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Abstract—Distribution system operators (DSOs) world-wide
foresee a rapid roll-out of distributed energy resources. From the
system perspective, their reliable and cost effective integration
requires accounting for their physical properties in operating
tools used by the DSO. This paper describes an decomposable
approach to leverage the dispatch flexibility of thermostatically
controlled loads (TCLs) for operating distribution systems with
a high penetration level of photovoltaic resources. Each TCL
ensemble is modeled using the Markov Decision Process (MDP).
The MDP model is then integrated with a chance constrained
optimal power flow that accounts for the uncertainty of PV
resources. Since the integrated optimization model cannot be
solved efficiently by existing dynamic programming methods or
off-the-shelf solvers, this paper proposes an iterative Spatio-
Temporal Dual Decomposition algorithm (ST-D2). We demon-
strate the merits of the proposed integrated optimization and
ST-D2 algorithm on the IEEE 33-bus test system.

I. INTRODUCTION

Distributed energy resources (DERs) are viewed as a techo-
economically viable alternative to conventional generation
resources and, in some cases, have been shown to pro-
vide cost-competitive system support services, including peak
shaving, ancillary services, emergency and disaster response,
and investment deferral [1]. E.g., the State of New York
estimates a total technical potential of roof-top photovoltaic
(PV) resources (roughly, 80% of DERs) at 2,615 MW of the
cumulative peak capacity and 8,223 GWh production by 2030
[2]. Under such PV penetration levels, distribution system
operators (DSO) are likely to exhaust existing means for
compensating PV intermittency, as well as for distribution
power flow and voltage control. In turn, lack of such means
may limit the ability to further integrate DER resources. One
way to deal with such challenges and overcome existing
barriers for DER integration is to fully realize the potential of
behind-the-meter demand response capabilities [2]. This paper
proposes an approach to leverage the flexibility of behind-the-
meter thermostatically controlled loads (TCLs) for operating
PV-dominant distribution systems.

Previously, demand response capabilities have been con-
sidered at the system-level for centralized, hierarchical, and
distributed control architectures [3]. The common element
of these architectures is their reliance on load aggregators
as mediators between the DSO and behind-the-meter DERs
that are not observable by the DSO. Each aggregator can
continuously refine knowledge of each individual resource,
e.g. via machine learning [4], and use this knowledge to
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accurately quantify their dispatch capabilities. In turn, this
flexibility whether in the form of load curtailment or load
increase can be offered by the aggregator to the DSO in
exchange for a certain compensation. The primary difficulty
associated with such schemes is two-fold. First, the aggregator
needs to model an ensemble of individual TCLs that may
vary in a wide range. Second, these resources are driven
by the activity of their customers and therefore the aggre-
gator needs to accurately predict their behavior. In case of
TCL ensembles, these two difficulties can simultaneously be
overcome by modeling each ensemble as a Markov Decision
Process (MDP). In [5]–[9], each TCL ensemble is modeled
as a discrete-time, discrete-space MDP that is well suited
for capturing stochastic dynamics of individual TCLs and is
computationally scalable to accommodate hundreds of TCLs
in each ensemble. The models [7]–[9] exploit naive economic
dispatch frameworks that co-optimize the flexibility of TCL
ensembles and distribution system operations. The common
caveat of [7]–[9] is that network constraints are neglected and,
as a result, these models do not ensure compliance with power
flow and voltage limits. Furthermore, [7]–[9] do not account
for the uncertainty of PV injections and treat these resources
in a deterministic manner. The former caveat is addressed in
[10], where TCL ensembles are operated by the aggregator and
network constraints are included using the LinDistFlow power
flow model [11]. The resulting problem in [10] is solved using
an iterative solution technique. Similarly to [7]–[9], the model
in [10] treats PV injections deterministically and therefore is
vulnerable to the effects of their intermittency.

Recent efforts to account for the intermittency of PV
resources in decision-support tools for DSOs include the
use of stochastic programming, especially chance constraints
[12]–[15]. Chance constraints naturally fit distribution system
operations as they impose a desired tolerance (probability
level) to violations of technical constraints (e.g. power flow
and voltage limits) so that DSOs can adjust their tolerance
based on their reliability preferences and standards. Addition-
ally, the use of chance constraints is motivated as follows.
First, as in [16], they can be reformulated as second-order
conic (SOC) constraints that are computationally tractable.
Such reformulations exist for multiple probability distributions
that are shown to accurately represent the uncertainty of PV
resources [17]. Second, chance constraints make it possible to
trade-off solution cost and robustness by adjusting the desired
tolerance to constraint violations. Finally, chance constraints
have a well-established connection to data-driven optimization
methods, [18], that can be leveraged to overcome limitations
of assuming a particular probability distribution. Dall’Anese
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et al. [12] present a chance-constrained (CC) optimal power
flow (CC-OPF) model with AC power flow constraints based
on the LinDistFlow power flow model. This work is extended
in [15] by introducing new power-flow-based control policies
for PV resources that enhance their ability to participate in
voltage regulation and power loss minimization. Reference
[13] extends the chance constraints derived in [12], [15] under
the Gaussian assumption into a data-robust form. Reference
[19] optimizes the TCL dispatch in a centralized manner
using the chance-constrained framework. However, solving
this optimization from the perspective of the centralized
controller increases computational complexity of the problem
and, therefore, it may not scale well due to a significant
communication overhead.

