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ENERGY STABILITY AND CONVERGENCE OF SAV
BLOCK-CENTERED FINITE DIFFERENCE METHOD FOR
GRADIENT FLOWS*

XIAOLI LI t, JIE SHEN ¥, AND HONGXING RUI §

Abstract. We present in this paper construction and analysis of a block-centered finite dif-
ference method for the spatial discretization of the scalar auxiliary variable Crank-Nicolson scheme
(SAV/CN-BCFD) for gradient flows, and show rigorously that scheme is second-order in both time
and space in various discrete norms. When equipped with an adaptive time strategy, the SAV/CN-
BCFD scheme is accurate and extremely efficient. Numerical experiments on typical Allen-Cahn and
Cahn-Hilliard equations are presented to verify our theoretical results and to show the robustness
and accuracy of the SAV/CN-BCFD scheme.
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1. Introduction. Gradient flows are widely used in mathematical models for
problems in many fields of science and engineering, particularly in materials science
and fluid dynamics, cf. [1, 2, 27, 18] and the references therein. Therefore it is
important to develop efficient and accurate numerical schemes for their simulation.
There exists an extensive literature on the numerical analysis of gradient flows, see
for instance [3, 11, 6, 8, 20, 7, 12] and the references therein.

In the algorithm design of gradient flows, an important goal is to guarantee the
energy stability at the discrete level, in order to capture the correct long-time dynam-
ics of the system and provide enough flexibility for dealing with the stiffness problem
induced by the thin interface. Many schemes for gradient flows are based on the
traditional fully-implicit or explicit discretization for the nonlinear term, which may
suffer from harsh time step constraint due to the thin interfacial width [9, 19]. In
order to deal with this problem, the convex splitting approach [15, 21, 13] and linear
stabilization approach [14, 19, 24, 29] have been widely used to construct uncondi-
tionally energy stable schemes. However, the convex splitting approach usually leads
to nonlinear schemes and linear stabilization approach is usually limited to first-order
accuracy.

Recently, a novel numerical method, the so called invariant energy quadratization
(IEQ), was proposed in [25, 28, 26]. This method is a generalization of the method
of Lagrange multipliers or of auxiliary variable. The IEQ approach is remarkable as
it permits us to construct linear, unconditionally stable, and second-order uncondi-
tionally energy stable schemes for a large class of gradient flows. However, it leads
to coupled systems with variable coefficients that may be difficult or expensive to
solve. The scalar auxiliary variable (SAV) approach [18, 17] was inspired by the IEQ
approach, which inherits its main advantages but overcomes many of its shortcom-
ings. In particular, in a recent paper [16], the authors established the first-order
convergence and error estimates for the semi-discrete SAV scheme.

*Received by editors March 2, 2018

TSchool of Mathematics, Shandong University, Jinan 250100, China. Email: xiaolisdu@163.com.

fCorresponding Author. Department of Mathematics, Purdue University, West Lafayette, IN
47907, USA. Email: shen7@purdue.edu.

§School of Mathematics, Shandong University, Jinan 250100, China. Email: hxrui@sdu.edu.cn.

1

This manuscript is for review purposes only.



S S G S e e e L
O © 0 N O U= W

ot

Y O s W N =

J

ARG )|
(e}

79

80
81

In this paper, we construct a SAV/CN scheme with block-centered finite differ-
ences for gradient flows, carried out a rigorous stability and error analysis, and imple-
mented an adaptive time stepping strategy so that the time step is only dictated by
accuracy rather than by stability. The block-centered finite difference method can be
thought as the lowest order Raviart-Thomas mixed element method with a suitable
quadrature. Its main advantage over using a regular finite difference method is that
it can approximate both the phase function and chemical potential with Neumann
boundary conditions in the mixed formulation to second-order accuracy, and it guar-
antees local mass conservation. Our approach for error estimates here is very different
from that in [16] which is based on deriving H? bounds for the numerical solution.
However, this approach can not be used in the fully discrete case with finite-differences
in space. The essential tools used in the proof are the summation-by-parts formulae
both in space and time to derive energy stability, and an induction process to show
that the discrete L>° norm of the numerical solution is uniformly bounded, without
assuming a uniform Lipschitz condition on the nonlinear potential. To the best of
the authors’ knowledge, this is the first paper with rigorous proof of second-order
convergence both in time and space for a linear scheme to a class of gradient flows
without assuming a uniform Lipschitz condition for the nonlinear potential.

The paper is organized as follows. In Section 2, we describe our numerical scheme,
including the temporal discretization and spacial discretization. In Section 3, we
demonstrate the energy stability for our SAV/CN-BCFD scheme. In Section 4, we
carry out error estimates for the SAV/CN-BCFD schemes. In Section 5, we present
some numerical experiments to verify the energy stability and accuracy of the pro-
posed schemes.

Throughout the paper we use C, with or without subscript, to denote a positive
constant, which could have different values at different places.

2. The SAV/CN-BCFD scheme. Given a typical energy functional [16]:
A 1
B(0) = [ (56 +5I90P)ix-+ Br(o), (21)

where € is a rectangular domain in R?, A > 0 and E1(¢) = [, F(¢)dx > —cg for
some cg > 0, i.e., it is bounded from below. We consider the following gradient flow:

¢ _ :
{ a = ]\49,&7 m Q X J, (22)
p=—-Ap+rp+ F'(p), inQxJ,

J = (0,T], and T denotes the ﬁnal time. M is the mobility constant which is positive.

