THE SCALAR AUXILIARY VARIABLE (SAV) APPROACH FOR GRADIENT FLOWS*

JIE SHENT, JIE XU#, AND JIANG YANGS$

Abstract. We propose a new approach, which we term as scalar auxiliary variable (SAV) approach, to construct efficient
and accurate time discretization schemes for a large class of gradient flows. The SAV approach is built upon the recently
introduced IEQ approach. It enjoys all advantages of the IEQ approach but overcomes most of its shortcomings. In particular,
the SAV approach leads to numerical schemes that are unconditionally energy stable and extremely efficient in the sense that
only decoupled equations with constant coefficients need to be solved at each time step. The scheme is not restricted to specific
forms of the nonlinear part of the free energy, so it applies to a large class of gradient flows. Numerical results are presented to
show that the accuracy and effectiveness of the SAV approach over the existing methods.
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1. Introduction. Gradient flows are frequently used in mathematical models for problems in many
fields of science and engineering, particularly in materials science and fluid dynamics, see, for instance,
[4, 1, 15, 6, 13, 2, 8, 25] and the references therein. Hence, it is very important to develop efficient and
accurate numerical schemes for their simulation.

A gradient flow is usually determined by a driving free energy F(¢) and a dissipation mechanism. To fix
the idea, we consider a typical free energy functional F[¢(x)] = fﬂ[§|v¢|2 + F(¢)]dz, and the corresponding
gradient flow in H~':

o9
9P _A
(1.1) at
p=0E/0¢ = —Ad+ F'(¢),
subject to
(1.2) either periodic boundary conditions or g—ibg = g—zbg =0,

where n is the outward normal of 9. Taking the inner product of the first equation in (1.1) with x and the
second equation in (1.1) with aa—f, we obtain immediately the energy dissipation law:

d
(1.3) T Ele@)] = —[[Val?,
where || - || is the L? norm. A time discretization scheme for (1.1)-(1.2) is said to be energy stable if it satisfies

a discrete energy dissipation law. The goal of this paper is to present a new approach to construct efficient
and accurate energy stable schemes for general gradient flows.

2. A brief review of energy stable schemes for gradient flows. In order to motivate our new
approach, we provide below a brief review of several popular numerical approaches to construct energy stable
schemes for gradient flows.

2.1. Convex splitting approach. A very popular approach for gradient flow is the so called convex
splitting method which appears to be introduced by [9] and popularized by [10]. Assuming the free energy
density F(¢) can be split as the difference of two convex functions, namely, F(¢) = F.(¢) — F.(¢) with
F!(¢), F!'(¢) > 0. Then, the first-order convex splitting scheme reads:

¢n+1 _ ¢n _ AﬂnJrl’

(2.1) ot
P = =A™ (FUo™) — Flo™)).
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One can easily show that the above scheme is unconditionally energy stable in the sense that
(2.2) E(¢"t) — B(¢") < —0t||Vu" 2,

which is a discrete analog of (1.3). The convex splitting approach enjoys the following advantages: (i) It is
unconditionally energy stable; (ii) It is uniquely solvable; and (iii) It leads to a convex minimization problem
at each time step. But it also suffers from shortcomings such as (i) A nonlinear system has to be solved at
each time step; and (ii) There is no general approach to construct unconditionally stable second-order convex
splitting schemes, although such schemes have been developed case-by-case for some problems.

2.2. Stabilized approach. Another widely used approach is the stabilized scheme, introduced in [28]
(see also [18]). The main idea is to introduce an artificial stabilization term to balance the explicit treatment
of the nonlinear term. A first-order stabilized scheme for (1.1) reads:

(232) S o) = A
(2.30) P = AGT 4 S(6 - 67) + F(6"),

where S is a suitable stabilization parameter. It is shown in [18] that, under the assumption ||F"(¢)|lc < L,
the above scheme is unconditionally stable for all S > é The main advantage of the stabilized scheme is
its simplicity and efficiency. More precisely, it leads to a system of two coupled second-order equations with
constant coefficients. Moreover, it can be decoupled into two sequential second-order equations with constant
coefficients [26]. Hence, the stabilized scheme is extremely efficient, particularly when fast Poisson solvers are
available. However, it appears difficult to design second-order unconditionally energy stable schemes with a
stabilized approach, although some progress has been made recently in [17]. One can also use the spectral
deferred correction (SDC) [7] to takes a correction technique to enhance the accuracy of the stabilized scheme,
but it still fails to preserve the nonlinear energy stability [11].