With the exception of our previous work in [10], the MDP
based model for TCLs and CC-OPF optimization are always
performed separately. Since TCL ensembles and PV resources
are best modeled by the MDP and chance constrained frame-
works respectively, this paper seeks to bridge the gap between
the MDP approaches to model TCL ensembles from the
aggregator perspective, [7]–[9], and the CC-OPF literature
that operates the distribution system from the centralized
DSO perspective, [12]–[15]. Based on [10], we propose a
decomposition-based algorithm that divides the optimization
tasks between the DSO and the TCL ensembles, while mini-
mizing communication needs among them. This paper makes
the following contributions:

1) It formulates an integrated optimization problem that
includes both the MDP optimization of TCL ensembles
and the CC-OPF optimization of the distribution system.
Relative to the previous work in [7]–[9], [12]–[15], the
integrated model not only accounts for the TCL dispatch,
but also ensures compliance with distribution system
limits and internalizes the PV uncertainty via chance
constraints. Furthermore, the CC-OPF optimization is
extended to account for the expected value of the
quadratic real power losses in the objective function.

2) To efficiently solve the proposed integrated model,
we develop a Spatio-Temporal Dual Decomposition
(ST-D2) algorithm, which is based on the traditional
dual decomposition [20]. This novel application of the
dual decomposition makes it possible to co-optimize
the MDP and CC-OPF subproblems iteratively using
dynamic programming and SOC programming methods,
respectively.

The proposed integrated model and ST-D2 algorithm are
tested on the IEEE 33-bus test system presented in [21]
to demonstrate the efficiency of our model. To assess the
performance of the proposed algorithm and demonstrate its
scalability, additional simulations are performed on the 37-,
123- and 8500-bus IEEE systems [22].

The rest of the paper is organized as follows. Section II
presents an MDP model for optimizing the dispatch of TCL
ensembles operated by the aggregator and then integrates
this model with the distribution CC-OPF model. Section III
describes the proposed algorithm to solve the integrated model
described in Section II. Section IV presents the case study
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Figure 1. A radial distribution system with notations.

to validate the the proposed model and algorithm. Section V
concludes the paper.

II. MATHEMATICAL FORMULATION

A. Preliminaries

We consider a radial distribution system represented by
graph Γ = (E ,N ), where E and N are the sets of lines
(edges) and buses (nodes), see Fig. 1. The set of operating
time intervals is represented by T , indexed by t. The set of
buses where controllable generation resources are located is
denoted as N G ⊆ N , the set of buses where PV resources
are located is denoted as NPV ⊆ N and the set of buses
where TCL ensembles are located is denoted as N T ⊆ N .
Each node can be characterized by its active and reactive
load (pct,b and qct,b, ∀t, b ∈ N ), active and reactive power
output of controllable generation resources (pgt,b and qgt,b, ∀t,
b ∈ N G), active and reactive PV generation (pPVt,b and qPVt,b ,
∀t, b ∈ NPV ), active and reactive injections (pt,b and qt,b, ∀t,
b ∈ N T ) and voltage magnitude vt,b ∈[V b, V b], ∀t, b ∈ N ,
where V b and V b are the upper and lower nodal voltage limits
respectively. The square of the nodal voltage is denoted as ut,b
= v2t,b, ∀t, b ∈ N , with limits as U b = (V b)

2 and U b = (V b)
2.

Each line is characterized by its active and reactive power
flows (fpt,l and fqt,l, ∀t, l ∈ E), its resistance and reactance (Rl
and Xl, l ∈ E). The origin and receiving buses for each line
are indexed as o(l) and r(l). The bold font will denote the
uncertain quantities.

The main notations are defined as follows:

Variables

f
p/q
t,l Active/reactive power flows in line l during time

interval t
Pαβt,b Transition probability from state β to state α for

the TCL ensemble at bus b during time interval t
pt,b/qt,b Active/reactive power injections at bus b during

time interval t
pgt,b/q

g
t,b Active/reactive power output of controllable gen-

eration resources at bus b during time interval t
pPVt,b /q

PV
t,b Active/reactive PV generation at bus b during

time interval t
pαb /q

α
b Rated active/reactive power consumption at state

α for the TCL ensemble at bus b
ut,b Voltage magnitude squared at bus b during time

interval t
vt,b Voltage magnitude at bus b during time interval

t
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αt,b Participation factor of the controllable generation
resource at bus b during time interval t

γαβt,b Cost penalty factor on the transition from state α
to state β for the TCL ensemble at bus b during
time interval t

λ
p/q
t,b Lagrange multipliers
ρ
α/β
t,b Probability of the TCL ensemble being in state

α/β located at bus b during time interval t

Parameters

G
p

b/G
p
b Maximum/minimum active power output of con-

trollable generation resources at bus b
G
q

b/G
q
b Maximum/minimum reactive power output of

controllable generation resources at bus b
K Power factor
Pαβt,b Default transition probability from state β to state

α for the TCL ensemble at bus b during time
interval t

Rl Resistance of line l
Xl Reactance of line l
U b/U b Maximum/minimum limit on the voltage squared

at bus b
V b/V b Maximum/minimum limit on the voltage at bus

b
V0 Base voltage squared at root-bus (substation)
δ Exogenous step-scaling parameter
ε
p/q
t,b Active/reactive forecast error
ε̃
p/q
t Aggregated active/reactive forecast error
ζ Tolerance for the termination of the algorithm
ηg/ηv Violation tolerance on chance constraints
Λt Parameter to monetize active power losses

