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A B S T R A C T

Picking foraminifera from sediment samples is an essential, but repetitive and low-reward task that is well-suited
for automation. The first step toward building a picking robot is the development of an automated identification
system. We use machine learning techniques to train convolutional neural networks (CNNs) to identify six
species of extant planktic foraminifera that are widely used by paleoceanographers, and to distinguish the six
species from other taxa. We employ CNNs that were previously built and trained for image classification.
Foraminiferal training and identification use reflected light microscope digital images taken at 16 different
illumination angles using a light-emitting diode (LED) ring. Overall machine accuracy, as a combination of
precision and recall, is better than 80% even with limited training. We compare machine performance to that of
human pickers (six experts and five novices) by tasking each with the identification of 540 specimens based on
images. Experts achieved comparable precision but poorer recall relative to the machine, with an average ac-
curacy of 63%. Novices scored lower than experts on both precision and recall, for an overall accuracy of 53%.
The machine achieved fairly uniform performance across the six species, while participants' scores were strongly
species-dependent, commensurate with their past experience and expertise. The machine was also less sensitive
to specimen orientation (umbilical versus spiral views) than the humans. These results demonstrate that our
approach can provide a versatile ‘brain’ for an eventual automated robotic picking system.

1. Introduction

Much of paleoceanographic and biostratigraphic research depends
critically on foraminifera. The total number of described foraminifera
species, extinct and extant, is> 50,000 (Hayward et al., 2017), with
living species accounting for approximately 10,000 (Vickerman, 1992),
the vast majority of which are benthic. Typically measuring up to a few
hundred microns in size, foraminiferal tests are common in many
modern and ancient marine environments, and as such have become
invaluable tools for both academic and industrial purposes, such as
paleoenvironmental reconstruction and biostratigraphic age control in
paleoceanography and petroleum exploration. The relative abundances

of different species serve as paleo-environmental indicators, and the
isotopic and trace element compositions of their calcium carbonate tests
(e.g., O, C, and B isotopes; Mg/Ca, Cd/Ca, and Ba/Ca ratios) are used to
infer paleoceanographic parameters such as global ice volume, tem-
perature, salinity, pH, and nutrient content. There is hardly any la-
boratory in the world that conducts such research and has not em-
ployed personnel (ranging from high school students to senior
scientists) to sift through ocean sediments to extract relevant species.
However, this process is time consuming and can be costly. Training
requires many hours of supervision of novice workers by experts, and it
benefits from specialized equipment such as dual head microscopes or
digital video display systems, so that multiple researchers can
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simultaneously inspect the same sample. Micropaleontological faunal
analysis methods require total counts on the order of 500–1000 in-
dividuals per sample to obtain statistically meaningful results. A worker
might be required to pick hundreds of specimens of a single taxon to
obtain 5–10mg of calcium carbonate, which is the typical mass used to
generate a single radiocarbon measurement by accelerator mass spec-
trometry. Even the extraction of only a few rare specimens may require
searching through thousands of foraminifera, and probably every picker
has had the experience of spending hours on a sediment sample, only to
end up with too few tests for a measurement. After a steep learning
curve, picking therefore becomes a repetitive and low-reward task,
making it well-suited for automation.

Attempts to reduce such a workload are not new. Automation ef-
forts, directed entirely toward identification and not actual separation
of foraminifera from sediments, started with early computer languages
such as Prolog and Lisp. The user would still need to input the char-
acteristics of a specimen, but a computer algorithm helped in their
classification based on a predetermined set of taxonomic rules (Swaby,
1992; Athersuch et al., 1994). Automation of a rule-based identification
system for diatoms was attempted in the Automatic Diatom Identifi-
cation and Classification (ADIAC) project, which used image processing
techniques to isolate valves on microscopic slide images and classify
them based on morphometric parameters (such as valve outline and
ornamentation) processed through decision trees (du Buf and Bayer,
2002). The need for expert-defined taxonomic rules can be eliminated
through the use of artificial neural networks (ANNs), which learn to
identify taxa after being trained with labeled images. SYRACO2
(Dollfus and Beaufort, 1999; Beaufort and Dollfus, 2004) automatically
identified coccoliths using a convolutional neural network (CNN) with
about 800,000 parameters, wherein transmitted-light microscope
images were pre-processed for rotational and translational invariance.
Another CNN example is COGNIS, developed at ETH Zürich for the
identification of marine calcareous nannofossils using either scanning
electron microscope or transmitted-light microscope images (Bollmann
et al., 2004). CNNs have also been applied to diatom identification with
great success (Pedraza et al., 2017). For foraminifera, a potential pro-
blem with ANN classification is the demand on resources: a large
number of images are required to train against the vast association of
microfossils on the seabed, especially if benthic and extinct taxa are
included. A compromise between rule-based classification systems and
supervised ANN systems was proposed by Ranaweera et al. (2009), in
which the authors identified clusters of foraminiferal associations and
assigned a template to such clusters that could be identified by experts,
thereby reducing human effort but stopping short of fully-automatic
recognition.

