

ENERGY STABILITY AND CONVERGENCE OF SAV BLOCK-CENTERED FINITE DIFFERENCE METHOD FOR GRADIENT FLOWS*

XIAOLI LI [†], JIE SHEN [‡], AND HONGXING RUI [§]

Abstract. We present in this paper construction and analysis of a block-centered finite difference method for the spatial discretization of the scalar auxiliary variable Crank-Nicolson scheme (SAV/CN-BCFD) for gradient flows, and show rigorously that scheme is second-order in both time and space in various discrete norms. When equipped with an adaptive time strategy, the SAV/CN-BCFD scheme is accurate and extremely efficient. Numerical experiments on typical Allen-Cahn and Cahn-Hilliard equations are presented to verify our theoretical results and to show the robustness and accuracy of the SAV/CN-BCFD scheme.

Key words. scalar auxiliary variable (SAV), gradient flows, energy stability, block-centered finite difference, error estimates, adaptive time stepping

14 **AMS subject classifications.** 65M06, 65M12, 65M15, 35K20, 35K35, 65Z05

1. Introduction. Gradient flows are widely used in mathematical models for problems in many fields of science and engineering, particularly in materials science and fluid dynamics, cf. [1, 2, 27, 18] and the references therein. Therefore it is important to develop efficient and accurate numerical schemes for their simulation. There exists an extensive literature on the numerical analysis of gradient flows, see for instance [3, 11, 6, 8, 20, 7, 12] and the references therein.

In the algorithm design of gradient flows, an important goal is to guarantee the energy stability at the discrete level, in order to capture the correct long-time dynamics of the system and provide enough flexibility for dealing with the stiffness problem induced by the thin interface. Many schemes for gradient flows are based on the traditional fully-implicit or explicit discretization for the nonlinear term, which may suffer from harsh time step constraint due to the thin interfacial width [9, 19]. In order to deal with this problem, the convex splitting approach [15, 21, 13] and linear stabilization approach [14, 19, 24, 29] have been widely used to construct unconditionally energy stable schemes. However, the convex splitting approach usually leads to nonlinear schemes and linear stabilization approach is usually limited to first-order accuracy.

Recently, a novel numerical method, the so called invariant energy quadratization (IEQ), was proposed in [25, 28, 26]. This method is a generalization of the method of Lagrange multipliers or of auxiliary variable. The IEQ approach is remarkable as it permits us to construct linear, unconditionally stable, and second-order unconditionally energy stable schemes for a large class of gradient flows. However, it leads to coupled systems with variable coefficients that may be difficult or expensive to solve. The scalar auxiliary variable (SAV) approach [18, 17] was inspired by the IEQ approach, which inherits its main advantages but overcomes many of its shortcomings. In particular, in a recent paper [16], the authors established the first-order convergence and error estimates for the semi-discrete SAV scheme.

*Received by editors March 2, 2018

[†]School of Mathematics, Shandong University, Jinan 250100, China. Email: xiaolisdu@163.com.

[‡]Corresponding Author. Department of Mathematics, Purdue University, West Lafayette, IN 47907, USA. Email: shen7@purdue.edu.

[§]School of Mathematics, Shandong University, Jinan 250100, China. Email: hxrui@sdu.edu.cn.

42 In this paper, we construct a SAV/CN scheme with block-centered finite differences
 43 for gradient flows, carried out a rigorous stability and error analysis, and implemented
 44 an adaptive time stepping strategy so that the time step is only dictated by accuracy rather than by stability. The block-centered finite difference method can be
 45 thought as the lowest order Raviart-Thomas mixed element method with a suitable
 46 quadrature. Its main advantage over using a regular finite difference method is that
 47 it can approximate both the phase function and chemical potential with Neumann
 48 boundary conditions in the mixed formulation to second-order accuracy, and it guarantees
 49 local mass conservation. Our approach for error estimates here is very different
 50 from that in [16] which is based on deriving H^2 bounds for the numerical solution.
 51 However, this approach can not be used in the fully discrete case with finite-differences
 52 in space. The essential tools used in the proof are the summation-by-parts formulae
 53 both in space and time to derive energy stability, and an induction process to show
 54 that the discrete L^∞ norm of the numerical solution is uniformly bounded, without
 55 assuming a uniform Lipschitz condition on the nonlinear potential. To the best of
 56 the authors' knowledge, this is the first paper with rigorous proof of second-order
 57 convergence both in time and space for a linear scheme to a class of gradient flows
 58 without assuming a uniform Lipschitz condition for the nonlinear potential.