B. Modeling a TCL Ensemble

We assume that all TCLs which are co-located at the same
bus of the distribution system are organized in one TCL
ensemble and is operated by one aggregator. Each ensemble
is assumed to have a sufficiently large (infinite) number of
TCLs. Under this assumption, one can represent each TCL
ensemble as a discrete-time and discrete-space MDP and
consider that it is capable of maintaining scheduled injections
with the distribution system (i.e. there are no fluctuations).
The aggregator controls the TCL ensemble by optimizing its
transition from one aggregated state to another across the
optimization horizon. Similarly to our previous work in [10],
we use the MDP framework to build the following model for
each TCL ensemble at bus b:

min
ρ,P,p,q

∑
t∈T

OAb,t := Eρ
∑
t∈T

∑
α∈A

−Uαt+1,b +
∑
β∈A

γαβt,b log
Pαβt,b
Pαβt,b


(1)

ραt+1,b =
∑
β∈A

Pαβt,b ρ
β
t,b, ∀α ∈ A, t ∈ T (2)

pt,b =
∑
α∈A

pαb ρ
α
t,b, ∀t ∈ T , b ∈ N (3)

qt,b =
∑
α∈A

qαb ρ
α
t,b, ∀t ∈ T , b ∈ N (4)

∑
α∈A
Pαβt,b = 1, ∀t ∈ T , β ∈ A, b ∈ N T (5)

where ραt,b ≥ 0 and ρβt,b ≥ 0 are decision variables that
characterize the probability that TCLs at bus b are operated in
states α and β and have active power consumptions modeled
by parameters pαt,b and pβt,b, respectively. The set of states for
each TCL ensemble is denoted as A and individual states α
and β are α, β ∈ A.1 These states are obtained by discretizing
the range of power consumption for each TCL ensemble
given the operating range of each TCL (see Fig. 4). Decision
variables ραt,b and ρβt,b are related via the transition probability
Pαβt,b that characterizes the probability of the transition of
TCLs at bus b from state β at time t to state α at time
t+ 1. On the other hand, parameter vector Pαβt,b represents the
default transition probability, i.e. internal dynamics of the TCL
ensemble without actions of the aggregator. In practice, one
can dynamically estimate Pαβt,b from historical observations
using reinforcement learning [4].

Eq. (1) represents the objective function of the aggregator
that controls the TCL ensemble and aims to maximize the
expected utility of the aggregator (Uαt+1,b) and to minimize
the discomfort cost for the TCL ensemble, which is computed
using the exogenous cost penalty (γαβt,b ) and the Kullback-
Leibler (KL) distance to penalize the difference between the
transition decisions made by the aggregator (Pαβt,b ) and the

default transitions of the TCL ensemble (Pαβt,b ). The choice of
Kullback-Leibler distance for the penalty cost is motivated
by its wide use for modeling randomness of discrete and
continuous time-series. Other penalty functions can also be
used instead. Eq. (2) describes the temporal evolution of the
TCL ensemble, where initial conditions over the course of
the optimization horizon are given by the decision of the
aggregator during the previous optimization horizon. Eq. (3)-
(4) computes the expected active and reactive power injections
of the TCL ensemble to the distribution system. Eq. (5)
imposes the integrality constraint on the transition decisions
optimized by the aggregator such that their total probability is
equal to one.

The optimization in Eq. (1)-(5) can be solved using dynamic
programming that facilitates scalability of our approach and
the ability to solve a large number of such optimizations, one
for each TCL ensemble, in parallel. This property is particu-
larly helpful when one deals with a large penetration of TCL
ensembles anticipated in distribution systems of the future.
Thus, in the following, we use a backward-forward algorithm
to solve Eq. (1)-(5). This algorithm is an iterative, two-step
procedure that is commonly used for inferring probabilities
of unknown state probabilities for Markov processes. We
customize this procedure to find the optimal TCL transitions
(Pαβt,b ) as further described in Appendix A. Note that the
optimization in Eq. (1)-(5) can be represented as a Linearly
Solvable MDP (LS-MDP) [23], if γαβt,b = 0, i.e., not state-
dependent. Such LS-MDP problems can be solved analytically,

1Note that the ensemble can remain in the same state at time t and t+ 1.
In this case state β is such that β = α ∈ A.
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i.e. without relying on iterative solution techniques [24]–[26],
which can be exploited in online dispatch applications.

C. Chance Constrained Optimal Power Flow

Proliferation of DERs imposes uncertainty on the nodal
power injections (e.g. due to the solar irradiance). Unlike TCL
ensembles, this uncertainty can be accurately parameterized
using standard probability distributions and thus endogenously
modeled in decision support tools used by the DSO in a
computationally tractable manner. We therefore formulate a
CC-OPF that takes the DSO perspective and seeks the least-
cost strategy to operate the distribution system given its
technical limits and PV uncertainty2.

1) Deterministic OPF: The CC-OPF is built based on the
following deterministic OPF model that considers AC power
flows using the LinDistFlow model [11] and disregards the PV
uncertainty:

min
pg,qg,pc,
qc,u,fp,fq

∑
t∈T

∑
l∈E

Rl
fp

2

t,l + fq
2

t,l

V 2
0

(6)

fpt,l(b)+p
g
t,b+p

PV
t,b =pct,b+pt,b +

∑
l|o(l)=b

fpt,l,∀t∈T ,b∈N (7)

fqt,l(b)+q
g
t,b+q

PV
t,b =qct,b+qt,b+

∑
l|o(l)=b

fqt,l,∀t ∈ T ,b∈N (8)

ut,r(l) = ut,o(l) − 2(Rlf
p
t,l +Xlf

q
t,l), ∀t ∈ T , l ∈ E (9)