The chemical potential 4 = $=. G = —1 for the L? gradient flow and G = A for the
H~! gradient flow. F(QS) is the nonlinear free energy density and we focus on as
an example, when E7(¢ fQ a(l — ¢?)%dx, the L? and H~! gradient flows are the

well-known Allen—Cahn and Cahn-Hilliard equations, respectively.
The boundary and initial conditions are as follows.

8n¢|6ﬂ =0 an,U|3Q =0
’ ’ 2.3
{ Bli—o = b0, (23)

where n is the unit outward normal vector of the domain 2. The equation satisfies
the following energy dissipation law:
deE [ 0¢

- = = < .
7 8t pdx = M/,ug,udx 0. (2.4)
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ENERGY STABILITY AND CONVERGENCE 3

2.1. The semi discrete SAV/CN scheme. We recall the SAV/CN scheme
introduced in [18] first.

Let Cy > ¢p so that Eq(¢) + Cop > 0. Without loss of generality, we substitute
E, with E; + Cy without changing the gradient flow. Then F; has a positive lower
bound C’o = Cy — ¢g, which we still denote as C for simplicity.

In the SAV approach, a scalar variable r(t) = \/E;(¢) is introduced, and the
system (2.2) can be transformed into:
¢
5 = M. (2.5)
r
j= —AG+ b+ ——F'(9), (2.6)
Ei(¢)

F/ (b)(btdxv (27)

Then, the SAV/CN scheme is given as follows:
¢n+1 ¢n

=M n+1/2 2.8
—Ar gu ) (2.8)
n+1/2
un+1/2 — _A¢n+1/2 4 )\¢n+1/2 + #F’(é"""l/z)’ (29)
E1(¢n+1/2)
n+l _ .n ntl _ gn
r r / ¢n+1/2 de’ (2.10)
A, W Y

where ¢ /2 = L(gn 4 gntl), prtl/2 = L(pn 4 pntl), ¢"t1/2 can be any explicit
approximation of ¢(¢"+1/2) with an error of O(A#?). For instance, we may let ¢"*1/2
be the extrapolation by

én+1/2 _ %(3¢n _ ¢n—1). (2.11)

2.2. Spacial discretization. we apply the BCFD method on the staggered
grids for the spacial discretization.
First we give some preliminaries. Let L™ () be the standard Banach space with

norm
o = ([ |U|md9>

(.9) = (F.9) 1200 = /Q fg d2

denote the L?(Q) inner product, [|v]|es = [|v]|po(q). And WFP(Q) be the standard
Sobolev space

o]

For simplicity, let

WkP(Q) = {g: lgllwr (@) < oo},

where
1/p

lolwer@ = [ S 1D%00, 0 | (2.12)
la|<k

The grid points are denoted by

(xi+1/27yj+1/2)7 izoa"'aNza j:()’"'vNya

This manuscript is for review purposes only.



4

96 and the notations similar to those in [22] are used.

ri=(r_1+z41)/2, i=1,...,Ng,
hr:xﬂ_%fxi_%, 1=1,.., Ny,
yi= (-1 +yp1)/2, j=1,..,Ny,
hy:yﬂ_%—yj_%, J=1..,Ny,

98 where h, and h, are grid spacings in  and y directions, and N, and IV, are the
99 number of grids along the x and y coordinates, respectively.

100 Let g; ;, Jir > ijed denote g(z;,y;), g(miJr%,yj), g(xi,ijr%). Define the dis-
101 crete inner products and norms as follows,

N. Ny

(f7 m = Zzh hyfz,]gz,Ja
=1 j5=1
Na.‘*l N’y

102 (f?Q)fE = Z hmhyfi+%,jgi+%7jv

i=1 j=1
N, Ny—1

(fi9)y = Z hxhyfi,j+%gi,j+%a

=1 j=1

1
(’U, T‘)TM (1}171"1) (’L)Q,TQ)y.

103 For simplicity, from now on we always omit the superscript n (the time level) if the
104 omission does not cause conflicts. Define

degliv1 i = (Giv15 — 9ij)/ P,
[dyglijr1 = (gij+1 = 9i)/ Iy,
105 [Dagli; = (s — 9im1.3)/has
[Dy ] = (gz,j+2 gz‘,j—l)/h%
[digl}; = (g7; — g7 1)/ At.

106 The following discrete-integration-by-part lemma [22] plays an important role in the
107 analysis.
LEMMA 1. Let gi j, w1 41725 and wo;j11/2 be any values such that wy 1/ ; =
Wi N, +1/2,j = Wa,i1/2 = Wa i N, +1/2 = 0, then

(q,D:EU)l)m = _(da:Qawl)a:;
((L Dyw2)m = _(dyQaWZ)y~

2.2.1. SAV/CV BCFD scheme for H~! gradient flow. Let us denote by
{Z™, Wn, R"}N_ the BCFD approximations to {¢™, u™, r"}2__,. The scheme for H 1
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ENERGY STABILITY AND CONVERGENCE
gradient flow is as follows: for 1 <i < N,, 1 <j <N,
[d:2)7FY = M[D,d,W + Dyd, W1+,

Wn+1/2 [D d Z+D d Z]n+1/2+)\Zn+1/2

0,3

2 /E{L(Zn+l/2)

where Z"t1/2 is an approximation of ¢"*1/2, and

M(Zn?) = ZZh hyF(Z]T?).

=1 j=1
108 The boundary and initial approximations as follows.