2.3. Invariant energy quadratization (IEQ) approaches. An interesting approach is proposed in
[12] for dealing with Allen-Cahn and Cahn-Hilliard equations with double well free energy. It is based on
a Lagrange multiplier approach introduced in [3]. This approach can lead to unconditionally energy stable,
linear, second-order schemes for Allen-Cahn and Cahn-Hilliard equations with double-well free energies.
However, it cannot be easily extended to deal with other free energies. Very recently, X. Yang and his
collaborators [20, 21, 23, 24, 27, 22, 19] made a big leap in generalizing the Lagrange multiplier approach
to the so called invariant energy quadratization (IEQ) approach which is applicable to a large class of
free energies. More precisely, assuming that the free energy density F(¢) is bounded from below, e.g.,
there exists Cp > 0 such that F(¢) > —Cj, one then introduces a Lagrange multiplier (auxiliary variable)

q(t,z;0) = \/F(¢) + Cp, and rewrite (1.1) as

¢t = AM)
- Apt+—=L
(2.4) : Pt F(¢) + Co (@)
()
%= e F(qb)—i—Cqut'

Taking the inner products of the above with u, ¢; and 2q, respectively, we see that the above system satisfies
a modified energy dissipation law:

d 1
(25) GGIVelR + [ gds) =~ |Val?

dt "2 Q
The above formulation is amenable to simple and efficient numerical schemes. Consider for instance,

¢7L+1 _ (bn L
2.6 = Ap"t
(2.6) 5 TS
qn+1

(27) Mn-i—l _ _ A¢n+1 + F/(¢n),

F(¢m) + Co
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(2 8) qn+1 _ qn _ F’(¢") ¢n+1 _ ¢n
ot 2yF(¢")+Co Ot
Taking the inner products of the above with p"*+1, ¢"+; - ¢" and 29"t respectively, one obtains immediately:
5319+ [ @ e = SVt - [ (a2
ot L2 Q 2 Q
1
(29) + IV =+ [ (@ = )] = =

which indicates that the above scheme is unconditionally stable with respect to the modified energy. The
above approach enjoys the following advantages: (i) One can eliminate ¢"*! and p"*! from (2.6) to obtain
a linear fourth-order equation with variable coefficients for ¢" 1, so it is very efficient; (ii) It can be easily
extended to higher-order BDF-k scheme, with BDF-2 being unconditionally stable; and (iii) It applies to a
large class of gradient flows [20, 21, 23, 24, 27, 22, 19].

However, while the TEQ approach has proven to be a very powerful way to construct energy stable
schemes, it does leave some things to be desired: (i) It involves solving linear equations with complicated
VARIABLE coefficients; (ii) It requires that the free energy density F(¢) is bounded from below, and this
may not hold for some physically interesting models; and (iii) For gradient flows with multiple components,
it leads to a coupled system. These shortcomings can be effectively overcome with a simple modification of
the IEQ approach that we present below.

3. The scalar auxiliary variable (SAV) approach. We observe that the main reason for the above
shortcomings of TEQ approach is that the auxiliary variable ¢ depends on the space variable. Therefore,
instead of assuming F'(¢) is uniformly bounded from below, we now only assume Ei(¢) := [, F(¢)dz is
bounded from below, i.e., E1(¢) > —Cj, which is necessary for the free energy to be physically sound, and
introduce a scalar auxiliary variable (SAV):

r(t) =V E1(¢) + Co.