Gpb ≤ p
g
t,b ≤ G

p

b , ∀t ∈ T , b ∈ N G (10)

Gqb ≤ q
g
t,b ≤ G

q

b , ∀t ∈ T , b ∈ N G (11)

U b ≤ ut,b ≤ U b, ∀t ∈ T , b ∈ N (12)

Eq. (6) minimizes the active power losses in the distribution
system. Note that the proposed formulation and algorithm can
accommodate other choices of the objective function (e.g. cost-
minimization). Eq. (7)-(9) are nodal active and reactive power
balances as in the LinDistFlow model [11]. Although Eq. (7)-
(9) neglect the effect of power losses, the objective function
in Eq. (6) can still be formulated in a loss-minimization
manner based on the active and reactive power flows fpt,l
and fqt,l provided by the LinDistFlow model. In Eq. (7)-
(8), pt,b and qt,b are parameterized and obtained from the
MDP optimization in Eq. (1)-(5). Eq. (10)-(11) enforce the
minimum and maximum limits on the active and reactive
power output of controllable generation resources. Eq. (12)
limits voltage magnitudes squared within their minimum and
maximum values.

2) PV Uncertainty: The uncertain PV output at every bus b
and time interval t is defined as pPVt,b = pPVt,b −ε

p
t,b, where pPVt,b

is the forecast value and εpt,b is a forecast error. We assume that
this forecast error follows a zero-mean, normal distribution
with variance σ2

t,b, i.e. εpt,b ∼ N(0, σ2
t,b). The forecast error

in that form is commonly provided by forecast vendors (e.g.

2 Additional uncertainty may also arise from the TCL ensembles due to
a large but finite number of TCL users. However, as per the law of large
numbers, these fluctuations scale as ∼ 1/

√
N , where N is a number of

users, and are thus significantly smaller than O(1) fluctuations of the PV
resources.

[27]). Furthermore, the inaccuracy of assuming normally dis-
tributed forecast errors can be mitigated in the CC-OPF using
data-robust approaches as in [13], [28]. Since active power
forecast errors also cause fluctuations of the reactive power, we
assume that the latter errors are proportional, i.e. εqt,b = εpt,bK,
where K is a parameter computed for a given power factor.
To compensate for the forecast error and thus to maintain
the generation-load balance, controllable generators operated
by the DSO are assumed to adjust their output based on a
proportional control law, [13], [16], [28]. This control assumes
that each controllable generator compensates a fraction of
the aggregated forecast error by changing its real-time active
(pgt,b) and reactive (qgt,b) power outputs around its generation
setpoints pgt,b and qgt,b optimized for a given forecast based on
optimized participation factors αt,b. This control is formalized
as:

pgt,b = pgt,b+αt,bε̃
p
t , ∀t, b ∈ N G (13)

qgt,b = qgt,b+αt,bε̃
q
t , ∀t, b ∈ N G (14)

where ε̃pt =
∑
b∈NPV ε

p
t,b and ε̃qt =

∑
b∈NPV ε

q
t,b are the ag-

gregated forecast errors for every time interval t. Participation
factors αt,b are optimized to accommodate different technical
and cost characteristics of controllable generators with the
condition

∑
b∈NG αt,b = 1, ∀t ∈ T , i.e. the total change in

the output of controllable generators is equal to the aggregated
forecast error.

Following the realization of εpt,b and εqt,b, the real-time active
(fpt,l) and reactive (f qt,l) power flows are modeled as:

fpt,l = fpt,l + al∗(ε
p
t − αtε̃

p
t ), ∀t, ∀l (15)

f qt,l = fqt,l + al∗(ε
q
t − αtε̃

q
t ), ∀t, ∀l (16)

where al∗ denotes the lth row of a matrix A : |E| × |N | with
elements a(lb) which we define such that:

a(lb) =


1, if line l is part of the path

from root to bus b l ∈ E , b ∈ N
0, otherwise

and αt is a |N | × 1 vector with elements αt(b) such that:

αt(b) =

{
αt,b, if b ∈ N G

0, otherwise.

Accordingly, one can use Eq. (15)-(16) to derive the real-
time voltage magnitudes squared (ut,b):

ut,r(l) = ut,r(l) − 2a>∗r(l)[RA(εpt − αtε̃
p
t )

+XA(εqt − αtε̃
q
t )], ∀t ∈ T , b ∈ N

(17)

where R, X are |E| × |E| matrices with diagonal entries
consisting of the line resistances and reactances respectively:
R(ii) = Ri, R(ij,i6=j) = 0, X in analogy.

3) Formulation: Using the results in Eqs. (13)-(17), the
deterministic OPF in Eq. (6)-(12) can be converted into the
following CC-OPF formulation that accounts for real-time
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quantities pgt,b, q
g
t,b, f

p
t,l, f

q
t,l and ut,b following realizations

of εpt,b and εqt,b:

min
pg,qg,

pc,qc,u,fp,
fq,α

∑
t∈T

ODt = Eεp,εq
[∑
t∈T

∑
l∈E

Rl
fp

2

t,l + f q
2

t,l

V 2
0

]
(18)

Eq. (7)-(9), (19)
Eq. (13)-(14), (17) (20)

P(pgt,b ≤ G
p

b) ≥ (1− ηg), ∀t ∈ T , b ∈ N G (21)

P(Gpb ≤ pgt,b) ≥ (1− ηg), ∀t ∈ T , b ∈ N G (22)

P(qgt,b ≤ G
q

b) ≥ (1− ηg), ∀t ∈ T , b ∈ N G (23)

