),	the	key	factor	is	linkage	
disequilibrium	 (LD),	 which	 determines	 the	 extent	 to	 which	 geno-
types	at	a	genetic	marker	are	correlated	with	those	of	a	functionally	
important	 locus,	and	 therefore,	 the	signal	of	selection	 that	can	be	
detected	from	marker	data.

If	the	scale	of	LD	is	 larger	than	the	distance	between	markers,	
a	RAD-	seq	 study	has	a	high	probability	of	 identifying	 functionally	
important	loci	across	the	genome.	The	extent	of	LD	can	be	directly	
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estimated	if	a	reference	genome	is	available	(Catchen	et	al.,	2017),	
and	it	is	recommended	that	LD	should	be	estimated	whenever	possi-
ble	in	population	genomic	studies.	Moreover,	many	conservation	and	
population	genomic	questions	can	be	answered	without	exhaustive	
sampling	of	 the	genome	or	detection	of	 all	 functionally	 important	
loci,	and	alternative	techniques	such	as	WGS	may	impose	substan-
tial	 costs	 and	other	 trade-	offs	 (Catchen	et	al.,	 2017).	 In	particular,	
increasing	 the	 density	 of	 markers	 may	 necessitate	 reducing	 the	
number	of	individuals	or	populations	sampled,	and	choosing	meth-
ods	that	target	candidate	loci	can	bias	against	detecting	selection	at	
previously	unknown	loci.	Overall,	there	is	no	universally	applicable	
genomic	method,	and	the	biological	question	and	details	of	the	study	
system	should	drive	the	choice	of	technique.

4  | IMPROVING DOWNSTRE AM 
COMPUTATIONAL ANALYSES

4.1 | Genomic analysis of inbreeding and 
demographic history (Marty Kardos)

In	a	traditional	manner,	individual	inbreeding	has	been	measured	with	
the	pedigree	inbreeding	coefficient	(FP)	via	path	analysis	(Pemberton,	
2008).	 More	 recently,	 large	 numbers	 of	 genetic	 markers	 (Berenos,	
Ellis,	Pilkington,	&	Pemberton,	2016;	Hoffman	et	al.,	2014;	Huisman,	
Kruuk,	Ellis,	Clutton-	Brock,	&	Pemberton,	2016)	and	whole-	genome	
sequences	 (Kardos	et	al.,	 2018;	Palkopoulou	et	al.,	 2015;	Xue	et	al.,	
2015)	have	been	used	to	estimate	individual	inbreeding	directly	from	
the	genome	by	analyzing	parameters	like	multiple-	locus	heterozygo-
sity,	genomic	relatedness	matrices,	and	Runs	Of	Homozygosity	(ROH;	
Kardos	et	al.,	2016).	Genomic	approaches	capture	variation	in	realized	
inbreeding	that	is	missed	by	pedigree	analysis	due	to	the	stochastic	ef-
fects	of	linkage	and	unknown	common	ancestors	of	parents	(Franklin,	
1977;	Thompson,	2013).	Thus,	while	deep	and	accurate	pedigrees	can	
often	precisely	measure	 individual	 inbreeding	 in	 species	with	many	
chromosomes	and/or	high	recombination	rates	 (Kardos	et	al.,	2018;	
Knief,	 Kempenaers,	 &	 Forstmeier,	 2017;	 Nietlisbach	 et	al.,	 2017),	
genomic	approaches	are	expected	to	more	reliably	measure	inbreed-
ing	and	 inbreeding	depression	 (Kardos,	Luikart,	&	Allendorf,	2015a;	
Kardos	et	al.,	2018;	Keller,	Visscher,	&	Goddard,	2011;	Wang,	2016).	
Given	 that	many	 studies	 have	 used	 only	 shallow	 pedigrees	 or	 few	
DNA	markers,	it	is	possible	that	power	to	detect	inbreeding	depres-
sion	has	been	 low;	 therefore,	 inbreeding	depression	could	be	more	
common,	widespread,	and	severe	than	previously	thought.