[dxz]?/zj = [de]K/m-&-l/Q,j =0, 1<j5<N,,
[dyZ]}1 ) = [dyZ]} N, 112 =0, 1<i< N,
[doW]T)g 5 = [daW]N, 412, =0, 1<j <Ny,
[d Witie = dW]in, 412 =0, 1<i< Ny,
-—¢01],1<Z<NI,1<j<N

Rn+1/2 o (Zn+1/2)
Bl zrary
1 -
AR = (F'(Z™Y2), dy 24 o,

(2.15)

(2.16)

110 Remark. The solution procedure of the above scheme is described in detail in

111 [18, 17], and hence is omitted here.

2.2.2. SAV/CV BCFD scheme for L? gradient ﬂow. Let us denote by
{Z™, W R"}N | the BCFD approximations to {¢", u”,7"}N_,. The scheme for L?

gradient ﬂow is as follows: for 1 <7 < N,, 1 <j <Ny,

[d:2)0 5 = —MWZ?“”Q,
n+1 2 n+1/2 n+1/2
W/ H? = Dy Z + Dyd, 2) T+ Azl

2/ E(Zn+1/2)

ij
Rn+1/2 S>n+1/2
=+ NEYERTS F/(Zi,j ),
By (Z2)
1 .
R = (F'(Z" 1), do 2" )

(2.17)
(2.18)

(2.19)

112 where Z"t1/2 is an approximation of ¢"*1/2. The boundary and initial conditions

113 are given in (2.16).

114 3. Unconditional energy stability. We demonstrate below that the full dis-
115 crete SAV/CN-BCFD schemes are unconditionally energy stable with the discrete

11

5 energy functional
117 Bz = 2272 + Sz |2 R™)?
‘ a(Z2") = 512" o + S I1AZ" |70s + (B")7,

118 where dZ = (d,Z,d,Z).
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3.1. H! gradient flow.
THEOREM 2. The scheme (2.13)-(2.15) is unconditionally stable and the follow-
ing discrete energy law holds for any At:

1

B2 — Ea(Z") = =M dW™ 2y, V> 0. (32)

Proof. Multiplying equation (2.13) by Wﬁfl/ 2hgchy, and making summation on
i,j for 1 <4 < Ny, 1 <j <Ny, we have

(d 2", WHY2) = M(D,d, W"+Y2 4 D, d, WnHy/2 ntt/2) (3.3)
Using Lemma 1, equation (3.3) can be transformed into the following:

(@2 W), = = M W22 + [, W2 )

3.4
— — MW, 4

Multiplying equation (2.14) by dtZZjlhmhy, and making summation on i, j for 1 <
1 < Ny, 1 <5 < Ny, we have

(dth+1,Wn+1/2)m - _ (DwdzZ"'Hm + DydyZn+1/2,dth+1)m

Rn+1/2 N
+ f(p(znﬂm),dtzn“)m (3.5)
E{L(ZnJrl/Q)

+ A 22 dzm ),
Using Lemma 1 again, the first term on the right hand side of equation (3.5) can be

written as:
— (D2dy Z"Y? + Dy, 22, 4,27,
:(dmZn-‘rl/27 dtdzZn+1)z + (dyzn-‘rl/27 dtdyzn-i-l)y (36)
_ Nz N3y — 1427 3y
2At '
Multiplying equation (2.15) by R"*! + R™ leads to

RH1)2 _ (R7)2 Rn+1/2 -
( )At B _ nZ +1/2)(F/(ZnH/Q)adtZ"H)M' (3.7)
Eh(Zn

Combining equation (3.7) with equations (3.4) - (3.6) gives that

(R = (B2 1202, — 1272,
At 2A¢
Lz iz, — 1427y, (3.8)
2At
— — MW" 2|3,, <0,

which implies the desired results (3.2). |
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ENERGY STABILITY AND CONVERGENCE 7

139 3.2. L? gradient flow. For L? gradient flow, we shall only state the result, as
140 its proof is essentially the same as for the H~! gradient flow.
141 THEOREM 3. The scheme (2.17)-(2.19) is unconditionally stable and the follow-
142 ing discrete energy law holds for any At:

1
143 A [Ba(Z") = Ea(27)] = —M|[WnH2)2 0y > 0. (3.9)
144 4. Error estimates. In this section, we derive our main results of this paper,

145 i.e., error estimates for the fully discrete SAV/CN-BCFD schemes.
146 For simplicity, we set

147 ep=2"—=¢", e, =W"—pu", e!'=R"—1r".

148 4.1. H™! gradient flow. We shall first derive error estimates for the case of
149 H~! gradient flow.

150 THEOREM 4. We assume that F(¢) € C3*(R) and ¢ € WhHe(J;WH>(Q)) N

151 W3(J,Wheo(Q)), p e Le(J;Wh(Q)). Let At < C(hy + hy), then for the dis-
152 crete scheme (2.13)-(2.15), there exists a positive constant C' independent of hy, hy
153 and At such that

||Zk+1 o ¢k+1”m + ||de+1 o d¢k+1||TM + |Rk+1 o T’k+1‘

& 1/2
+ (Z At 1/2 - dwl/?n%M)

n=0

154 k 1/2
+ (Z At”Wn+l/2 _ Mn+l/2||$n>

n=0
SC(|@llwr.oe (1;w40 (02)) + ||lJ/||LOO(J;W4.oo(Q)))(hi + hZ)
+ C”¢||W31°°(J;W1x°°(Q))At2‘
155 We shall split the proof of the above results into three lemmas below.