Then, (1.1) can be rewritten as:

oo
E - Aﬂu
(3.1) p=—A¢+ $F’(¢),

Eq[¢] + Co

Tt

1 !
- TEETE /Q F/(¢)dudz.

99

Taking the inner products of the above with u, 57

dissipation law:

and 2r, respectively, we obtain the modified energy

d 1 2, .2 2

—(= t) = — .

SGIVI2 + (1) =~ Vul

We now construct a semi-implicit second-order BDF scheme for the above system.

3¢n+1 _ 4¢n + ¢n71

(3.2)

(3.3a) 551 = Ap"
(33b) ,LLnJrl — 7Ad)n+1 + rntl F,/(gz,)njtl/Q)7
Eq[pnt1/2] + Cy
(3 SC) 3T"+1 —4rn 4 ,rn—l - / F/(¢n+1/2) 3¢n+1 _ 4¢n + ¢n—1 e
' 26t B E1[¢" 172 + G 26t ’

where ¢"*1/2 is any explicit O(6t?) approximation for ¢(¢"*+1), which can be flexible according to the problem,
and which we will specify in our numerical results.
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THEOREM 3.1. The scheme (3.3) is unconditionally energy stable in the sense that

1
(3.4) 15 (VO T2+ [V (2671 = @™)I%) = (IVe™ | + [V (26" — 6" H)]1*)]
n %&[(lrn_,'_llg n ‘270”.:,_1 . ,r,n‘2) _ (|7,n|2 +2rm — 7ﬂn—1|2)] < —||V,un+1||2'

Proof. By taking the inner products of the above with u"*t!, W and 27! with (3.3a),
(3.3b) and (3.3c) respectively, using the identity:

2(ak+1’3ak+1 _4ak +ak—1) :lak+1|2 + ‘2ak+1 _ ak|2 + |ak+1 _ 2ak +ak—1|2

(3.5) k k=12

— |a*|? = |2a* —a )

and dropping some unnecessary terms, one obtains immediately (3.4). O

REMARK 3.2. (i) The semi-implicit BDF2 in (3.3) can be replaced by semi-implicit Crank-Nicholson
scheme with a similar stability result.

(ii) For the H~' gradient flow, we have the conservation of fﬂ ¢dx. With this fact and the Poincaré
inequality, (3.4) implies that ¢ is bounded in H'.

(iii) For the L? gradient flow, if there exists an 8 > 0 such that [ dz[F(¢)—B¢?] > —Co, one may define Ey =
[dz[F(¢) — Bo?] and replace —A™ ! by —A¢" Tt + B¢ in (3.3b). In this case, the corresponding
stability result immediately gives the H' bound. Note in particular that the commonly used double well
potential F = (¢? — 1)%/4€? satisfies the condition.

(iv) With some further assumptions, it can be shown that the modified numerical energy converges to the
exact energy, which will be discussed in a forthcoming paper.

Besides its unconditional stability, a most remarkable thing about the above scheme is that it can be solved
very efficiently. Indeed, we can eliminate y"** and r"*! from (3.3) to obtain
3 n+1l _ 4™ n—1 AF’ n+1/2
¢ ¢ + ¢ - _ A2¢n+1 + (¢ ) (47‘” _ ,rn—l
20t 3V E [¢" /2] + C

F/(¢n+1/2) n+l n n—1
- / e e e )dz).