60 The paper is organized as follows. In Section 2, we describe our numerical scheme,
 61 including the temporal discretization and spacial discretization. In Section 3, we
 62 demonstrate the energy stability for our SAV/CN-BCFD scheme. In Section 4, we
 63 carry out error estimates for the SAV/CN-BCFD schemes. In Section 5, we present
 64 some numerical experiments to verify the energy stability and accuracy of the pro-
 65 posed schemes.

66 Throughout the paper we use C , with or without subscript, to denote a positive
 67 constant, which could have different values at different places.

68 **2. The SAV/CN-BCFD scheme.** Given a typical energy functional [16]:

$$69 \quad E(\phi) = \int_{\Omega} \left(\frac{\lambda}{2} \phi^2 + \frac{1}{2} |\nabla \phi|^2 \right) d\mathbf{x} + E_1(\phi), \quad (2.1)$$

70 where Ω is a rectangular domain in \mathbb{R}^2 , $\lambda \geq 0$ and $E_1(\phi) = \int_{\Omega} F(\phi) d\mathbf{x} \geq -c_0$ for
 71 some $c_0 > 0$, i.e., it is bounded from below. We consider the following gradient flow:

$$72 \quad \begin{cases} \frac{\partial \phi}{\partial t} = M\mathcal{G}\mu, & \text{in } \Omega \times J, \\ \mu = -\Delta\phi + \lambda\phi + F'(\phi), & \text{in } \Omega \times J, \end{cases} \quad (2.2)$$

73 $J = (0, T]$, and T denotes the final time. M is the mobility constant which is positive.
 74 The chemical potential $\mu = \frac{\delta E}{\delta \phi}$. $\mathcal{G} = -1$ for the L^2 gradient flow and $\mathcal{G} = \Delta$ for the
 75 H^{-1} gradient flow. $F(\phi)$ is the nonlinear free energy density and we focus on as
 76 an example, when $E_1(\phi) = \int_{\Omega} \alpha(1 - \phi^2)^2 d\mathbf{x}$, the L^2 and H^{-1} gradient flows are the
 77 well-known Allen-Cahn and Cahn-Hilliard equations, respectively.

78 The boundary and initial conditions are as follows.

$$79 \quad \begin{cases} \partial_{\mathbf{n}}\phi|_{\partial\Omega} = 0, & \partial_{\mathbf{n}}\mu|_{\partial\Omega} = 0, \\ \phi|_{t=0} = \phi_0, \end{cases} \quad (2.3)$$

80 where \mathbf{n} is the unit outward normal vector of the domain Ω . The equation satisfies
 81 the following energy dissipation law:

$$82 \quad \frac{dE}{dt} = \int_{\Omega} \frac{\partial \phi}{\partial t} \mu d\mathbf{x} = M \int_{\Omega} \mu \mathcal{G} \mu d\mathbf{x} \leq 0. \quad (2.4)$$

83 **2.1. The semi discrete SAV/CN scheme.** We recall the SAV/CN scheme
 84 introduced in [18] first.

85 Let $C_0 > c_0$ so that $E_1(\phi) + C_0 > 0$. Without loss of generality, we substitute
 86 E_1 with $E_1 + C_0$ without changing the gradient flow. Then E_1 has a positive lower
 87 bound $\hat{C}_0 = C_0 - c_0$, which we still denote as C_0 for simplicity.

In the SAV approach, a scalar variable $r(t) = \sqrt{E_1(\phi)}$ is introduced, and the system (2.2) can be transformed into:

$$\left\{ \begin{array}{l} \frac{\partial \phi}{\partial t} = M\mathcal{G}\mu, \end{array} \right. \quad (2.5)$$

$$\left\{ \begin{array}{l} \mu = -\Delta\phi + \lambda\phi + \frac{r}{\sqrt{E_1(\phi)}}F'(\phi), \end{array} \right. \quad (2.6)$$

$$\left\{ \begin{array}{l} r_t = \frac{1}{2\sqrt{E_1(\phi)}} \int_{\Omega} F'(\phi)\phi_t d\mathbf{x}, \end{array} \right. \quad (2.7)$$

Then, the SAV/CN scheme is given as follows:

$$\left\{ \begin{array}{l} \frac{\phi^{n+1} - \phi^n}{\Delta t} = M\mathcal{G}\mu^{n+1/2}, \end{array} \right. \quad (2.8)$$

$$\left\{ \begin{array}{l} \mu^{n+1/2} = -\Delta\phi^{n+1/2} + \lambda\phi^{n+1/2} + \frac{r^{n+1/2}}{\sqrt{E_1(\tilde{\phi}^{n+1/2})}}F'(\tilde{\phi}^{n+1/2}), \end{array} \right. \quad (2.9)$$

$$\left\{ \begin{array}{l} \frac{r^{n+1} - r^n}{\Delta t} = \frac{1}{2\sqrt{E_1(\tilde{\phi}^{n+1/2})}} \int_{\Omega} F'(\tilde{\phi}^{n+1/2}) \frac{\phi^{n+1} - \phi^n}{\Delta t} d\mathbf{x}, \end{array} \right. \quad (2.10)$$