156 LEMMA 5. Under the condition of Theorem 4, there exists a positive constant C
157 independent of hy, hy and At such that

k
1 A M .
(eBF1)2 + Sl ek By + Sk IE, + o D Atldet/2 |y

n=0
k+1 M k+1
<C Y Atl|deg]|Fa + > > Atlle 2,
158 n=0 =0 (4.2)
k+1 k+1
+ O Atlel|Z, +C > At(er)?
n=0 n=0

+ C(||¢H%/I/1,00(J;W4,00(Q)) + H/‘L||%°°(J,W4v°°(ﬂ)))(hi —|— hi)
+ C”QS”%/V?’OO(,];Wl,oo(g))AtZl.

159 Proof. Denote
_ o¢ _ 99
53:(¢) - dx¢ - %7 6y(¢) - dy(b - 6:[/7
160 8/,1, 8/,1,
0o () = dupp — o’ Oy(p) = dyp — 3711
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Subtracting equation (2.5) from equation (2.13), we obtain
[deeg]i T =M[Dy(dyey + 82(1) + Dy (dye, + 8, ()]0 T2 w3
n+1/2 n+1/2 :
Tl 7 ]/ T2 17]/ ’
where
n+1/2 0P nt1/2
T1,:j/ = ELJ — (@]} < Cllgllws. (100 @) A, (4.4)
Y2 = M(D, o +D a“]’.”rl/Q — MAY?
2,1, or ay @] 7,7 (45)
<CM(h2 + hgz/)H.u”L‘x’(J;W‘lvoo(Q))-
Subtracting equation (2.6) from equation (2.14) leads to

et = [Dy(dpey + 0,(9)) + Dy(dyeq + 6, ()11

50,7 ©J
N Rn+1/2 .
AL+ e P2
Eh(Zn+1/2) (4.6)
,],,n+1/2

1o m+1/2 n+1/2
———TF'(¢; )+ T :
E1 (¢n+1/2) (¢z7] ) 3.%,7

where
n n 8¢ 8¢ n+1/2
TP = AgM Y2 D, 22 + D, oY
iy = A0 Do+ Dy i @7)

< C(h2 + W)@l oo (w2

Subtracting equation (2.7) from equation (2.15) gives that

1 ~
e — AN
e
( ) (4.8)
/ ¢n+1/2 n+1/2d +Tn+1/2
QW
where
T2 = 2 g < O () AP (4.9)

Multiplying equation (4.3) by eztlj/Q

Ng, 1 <5< N,, we have

hyhy, and making summation on ¢, 5 for 1 < ¢ <

(dee™ e ™1/?)

m

=M (Dz(dzeu + 5ac(N))n+1/2 + Dy(dye, + 5y(ﬂ))n+1/2a GZH/Q) (4.10)

m

+ (Tln-i-l/Z’ eZJrl/Z)m + (T2’fl+1/2’ ez+1/2)

me

Using Lemma 1, we can write the first term on the right hand side of equation (4.10)

This manuscript is for review purposes only.



ENERGY STABILITY AND CONVERGENCE 9

M (Da(due + 02 ()" /2 4 Dydyey + 0, (1)1, 5 1/2)

m

== M ((duey + 0,))" 112, dye1/2)

= = M| de V2 — M(So ()", dye™1?),
— M(6, (N)n+1/27 dyez+l/2)y'
179 (4.11)
180 Thanks to Cauchy-Schwarz inequality, the last two terms on the right hand side of
181 equation (4.11) can be transformed into:

-M ((dyeu + 5y(,u))n+1/2a dyeZH/Q)

T Y

= M (B, (u)™ Y2, dyef ), = M8, ()12, dyep 2,

o M +1/22 2 4 4 (4.12)
Sglldu” 7ar + Cllullzoe (gm0 () (R + Ty)-
183 Multiplying equation (4.6) by dtegfg;hmhy, and making summation on i,j for

184 1 <4< Ng, 1<j< Ny, we have

(™2, deel ™) = —(Da(dueg + 02(9)" /% + Dy (dyes + 6,())" 2, dyely ™)

o
n+1/2 5 n+1/2
+( R F/(Zn+l/2) N r F/(¢n+1/2),dt6n+l)m
~ F (ont1/2 ¢
Eh(Zn+1/2) (¢ +1/2)
+ )\(€Z+1/27dteg+l)m + (Tgl-‘rl/Q7 dtez+1)m.
185 (4.13)

186 Similar to the estimate of equation (3.6), the first term on the right hand side of
187 equation (4.13) can be transformed into the following:

— (Da(daeg + 02(0))" /2 + Dy(dyes + 0,(6)" /2, drely ™)
:(d$62+1/2’ dtd;ceg-’_l)x + (dyeg+1/27 dtdyeg-‘rl)y
+ (00(0)" V2, dyduel T P), + (8,(0)" Y2, dydyel ), (4.14)

ldeg G — e Far
o 2At
+(8,(8)" V%, dydy el T2,

188

+ (0:(0)" Y2, ddey ),

189 The second term on the right hand side of equation (4.13) can be rewritten as follows:

R H1/2 1(Gm41/2 /2 I¢an+1/2 n+1
——F(Z ) =50 )y deey™ )m
Bl (Zn+1/2) Ey(¢m+172)
7n+1/2 Tn+1/2
:Tn+1/2( F,(Z~+ / ) o F/(¢~+ / ) 7dt6n+1)m
\/E{L(Zn+1/2) \/E{l(¢n+l/2)
190 (4.15)

F’(g?)"+1/2) B F/(¢n+1/2) den+1
\/E{L(q;"+l/2) \/E1(¢n+1/2)’ tCe

jad Zn+1/2
+ e7’lﬂ’b+1/2( ( ) ,dt€n+1)