(3.6)

Denote
F’ (¢n+1/2)

VE1[¢pn /2] + Co

b=

Then the above equation can be written as

20t ot

(I+7A2)¢n+l _ 7(bn7¢n+1)Abn
37 3 3
( ’ ) 1 n n—1 20t n n—1 1 n n n—1 n n
:5(4(;5 —¢ )+? 4r" — 7 fi(b LA™ — " T )| AV = g™

We shall first determine (b, ¢"*1) from the above. To this end, multiplying (3.7) with (I 4 (26t/3)A2%)~! :=
A~ then taking the inner product with ", we obtain

(39 (67, 6™) + Xymr, 67 = (07, A7),

where 4" = —(b", A7LAb™) > 0 since —A~1A is a positive definite operator. We then obtain from the above
that
(", A'g")

(3.9) (", ") = 1ot /3

Finally, we can solve ¢" ! from (3.7). To summarize, the SAV scheme (3.3b) can be easily implemented in
the following manner:
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(i) Compute v* = —(b", A=Ab™). This can be accomplished by solving a fourth-order equation with
constant coefficients.
(ii) Compute (b", ¢" 1) using (3.9). This requires solving another fourth-order equation A=1g", which has
constant coefficients.
(iii) Flnally, with (5", ¢"*1) known, A= Ab"™ and A~1¢" computed from (i) and (ii), we can find ¢"*! from
(3.7) as

ot
(3.10) Pt = g(bn, PTHATIAY + A7y

Hence, the total cost at each time step are essentially solving two fourth-order equations with constant coef-
ficients. We note that these fourth-order equations can be reduced to two decoupled Poisson type equations
with some algebraic manipulations (cf. [26]), hence, this scheme is extremely efficient and easy to implement.

4. SAV approach for gradient flows of several functions. We consider, as an example of gradient
flows of several functions, the following energy functional (cf. [14]):

k
1
(4.1) B s0) = Y [ 3IVildo+ Ei(on,... ).
/a2
Denote ® = (¢1, ..., ¢x)%, and assume E1(®) > —Cj is a nonlinear energy functional bounded from below.

We set U; = §E1/d¢;, and introduce r(t) = \/E1(®) + Cp as the scalar auxiliary variable. Then the H !
gradient flow is given by

Obi
(4.2) 5 O
(4.3) pi =— Ad; + .

——Uj,
VEL+Cy

1 0¢;
4.4 = U—d
(44) " 2V E + Cy /sz—:l ot

Then a semi-implicit second-order SAV scheme based on Crank-Nicolson is as follows:

n+l n

(4.5a) % _Apnt2,

(4.5b) i —— Al(d)ﬂﬂ M) + L U,[&" /2]

i N\ v 2\/E1 [(i)n+1/2] + CO ’
pntl _pn (I)n+1/2 nt+l _ n
.0C x,
(4.5¢) / Z ] 4 E g
< 2\/Fy [0711/2] + C ot

where ®"+1/2 is any explicit O(5t?) approximation for ®(t"*1/2).

THEOREM 4.1. The scheme (4.5) is unconditionally energy stable in the sense that

k
(4.6) 2& ZIIVQS’MHQH?“”+12 ZIIV¢”|\2+IT”I == IVul®.
=1

=1

n+1 n
Proof. Multiplying the above three equations with 6t,un+1/ 2 u r"*t1 4+ " and taking the sum
over ¢, we obtain immediately the desired result. ]

Next, we describe how the scheme (4.5) can be efficiently implemented. Denote

[Hn+1/2
Giler , A=T+ 6tA2
2¢/E1[®"+1/2] + O

i =
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By substituting (4.5b) and (4.5¢) into (4.5a), we obtain linear equations of the following form

k
47 A¢ﬂ+1 _ ¢T-L+1,bn AbY =g, i=1,---,k.
( i j j i g;

Jj=1

Denote a; = (qb?“, b7), v = (bF, A7TAbY) > 0, and o = Z§:1 ;. Taking inner product with A='b;, then
taking the summation over ¢, we obtain

k

k k k
(4.8) Dt A = (b7, AN,
i=1 i=1 =1

i=1
which gives

k

k
(19) o= (Xuraan) /(e o).

i=1
Finally, we can solve ®"*+! from (4.7) by
(4.10) oIt = aATTAD + A7 gl

To summarize, the SAV scheme (4.5) can be easily implemented in the following manner:

(i) Compute {7;'}, which requires solving k decoupled four-order equations with constant coefficients.