88 where $\phi^{n+1/2} = \frac{1}{2}(\phi^n + \phi^{n+1})$, $r^{n+1/2} = \frac{1}{2}(r^n + r^{n+1})$, $\tilde{\phi}^{n+1/2}$ can be any explicit
 89 approximation of $\phi(t^{n+1/2})$ with an error of $O(\Delta t^2)$. For instance, we may let $\tilde{\phi}^{n+1/2}$
 90 be the extrapolation by

$$\tilde{\phi}^{n+1/2} = \frac{1}{2}(3\phi^n - \phi^{n-1}). \quad (2.11)$$

92 **2.2. Spacial discretization.** we apply the BCFD method on the staggered
 93 grids for the spacial discretization.

First we give some preliminaries. Let $L^m(\Omega)$ be the standard Banach space with norm

$$\|v\|_{L^m(\Omega)} = \left(\int_{\Omega} |v|^m d\Omega \right)^{1/m}.$$

For simplicity, let

$$(f, g) = (f, g)_{L^2(\Omega)} = \int_{\Omega} fg d\Omega$$

denote the $L^2(\Omega)$ inner product, $\|v\|_{\infty} = \|v\|_{L^{\infty}(\Omega)}$. And $W^{k,p}(\Omega)$ be the standard Sobolev space

$$W^{k,p}(\Omega) = \{g : \|g\|_{W_p^k(\Omega)} < \infty\},$$

94 where

$$\|g\|_{W^{k,p}(\Omega)} = \left(\sum_{|\alpha| \leq k} \|D^{\alpha}g\|_{L^p(\Omega)}^p \right)^{1/p}. \quad (2.12)$$

The grid points are denoted by

$$(x_{i+1/2}, y_{j+1/2}), \quad i = 0, \dots, N_x, \quad j = 0, \dots, N_y,$$

96 and the notations similar to those in [22] are used.

$$\begin{aligned}
 x_i &= (x_{i-\frac{1}{2}} + x_{i+\frac{1}{2}})/2, \quad i = 1, \dots, N_x, \\
 h_x &= x_{i+\frac{1}{2}} - x_{i-\frac{1}{2}}, \quad i = 1, \dots, N_x, \\
 y_j &= (y_{j-\frac{1}{2}} + y_{j+\frac{1}{2}})/2, \quad j = 1, \dots, N_y, \\
 h_y &= y_{j+\frac{1}{2}} - y_{j-\frac{1}{2}}, \quad j = 1, \dots, N_y,
 \end{aligned}$$

98 where h_x and h_y are grid spacings in x and y directions, and N_x and N_y are the
99 number of grids along the x and y coordinates, respectively.

100 Let $g_{i,j}$, $g_{i+\frac{1}{2},j}$, $g_{i,j+\frac{1}{2}}$ denote $g(x_i, y_j)$, $g(x_{i+\frac{1}{2}}, y_j)$, $g(x_i, y_{j+\frac{1}{2}})$. Define the discrete inner products and norms as follows,

$$\begin{aligned}
 (f, g)_m &= \sum_{i=1}^{N_x} \sum_{j=1}^{N_y} h_x h_y f_{i,j} g_{i,j}, \\
 (f, g)_x &= \sum_{i=1}^{N_x-1} \sum_{j=1}^{N_y} h_x h_y f_{i+\frac{1}{2},j} g_{i+\frac{1}{2},j}, \\
 (f, g)_y &= \sum_{i=1}^{N_x} \sum_{j=1}^{N_y-1} h_x h_y f_{i,j+\frac{1}{2}} g_{i,j+\frac{1}{2}}, \\
 (\mathbf{v}, \mathbf{r})_{TM} &= (v_1, r_1)_x + (v_2, r_2)_y.
 \end{aligned}$$

103 For simplicity, from now on we always omit the superscript n (the time level) if the
104 omission does not cause conflicts. Define

$$\begin{aligned}
 [d_x g]_{i+\frac{1}{2},j} &= (g_{i+1,j} - g_{i,j})/h_x, \\
 [d_y g]_{i,j+\frac{1}{2}} &= (g_{i,j+1} - g_{i,j})/h_y, \\
 [D_x g]_{i,j} &= (g_{i+\frac{1}{2},j} - g_{i-\frac{1}{2},j})/h_x, \\
 [D_y g]_{i,j} &= (g_{i,j+\frac{1}{2}} - g_{i,j-\frac{1}{2}})/h_y, \\
 [d_t g]_{i,j}^n &= (g_{i,j}^n - g_{i,j}^{n-1})/\Delta t.
 \end{aligned}$$