E{l(Zn+1/2)

Jm

+ Tn+1/2(

m-e

This manuscript is for review purposes only.
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191 Recalling equation (4.3), the first term on the right hand side of equation (4.15) can
192 be transformed into the following:

7n+1/2 Tn+1/2
T,n+1/2( F‘I(Z~+ / ) _ F/(¢~+ / ) ,dt€n+1)m
VEN @z [Eh )
F'(Zznt1/2 F(pnt1/2
vt/ L)L PO e 4 a(0) )
» VER@mm\Bgran) -
9 . Fr(Zn+1/2 Jod q;n+1/2 . .
w2 ) g, 4 6,0) )
VEN 22y B
1 7n+1/2 1(n+1/2
+Tn+1/2( F(Z ) _ F(¢ ) T{l+1/2+T2n+1/2)m.

\/E{L(Zn+1/2) \/E{l(q;n-i-l/Q),

194 Next, we shall first make the hypothesis that there exists a positive constant C, such
195  that

196 12" oo < Ch. (4.17)

197 This hypothesis will be verified in Lemma 7 using a bootstrap argument.
198 Since F(¢) € C*(R), we have

do F'(ZMV2)  dp F'(§H2)
VENZm2) (BN
BL@™?) - BUZ?)
VEL ) B G 12) (B (274172) 4 B (gr1/2)
sz/(Zn+l/2) _ szl(én-&-l/Z)
+ .
BN 212

199 :dwF/@nH/Z)

(4.18)

l:

200 Using above and the Cauchy-Schwartz inequality, we can deduce that

F’(Z”+1/2) F/((gn+l/2)
\/E{L(Zn+1/2) \/E{z(énﬂm)
1 7n+1/2 1( n+1/2
=BT B (g, 5y,
01 VERZmr2) Bl gz (4.19)

M .
< daef 22 + Cllrl oo oy (legllz + e 112,
6

MTn—H/Q( s D (dzey +6m(ﬂ>)n+1/2)m

+ ClrlIE oo () (daeg |l + lldze ™ 17)
+ C”:UH%OC(J;V[/3~,<>c>(Q))(h:,Lj + h:)

This manuscript is for review purposes only.



ENERGY STABILITY AND CONVERGENCE 11

202 Similarly we can obtain
7n+1/2 Tn+1/2
Mr"'H/Q F/(Zn / ) _ Fl(¢n / ) 7D d e +5 U n+1/2 m
= = Y\"y=p Y
VENZrz) B Gr)
y : M n n n—
09 Sglldyeu“/z\li + CllrlZoe gy Uleg iz + lleg ™" I (4.20)

+ Cllrl e () (ldye I} + dye ™ [15)
+ CHHH%w(J;WSm(Q))(hi + h3)~

204 Then equation (4.16) can be estimated by:

rn+1/2( F/(Zn+1/2) B F/(QEnJrl/Z) ’dteg+l)m
\/E{L(Zn+1/2) \/E{z(qgnﬂ/z)
205 M n n n—
20 <5 e 2 g + Clirlloe o (legl + lleg ™ 117) (421)

+ Cllrll ey (e + lldel ™ 1 Far)
+ C”NH%‘”(J;W‘*»O‘J(Q))(hi + h;) + C||¢||%/V3vW(J;LW(Q))At4'

206  Similar to (4.16), the second term on the right hand side of equation (4.15) can be
207 controlled by:

1 In+1/ 1 Apn+1/
PG PO
\/E{L(én-ﬁ-l/Q) VE(¢n+1/2)

. M,
208 Sglldeﬂ“/QII?pM + Ollpll Foo (giwra.oo () (g + By) (4.22)

Tn+1/2(

+ CH¢H%/V&OO(J;Wl,oo(Q))AtAl.

209  The third term on the right hand side of equation (4.13) can be estimated by:

210 A nt1/2 g ondly \|€Z+1llfn - ||6$||3n (4.23)
Co ey m = 2At '
211 Multiplying equation (4.8) by e?™! + e leads to
(ent1)2 — (en)2 _ /2 (F/(Zm+112), 4,271,
& B (Zn )
212 ont1/2 F’(¢”+1/2)¢?+1/2dx (4.24)

VEGT) Jo

F TR (et e,

213 The first and second terms on the right hand side of equation (4.24) can be transformed
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214 into:
ent1/2 _ o t1/2
r (F’(Z”Jrl/z), 42", — r F’(¢”+1/2)¢?+1/2dx
) Br (o177
er 12 / / +1/2
_ T 1 n+1/2 n+1 o 1o n+1/2\ n
o By (¢nH172) <(F (¢ ), A" ) m /QF (¢ o dx>
ot1/2 }
+ T—(F/(Zn+1/2), dt€g+l)m
Bl(Z12)
1( nt1/2 I(int1/2
+€:}+1/2( F (Z ) _ F (¢ ) 7dt¢n+1)
JENZmz) VB
215 (4.25)
216 Since F(¢) € C3(R), we have that
en+1/2( F/(Zn+1/2) FI(¢n+1/2) ¢n+1)
r FEh Z"+1/2 /El ¢n+1/2 » Ut
=ent1/2( F(Zm2) — E(¢mH?) ")

217 ' \ ER(Zrt1/2) ([ ER(Zn+1/2) (4.26)
1 pn+1/2 1 An+1/2

F(d) ) . F(¢ ) ,dt¢n+1)m

JEr @) VEGTP)

<O(e2)2 + Cligllin e (gipe o) (leglim + lleg ™ 1%).