P(Gqb ≤ qgt,b) ≥ (1− ηg), ∀t ∈ T , b ∈ N G (24)

P(ut,b ≤ U b) ≥ (1− ηv),∀t ∈ T , b ∈ N (25)
P(U b ≤ ut,b) ≥ (1− ηv),∀t ∈ T , b ∈ N , (26)

where ηg and ηv are exogenous parameters that define tol-
erance to constraint violations. Eq. (21)-(26) are chance
constraints on the power outputs of conventional genera-
tors and voltage magnitudes squared that replace determin-
istic constraints in Eq. (10)-(12). Under the assumption that
ηg, ηv < 0.5, one can recast Eqs. (21)-(26) into SOC con-
straints that can in turn be solved efficiently using off-the-shelf
solvers, [16], [28]. The reformulation process for Eq. (21)-(26)
is shown in Appendix B. Accordingly, the expected value in
the objective function given by Eq. (18) is derived below as:∑

t∈T
ODt =

∑
t∈T

∑
l∈E

Rl
V 2
0

(
E[fp

2

t,l ] + E[f q
2

t,l ]
)
, (27)

where E[f q
2

t,l ] and E[f q
2

t,l ] are as follows:

E[fp
2

t,l ] = Var(fpt,l) + (fpt,l)
2

=
∑
j∈N

[
alj(Var(εpt,j)− α

2
t,jVar(ε̃pt ))

]
+ (fpt,l)

2 (28)

E[f q
2

t,l ] = Var(f qt,l) + (fqt,l)
2

=
∑
j∈N

[
alj(Var(εqt,j)− α

2
t,jVar(ε̃qt ))

]
+ (fqt,l)

2 (29)

Given Eq. (28)-(29), the right hand-side of the original objec-
tive function in Eq. (27) can be re-written as:∑
t∈T

ODt =
∑
t∈T

∑
l∈E

Rl
V 2
0

[∑
j∈N

[
alj(Var(εpt,j)−α

2
t,jVar(ε̃pt ))

]
+fp

2

t,l

+
∑
j∈N

[
alj(Var(εqt,j)−α

2
t,jVar(ε̃qt ))

]
+fq

2

t,l

]
. (30)

Thus, Eq. (30) is a quadratic, deterministic equivalent of
the original objective function permissible for off-the-shelf
solvers.

Remark 1: While the Gaussian assumption to represent the
PV uncertainty is sufficient for the needs of this paper, it is
not generally restrictive. As shown in [13], [29], [30], non-
Gaussian distributions or their approximation via a Gaussian
mixture can be used to reformulate the chance constraints
without increasing computational complexity of the model.

Such reformulations tend to yield a more robust, but expensive
solution.

Remark 2: Note that the CC-OPF in Eq.(18)-(26) does not
impose power flow limits on fpt,l and f qt,l, because distribution
systems are typically voltage-constrained and power flow
limits can be disregarded. In [31], we describe an approach
to enforce chance-constrained apparent power limits.

Remark 3: The PV uncertainty is modeled with individual
chance constraints as given by Eq. (21)-(26), which are com-
putationally tractable. Alternatively, one can consider the joint
chance constraint over Eq. (21)-(26), but such a formulation
would be computationally unbearable [32]. Since replacing the
joint chance constraint with individual chance constraints may
lead to a conservative solution, especially for large networks,
one needs to tune the value of parameters ηg and ηv .

D. Integrated Optimization Problem

Based on the models in Eq. (1)-(5) and in Eq. (18)-(26),
the integrated optimization problem that includes MDP and
CC-OPF is formulated as follows:

min
ρ,P,u,p,q
fp,fq,

pc,qc,pg,qg

∑
t∈T

[ ∑
b∈NT

OAb,t + ΛtO
D
t

]
(31)

Eq. (2)− (5) (32)
Eq. (19)− (26), (33)

where parameter Λt is a tariff that monetizes the active
power losses to make them comparable to the MDP objective
function. The optimization in Eq. (31)-(33) cannot be solved
efficiently using existing dynamic programming methods and
off-the-shelf solvers. This motivates the solution technique
described in Section III.

III. SOLUTION TECHNIQUE

To solve the integrated problem in (31)-(33), we propose a
Spatio-Temporal Dual Decomposition (ST-D2) algorithm that
exploits two ideas. First, we seek the consensus between the
MDP and CC-OPF and thus use a dual decomposition of
the original problem. Second, we decouple some spatially-
and temporally-independent decision variables. The spatial
separation is applied because each TCL ensemble is located
at a unique bus and therefore can be optimized separately.
In this case, the MDP optimization for each TCL ensemble
is performed over the entire optimization horizon to capture
inter-temporal constraints on each TCL ensemble. On the
other hand, the CC-OPF decisions are temporally separa-
ble since controllable generators located in the distribution
system typically do not have such inter-temporal constraints
as ramping rate and minimum up/down time limits, which
are customary for transmission systems. Therefore, the CC-
OPF can be solved separately for each time interval t, see
[12] for a time-decoupled OPF example. In the presence of
temporally coupled resources, e.g. energy storage systems,
which introduce the inter-temporal constraints, the CC-OPF
can be solved over the entire optimization horizon. This will
increase computing times, but is still computationally tractable
as shown in [13].
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Figure 2. Spatio-Temporal Dual Decomposition (ST-D2) Algorithm.