106 The following discrete-integration-by-part lemma [22] plays an important role in the
107 analysis.

LEMMA 1. Let $q_{i,j}$, $w_{1,i+1/2,j}$ and $w_{2,i,j+1/2}$ be any values such that $w_{1,1/2,j} = w_{1,N_x+1/2,j} = w_{2,i,1/2} = w_{2,i,N_y+1/2} = 0$, then

$$(q, D_x w_1)_m = -(d_x q, w_1)_x,$$

$$(q, D_y w_2)_m = -(d_y q, w_2)_y.$$

2.2.1. SAV/CV-BCFD scheme for H^{-1} gradient flow. Let us denote by $\{Z^n, W^n, R^n\}_{n=0}^N$ the BCFD approximations to $\{\phi^n, \mu^n, r^n\}_{n=0}^N$. The scheme for H^{-1}

gradient flow is as follows: for $1 \leq i \leq N_x$, $1 \leq j \leq N_y$,

$$\left\{ \begin{array}{l} [d_t Z]_{i,j}^{n+1} = M[D_x d_x W + D_y d_y W]_{i,j}^{n+1/2}, \\ W_{i,j}^{n+1/2} = -[D_x d_x Z + D_y d_y Z]_{i,j}^{n+1/2} + \lambda Z_{i,j}^{n+1/2} \end{array} \right. \quad (2.13)$$

$$\left. \begin{array}{l} + \frac{R^{n+1/2}}{\sqrt{E_1^h(\tilde{Z}^{n+1/2})}} F'(\tilde{Z}_{i,j}^{n+1/2}), \\ d_t R^{n+1} = \frac{1}{2\sqrt{E_1^h(\tilde{Z}^{n+1/2})}} (F'(\tilde{Z}^{n+1/2}), d_t Z^{n+1})_m, \end{array} \right. \quad (2.14)$$

$$\left. \begin{array}{l} \\ \\ \end{array} \right. \quad (2.15)$$

where $\tilde{Z}^{n+1/2}$ is an approximation of $\tilde{\phi}^{n+1/2}$, and

$$E_1^h(\tilde{Z}^{n+1/2}) = \sum_{i=1}^{N_x} \sum_{j=1}^{N_y} h_x h_y F(\tilde{Z}_{i,j}^{n+1/2}).$$

108 The boundary and initial approximations as follows.

$$\left. \begin{array}{l} [d_x Z]_{1/2,j}^n = [d_x Z]_{N_x+1/2,j}^n = 0, \quad 1 \leq j \leq N_y, \\ [d_y Z]_{i,1/2}^n = [d_y Z]_{i,N_y+1/2}^n = 0, \quad 1 \leq i \leq N_x, \\ [d_x W]_{1/2,j}^n = [d_x W]_{N_x+1/2,j}^n = 0, \quad 1 \leq j \leq N_y, \\ [d_y W]_{i,1/2}^n = [d_y W]_{i,N_y+1/2}^n = 0, \quad 1 \leq i \leq N_x, \\ Z_{i,j}^0 = \phi_{0,i,j}, \quad 1 \leq i \leq N_x, 1 \leq j \leq N_y. \end{array} \right. \quad (2.16)$$

110 **Remark.** The solution procedure of the above scheme is described in detail in
111 [18, 17], and hence is omitted here.

2.2.2. SAV/CV-BCFD scheme for L^2 gradient flow. Let us denote by $\{Z^n, W^n, R^n\}_{n=0}^N$ the BCFD approximations to $\{\phi^n, \mu^n, r^n\}_{n=0}^N$. The scheme for L^2 gradient flow is as follows: for $1 \leq i \leq N_x$, $1 \leq j \leq N_y$,

$$[d_t Z]_{i,j}^{n+1} = -M W_{i,j}^{n+1/2}, \quad (2.17)$$

$$W_{i,j}^{n+1/2} = -[D_x d_x Z + D_y d_y Z]_{i,j}^{n+1/2} + \lambda Z_{i,j}^{n+1/2} \quad (2.18)$$

$$\left. \begin{array}{l} + \frac{R^{n+1/2}}{\sqrt{E_1^h(\tilde{Z}^{n+1/2})}} F'(\tilde{Z}_{i,j}^{n+1/2}), \\ d_t R^{n+1} = \frac{1}{2\sqrt{E_1^h(\tilde{Z}^{n+1/2})}} (F'(\tilde{Z}^{n+1/2}), d_t Z^{n+1})_m, \end{array} \right. \quad (2.19)$$

112 where $\tilde{Z}^{n+1/2}$ is an approximation of $\tilde{\phi}^{n+1/2}$. The boundary and initial conditions
113 are given in (2.16).