Ideally, the recent progress that has been made in terms of auto-
mated, semi-automated, or hybrid image classification systems can be
fine-tuned to provide the necessary backbone for a fully automated
system that can not only identify species, but can also pick foraminifera
from sediments. This study is intended to be an initial step toward that
holistic goal, focusing only on the image classification aspect.
Specifically, we describe the hardware and software for such a visual
imaging system, and critically evaluate the image identification cap-
abilities of such a system when compared to humans. The imaging
hardware and algorithm are expected to be used in building a com-
pletely automated FORAminifera roBOT (FORABOT) that will both
identify and pick species of foraminifera or similar sized microfossils.

With this study, the aim is to provide a ‘proof of concept’ for the
identification stage of FORABOT. We focus on few taxa of widely used
extant planktic foraminifera. There are only ~50 species of extant
planktic foraminifera, and ~15 of these are neglected by most paleo-
ceanographers because of their small size (typically< 150 μm in their
adult form) (Schiebel and Hemleben, 2017). Hence a full character-
ization of the>150 μm planktic foraminiferal assemblage may even-
tually be attainable using image recognition. However, we chose to
initially focus on only a few taxa that are particularly important for

geochemical proxy measurements and certain census counts. Instead of
en masse classification of foraminiferal species, this method is expected
to reduce and simplify computation and, if successful, can then be re-
plicated to include other species.

2. Materials and methods

2.1. Core material

Foraminifera were obtained from six marine sediment core samples.
Two core sites are in the North Atlantic: DSDP 552A (7–9 cm) from
Rockall Plateau (56°03′N, 23°14′W, 2311m); and HU77029 (902 cm)
from Baffin Bay (66°54′N, 58°18′W, 935m). Four sites are in the Pacific:
ODP 807A (22–24 cm) from Ontong Java Plateau (3°36′N, 156°37′E,
2805m); RC13–114 (319 cm) from the eastern equatorial Pacific
(1°39′S, 103°38′W, 3436m); MV99-PC08 (721.5 cm) from off Baja
California (23°28′N, 111°36′W, 705m); and MV99-PC14 (709–711 cm)
also from off Baja California (25°12′N, 112°43′W, 540m). Samples
range in age from Marine Isotope Stage 3 to Holocene. DSDP 552A,
HU77029, and ODP 807A provided the bulk of the specimens for this
study.

2.2. Species selection and identification

Foraminifera were identified and picked from the washed
250–355 μm size fraction, by an expert employing the standard practice
of specimen manipulation using a wet brush under a binocular micro-
scope. We selected six species of common, extant planktic foraminifera
that are widely used by paleoceanographers (Fig. 1). Globigerinoides
ruber and Globigerinoides sacculifer are commonly used to assess sea
surface conditions in low latitudes due to their shallow (mixed layer)
habitats (e.g., Spero et al., 2003). In middle latitudes and upwelling
regions, emphasis shifts to the more abundant Globigerina bulloides,
whose abundance has also been used as a proxy for upwelling strength
in lower latitudes (e.g., Gupta et al., 2003). At high latitudes, Neoglo-
boquadrina pachyderma and Neogloboquadrina incompta (formerly
known as N. pachyderma dextral; Darling et al., 2006) tend to dominate,
with the abundance ratio between these two species having historically
served as a useful temperature proxy (Ericson, 1959). A number of
subsurface taxa may be used to reconstruct properties within the
thermocline, but Neogloboquadrina dutertrei has probably received the
most attention (e.g., Spero and Lea, 2002).

Of the aforementioned species, manual identification of G. ruber, G.
sacculifer, and G. bulloides is relatively straightforward. When present,
the ‘sac-like’ final chamber is very diagnostic for G. sacculifer. When the
sac is absent, the relative size and shape of the final chamber helps in
identifying and differentiating between G. sacculifer (Fig. 1f) and G.
ruber (Fig. 1a). Furthermore, the orientation of apertures, test texture,
and sometimes color (for the pink form of G. ruber) all serve to readily
differentiate the two species. G. bulloides is equally discernible, with
low trochospiral, spherical to subspherical chambers, and a high sym-
metrical arch-like umbilical aperture (Fig. 1b).