+ 6:}+1/2(

218 Recalling the midpoint approximation property of the rectangle quadrature formula,
219 we can obtain that

ont1/2

T 1 an41/2 n+1 _ /(n41/2 n+1/2d>
220 Er(¢nr1/2) ((F (¢ ), ded" " )m /QF(¢ lon x

<O(ert/2)? 4 Cll@ll31.00 (gew.oe 2y (Bs + By

(4.27)

221 Combining equation (4.24) with equations (4.10)-(4.27) and using Cauchy-Schwarz
222 inequality result in
. (@12 = ()2 | 14l By — lldeslfy
‘ At 2A¢
) N e .
224 2At + || eu ||TM .
M mn n n—
225 < 7”deu+1/2||%M + C”TH%O"(J)(He(f)HEﬂ + ||€¢ 1H72n)
226 ACIrlIF e () (1deg 17y + del ™ 1)
221 —(0a(@)" T2 didye ), — (3,(0)" 2, dud,e ),
28 HI T2 el ) — (17T et 2,
229 —(Ty2, en iy, 4 T2 (en ! 4 em)
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i)

+C(||¢||%/I/1,°°(J;W2v°°(ﬂ)) + ||M\|%oc(J;W4=oo(Q)))(hi + hy)

+CBl[5.00 (11,00 (02)) A (4.29)
From the discrete-integration-by-parts,
k k
At(f", deg" ) = — At(dy ", g"
n;) (f",dig™™) ; (def",g") (430)
+ (5 + (12, 97
we find
k
Z n+1/2 n+1
t 13 )
k
== > AHd Ty )+ (TP b (1372, €Y) (4.31)
n=1
k
<C Y Atleglr, + *II &g I + Cllolii o (gwace o) (ha + Ty).
n=1
Similarly we have
k k
= 37 A8 (D) V2 drdgel ) = N AL, ()2, ddyel ),
(4.32)

k

<C Z Atl|del|[Fa + *|| k+1||2 + CW“%VLOO(J;WB»O(Q))(hi + hy).

n=1

Multiplying equation (4.28) by At, summing over n, n = 0,1,...,

with equations (4.31) and (4.32), we can obtain (4.2).

k and combining
|

LEMMA 6. Under the condition of Theorem /, there exists a positive constant C

independent of hy, hy and At such that

k
el 15 + MY Atflept/2)2,
n=0

<CZ At(erth)? + OZ Atllen]|Z,

n=0

(4.33)

M n n+1/2
+ Z At dey 2|y + C Z At de ™ s

n=0 n=0

+ C(lpll o (oo () + 19117 (gewrioo () (i + 1)

+ CllBll3ys.0 (7, £ow () AL

Thi. 1script 15 f ly.
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Proof. Multiplying equation (4.3) by egtlj/ th hy, and making summation on %, j
for 1 <i < N, 1<j5 <Ny, we have
(diey™, eZH/Q)m

=M (Daldyey + 8o(1)™ /2 + Dy (dyey + 0, ()12, 12 (4.34)

m

n+1/2 n+1/2 n+1/2 n+1/2
+ (R TR (R el TR,

Using Lemma 1, the first term on the right hand side of equation (4.34) can be
transformed into the following:

M (Dz(dzeﬂ +(5I(M))n+1/2 +Dy(dy6# _’_5y(u))n+1/2veg+l/2>

m

= — M (o + 8. ()" 2, dyey ™) (4.35)

x
- M ((dyeu + 8y ()2, dyGZH/Q)y

The first term on the right hand side of equation (4.35) can be estimated as:

= 01 (e 02(0)" 12, oy )

== M (duel V2, (dyey + 80(6))"H2)
+ M (dael V2, 8,(6)H2)y = M(8a(p)" V2, dye ™),
<M (67“/ 2 Dy(dpes + 6,(0))" 2)

"

x

(4.36)

M n
+ o Idae 2R+ Clldaey ™22

+ O(HHHQLw(J;W&oo(Q)) + H¢||2L°°(J;W3v°°(9)))(hi + hi)-

In the y direction, we have the similar estimates. Then the left hand side in (4.35)
can be bounded by:

M (D£(d$6p, +5m(ﬂ))"+1/2 +Dy(dy6u +(Sy(,u))n+1/27eg—‘,—l/2>

m

<M (€12, Dy(does +8,(6))" /2 + D, (dyes +6,(9) /%) (4.37)

M n+1/2
+ e o+ Clldel Ty

+ Cllpll7 oo (gews.oo () + 1011700 (o5, () (B + By
Thanks to (4.6) and (4.15), the first term on the right hand side of (4.37) can be
estimated as follows:

M (€772, D, (dyeg + 8,(0)" /2 + Dy (dye + 8,(6)"2)

m

Rrt1/2 /(Zn+1/2) B pntl/2 F’(¢"+1/2)

) —F B e T
\/ EM(Znt1/2) V E1(¢n+1/2)
m o (4.38)

Jr]\4(61#1/2’)\ezﬂ/z)m Jr]\4(6:#1/2’i,gwrl/z)nﬁb . M“ezﬂ/z”En

_ n+1/2
=M €,

M
<l 215 + Cer™ +en)? + Cllleg 17, + lles ™ 17)

— M2, 4 ClBIE o sy (4 B,

Thi. 1SCript 15 f ly.
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Combining equation (4.34) with equations (4.37) and (4.38) and multiplying equation
(4.28) by 2At, summing over n, n =0,1,...,k lead to (4.33). d

LEMMA 7. Under the condition of Theorem 4, there exists a positive constant C.,
independent of hy, hy and At such that

1Z" o < Cy for all n.