Analyses	of	ROH	can	also	be	used	to	understand	the	genetic	basis	
of	inbreeding	depression.	Candidate	regions	for	loci	contributing	to	
inbreeding	depression	can	be	 identified	as	chromosome	segments	
containing	fewer	ROH	in	a	sample	of	 individuals	than	expected	by	
chance	(Kardos	et	al.,	2018;	Pemberton	et	al.,	2012).	Homozygosity	
mapping	 (Charlier	 et	al.,	 2008)	 and	 association	 analyses	 based	 on	
the	correlation	of	phenotype	with	the	presence/absence	of	ROH	in	
particular	genome	regions	(Keller	et	al.,	2012;	Pryce,	Haile-	Mariam,	
Goddard,	&	Hayes,	2014)	can	be	used	to	 identify	 loci	affecting	 in-
breeding	 depression.	 Genomic	 approaches	 have	 the	 potential	 to	

greatly	advance	our	understanding	of	the	strength	and	genetic	basis	
of	inbreeding	depression	in	natural	populations.

Analyses	 of	 identity-	by-	descent	 (IBD)	 can	 also	 be	 used	 to	 infer	
historical	 effective	population	 size	 (Ne).	Differences	 in	 historical	Ne 

among	populations	can	be	qualitatively	inferred	by	analyzing	the	abun-
dance	of	ROH.	The	abundance	of	very	short	ROH	is	informative	of	Ne 

in	distant	history,	while	 long	ROH	 is	 informative	of	more	 recent	Ne 

(Kardos,	Qvarnström,	&	Ellegren,	2017;	Kirin	et	al.,	2010;	Pemberton	
et	al.,	2012).	A	limitation	of	this	approach	is	that	it	is	only	qualitative	
and	requires	data	on	multiple	populations	to	be	informative.

A	 particularly	 exciting	 new	 approach	 for	 studies	 of	 recent	 de-
mographic	history	 in	natural	populations	 is	 to	explicitly	estimate	a	
time	series	of	recent	Ne	using	inference	of	IBD.	The	program	IBDSeq	
(Browning	&	Browning,	2013)	searches	the	genomes	of	all	pairs	of	
individuals	 to	 identify	 chromosome	 segments	 of	 shared	 ancestry	
between	 individuals.	 The	 program	 IBDNe	 (Browning	 &	 Browning,	
2015)	then	uses	the	inferred	pairwise	IBD	segments	to	find	the	most	
likely	recent	time	series	of	Ne	given	the	IBD	data.	A	limitation	of	this	
approach	for	most	natural	populations	is	that	it	requires	a	minimum	
of	approximately	100	individuals	and	the	genetic	mapping	locations	
(i.e.,	on	a	 linkage	map)	of	 at	 least	 several	hundred	 thousand	SNPs	
(Browning	 &	 Browning,	 2015).	 However,	 the	 approach	 has	 great	
potential	 to	 infer	 recent	 demographic	 history	 (i.e.,	 to	 test	 for	 and	
quantify	 recent	 population	bottlenecks	 and	 expansions)	 in	 natural	
populations	where	it	would	be	difficult	or	impossible	to	evaluate	re-
cent	Ne	otherwise	(Kardos	et	al.,	2017).

4.2 | Genomewide association studies (Marty 
Kardos)