The differentiation of N. pachyderma, N. incompta, and N. dutertrei
requires a more nuanced approach. The most significant issue arises in
the classification of N. dutertrei and N. pachyderma, as they form more of
a morphological continuum. Indeed, gradational morphotypes between
the two, dubbed “P-D intergrades” by Kipp (1976), are quite common.
The difference between N. pachyderma and N. incompta is more
straightforward in that they are normally distinguished by coiling di-
rection, left (sinistral) and right (dextral), respectively. However, ge-
netic investigations show that a small percentage of each species (up to
~3%) exhibit aberrant coiling direction (Bauch et al., 2003; Darling
et al., 2006). Darling et al. (2006) recommend that in a > 97% sinis-
trally-coiled population, the small fraction of dextrally-coiled speci-
mens should be identified as dextrally-coiled N. pachyderma and not N.
incompta. The converse would be true for a > 97% dextrally-coiled
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population; whereas coiling ratios between 3 and 97% would more
likely correspond to a true mixture of the two species. In fact, differ-
ences in opinion on species/sub-species level classification are
common, even among experts. An entire branch of micropaleontology,
morphometric analysis, looks at such subtle variation of forms and their
biogeographical significance, and machine learning may be useful there
as well (e.g., Beszteri et al., 2018). However, the present scope of our
study is much more limited. Therefore, we decided to follow a set of
Neogloboquadrina rules that are largely consistent with those of
Thompson (1976), Gardner and Hays (1976), Hilbrecht (1997), Darling
et al. (2006), and Eynaud et al. (2009). We do not claim this scheme to
be definitive. Instead, we simply explore the possibilities of such rule-
based classification for automated identification of foraminifera.

Within the current context of the three Neogloboquadrina species, we
have classified any specimen with 4 to 4.5 chambers in the final whorl
(with or without an apertural lip) as belonging to either N. pachyderma
or N. incompta, with only the coiling direction distinguishing between
the two species (Fig. 1c-d). Most specimens that we successfully iden-
tified in this manner had a lip on the final chamber. Specimens with 5 to
6 lobate chambers in the final whorl and with a deep set central um-
bilicus were classified as N. dutertrei (Fig. 1e). Almost half of these
specimens had one or more teeth projecting into the umbilicus. Speci-
mens with contradictory and/or borderline evidence, such as those with
five or more chambers, but with a lip on the final chamber or without a

deep-set central umbilicus, were generally excluded from this study.
While such specimens could be considered as P-D intergrades, which
Hilbrecht (1997) suggested are morphological variants of N. pachy-
derma, we omit them to minimize the effect of different taxonomic
concepts among our human pickers.

2.3. Image collection

We aim to develop an affordable system capable of automatically
identifying foraminifera using a reflected light microscope. For our
experiments, we used an inexpensive AmScope SE305R-PZ binocular
microscope at 30× magnification (Fig. 2). We randomly oriented each
foraminifer alone near the center of the microscope's field of view, and
manually brought the specimen into focus. Since the direction of the
light source is an essential factor for highlighting different geometric
features in the foraminifera (Ranaweera et al., 2009), we made use of a
Light Emitting Diode (LED) ring to get 16 images under various lighting
angles (eight such images are shown in Fig. 2). The placement of the
LED ring kept the light sources at the same height, and the lighting
orientation was changed from 0 to 360° with a uniform spacing. The
images were captured using an AmScope MD500, a 5MP USB camera
that attaches directly to the microscope and provides an approximate
resolution of 450×450 pixels. The LED ring was controlled using an
Arduino UNO Microcontroller. The camera and Arduino were

Fig. 1. Representative specimens of the species identified for this study. (a) G. ruber, (b) G. bulloides, (c) N. pachyderma, (d) N. incompta, (e) N. dutertrei, (f) G.
sacculifer, and (g) other species. Each photograph is one of the 16 frames taken for each specimen by our imaging system.
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connected to a computer via Universal Serial Bus (USB). An application
developed in MATLAB was used for image capture. This design is open
source with a list of components, schematics, CAD models, and code
available online (https://research.ece.ncsu.edu/aros/foram-
identification/).