Proof. We proceed in two steps.
Step 1 (Definition of C.): Using the scheme (2.13)-(2.15) for n = 0 and applying
the inverse assumption, we can get the approximation Z' with the following property:

1ZMloo SN1Z" = ¢ loo + 16l < 12" = Mnd' [loo + [Th¢" = &' lo + 1|9 o
SCh (|24 = ¢l + (16" = Tigt ln) + [Mne" — &' lloo + 16" |
<C(h+h""A) + ¢ < C.

where h = max{hg, hy} and ITj, is an bilinear interpolant operator with the following
estimate [5]:

T¢" — ¢'|oe < CH2. (4.39)
Thus we can choose the positive constant C, independent of h and At such that
Cy > max{[|Z"]|oc, 216" [|oo }-

Step 2 (Induction): By the definition of C., it is trivial that hypothesis (4.17)
holds true for [ = 1. Supposing that ||Z!~!||o < C, holds true for an integer | =
1,--- ,k+ 1, with the aid of the estimate (4.42), we have that

12" = ¢!l < C(AE + h?).

Next we prove that ||Z!||. < C, holds true. Since

124 12" = ¢ |oo + |6 |oo < 12" = TR || oo + [[Tne" — '] + [0
<Ch Y| Z" = ¢ + 16" — TTnd ) + |TRY" — Boo + (10|00 (4.40)
<Ci(h+h™'A) + || oo-

Let At < Csh and a positive constant h; be small enough to satisfy

C.
Then for h € (0, h1], we derive from (4.40) that

12|00 <C1(h+h7 AE) + |6l

<Ci(hi + 022/11) + % < C..

This completes the induction. 0
We are now in position to prove our main results.

Thi. 1sCript 15 f 0.
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276 Proof of Theorem 4. Thanks to the above three lemmas, we can obtain
Lok k
(BH1)2 + S ek By + ek 2,

M & M &
+ > Atf|den 2|7, + 5 > Atflept2)2)

n=0 n=0

277 E+1 k+1 k41 (4.41)
<C Y Atldes|Fa +C D Atllellr, +C > Ab(er)?

n=0 n=0 n=0

+ Cl1.00 (rswe ey + Nl Lo (rwace () (B + By
+ CH¢||%/V3OO(JJ/V10C(Q))AZ‘:4

278 Finally applying the discrete Gronwall’s inequality, we arrive at the desired result:

k k
(e ™2 + lldeg  I7ar + llegt 117,

k k
+ At||de™ 2|2, + Atlle" /2 z
B 3 e g+ 3 Al )
d
SC([|lI551.00 (ewaoo () + 11T 00 (ewaio () (B + By
+ CllBll5ys.00 (w1 () AL
280 Thus, the proof of Theorem 4 is complete.
281 4.2. L? gradient flow. For the L? gradient flow, we shall only state the error
282 estimates below, as their proofs are essentially the same as for the H~! gradient flow.
283 THEOREM 8. We assume that F(¢) € C3*(R) and ¢ € WhHe(J;WH>(Q)) N

281 W3(J;Wh(Q)) and At < C(hy + hy). Then for the discrete scheme (2.17)-
285  (2.19), there exists a positive constant C' independent of hy, h, and At such that

- |Z5FE = " |+ (| AZPHY = AP [ ag + [REFE — R (4.43)
<O @llws.oo (sswr00 () AL + Cllllwroe (giwace () (ha + h2).

287 5. Numerical simulations. We present in this section various numerical exper-
288 iments to verify the energy stability and accuracy of the proposed numerical schemes.

289 5.1. Accuracy test for Allen-Cahn and Cahn-Hilliard equations. We
200 consider the free energy
1 1
2 E(¢) = S |IVoP + — (> — 1)? ) dx. 1
20 @)= [ (5170 + 156 - 1) ax (51)
292 and for better accuracy, rewrite it as
1 B 1 B2+ 28

293 E(¢) = —|Vo|? + 5¢* + — (¢ —1—B)% — d 5.2

@ = [ (5707 + oo+ @ 1= - T ik 52)

294 where § is a positive number to be chosen. To apply our schemes (2.13)-(2.15) or
295 (2.17)-(2.19) to the system (2.2), we drop the constant in the free energy and specify
296 the operator G, the energy E1(¢) and A as follows:

1

_ B
*@/ﬂ(éﬁzflfﬂ)zd& A=

297 G=—(—A)°, Ei(9) 2 (5.3)

Tha anuscript is for review purpose: 0y,
T}1/9 manuscript 1 JOT TEVIEW PUTPOSES ()nl([



298
299
300

313
314
315
316
317

318
319
320
321

ENERGY STABILITY AND CONVERGENCE 17

The system (2.2) becomes the standard Allen-Cahn equation with s = 0, and the
standard Cahn-Hilliard equation with s = 1.
We denote

_ — n+q _ ,n+q
1f = glloo,2 Og%ggk{llf 9" x},

. L\ 12
1f = gllas = (ZOAtIIf’”q —gn+q||x) ,
n=

_ — n+1 _ ,.n+1
12— rlloe = max {R"T —r",

where ¢ = %, land X =m, TM.
In the following simulations, we choose @ = (0,1) x (0,1) and Cy = 0.