114 **3. Unconditional energy stability.** We demonstrate below that the full discrete
115 SAV/CN-BCFD schemes are unconditionally energy stable with the discrete
116 energy functional

$$E_d(Z^n) = \frac{\lambda}{2} \|Z^n\|_m^2 + \frac{1}{2} \|\mathbf{d}Z^n\|_{TM}^2 + (R^n)^2, \quad (3.1)$$

118 where $\mathbf{d}Z = (d_x Z, d_y Z)$.

119 **3.1. H^{-1} gradient flow.**

120 THEOREM 2. *The scheme (2.13)-(2.15) is unconditionally stable and the follow-*

121 *ing discrete energy law holds for any Δt :*

122
$$\frac{1}{\Delta t}[E_d(Z^{n+1}) - E_d(Z^n)] = -M\|\mathbf{d}W^{n+1/2}\|_{TM}^2, \quad \forall n \geq 0. \quad (3.2)$$

123 *Proof.* Multiplying equation (2.13) by $W_{i,j}^{n+1/2}h_xh_y$, and making summation on
124 *i, j* for $1 \leq i \leq N_x$, $1 \leq j \leq N_y$, we have

125
$$(d_t Z^{n+1}, W^{n+1/2})_m = M(D_x d_x W^{n+1/2} + D_y d_y W^{n+1/2}, W^{n+1/2})_m. \quad (3.3)$$

126 Using Lemma 1, equation (3.3) can be transformed into the following:

127
$$\begin{aligned} (d_t Z^{n+1}, W^{n+1/2})_m &= -M(\|d_x W^{n+1/2}\|_x^2 + \|d_y W^{n+1/2}\|_y^2) \\ &= -M\|\mathbf{d}W^{n+1/2}\|_{TM}^2. \end{aligned} \quad (3.4)$$

128 Multiplying equation (2.14) by $d_t Z_{i,j}^{n+1}h_xh_y$, and making summation on *i, j* for $1 \leq$
129 *i* $\leq N_x$, $1 \leq j \leq N_y$, we have

130
$$\begin{aligned} (d_t Z^{n+1}, W^{n+1/2})_m &= -(D_x d_x Z^{n+1/2} + D_y d_y Z^{n+1/2}, d_t Z^{n+1})_m \\ &\quad + \frac{R^{n+1/2}}{\sqrt{E_1^h(\tilde{Z}^{n+1/2})}}(F'(\tilde{Z}^{n+1/2}), d_t Z^{n+1})_m \\ &\quad + \lambda(Z^{n+1/2}, d_t Z^{n+1})_m. \end{aligned} \quad (3.5)$$

131 Using Lemma 1 again, the first term on the right hand side of equation (3.5) can be
132 written as:

133
$$\begin{aligned} &-(D_x d_x Z^{n+1/2} + D_y d_y Z^{n+1/2}, d_t Z^{n+1})_m \\ &= (d_x Z^{n+1/2}, d_t d_x Z^{n+1})_x + (d_y Z^{n+1/2}, d_t d_y Z^{n+1})_y \\ &= \frac{\|\mathbf{d}Z^{n+1}\|_{TM}^2 - \|\mathbf{d}Z^n\|_{TM}^2}{2\Delta t}. \end{aligned} \quad (3.6)$$

134 Multiplying equation (2.15) by $R^{n+1} + R^n$ leads to

135
$$\frac{(R^{n+1})^2 - (R^n)^2}{\Delta t} = \frac{R^{n+1/2}}{\sqrt{E_1^h(\tilde{Z}^{n+1/2})}}(F'(\tilde{Z}^{n+1/2}), d_t Z^{n+1})_M. \quad (3.7)$$

136 Combining equation (3.7) with equations (3.4) - (3.6) gives that

137
$$\begin{aligned} &\frac{(R^{n+1})^2 - (R^n)^2}{\Delta t} + \lambda \frac{\|Z^{n+1}\|_m^2 - \|Z^n\|_m^2}{2\Delta t} \\ &+ \frac{\|\mathbf{d}Z^{n+1}\|_{TM}^2 - \|\mathbf{d}Z^n\|_{TM}^2}{2\Delta t} \\ &= -M\|\mathbf{d}W^{n+1/2}\|_{TM}^2 \leq 0, \end{aligned} \quad (3.8)$$

138 which implies the desired results (3.2). \square

139 **3.2. L^2 gradient flow.** For L^2 gradient flow, we shall only state the result, as
140 its proof is essentially the same as for the H^{-1} gradient flow.