(ii) Compute « from (4.9), which requires solving &k decoupled four-order equations with constant coeffi-

cients;

(iii) Finally, using A~*Ab? and A~'g? computed from (i) and (ii), we obtain {¢]'*'} from (4.10).
The total cost is essentially solving 2k four-order equations with constant coefficients, each of which can be
further reduced to two decoupled Poisson type equations (cf [26]). Hence, this scheme is extremely efficient
and easy to implement. We note that with the IEQ approach, we will need to solve k coupled four-order
equations with variable coefficients.

5. Numerical results and discussions. In this section, we present some numerical examples of
the Cahn-Hilliard equation (1.1) with periodic boundary conditions and where the free energy is given by
Elp(x)] = [[3]Vo]* + (¢* — 1)?/4e*]dx. We rewrite it as

Blo()] = [ [5IV0F + 56+ 5(6* —1- 5" -

Q

B>+ 28
4€2

|dx.

We drop the constant in the free energy and let Ei[¢] = [, F(¢)dz = [,(¢* — 1 — 8)*/4e*dx, and modify
(for example, for the BDF2 scheme) (3.3b) into

B
72¢ i + n+1/2
€ Eq[¢ 14 Co

Tn+1

(5.1) un+1 — _A¢n+1 + F/(¢n+1/2).
Note that this modification does not affect the implementation procedure we described above. We compute
¢"T1/2 by using the following simple scheme:

¢n+1/2 _ (bn _
ot

where we only need to solve another Poisson type equation.

The reference solutions are computed using the fourth order scheme ETDRK4 (see [5]) with sufficiently
small time steps. In the first example, we compare TEQ and SAV schemes, and in the other examples we
focus on other aspects of SAV approach.

Ezample 1. (Comparison of IEQ and SAV approach) We consider the Cahn—Hilliard equation in [0, 2m)
with €2 = 0.01, using the finite difference method for spatial discretization with h = 27/256. The parameters
in the scheme are chosen as =4 and Cy = 0.

B

(5.2) A( _ A¢"+1/2 4 E72@571-"-1/2 + F’((ﬁ")),
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Large time step Small time step
[ [ R e ] T T ] = ——
0.5 [
ol
05
1 .’\
0 1 2 3 4 5 6—— Reference 1 2 3 4 5 6
- SAV/CN
- = IEQ/CN

FIG. 1. (Ezample 1) Comparison of SAV and IEQ. Left: At = 10~%; Right: At =107°.

We run BDF schemes for both TEQ and SAV approaches with one more regular initial condition
(5.3) ¢(z,0) = 0.5sinx + 0.1Rand(z),

and one less regular initial condition

(5.4) ¢(z,0) = 0.1sinz + 0.5Rand(x),

where Rand(x) stands for the random values in [—1, 1].

First, we compare IEQ/CN and SAV/CN schemes. We use two time steps At = 107%,107°, and plot in
Figure 1 the results at T = 0.04. We observe oscillations when At = 10~ for both IEQ and SAV approaches,
but more pronounced for IEQ. With At = 1075, oscillations are still visible for IEQ but vanish for SAV.
This indicates that the SAV/CN scheme can be more accurate than the IEQ/CN scheme, possibly due to the
fact that the SAV function is directly related to the energy functional, not the energy density as in the TEQ
approach.

Next, we compare IEQ/BDF2 and SAV/BDF2 schemes. We use two time steps 6t = 1073,107°, and
plot the results at T"= 0.1 in Figure 2.

We observe that both schemes produce non oscillatory solutions for both large time step and small time
step, but SAV is still more accurate than IEQ with the larger time step.

To further test the robustness of SAV approach, we take e = 0.0001 with two time steps dt = 10~4, 1077,
and plotted the results in Figure 3. We observe that while 6t = 10~ is not sufficient small for accuracy but
the modified energy and original energy are kept dissipative.