A data set of 1437 foraminifera was photographed for this study and
can be found at https://doi.pangaea.de/10.1594/PANGAEA.897873.
This data set includes: G. bulloides (178 specimens), G. ruber (182), G.
sacculifer (150), N. dutertrei (151), N. incompta (174), N. pachyderma
(152), and examples of other species (450, almost entirely planktic
foraminfera). A larger proportion of ‘Others’ was imaged in order to
better capture the larger morphological variability of this group.

2.4. Automated identification of foraminifera

Recently, deep CNNs have triggered a revolutionary change in the
image classification community. CNNs comprise a special category of
ANNs where the hidden layer(s) convolve pixel values of the original
image with a filter to extract important features such as edge, color,
noise, etc. Although convolutional layers reduce the number of para-
meters to fit by using parameter sharing techniques, powerful CNNs are
usually very deep (have many layers) and thus still require a large
amount of training data to fit all the parameters (Goodfellow et al.,
2016). However, various pre-trained models have been published and
the different levels of features learned from the original data sets have
promising potential to be transferred to new data sets (Pan and Yang,
2010). Among these models, Vgg16 (Simonyan and Zisserman, 2015)
and ResNet50 (He et al., 2016) are most representative and show
competitive performance on various computer vision tasks. In this
study, both models are utilized to extract features of the foraminiferal
images. We evaluated and compared various methods for recognition,
including more standard techniques and features, and determined that
these two CNNs gave the best performance (Zhong et al., 2017).

Whereas human experts have to decide which features (e.g., color,
texture, contour shape) might be useful for different classification tasks,
given sufficient data, the CNNs have the potential to automatically
learn which features are important to distinguish different classes. A
CNN image classification model is usually made up of several con-
volutional layers followed by fully-connected (FN) layers (Fig. 3 top). A
convolutional layer can be thought of as a function applied at every
location in an image to extract local image descriptors that are useful
for the recognition task, while the fully-connected layers are the more
traditional ANN layers that combine these descriptors in some non-
linear ways to come up with a global function that outputs the pre-
dicted species. The outputs of the convolutional layers are often

referred to as feature maps since they are associated with particular
locations in the images. During the training process, the parameters of
these functions are optimized to extract discriminative features for the
classification task. For example, the low-level convolutional layers may
focus on edges or textures, and the middle layers can then combine the
edges to be different shapes such as circles or triangles. Finally, the last,
high-level convolutional layers transform the shapes to be dis-
criminative components of the objects which are useful for recognition.

Due to the limited size of our foraminifer data set, we did not train
the deep neural networks from scratch; instead, we adopted two CNNs
that were already trained using the ILSVRC data set (Russakovsky et al.,
2015; Deng et al., 2009), which is a large scale image classification data
set with 1000 categories and 1.2 million images. The pre-trained CNNs
are well-trained to extract different levels of features for common
images (e.g., dogs, airplanes). Although our data set is different from
common images, the pre-trained models have the potential to compute
informative feature maps that can be generalized to a different data set.
The usage of pre-trained CNNs reduces the number of images for
training from hundreds of thousands to a few thousands.

The pre-trained models expect color images as input. Our pipeline
(Fig. 3 bottom) therefore begins with the creation of a single color
image that encodes information from all 16 grayscale images of a given
specimen. A Python code takes the 16 individual grayscale values for
each pixel, calculates the 10th percentile, median, and 90th percentile,
and maps those three values into the red, green, and blue channels, to
generate a single color composite image. This image is then fed to the
two pre-trained CNNs' convolutional layers, which produce the feature
maps. Although the two CNN models are pre-trained with the same data
set (ILSVRC), different networks learn to classify in different ways,
leading to features that can be complementary to each other. Thus, by
concatenating the output features of Vgg16 and ResNet50, the com-
bined model achieves better performance.

The resulting feature maps (i.e., the outputs from the pre-trained
convolutional layers) are then passed on to three new fully-connected
layers, with dropout layers in between, for classification. That is, the
fully-connected layers compose a new function from the features
computed by the convolutional layers, in order to recognize the dif-
ferent species of foraminifera. The dropout layers are used to prevent
overfitting. They work by randomly removing connections in the net-
work during training to ensure that the ANN can do recognition even if
certain features are missing. This has the effect of making the model
more robust to variations in the input; hence, performing better when
testing new datasets. Detailed descriptions of the functionality of dif-
ferent layers can be found in Krizhevsky et al. (2012). For the three new
fully-connected layers, the first two layers have 512 units, and the last