Genomewide	 association	 studies	 (GWAS)	 have	 recently	 identified	
loci	with	large	effects	on	several	ecologically	important	phenotypic	
traits.	 For	 example,	 single	 loci	 have	 explained	 a	 large	 fraction	 of	
the	variance	 in	age	of	maturation	 in	Atlantic	salmon	 (Barson	et	al.,	
2015)	and	horn	development	in	free-	ranging	Soay	sheep	(Johnston	
et	al.,	2011,	2013).	In	an	intelligible	manner,	some	traits	are	governed	
largely	by	variation	at	individual	loci,	but	these	are	likely	rare	among	
all	traits	of	interest	to	evolutionary	biologists.	Many	adaptive	traits	
are	likely	driven	by	a	large	number	of	loci	with	small	effect	sizes,	low	
minor	allele	frequency,	and/or	epistatic	interactions	(Visscher	et	al.,	
2017).	GWAS	of	complex	traits	will	 therefore	often	fail	 to	 identify	
enough	genotype–phenotype	associations	to	explain	a	useful	frac-
tion	of	the	heritability	of	traits	of	 interest.	This	 is	particularly	true	
of	studies	on	populations	with	very	large	Ne	or	high	recombination	
rates	 where	 strong	 linkage	 disequilibrium	 (LD)	 extends	 only	 very	
short	distances	from	the	genotyped	loci,	or	where	relatively	few	loci	
are	analyzed,	 thus	 resulting	 in	 low	power	 to	detect	 loci	even	with	
relatively	large	phenotypic	effects	(Kardos	et	al.,	2015b).	However,	
encouraging	 for	 studies	 in	 small	 or	 fragmented	 populations,	 the	
power	to	detect	large	effect	quantitative	trait	loci	(QTL)	is	expected	
to	be	higher	in	populations	with	small	Ne	because	strong	LD	extends	
over	longer	chromosomal	distances	in	such	populations.	Therefore,	
the	 design	 and	 interpretation	 of	 GWAS	 are	 greatly	 improved	 by	
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evaluating	 the	extent	of	 strong	LD	and	 the	power	 to	detect	 large	
effect	QTL.

By	good	fortune,	GWAS	failing	to	explain	a	large	fraction	of	the	
heritability	in	loci	with	statistically	significant	genotype–phenotype	
associations	are	still	highly	useful.	 It	 is	arguably	more	important	 in	
ecological	and	conservation	genetics	to	understand	the	heritability	
of	a	trait	than	to	identify	some	of	the	loci	responsible	for	heritable	
variation	in	the	trait,	as	it	is	the	heritability	of	a	trait	that	determines	
the	magnitude	of	the	expected	response	to	selection.	The	additive	
genetic	variance	and	heritability	can	readily	be	estimated	using	lin-
ear	 mixed	 effects	 models	 (Rönnegård	 et	al.,	 2016;	 Santure	 et	al.,	
2013;	Yang,	Lee,	Goddard,	&	Visscher,	2011)	in	GWAS,	even	in	cases	
where	no	individual	 loci	pass	the	stringent	thresholds	of	statistical	
significance.	In	addition,	heritability	can	be	partitioned	among	chro-
mosomes	to	determine	whether	 the	 trait	of	 interest	 is	 likely	 to	be	
polygenic	(i.e.,	affected	by	a	very	large	number	of	loci),	in	which	case	
chromosome-	specific	 heritability	 is	 expected	 to	 increase	with	 the	
number	of	genes	on	a	chromosome	(Santure	et	al.,	2013).

Participants	 at	 ConGen	 used	 the	 R	 package,	 RepeatABEL	
(Rönnegård	et	al.,	2016),	to	test	for	 loci	associated	with	clutch	size	
using	previously	published	data	from	a	long-	term	study	of	collared	
flycatchers	(Ficedula albicollis;	Husby	et	al.,	2015).	This	helped	to	fa-
miliarize	students	with	data	structures,	available	software,	and	inter-
pretation	of	results	from	GWAS.	In	addition,	analyzing	the	collared	
flycatcher	data	allowed	students	to	consider	the	importance	of	ac-
counting	for	repeated	phenotypic	measurements	when	conducting	
a	GWAS.	Students	were	encouraged	to	critically	evaluate	effect	size	
estimates	 from	GWAS	 in	 light	of	 the	Beavis	 effect	 (Beavis,	 1998),	
and	the	“winner’s	curse”	 (Kraft,	2008),	which	state	that	 the	effect	
sizes	of	loci	passing	a	stringent	statistical	significance	thresholds	in	
QTL	mapping	or	GWAS	analyses	are	often	upwardly	biased,	particu-
larly	in	studies	with	low	statistical	power.