5.1.1. Convergence rates of the SAV/CN-BCFD scheme for Allen-
Cahn equation. Example 1. We take T =0.5, G=—-1, =0, M =0.01, e =
0.08, At =5E — 4, and the initial solution ¢g = cos(mz) cos(my). To get around the
fact that we do not have possession of exact solution, we measure Cauchy error, which
is similar to [4, 23, 6]. Specifically, the error between two different grid spacings h
and 2 is calculated by |lec|| = [|¢r — Cny2ll-

The numerical results are listed in Table 1. we observe the second-order conver-
gence predicted by the error estimates in Theorem 8.

TABLE 1
Errors and convergence rates of Example 1.

h llez]|oo,2 Rate lleaz]|oo,2 Rate llew | oo Rate
1/10 6.36E-3 — 5.96E-2 — 5.93E-3 —

1/20 1.59E-3 2.00 1.57E-2 1.93 1.47E-3 2.01
1/40 3.98E-4 2.00 3.98E-3 1.98 3.69E-4 2.00
1/80 9.96E-5 2.00 9.98E-4 1.99 9.23E-5 2.00

5.1.2. Convergence rates of SAV/CN-BCFD scheme for Cahn-Hilliard
equation. Example 2. WetakeT =0.5, G=A, =0, M =0.01, e=0.2, At =
5FE — 4, with the same initial solution as in Example 1. The numerical results are
listed in Tables 2 and 3. Again, we observe the expected second-order convergence
rate in various discrete norms.

TABLE 2
Errors and convergence rates of example 2.

h llez|lco,2 Rate  |ledz]|oo,2 Rate |ler|loo Rate
1/10 5.49E-3 — 2.78E-2 — 4.88E-3 —

1/20 1.36E-3 2.01 6.91E-3 2.01 1.20E-3 2.02
1/40 3.41E-4 2.00 1.73E-3 2.00 3.00E-4 2.00
1/80 8.51E-5 2.00 4.31E-4 2.00 7.49E-5 2.00

5.2. Coarsening dynamics and adaptive time stepping. In this example,
we simulate the coarsening dynamics of the Cahn-Hilliard equation.

Since the scheme (2.13)-(2.15) is unconditionally energy stable, we can choose
time steps according to accuracy only with an adaptive time stepping. Actually in
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TABLE 3
Errors and convergence rates of example 2.

h Hew||2,2 Rate HedW||2,2 Rate
1/10 2.50E-2 — 2.18E-1 —

1/20 6.11E-3 2.03 5.46E-2 2.00
1/40 1.52E-3 2.01 1.37E-2 2.00
1/80 3.79E-4 2.00 3.42E-3 2.00

many situations, the energy and solution of gradient flows can vary drastically in
certain time intervals, but only slightly elsewhere. In order to maintain the desired
accuracy, we adjust the time sizes based on an adaptive time-stepping strategy below
(Ref. [10, 17]). We update the time step size by using the formula

Algorithm 1 Adaptive time stepping procedure

Given: Z" and At".
1: Computer Z%Jg; using a first order SAV-BCFD scheme and At™.
2. Computer Z"*! using the SAV/CN-BCFD scheme (2.13)-(2.15) and At™.
3: Calculate e"t1 = ||Z7]£} —Z" /12"
4: If e"*1 > tol then
Recalculate time step At™ < max{At,in, min{ Ag, ("1, At"), At oz }}
goto 1
6: else

Update time step At" ™! «— max{At,in, min{ Ag, (", At™), At oz }}-
7. endif

o

tol\ /2
Agp(e, At) = p (e) At, (5.4)
where p is a default safety coefficient, tol is a reference tolerance, and e is the relative
error at each time level. In this simulation, we take

G=A, Atmae = 1072, Atpin = 1077, tol = 1073,
M =0.002, e=0.01, 3=6, p=0.9,

with a random initial condition with values in [—0.05,0.05], and the initial time step
is taken as At,in.-

To demonstrate the effectivity of the SAC/CN-BCFD scheme with adaptive time
stepping, we compute the reference solutions with a small uniform time step At =
10~° and a large uniform time step At = 103 respectively. Characteristic evolutions
of the phase functions are presented in Fig. 1. We also present in Fig. 2 the energy
evolutions and the roughness of interface, where the roughness measure function R(t)

is defined as follows:
1 _
R(t) = | — — $)2d0) 5.5

with ¢ = \ﬁll Jo #d2. One observes that the solution obtained with adaptive time
steps is consistent with the reference solution obtained with a small time step, while
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o % E % z N
=0.02 ) T=0.10 ) T=1.0
; U .
Adaptive
(d) T=0.02000 ) T=0.10000 f) T=0.99990
N |
J
At=10"3 \ 4
(g) T=0.02 ) T=0.1 ) T=1.0

Fic. 1. Snapshots of the phase function among small time steps, adaptive time steps and large
time steps in example 3.

the solution with large time step deviates from the reference solution. This is also
verified by both the energy evolutions and roughness measure function R(t). We
present in Fig. 3 the adaptive time steps for different ¢ = 0.02, 0.01, 0.005. We
observe that there are about two-orders of magnitude variation in the time steps with
the adaptive time stepping, which indicates that the adaptive time stepping for the
SAV/CN-BCFD scheme is very efficient.

3000
—Aat=10° B
— + — Adaptive
2500 A0S r
08
2000 .
8 Zos
51500 Z,
E 2
3
1000 04
500 g____ ’
0 0 |

F1a. 2. Numerical comparisons of discrete scaled surface energy and roughness for the simula-
tion of spinodal decomposition in example 3.
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