Ezample 2. (Convergence rates of SAV) We perform a simulation in [0,27)? with €2 = 0.01, B = 2,
Co = 0 and the initial condition:

(5.5) o(x,y,0) = 0.05sinz siny.

The space is discretized by the Fourier spectral method with 128 x 128 modes so the spatial discretization
error is negligible compared to the time discretization. The errors at 7' = 0.016, measured in the L? norm,
are plotted in Figure 4, where we can clearly observe the second-order convergence for both SAV/BDF2 and
SAV/CN schemes. As expected, the SAV/CN scheme is slightly more accurate than the BDF/CN scheme.

Ezample 3. (Evolutions of coarsening process and of energy) In this example, we simulate the Cahn—
Hilliard equation on [0,2m)?, starting from

(5.6) d(x,y,0) = 0.25 + 0.4Rand(x, y).

We choose B =4, Cy =0, and discretize the space by the Fourier spectral method with 256 x 256 modes.

We investigate the coarsening process with €2 = 0.01 and 6t = 2 x 107°. The reference solution and the
results of SAV/BDF2 are shown in Figure 5, no visible difference is observed.
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Large time step Small time step

o 1 2 8 4 5 6 o 1 2 8 4 5 6
Reference

- SAV/BDF
- — |EQ/BDF

120

Original energy Original energy

100
8ot
60}
40}
20}
0 - - - - 0 - - - -
0 002 004 006 0.08 0.1 0 002 004 006 008 0.1
Modifi ner Modifi ner
140 odified energy 120 ¢ odified energy
y \
120 1y 100 g
100V, ] \
\ 80 |
80} \ 1 !
\ 6o
60f 4y 1 \
k L\
a0 S ] 40 \
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FiG. 2. (Ezample 1) Comparison of SAV and IEQ with more regular initial value. Left: 6t = 1073; Right: 6t = 107°.

6. Summary. We presented in this note a new approach, termed as scalar auxiliary variable (SAV) ap-
proach, for graidient flows. The SAV approach enjoys all the advantages of the invariant energy quadratization
(IEQ) method which has shown, with ample numerical evidences, to be superior to existing approaches such
as convex splitting and stabilization methods. Furthermore, it possesses the following additional advantages:

e For H~! gradient flows of a single function, the total computational cost is essentially solving two
fourth-order equations, or two systems of two second-order equations, with constant coefficients;

e For H~! gradient flows of k functions, the SAV scheme will lead to, at each time step, 2k decoupled
fourth-order equations with constant coefficients;

e It only requires E1(¢) := [, F(¢)dz, instead of F(¢), be bounded from below, so it applies to a
larger class of gradient flows. For example, the free energy density in the epitaxial thin film growth
model without slope selection [16] is unbounded from below, but its integral is bounded from below
so SAV approach can be applied.
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Solution
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F1G. 3. (Ezample 1) Solution profiles and energy evolutions of SAV/BDF2 with €2 = 0.0001. Left: 6t = 10~%; Right:
§t=10"".
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SAV/BDF

Fic. 4.

rate.
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log(A t)
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log(A t)

(Ezample 2) Numerical convergence rate of SAV schemes. The triangle represents the second-order convergence

SAV/BDF

Fic. 5. (Example 3) Coarsening process with SAV/BDF2.
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It is obvious that the SAV approach applies also to L? gradient flows for which one only requires solving
second-order equations with constant coefficients. Thus, the SAV schemes are extremely efficient, its second-
order versions are unconditionally energy stable, applicable to a large class of gradient flows, and can be
extended to higher-order with BDF and Adam-Bashforth schemes. Numerical results show that the SAV
approach is not only much more efficient and easy to implement, it also outperforms, in terms of accuracy,
the IEQ approach.

In a forthcoming paper, we shall present applications of SAV approach to a variety of challenging gradient

flows, including @ tensor models for liquid crystal, gradient flows with non-local dissipation operators, multi-
phase phase-field models, molecular beam epitaxial without slope selection (where the free energy density is
unbounded from below), phase-field crystals, etc.
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