4.3 | Landscape genomics (Brenna Forester)

Landscape	genomics	is	an	emerging	analytical	framework	that	investi-
gates	how	environmental	and	spatial	processes	structure	the	amount	
and	distribution	of	neutral	and	adaptive	genetic	variation	among	pop-
ulations	 (Balkenhol	 et	al.,	 2017).	 Landscape	 genomics	 is	 sometimes	
conflated	 with	 genotype–environment	 association	 (GEA)	 analysis,	
which	 includes	a	wide	variety	of	 statistical	 approaches	 for	 identify-
ing	candidate	adaptive	loci	that	covary	with	environmental	predictors	
(Rellstab,	Gugerli,	Eckert,	Hancock,	&	Holderegger,	2015).	However,	
landscape	genomics	 includes	many	other	 techniques	 for	 identifying	
and	analyzing	spatially	structured,	selection-	driven	variation,	including	
GWAS	across	multiple	environments,	simulation	studies,	experimental	
approaches	such	as	environmentally	stratified	common	gardens,	epi-
genetic	 and	 transcriptomic	 studies,	 and	 innovative	 approaches	 that	
combine	analytical	techniques	(Berg	&	Coop,	2014;	Lasky,	Forester,	&	
Reimherr,	2018;	Storfer,	Antolin,	Manel,	Epperson,	&	Scribner,	2015).

Most	importantly,	landscape	genomics	is	not	just	the	application	
of	these	statistical	techniques	to	identify	candidate	adaptive	variation,	
but	 is	an	approach	with	a	developing	 theoretical	 framework	 linking	

genomic	variation,	 spatial	 complexity,	 environmental	heterogeneity,	
and	 evolutionary	 processes	 (Balkenhol,	 Cushman,	Waits,	 &	 Storfer,	
2015).	The	wide	range	of	ecological	and	evolutionary	questions	and	
management	 issues	 that	 can	be	 addressed	 through	 this	 framework	
was	highlighted	with	recent	published	examples	(Brauer,	Hammer,	&	
Beheregaray,	2016;	Creech	et	al.,	2017;	Lasky	et	al.,	2015;	Manthey	&	
Moyle,	2015;	Razgour	et	al.,	2017;	Swaegers	et	al.,	2015).

With	 this	 introduction	 to	 landscape	 genomics,	ConGen	partic-
ipants	worked	on	applications	of	GEA	analysis,	currently	 the	most	
widely	used	 landscape	genomic	 technique	 (Balkenhol	et	al.,	2017).	
The	reasons	for	the	popularity	of	GEA	analyses	are	practical:	They	
require	no	phenotypic	data	or	prior	genomic	resources,	do	not	re-
quire	 experimental	 approaches	 (such	 as	 reciprocal	 transplants)	 to	
demonstrate	 local	 adaptation,	 and	 are	 often	 more	 powerful	 than	
differentiation-	based	 outlier	 detection	 methods	 (De	 Mita	 et	al.,	
2013;	 de	Villemereuil,	 Frichot,	 Bazin,	 François,	 &	Gaggiotti,	 2014;	
Forester,	 Lasky,	 Wagner,	 &	 Urban,	 2018;	 Lotterhos	 &	 Whitlock,	
2015).	In	particular,	participants	considered	how	and	why	detection	
rates	differed	between	univariate	and	multivariate	GEAs,	exploring	
the	use	of	latent	factor	mixed	models	(Frichot,	Schoville,	Bouchard,	
&	Francois,	2013)	and	redundancy	analysis	 (Forester,	Jones,	Joost,	
Landguth,	&	 Lasky,	 2016;	 Lasky	 et	al.,	 2012),	 respectively.	 Recent	
work	has	shown	that	RDA	is	an	effective	means	of	detecting	adap-
tive	processes	that	result	 in	weak,	multilocus	molecular	signatures	
(Forester	et	al.,	2018),	providing	a	powerful	tool	for	investigating	the	
genetic	basis	of	local	adaptation	and	informing	management	actions	
to	conserve	evolutionary	potential	(Flanagan	et	al.,	2017;	Harrisson	
et	al.,	 2014;	 Hoffmann	 et	al.,	 2015).	 Finally,	 participants	 were	 en-
couraged	to	move	beyond	simply	documenting	candidate	adaptive	
loci	in	their	datasets,	and	instead	focus	on	the	ecological,	evolution-
ary,	and	management-	relevant	questions	that	can	be	addressed	by	
more	fully	integrating	a	landscape	genomic	analytical	framework.