Fig. 2. Image acquisition system: Pictures of the system from different perspectives (left) with main components highlighted (middle). Eight images of the same
foraminifer specimen using multiple lighting directions (top right). Diagram of the main components of the system (bottom right).
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layer has 7 units since we have 7 classes to classify. The dropout rates
are 0.05 and 0.15 for the first and second dropout layers, respectively
(the layers' order is shown in Fig. 3). With comprehensive experiments,
Yosinski et al. (2014) demonstrated the effectiveness of transfer
learning with pre-trained CNNs as the feature extraction algorithms.
Since the identification of foraminifera using deep learning techniques
is new, our detailed design (e.g., the number of units of the fully-con-
nected layers and the dropout rates) is based on our experience with
natural images, and the manual tuning of hyper-parameters. Alternate
classifiers were also explored, namely Random Forest, Support Vector
Machine, and K-Nearest Neighbors, but the CNN gives the best per-
formance (Zhong et al., 2017).

The neural networks are implemented in Python using the Keras
framework (Chollet, 2015) with TensorFlow (Abadi et al., 2016) as the
backend engine. The machine used for experimentation has an Intel
Core i7 CPU, 64GB of RAM, and a NVIDIA TITAN GPU. To speed up the
training process, we save the pre-trained features for all the samples
first, and then train the new layers with those features as input. The
entire training process takes around 15min with 800 epochs (training
cycles) and 1000 samples. In testing, it takes around 250ms for the
prediction of one image with ResNet50+Vgg16.

2.5. Human identification of foraminifera

In order to compare the performance of the autonomous foraminifer
recognition algorithm against human identification, we collected data
from six ‘experts’ and five ‘novices.’ The experts included five college
professor-level paleoceanographers who have extensive experience
(> 15 years each) working with planktic foraminifera, plus the lead
author who oversaw the picking of the specimens in this study. The five
novices were undergraduate and graduate students with some experi-
ence picking foraminifera in the labs of the experts. Novice experience
ranged from less than six months to ~2 years. All participants were
asked to characterize their familiarity with the six target species as
‘High,’ ‘Medium,’ or ‘Low.’

For the comparison exercise, the humans and the machine were
provided with the same 540 specimens to identify, to ensure fair
comparison across the two groups. Each human participant was shown

an electronic page with all 16 differently-illuminated images of a given
foraminiferal specimen, and was asked to identify the species from a
drop-down spreadsheet menu. The choices included the six species
considered here, ‘Other,’ and ‘Not Identifiable.’ Participants were in-
structed to choose ‘Other’ when they thought the specimen was a spe-
cies other than the six listed, and ‘Not Identifiable’ when they judged
the images to be insufficient to make any decision. Instructions also
indicated that participants were allowed to use any references they
wished, and an internet link was provided to the scanning electron
microscope images from Bé (1977), but that our intent was for them to
make identifications primarily from memory, to simulate typical
picking practices. Participants labeled the foraminifera in 10 groups of
54 specimens each, for a total of 540 identifications. The photographs
covered 60 specimens of each species, plus 180 Others, in random
order. This exercise was meant to compare the performance of the
automated system to humans when given the same imperfect, single-
orientation images.

2.6. Performance metrics

To evaluate the performance of both the automated system and
humans, we used standard classification metrics, namely: precision,
recall, and F1 score (Sokolova and Lapalme, 2009). In any classification
task, true positives (TP) are the instances in which an item was cor-
rectly classified under a target category, false positives (FP) are those in
which an item was incorrectly classified, true negatives (TN) are those
in which an item was correctly excluded from the category, and false
negatives (FN) are those in which an item was incorrectly excluded.
Therefore, within each taxonomic category, precision is the ratio TP/
(TP+ FP), and recall is the ratio TP/(TP+FN). In other words, for
each taxonomic group, precision is the fraction of identifications that is
correct, and recall is the fraction of specimens that are recovered. F1
score is the harmonic mean of precision and recall, which is often used
as an overall indicator of classification performance. There is a tradeoff
between precision and recall. If the identifier is being ‘overzealous’ he/
she will have good recall but poor precision, because Other or Not
Identifiable (ambiguous) species will be mislabeled as target species.
On the other hand, one can be ‘overcautious,’ resulting in good

Fig. 3. Top: General CNN pipeline. Bottom: Classification pipeline for foraminifera.
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precision but poor recall because target species are mislabeled as Others
or deemed Not Identifiable. When reporting these metrics averaged
across the six target species, we weighted them according to the species'
proportions in the data set.