141 THEOREM 3. *The scheme (2.17)-(2.19) is unconditionally stable and the following
142 discrete energy law holds for any Δt :*

143
$$\frac{1}{\Delta t} [E_d(Z^{n+1}) - E_d(Z^n)] = -M \|W^{n+1/2}\|_m^2, \quad \forall n \geq 0. \quad (3.9)$$

144 **4. Error estimates.** In this section, we derive our main results of this paper,
145 i.e., error estimates for the fully discrete SAV/CN-BCFD schemes.

146 For simplicity, we set

147
$$e_\phi^n = Z^n - \phi^n, \quad e_\mu^n = W^n - \mu^n, \quad e_r^n = R^n - r^n.$$

148 **4.1. H^{-1} gradient flow.** We shall first derive error estimates for the case of
149 H^{-1} gradient flow.

150 THEOREM 4. *We assume that $F(\phi) \in C^3(\mathbb{R})$ and $\phi \in W^{1,\infty}(J; W^{4,\infty}(\Omega)) \cap$
151 $W^{3,\infty}(J; W^{1,\infty}(\Omega))$, $\mu \in L^\infty(J; W^{4,\infty}(\Omega))$. Let $\Delta t \leq C(h_x + h_y)$, then for the dis-
152 crete scheme (2.13)-(2.15), there exists a positive constant C independent of h_x , h_y
153 and Δt such that*

$$\begin{aligned} & \|Z^{k+1} - \phi^{k+1}\|_m + \|\mathbf{d}Z^{k+1} - \mathbf{d}\phi^{k+1}\|_{TM} + |R^{k+1} - r^{k+1}| \\ & + \left(\sum_{n=0}^k \Delta t \|\mathbf{d}W^{n+1/2} - \mathbf{d}\mu^{n+1/2}\|_{TM}^2 \right)^{1/2} \\ & + \left(\sum_{n=0}^k \Delta t \|W^{n+1/2} - \mu^{n+1/2}\|_m^2 \right)^{1/2} \\ & \leq C(\|\phi\|_{W^{1,\infty}(J; W^{4,\infty}(\Omega))} + \|\mu\|_{L^\infty(J; W^{4,\infty}(\Omega))})(h_x^2 + h_y^2) \\ & + C\|\phi\|_{W^{3,\infty}(J; W^{1,\infty}(\Omega))}\Delta t^2. \end{aligned} \quad (4.1)$$

154 We shall split the proof of the above results into three lemmas below.

155 LEMMA 5. *Under the condition of Theorem 4, there exists a positive constant C
156 independent of h_x , h_y and Δt such that*

$$\begin{aligned} & (e_r^{k+1})^2 + \frac{1}{2} \|\mathbf{d}e_\phi^{k+1}\|_{TM}^2 + \frac{\lambda}{2} \|e_\phi^{k+1}\|_m^2 + \frac{M}{2} \sum_{n=0}^k \Delta t \|\mathbf{d}e_\mu^{n+1/2}\|_{TM}^2 \\ & \leq C \sum_{n=0}^{k+1} \Delta t \|\mathbf{d}e_\phi^n\|_{TM}^2 + \frac{M}{2} \sum_{n=0}^{k+1} \Delta t \|e_\mu^{n+1/2}\|_m^2 \\ & + C \sum_{n=0}^{k+1} \Delta t \|e_\phi^n\|_m^2 + C \sum_{n=0}^{k+1} \Delta t (e_r^n)^2 \\ & + C(\|\phi\|_{W^{1,\infty}(J; W^{4,\infty}(\Omega))}^2 + \|\mu\|_{L^\infty(J; W^{4,\infty}(\Omega))}^2)(h_x^4 + h_y^4) \\ & + C\|\phi\|_{W^{3,\infty}(J; W^{1,\infty}(\Omega))}^2 \Delta t^4. \end{aligned} \quad (4.2)$$

159 *Proof.* Denote

$$\begin{aligned} \delta_x(\phi) &= d_x \phi - \frac{\partial \phi}{\partial x}, \quad \delta_y(\phi) = d_y \phi - \frac{\partial \phi}{\partial y}, \\ \delta_x(\mu) &= d_x \mu - \frac{\partial \mu}{\partial x}, \quad \delta_y(\mu) = d_y \mu - \frac{\partial \mu}{\partial y}. \end{aligned}$$