4.4 | Ancestral demography with migration (Arun 
Sethuraman)

Estimation	of	ancestral	demography,	particularly	under	an	Isolation	
with	Migration	(IM)	model	(Nielsen,	2001),	is	useful	for	many	molec-
ular	ecologists	and	conservation	geneticists.	A	prominent	set	of	tools	
for	this	analysis	includes	IM,	IMa,	IMa2,	and	IMa2p	(Hey,	2010;	Hey,	
Chung,	&	Sethuraman,	2015;	Hey	&	Nielsen,	2007;	Sethuraman	&	
Hey,	2015).	In	general,	these	methods	utilize	a	Bayesian	Metropolis-	
coupled	Markov	Chain	Monte	Carlo	(MCMCMC)	method	to	estimate	
effective	 population	 sizes,	 migration	 rates,	 and	 divergence	 times	
under	the	IM	model	from	haplotypic	data.	In	its	latest	edition,	IMa2p	
offers	 parallelized	 estimation	 under	 this	 framework,	 providing	 al-
most	 linear	 improvement	 in	 computational	 time	 by	 increasing	 the	
number	of	processors	utilized.	This	in	turn	allows	the	analyses	of	a	
large	number	of	genomic	loci	to	estimate	demographic	history,	a	task	
that	was	previously	 intractable	 owing	 to	 computational	 overhead.	
These	 tools	 assume	 that	 genomic	 loci	 are	 independent,	 freely	 re-
combining	between	loci,	nonrecombining	within	loci,	and	putatively	
neutral	(summarized	in	Strasburg	&	Rieseberg,	2010).	When	datasets	
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fit	these	assumptions,	the	methods	give	robust	results	(summarized	
in	Sousa	&	Hey,	2013).	As	of	 late,	Hey	et	al.	 (2015)	simulated	data	
where	the	number	of	loci	sampled	was	small	and	exhibited	very	low	
divergence	between	populations	to	detect	an	excess	of	false	posi-
tive	for	the	presence	of	migration	(also	described	in	Cruickshank	&	
Hahn,	2014).	This	study	points	to	high	false-	positive	rates	for	detect-
ing	migration	using	likelihood	ratio	tests	while	using	the	IM	suite	of	
tools	on	data	that	show	low	divergence	(i.e.,	very	low	FST),	and	while	
using	 a	 small	 number	 of	 loci.	 In	 addition,	much	 like	 other	MCMC	
methods	(e.g.,	STRUCTURE;	Pritchard,	Stephens,	&	Donnelly,	2000),	
the	 length	of	a	“run”	of	the	IM	tool	used	is	paramount	(longer	and	
many	duplicate	runs	preferred)	in	ensuring	mixing,	convergence,	and	
adequate	sampling	of	genealogies.