3. Results and discussion

3.1. Machine performance

Given the tradeoff between precision and recall, we use a loss
function to find similarly good performance for each, which maximizes
the F1 score (Zhong et al., 2017). The classification performance of
each computer vision algorithm is closely related to the amount of data
used for training, with larger data sets leading to better performance
(Fig. 4). To obtain training and validation sets of different sizes, the
1437 total specimens were first split into k groups (k=2, 3, 4, 5, 6, or
8), and then either 1/k or (k-1)/k specimens were used to train the
classification of the remainder. The process was repeated until every
group had been used for training once, and the whole procedure was
further replicated 10 times, with the mean and standard deviation
plotted. With the current amount of data, the ResNet50+Vgg16
overall F1 score is ~86% when ⅞ of the images (1257 specimens) are

used for training. Having been thus trained on ~130–160 specimens of
each of the six target species (and ~400 Others), the machine should be
able to achieve ~86% accuracy when applied to any new sediment
sample, as long as the specimens in this study have adequately captured
the morphological variability that is likely to be encountered. There
exists an increasing trend at the end of Fig. 4, which means that with
more training data, the proposed algorithm has the potential to have
even higher classification accuracy.

We are not aware of any published reports of automated for-
aminiferal identification performance to compare our results to. For 11
species of coccoliths, SYRACO2 was able to achieve recall of better than
90% using a similar level of training (150 images per species), but
precision was poorer, with ~40% of non-coccolith particles being
misclassified as coccoliths (Beaufort and Dollfus, 2004). Various diatom
classifiers, mostly rule-based but including a CNN, report accuracies
between ~80 and 99.5% (summarized by Pedraza et al., 2017). The
best performance for diatoms (99.5% across 80 species) was achieved
using a CNN trained on 11,000 specimens augmented with rotation and
flipping to produce a training set of 160,000 images (Pedraza et al.,
2017). However, the diatom results are not directly comparable to ours
due to differences in experimental design, such as a lack of non-target
species in the exercises.

To compare machine performance to human performance, we
needed a training set that is substantial yet leaves enough data for the
actual classification task. After removing the 540 images to be used for
the comparison exercise, the remaining 897 images (62%) were used
for training the CNN. With this smaller training set (~90–120 speci-
mens of each species), the machine F1 score was reduced to 81%
(Fig. 5). Reported machine statistics are average values across 10
iterations of the exercise, using the same training and unknown data
sets each time.

3.2. Human performance and comparison to machine

Averaged across the six target species, expert precision ranged from
59 to 83% (mean 74%), and recall ranged from 32 to 83% (mean 60%),
resulting in F1 scores between 39 and 83% (mean 63%) (Fig. 5). As
expected, novice performance was lower on average, with precision of
49–65% (mean 56%), recall of 47–64% (mean 53%), and F1 scores
between 47 and 63% (mean 53%). In comparison, the machine had
precision (80%) comparable to experts and better than novices; and
recall (82%) and F1 scores (81%) better than 10 out of 11 participants.

It is important to note that the participants were given an option
that the machine did not have, namely to label specimens as Not
Identifiable. Theoretically, this choice could improve precision by not
forcing participants to guess, but it could hurt recall for the same
reason. In particular, one expert was very cautious and used this option

Fig. 4. Foraminiferal classification performance (F1 scores) of the two CNNs
used for this study, plotted against the fraction of the 1437 specimens that was
used for training. Scores are averaged across the six target species, and error
bars indicate the standard deviation of repeated iterations (see text for details).
The best performance corresponds to the model that uses the concatenation of
features from both CNNs, labeled as ResNet50+Vgg16.

Fig. 5. Precision, recall, and F1 score for each expert, each novice, and the machine, averaged across the six target species, with±1σ error bars to indicate the spread
across taxa. The machine scores are additionally averaged across 10 iterations.
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often, resulting in poor recall and therefore the lowest F1 score. In this
sense, our exercise may overestimate the precision and underestimate
the recall abilities of the participants, relative to a scenario in which
they are forced to decide. If we reanalyze the results excluding the Not
Identifiable selections, overall recall improves to 67–88% (mean 79%)
for experts and 52–73% (mean 62%) for novices. However, this would
limit the analysis to those specimens that each participant felt reason-
ably confident about, resulting in overestimation of their true recall
abilities.

Although both the machine and humans were given the same
images to identify, it is possible that the humans were more negatively
impacted by image quality (cf. Fig. 1) than the machine. The machine
was trained on images of similar quality, while humans are trained with
the ability to change light intensity, magnification, focus, and specimen
orientation (orientation is discussed in Section 3.4). We note, however,
that the machine performed poorly on some under-illuminated speci-
mens that otherwise should have been easily identified.