The proposed ST-D2 algorithm iterates as illustrated in
Fig. 2 and each step is further itemized below, where ν is
an iteration counter:

1) Solve the MDP for each TCL ensemble:

∀b ∈ N T : min
ρ,P

∑
t∈T

O
A(ν)
b,t

Eq. (2)− (5)

U
α(ν)
t+1,b=U

α(ν)
t,b +λ

p(ν)
t,b pαb +λ

q(ν)
t,b qαb ,

∀α∈A,t∈ T

where λ
p(ν)
t,b and λ

q(ν)
t,b are the Lagrange multipli-

ers of Eq. (3) and (4), respectively, obtained at the
previous iteration of the ST-D2 algorithm. Hence,
λ
p(ν=1)
t,b = λ

q(ν=1)
t,b = 0 during the first iteration.

2) Solve the CC-OPF problem, where each TCL ensemble
is parameterized using the values of Lagrange multipli-
ers λp(ν)t,b :

∀t ∈ T : min
pg,qg,pc,
qc,u,fp,fq

∑
t∈T

ΛtO
D(ν)
t

−
∑
b∈N

(λ
p(ν)
t,b p

(ν)
t,b + λ

q(ν)
t,b q

(ν)
t,b )

Eq. (19)− (26),

where the CC-OPF problems for all time intervals are
solved in parallel.

3) Update the Lagrange multipliers:

λ
p(ν+1)
t,b ← λ

p(ν)
t,b + δ

(∑
α∈A

pαb ρ
α(ν)
t,b − p

(ν)
t,b

)
λ
q(ν+1)
t,b ← λt,b + δ

(∑
α∈A

q
α(ν)
b ρ

α(ν)
t,b − q

(ν)
t,b

)

where δ is an exogenous parameter that can be tuned to
improve computational performance [20].

These iterations continue until λp(ν)t,b and λq(ν)t,b converge with
a given termination tolerance (ζ).

Remark 4: The proposed ST-D2 algorithm is based on
the dual decomposition and, therefore, it inherits algorithmic
properties of the dual decomposition, including convergence
properties and the ability to deal with non-convex decisions,
e.g. [33]. Furthermore, it can be extended to the Alternating
Direction Method of Multipliers (ADMM), which has gained
attention in distributed power grid applications [34], [35],
by adding the Augmented Lagrangian terms to the objective
function of the integrated problem. As pointed out in [36], the
ADMM algorithm blends the benefits of the dual decomposi-
tion and Augmented Lagrangian methods.

IV. CASE STUDY

The case study uses the IEEE 33-bus distribution system
[21], as shown in Fig. 3, where the root bus of the distribution
system is connected to the transmission network. The root bus
is considered as an infinite source of power supply. One con-
trollable distributed generator with the maximum capacity of
30 kW is placed at bus # 14. We consider that the power supply
cost from the root bus and from the distributed generator is
equal and set Λt = $10/kWh. Seven PV resources, with the
rated capacity of 1.5 kW, are installed at buses # 2, 3, 6, 18, 21,
25 and 32 and produce at zero cost. The forecast error of each
PV resource is zero-mean and its standard deviation is set to
30% of the forecast output unless stated otherwise. The loads
at buses # 17, 20, 23 and 26 are replaced with TCL ensembles
of the equivalent capacity. Each ensemble is discretized in
8 states, as shown in Fig. 4, with the default transition
probabilities (Pt,b) between the states as shown in Table I.
Each TCL ensemble can be dispatched in the the range of
10% - 200% of its average load. To assess the impact of TCL
users’ comfort, the cost penalty (γαβt,b ) is considered for two
cases. The first case, referred to in the following as the uniform

1
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4

5

67

8

91011

12

13

14 15 16 17 18

26

27

28

29 30 31 32

33

232425

19 20 21 22

Figure 3. A schematic representation of the IEEE 33-bus distribution test
system [21], where the root bus is denoted in green (# 1), bus with distributed
generator in orange (# 14), buses with PV resources in yellow (# 2, 3, 6, 18,
21, 25, 32), and buses with TCL ensembles in blue (# 17, 20, 23, 26).
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Figure 4. A MDP representation of the TCL ensemble with 8 states
displaying all possible transitions from state 1. The active and reactive power
consumptions at each state are obtained as uniform intervals within 10% -
200% of the average load of the TCL ensemble.

Table I
DEFAULT TRANSITION PROBABILITIES OF EACH TCL ENSEMBLE

BETWEEN EIGHT STATES IN FIGURE 4.
State 1 2 3 4 5 6 7 8

1 0.2 0.5 0.1 0.03 0.02 0.03 0.1 0.02
2 0.02 0.2 0.5 0.1 0.03 0.02 0.03 0.1
3 0.1 0.02 0.2 0.5 0.1 0.03 0.02 0.03
4 0.03 0.1 0.02 0.2 0.5 0.1 0.03 0.02
5 0.02 0.03 0.1 0.02 0.2 0.5 0.1 0.03
6 0.03 0.02 0.03 0.1 0.02 0.2 0.5 0.1
7 0.1 0.03 0.02 0.03 0.1 0.02 0.2 0.5
8 0.5 0.1 0.03 0.02 0.03 0.1 0.02 0.2

cost penalty case, assumes the same penalty for each possible
transition shown in Fig. 4, i.e. γαβt,b = 1$. The second case,
referred to in the following as the non-uniform cost penalty
case, differentiates between the transitions along the cycle
(e.g., 1 → 2 → 3 → 4 → 5 → 6 → 7 → 8 → 1) and other
transitions (e.g., 1→ 3, 1→ 4, 1→ 5, 1→ 6, 1→ 7, 1→ 8),
where the former transitions are penalized using γαβt,b = 1$

and the latter transitions are penalized with γαβt,b = 10$. This
differentiation allows to put a higher cost penalty on transitions
with a larger power change that are more disruptive for TCL
users’ comfort. The optimization horizon consists of 24 hourly
time intervals. For the sake of simplicity, we assume that
ηv = ηg .