Recent	 studies	 that	 have	 estimated	 demography	 under	 the	 IM	
model	 as	 applied	 to	 conservation	 include	 McKelvy	 and	 Burbrink	
(2017)	that	tests	24	nested	models	of	evolution	and	species	delinea-
tion	across	the	North	American	range	of	the	yellow-	bellied	kingsnake	
(Lampropeltis calligaster),	and	Vázquez-	Miranda	et	al.	 (2017)	study	of	
Le	Conte’s	thrashers	(Toxostoma lecontei)	in	estimating	negligible	mi-
gration	among	subspecies	to	recommend	conservation	status	across	
their	Western	North	American	range.	Other	tools	to	test	complex	de-
mographic	models	using	genomic	data	include	coalescent	simulation-	
based	methods	(e.g.,	FASTSIMCOAL;	Excoffier	&	Foll,	2011;	Excoffier,	
Dupanloup,	 Huerta-	Sánchez,	 Sousa,	 &	 Foll,	 2013),	 Approximate	
Bayesian	 Computation	 (ABC;	 Beaumont,	 Zhang,	 &	 Balding,	 2002;	
Robinson,	Bunnefeld,	Hearn,	Stone,	&	Hickerson,	2014)-	based	meth-
ods	 that	 compare	 summary	 statistic	 distributions	 in	 simulated	 ver-
sus	observed	populations,	and	diffusion	approximations	to	the	joint	
allele	 frequency	 spectrum	 for	 demographic	 inference	 (e.g.,	 ∂a∂i,	
Gutenkunst,	Hernandez,	Williamson,	&	Bustamante,	2009).	In	general,	
model-	based	 estimation	 of	 evolutionary	 demographic	 history	 (both	
ancient	and	recent)	when	applied	in	combination	with	summary	pop-
ulation	genetic	statistics	as	described	above	(including	FST,	 inbreed-
ing	coefficients,	and	homozygosity),	and	non-	model-	based	methods	
(including	STRUCTURE	and	ADMIXTURE;	Alexander,	Novembre,	&	
Lange,	2009;	Pritchard	et	al.,	2000)	can	prove	to	be	useful	means	to	
bridge	genomics	and	conservation	in	particular.

5  | BROAD RECOMMENDATIONS AND 
CONCLUSIONS

Common	 advice	 among	 instructors	 was	 to	 gain	 extensive	 experi-
ence	in	computer	programming.	Students	were	encouraged	to	seek	
out	online	resources	and	to	work	 in	 interdisciplinary	teams,	where	
through	mentorship	and	close	collaboration	they	can	learn	the	ba-
sics	in	an	applied	setting.	A	key	theme	was	the	importance	of	contin-
uing	to	develop	and	teach	programming	at	all	levels	(e.g.,	elementary	
through	graduate),	with	a	 specific	 focus	on	better	 integrating	bio-
informatics	instruction	into	undergraduate	life	sciences	education.

The	advent	of	“big	data”	presents	a	critical	challenge	in	the	fields	
of	 population	 and	 conservation	 genomics.	 Interdisciplinary	 collab-
oration	 is	 a	 key	 as	 it	 becomes	more	difficult	 for	 researchers	 to	 be	

experts	in	both	data	production	(e.g.,	field	work,	biological	sampling)	
and	 bioinformatics	 or	mathematical	modeling.	 Koop	 acknowledges	
that	he	fills	his	team	with	bioinformaticians	as	well	as	biologists,	but	
“when	you	find	the	rare	individual	who	understands	both	the	popu-
lation	genomics	and	the	bioinformatics,	you	do	everything	you	can	to	
hold	onto	them.”	Furthermore,	the	“Ten	Simple	Rules	for	a	Successful	
Cross	Disciplinary	Collaboration”	 by	Knapp	et	al.	 (2015)	 is	 a	 useful	
resource	for	gaining	skills	for	a	successful,	synergistic	collaboration.

In	 conclusion,	 the	 genomic	 era	 presents	 both	 new	data	 analy-
sis	challenges	and	opportunities	to	visualize,	understand,	and	apply	
population	genomic	data	 to	 conservation	 in	novel	ways.	Here,	we	
emphasize	 producing	 and	 visualizing	 erroneous	 datasets,	 possible	
effects	 of	 filtering	 on	 downstream	 analyses,	 and	 how	 to	 improve	
downstream	computational	analyses	to	prevent	drawing	erroneous	
conclusions.	The	experts	at	ConGen	instructed	students	to	under-
stand	and	use	reliable	biological	models	and	to	develop	clear	ques-
tions	and	hypotheses	rooted	in	evolutionary	and	ecological	theory.	
In	summary,	ConGen	and	this	article	present	problems	and	solutions	
with	the	goal	of	improving	the	use	of	genomics	in	the	fields	of	popu-
lation	genomics,	molecular	ecology,	and	conservation	biology.
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