In identifying foraminifera, the relative importance of precision and
recall depends on the task at hand. If picking specimens for geochemical
analysis, the picker needs to achieve excellent precision, but they can
afford to be selective (low recall) as long as the species is sufficiently
abundant. In contrast, assemblage work requires high recall because all
specimens need to be identified. Our automated system was able to
optimize both precision and recall at ≥80% in this exercise, which
exceeded the overall performance of all but one participant. Three other
experts who had similar precision to the machine achieved that at the
expense of lower recall.

3.3. Comparison by species

The automated system achieved comparable performance across the
different taxa, including Others, with F1 scores ranging from 76 to 89%
(Fig. 6). Only one species, N. dutertrei, had machine precision lower
than 70%, and all taxa had recall scores above that value. Since we
purposely excluded ambiguous P-D intergrades (Section 2.2), it is not
yet clear how machine performance on N. pachyderma and N. dutertrei
would be affected by including them. A true morphological continuum
would require the human experts who label the training data set to
assign an arbitrary division, and close to that division both machine and
humans would likely have difficulty making a firm decision. In such a
case, the concept of distinct morphospecies may be of limited value.

In contrast to the machine, the performance of the human partici-
pants varied considerably between taxa. Highest average F1 scores were
for G. ruber and G. sacculifer among both experts (85 and 82%, re-
spectively) and novices (71 and 63%). Neogloboquadrina. incompta and
Neogloboquadrina. pachyderma had the lowest F1 scores among both
experts (38 and 44%) and novices (36 and 33%). For Globigerina. bul-
loides, Globigerinoides. ruber, Globigerinoides. sacculifer, and Others,
average expert precision was better than machine precision, but expert

recall and F1 scores were worse than the machine for all taxa except
Globigerinoides. sacculifer. This illustrates that the overall superior per-
formance of the machine (Fig. 5) is partly a result of its taxon-in-
dependent abilities, compared to the taxon-specific pitfalls that exist for
most of the human participants.

Insight into the reasons for poor performance on certain species may
be gleaned from a confusion matrix (Fig. 7). This diagram compares
assigned identities to true identities, thereby illuminating which species
are mistaken for others. Among the experts, Neogloboquadrina. incompta
and Neogloboquadrina. pachyderma were sometimes mislabeled as Neo-
globoquadrina. dutertrei. Neogloboquadrina. incompta and Neogloboqua-
drina. pachyderma were less often confused with each other, indicating
that coiling direction was not easily mistaken. The novices more fre-
quently confused G. ruber and G. sacculifer than the experts did. Like the
experts, the novices mislabeled some N. incompta and N. pachyderma as
N. dutertrei, and they additionally confused N. incompta and N. pachy-
derma, suggesting some lack of clarity about coiling direction. In both
groups of participants, the Not Identifiable category steals some iden-
tifications and contributes to low recall, most notably for N. incompta,
N. pachyderma, and Others. Interestingly, the machine occasionally
mislabeled G. sacculifer as N. dutertrei, a rather egregious mistake that
the humans never made.

There are at least three factors that can potentially explain the
taxon-dependent performance of the human participants. First, most
pickers are not equally expert in all planktic foraminiferal species. This
uneven expertise may arise from working predominantly in one part of
the ocean (e.g., the tropics or the Arctic) where not all taxa will be
routinely encountered; or, in the case of novices, being trained to pick
only a few target species relevant to the laboratory's current work.
Averaged across the experts and across the novices, species-level per-
formance correlates with self-reported familiarity (Fig. 8). All six ex-
perts reported high familiarity with G. ruber and G. sacculifer, com-
mensurate with their high F1 scores on those two species (85 and 82%,
respectively). The species with the lowest scores, N. incompta and N.
pachyderma, were the least familiar to the average expert and, espe-
cially, novice. Second, as described in Section 2.2, there can be differ-
ences in taxonomic concepts among different pickers. That is, even a
self-identified expert in the Neogloboquadrinids might not fully agree
with our ground-truth labels. We tried to minimize this effect in our
study by avoiding P-D intergrades, but it could still play a role. Third,
the inability to flip specimens over may have been a handicap, as dis-
cussed in the next section.