All simulations are performed in Julia JuMP [37] using the
Ipopt solver on an Intel Core i5 1.6 GHz processor with 4 GB
of RAM. The value of ζ is set to 0.0001. The code and input
data used in this paper are available in [38].

A. Computational Performance

In the following numerical experiments, the proposed ST-
D2 algorithm converges in 4-7 iterations. There is no explicit
correlation observed between the complexity of the problem
(number of TCL ensembles considered) and the number of
iterations and computing times required for convergence. For
example, the most complex instance with four TCL ensembles
is solved in 189.90 seconds. Table II itemizes this computing
time for the MDP optimization (Step 1) and CC-OPF opti-
mization (Step 2). Wihtin these four iterations, only 19.92
seconds (≈ 10.4% of the total computing time) is spent on
the MDP optimization in Step 1, while the rest of the time is

Table II
COMPUTATIONAL PERFORMANCE OF THE PROPOSED ST-D2 ALGORITHM

WITH FOUR TCL ENSEMBLES OVER 24 TIME INTERVALS.

Iteration No.
Computational Time (s)

MDP (Step 1) CC-OPF (Step 2)
1 6.20 36.93
2 4.12 42.48
3 5.68 43.15
4 3.92 47.42

Total time 189.90

Table III
CONVERGENCE OF THE ST-D2 ALGORITHM FOR TIME INTERVALS AT 8,

16 AND 24 HOURS FOR THE TCL ENSEMBLE AT BUS # 17.

Iteration No.
Lagrange Multipliers

t=8 t=16 t=24
λp λq λp λq λp λq

1 15.4205 0.2575 15.4205 0.2575 15.4205 0.2575
2 12.5518 -0.6987 12.6090 -0.6796 12.8543 -0.5978
3 12.6305 -0.6724 12.6837 -0.6547 12.9228 -0.5750
4 12.6284 -0.6731 12.6818 -0.6553 12.9210 -0.5756
5 12.6284 -0.6731 12.6818 -0.6553 12.9210 -0.5756

Table IV
COMPUTATIONAL PERFORMANCE OF THE PROPOSED ST-D2 ALGORITHM
FOR A DIFFERENT NUMBER OF STATES WITHIN A GIVEN TCL ENSEMBLE

OVER 24 TIME INTERVALS.

No. of States
Computational Time (s)

MDP (Step 1) CC-OPF (Step 2) Total
4 5.56 137.08 142.64
8 19.92 169.98 189.90
12 35.81 178.68 214.49
24 122.29 163.41 285.7

incurred by the CC-OPF optimization in Step 2. These results
demonstrate that the MDP optimization has one-tenth bearing
on the overall complexity of the ST-D2 algorithm relative to
the computational burden of the CC-OPF optimization. The
convergence of this instance is detailed in Table III, where
values of Lagrange multipliers λpt,b and λqt,b for the TCL
ensemble at at bus # 17 are itemized for each iteration for
time intervals at 8, 16, and 24 hours. Comparing the results
for the 4th and 5th iterations in Table III reveals that desired
tolerance ζ is achieved.

Table IV and Table V demonstrate the computational per-
formance of the ST-D2 algorithm for a different number of
MDP states used to represent a given TCL ensemble and for a
different number of TCL ensembles hosted in the distribution
system, respectively. Naturally, increasing the number of states
in each ensemble and the number of TCL ensembles in the
system leads to greater computing times. Table VI summarizes
the computing times needed to solve the proposed model using
the proposed ST-D2 algorithm on the 37-, 123- and 8500-
bus IEEE systems, [22], with a different number of TCL
ensembles. As expected, the computational time increases for
a greater number of buses and TCL ensembles. However,
in all cases considered in Table VI, the optimal solution is
returned by the ST-D2 algorithm within an acceptable time
for operational tasks.

B. System Perspective

Solving the integrated optimization problem as in Eq. (31)-
(33) leads to the following two main results. First, it reduces
the active power losses in the distribution system as explicitly
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Table V
COMPUTATIONAL PERFORMANCE OF THE PROPOSED ST-D2 ALGORITHM

WITH A DIFFERENT NUMBER OF TCL ENSEMBLES OVER 24 TIME
INTERVALS.

No. of TCL Ensembles
Computational Time (s)

MDP (Step 1) CC-OPF (Step 2) Total
1 19.96 166.44 186.40
2 19.22 167.76 186.98
3 19.08 167.22 186.30
4 19.92 169.98 189.90

Table VI
COMPUTATIONAL PERFORMANCE OF THE PROPOSED ST-D2 ALGORITHM

FOR LARGER IEEE SYSTEMS.
Total Computational Time (s)

1 TCL ensemble 37 TCL ensemble 123 TCL ensemble
IEEE 37-bus 164.3∗ 178.9 N/A

IEEE 123-bus 181.3∗ 201.0∗ 267.4
IEEE 8500-bus 611.2∗ 624.7∗ 902.3∗

∗ All TCLs are located in the electrically most remote nodes from the root node of the
distribution system.

formulated in the objective function. Second, it improves
compliance with voltage limits.