161 Subtracting equation (2.5) from equation (2.13), we obtain

$$162 [d_t e_\phi]_{i,j}^{n+1} = M[D_x(d_x e_\mu + \delta_x(\mu)) + D_y(d_y e_\mu + \delta_y(\mu))]_{i,j}^{n+1/2} + T_{1,i,j}^{n+1/2} + T_{2,i,j}^{n+1/2}, \quad (4.3)$$

163 where

$$164 T_{1,i,j}^{n+1/2} = \frac{\partial \phi}{\partial t} \Big|_{i,j}^{n+1/2} - [d_t \phi]_{i,j}^{n+1} \leq C \|\phi\|_{W^{3,\infty}(J; L^\infty(\Omega))} \Delta t^2, \quad (4.4)$$

$$165 T_{2,i,j}^{n+1/2} = M[D_x \frac{\partial \mu}{\partial x} + D_y \frac{\partial \mu}{\partial y}]_{i,j}^{n+1/2} - M \Delta \mu_{i,j}^{n+1/2} \leq C M (h_x^2 + h_y^2) \|\mu\|_{L^\infty(J; W^{4,\infty}(\Omega))}. \quad (4.5)$$

166 Subtracting equation (2.6) from equation (2.14) leads to

$$167 e_{\mu,i,j}^{n+1/2} = -[D_x(d_x e_\phi + \delta_x(\phi)) + D_y(d_y e_\phi + \delta_y(\phi))]_{i,j}^{n+1/2} + \lambda e_{\phi,i,j}^{n+1/2} + \frac{R^{n+1/2}}{\sqrt{E_1^h(\tilde{Z}^{n+1/2})}} F'(\tilde{Z}_{i,j}^{n+1/2}) - \frac{r^{n+1/2}}{\sqrt{E_1(\phi^{n+1/2})}} F'(\phi_{i,j}^{n+1/2}) + T_{3,i,j}^{n+1/2}, \quad (4.6)$$

168 where

$$169 T_{3,i,j}^{n+1/2} = \Delta \phi_{i,j}^{n+1/2} - [D_x \frac{\partial \phi}{\partial x} + D_y \frac{\partial \phi}{\partial y}]_{i,j}^{n+1/2} \leq C (h_x^2 + h_y^2) \|\phi\|_{L^\infty(J; W^{4,\infty}(\Omega))}. \quad (4.7)$$

170 Subtracting equation (2.7) from equation (2.15) gives that

$$171 d_t e_r^{n+1} = \frac{1}{2\sqrt{E_1^h(\tilde{Z}^{n+1/2})}} (F'(\tilde{Z}^{n+1/2}), d_t Z^{n+1})_m - \frac{1}{2\sqrt{E_1(\phi^{n+1/2})}} \int_\Omega F'(\phi^{n+1/2}) \phi_t^{n+1/2} d\mathbf{x} + T_4^{n+1/2}, \quad (4.8)$$

172 where

$$173 T_4^{n+1/2} = r_t^{n+1/2} - d_t r^{n+1} \leq C \|r\|_{W^{3,\infty}(J)} \Delta t^2. \quad (4.9)$$

174 Multiplying equation (4.3) by $e_{\mu,i,j}^{n+1/2} h_x h_y$, and making summation on i, j for $1 \leq i \leq 175 N_x$, $1 \leq j \leq N_y$, we have

$$176 (d_t e_\phi^{n+1}, e_\mu^{n+1/2})_m = M \left(D_x(d_x e_\mu + \delta_x(\mu))^{n+1/2} + D_y(d_y e_\mu + \delta_y(\mu))^{n+1/2}, e_\mu^{n+1/2} \right)_m + (T_1^{n+1/2}, e_\mu^{n+1/2})_m + (T_2^{n+1/2}, e_\mu^{n+1/2})_m. \quad (4.10)$$

177 Using Lemma 1, we can write the first term on the right hand side of equation (4.10)

178 as:

$$\begin{aligned}
& M \left(D_x(d_x e_\mu + \delta_x(\mu))^{n+1/2} + D_y(d_y e_\mu + \delta_y(\mu))^{n+1/2}, e_\mu^{n+1/2} \right)_m \\
&= -M \left((d_x e_\mu + \delta_x(\mu))^{n+1/2}, d_x e_\mu^{n+1/2} \right)_x - M \left((d_y e_\mu + \delta_y(\mu))^{n+1/2}, d_y e_\mu^{n+1/2} \right)_y \\
&= -M \|\mathbf{d}e_\mu^{n+1/2}\|_{TM}^2 - M(\delta_x(\mu)^{n+1/2}, d_x e_\mu^{n+1/2})_x \\
&\quad - M(\delta_y(\mu)^{n+1/2}, d_y e_\mu^{n+1/2})_y.
\end{aligned} \tag{4.11}$$