3.4. Effect of orientation

Identification of foraminifera by human pickers often involves
multiple views. When unsure, a picker may turn the specimen over for
confirmation, as was frequently done when the specimens in this study
were first selected. Admittedly, that affordance was not available in this

Fig. 6. Precision, recall, and F1 score for each taxon, averaged across the experts, the novices, and the machine iterations, with±1σ error bars.
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exercise. Instead, the participants were asked to identify a foraminifer
based on imperfect photographs taken from a single point of view (but
multiple illuminations). Four of the six species considered here have
very distinct umbilical versus spiral sides: G. bulloides and the three
Neogloboquadrinids. The impact of orientation on the participants' skill
was most dramatic for G. bulloides (Fig. 9). Typically, experts and no-
vices alike converged on positive G. bulloides identification only when
an umbilical view was provided. Human recall was substantially de-
graded when a spiral view was provided, especially for novices. It is in
such circumstances that most pickers would flip the specimen over to
provide a more diagnostic view. For spiral and other unconventional
(side) views, we usually found a greater number of experts than novices
identifying G. bulloides correctly. This validates the notion that experts
have had more experience and thereby are more acquainted with un-
conventional views. Machine performance, in comparison, suffered less
when comparing spiral views to umbilical views. However, the machine
did poorly with some side views and atypical (e.g., poorly illuminated)
spiral views in comparison to humans.

Neogloboquadrina incompta and N. pachyderma were similar in that
human performance was moderately better when based on umbilical
views, but the difference was less dramatic than for G. bulloides, prob-
ably because overall skill was poorer. Machine performance was
slightly better when using the spiral side for N. incompta, but for N.
pachyderma the orientation made no notable difference. For N. dutertrei,
participant skill was higher when provided with a spiral view,

especially among novices. Machine performance was nearly identical
between umbilical and spiral views of N. dutertrei.

Overall, human pickers appear to be more sensitive to specimen
orientation than the machine. That is not an indictment of humans,
because they are not normally constrained to one view and hence have
little incentive to learn taxonomy equally well from all angles.
Conversely, this observation is critical for the success of an automated
system, since specimens need not be oriented in any particular

Fig. 7. Confusion matrices averaged across the experts, the novices, and the machine iterations. Each row shows how the ‘true’ images of a given species were labeled
during the exercises (called ‘assigned’ in the case of humans and ‘predicted’ in the case of the machine). Each row sums to 1, and perfect performance would be
indicated by yellow squares (values of 1) across the diagonal. The fraction given on the diagonal is equivalent to the recall for that species. Labels are ordered as in
Fig. 6, with the addition of UN for ‘unidentifiable.’ (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)

Fig. 8. Species-level performance averaged across experts (blue) and novices (red) as a function of self-reported level of familiarity (1= low, 2=medium, 3=high).
Symbols refer to the first letter of the species name. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)

Fig. 9. Recall for spiral and umbilical views of G. bulloides, averaged across the
experts, the novices, and the machine iterations, with±1σ error bars.
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direction.

4. Conclusions and outlook

We successfully trained a CNN-based system to identify six species
of extant planktic foraminifera using reflected light microscope digital
images. Machine performance was compared to that of six human ex-
perts and five novices, wherein all were tasked with identifying the
same 540 specimens. For this exercise the machine was trained on
~90–120 images of each species plus 270 Others, and achieved 80%
precision, 82% recall, and an F1 score of 81%. Experts displayed
comparable precision but poorer recall, resulting in an average F1 score
of 63%. Not surprisingly, novices displayed less skill, with an average
F1 score of 53%. Human performance was compromised by being
species-dependent, which we attribute mainly to training and experi-
ence. For some species, most notably G. bulloides, the machine was less
sensitive to specimen orientation than the human participants.

Overall, the machine's strength in this exercise is grounded in its
relatively uniform performance across taxa and orientations. These
results suggest that similarly good results could be achieved for the
entire extant planktic foraminiferal assemblage above some nominal
size, ideally 150 μm. Select benthic foraminifera could also be added.
By increasing the training set to several hundred or more specimens per
species, performance could theoretically be improved beyond the scores
presented here. Performance might also benefit from higher quality
microscopes and cameras, especially for smaller specimens. We there-
fore conclude that our CNN approach can provide the ‘brain’ for a vi-
able robotic picking system.

It is neither desirable nor advisable to eliminate human expertise
from this process. Rather, we envision FORABOT as a labor-saving
device to execute the bulk of a given picking task, whether that be the
characterization of the full assemblage or the removal of a single spe-
cies for chemical analysis. Once that task is completed with ~80–90%
accuracy, a person would then validate and, as needed, correct the
identifications. By allowing the human picker to focus on subtle dif-
ferences such as morphotypes or intergrades, we suggest that they will
quickly achieve a deeper level of taxonomic expertise than is currently
practical in most laboratories.
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