Fig. 5 illustrates the effect of dispatching TCL ensembles
within the integrated optimization on the active power losses.
If there is no MDP optimization, the losses remain constant
during the optimization horizon. The uniform cost penalty
that dispatches the TCLs more aggressively than the non-
uniform cost penalty, as further discussed in Section C, is
more effective in reducing the active power losses relative
to the case without the TCL resources. As shown in Fig. 6,
the effectiveness of the TCL dispatch for reducing the losses
is particularly important for large standard deviations of the
forecast error that cannot otherwise be dealt with efficiently
using traditional controls considered in the CC-OPF formu-
lation. Similarly, it helps improve the voltage profile as the
uncertainty of the forecast error increases as shown in Fig. 7.

To further evaluate the effect of the TCL dispatch on the
compliance with voltage limits enforced in Eq. (25)-(26), we
generate 500 random samples representing the PV outputs
and assess the feasibility of the solution obtained by the
integrated optimization problem for different values of ηv .
This assessment is performed by re-dispatching the obtained
solution for each random sample. Fig. 8 presents the statistics
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Figure 5. The active power losses for the uniform and non-uniform cost
penalty cases, as well as without the dispatch of TCL resources.
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Figure 8. Statistics of the voltage limit violations for different values of ηv
over 24 time intervals in 500 randomly generated samples.

on the total number of voltage constraint violations during
the optimization horizon for different values of ηv . In all
instances observed in Fig. 8 the empirical probability of
violation is below the values postulated on ηv in (25)-(26).
An improvement in the compliance with voltage limits for
tighter values of ηv comes at an incremental increase in the
objective function of the DSO (< 0.1%).

C. Perspective of TCL Ensembles

From the perspective of the TCL ensembles, their ability
to exercise dispatch flexibility mainly depends on the value
of parameter γαβt,b . Fig. 9 compares the TCL decisions for
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Figure 9. Optimal steady-state probabilities ραt,b for different states α at
the aggregator on the TCL ensemble at bus # 26 with the uniform and non-
uniform cost penalty for the transitions between different states. The legend
denotes different states of the TCL ensemble as shown in Fig. 4.

the uniform and non-uniform cost penalty cases. As the
penalty γαβt,b considered in the non-uniform cost penalty setting
weights out-of-cycle transition probabilities higher than next-
step probabilities, the non-uniform cost penalty case will return
more homogeneous transition decisions Pαβt,b of the aggregator
during the optimization horizon. As a result, the steady-state
probability ραt,b for each state will be more homogeneous. The
probability masses associated with one-step ahead transitions
(largest as shown in Table I) can be exercised at a lower
cost compared to the other transitions and hence lead to more
homogeneity. In practice, this homogeneity implies that the
non-uniform cost penalty case does not lead to drastic changes
in the power consumption of the TCL ensemble, as per Eq. (3)-
(4), and is thus more suitable for accommodating comfort
constraints of TCL users. On the other hand, the uniform cost
penalty does not discriminate abrupt changes in the power
consumption of the TCL ensemble and leads to more dispersed
transitions. The difference between the uniform and non-
uniform cost penalty cases presented in Fig. 9 indicates that
there is a subtle trade-off between the comfort preferences of
the TCL users driven by their default dynamics (Pαβt,b ) and their
ability to exercise dispatch flexibility. Both parameters Pαβt,b
and γαβt,b can be refined within the proposed MDP optimization
by using reinforcement learning [4]. We leave it for our future
work.

V. CONCLUSION

This paper presents a modeling framework and algorithm to
integrate TCL ensembles in PV-dominant distribution systems
and co-optimize their dispatch flexibility with the rest of the
distribution system resources. The case study demonstrates
that the proposed model is capable of leveraging the dispatch
flexibility of TCL ensembles to reduce active power losses
and maintain nodal voltage magnitudes within an acceptable
range. Comparison between the uniform and non-uniform cost

penalty cases reveals that accounting for comfort preferences
of TCL users can significantly influence the effect of TCL
ensembles on the distribution system. The use of chance con-
straints on voltage limits also provides a flexible mechanism
to address the conservatism of the solution and is effective in
reducing violations of voltage limits.
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APPENDIX A
BACKWARD-FORWARD ALGORITHM

We overview the backward-forward algorithm below:
• Backward in time step. Starting at t = |T |, solve (1)-

(5) for P recursively backward in time, i.e. t → 1. This
process returns optimal Pαβt,b for transitions to all states
α from state β at time t given associated cost functions.
Each problem can be solved either by a Lagrange relax-
ation or by minimizing a convex function.

• Forward in time step. Reconstruct ρ using the relation-
ship in (2) forward in time, i.e. t→ |T |, with the initial
condition on ραt=0,b = ραin;b,∀α, where ραin;b is given.

Interested readers are referred to Appendix 1.9 in [7] and
to [10] for more details.

APPENDIX B
SOC REFORMULATION OF THE CHANCE CONSTRAINTS

Let ξ∼N(µ,Σ) be the vector of random variable with the
means and variances given by the vector µ and covariance-
matrix Σ, respectively, and let b and x be the vectors of
parameters and decision variables. The chance constraint of
the form:

P(ξTx ≤ b) ≥ 1− ε (34)

can be represented in the following form [20]:

µTx+ Φ−1(1− ε)
√
x>Σx ≤ b (35)

where ε ∈ [0, 1/2] is a given tolerance to violations and Φ−1

is the inverse cumulative distribution function of the standard
normal distribution. Eq. (35) is then convex and equivalent to
the following SOC constraint [20]:

t ≥
∥∥∥Σ

1
2x
∥∥∥
2

(36)

µTx+ Φ−1(1− ε)t ≤ b. (37)
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