179
180 Thanks to Cauchy-Schwarz inequality, the last two terms on the right hand side of
181 equation (4.11) can be transformed into:

$$\begin{aligned}
& -M(\delta_x(\mu)^{n+1/2}, d_x e_\mu^{n+1/2})_x - M(\delta_y(\mu)^{n+1/2}, d_y e_\mu^{n+1/2})_y \\
&\leq \frac{M}{6} \|\mathbf{d}\mu^{n+1/2}\|_{TM}^2 + C\|\mu\|_{L^\infty(J; W^{3,\infty}(\Omega))}^2 (h_x^4 + h_y^4).
\end{aligned} \tag{4.12}$$

183 Multiplying equation (4.6) by $d_t e_{\phi,i,j}^{n+1} h_x h_y$, and making summation on i, j for
184 $1 \leq i \leq N_x, 1 \leq j \leq N_y$, we have

$$\begin{aligned}
& (e_\mu^{n+1/2}, d_t e_\phi^{n+1})_m = -(D_x(d_x e_\phi + \delta_x(\phi))^{n+1/2} + D_y(d_y e_\phi + \delta_y(\phi))^{n+1/2}, d_t e_\phi^{n+1})_m \\
&+ \left(\frac{R^{n+1/2}}{\sqrt{E_1^h(\tilde{Z}^{n+1/2})}} F'(\tilde{Z}^{n+1/2}) - \frac{r^{n+1/2}}{\sqrt{E_1(\phi^{n+1/2})}} F'(\phi^{n+1/2}), d_t e_\phi^{n+1} \right)_m \\
&+ \lambda(e_\phi^{n+1/2}, d_t e_\phi^{n+1})_m + (T_3^{n+1/2}, d_t e_\phi^{n+1})_m.
\end{aligned} \tag{4.13}$$

185
186 Similar to the estimate of equation (3.6), the first term on the right hand side of
187 equation (4.13) can be transformed into the following:

$$\begin{aligned}
& - (D_x(d_x e_\phi + \delta_x(\phi))^{n+1/2} + D_y(d_y e_\phi + \delta_y(\phi))^{n+1/2}, d_t e_\phi^{n+1})_m \\
&= (d_x e_\phi^{n+1/2}, d_t d_x e_\phi^{n+1})_x + (d_y e_\phi^{n+1/2}, d_t d_y e_\phi^{n+1})_y \\
&\quad + (\delta_x(\phi)^{n+1/2}, d_t d_x e_\phi^{n+1/2})_x + (\delta_y(\phi)^{n+1/2}, d_t d_y e_\phi^{n+1/2})_y \\
&= \frac{\|\mathbf{d}e_\phi^{n+1}\|_{TM}^2 - \|\mathbf{d}e_\phi^n\|_{TM}^2}{2\Delta t} + (\delta_x(\phi)^{n+1/2}, d_t d_x e_\phi^{n+1/2})_x \\
&\quad + (\delta_y(\phi)^{n+1/2}, d_t d_y e_\phi^{n+1/2})_y.
\end{aligned} \tag{4.14}$$

189 The second term on the right hand side of equation (4.13) can be rewritten as follows:

$$\begin{aligned}
& \left(\frac{R^{n+1/2}}{\sqrt{E_1^h(\tilde{Z}^{n+1/2})}} F'(\tilde{Z}^{n+1/2}) - \frac{r^{n+1/2}}{\sqrt{E_1(\phi^{n+1/2})}} F'(\phi^{n+1/2}), d_t e_\phi^{n+1} \right)_m \\
&= r^{n+1/2} \left(\frac{F'(\tilde{Z}^{n+1/2})}{\sqrt{E_1^h(\tilde{Z}^{n+1/2})}} - \frac{F'(\tilde{\phi}^{n+1/2})}{\sqrt{E_1^h(\tilde{\phi}^{n+1/2})}}, d_t e_\phi^{n+1} \right)_m \\
&\quad + r^{n+1/2} \left(\frac{F'(\tilde{\phi}^{n+1/2})}{\sqrt{E_1^h(\tilde{\phi}^{n+1/2})}} - \frac{F'(\phi^{n+1/2})}{\sqrt{E_1(\phi^{n+1/2})}}, d_t e_\phi^{n+1} \right)_m \\
&\quad + e_r^{n+1/2} \left(\frac{F'(\tilde{Z}^{n+1/2})}{\sqrt{E_1^h(\tilde{Z}^{n+1/2})}}, d_t e_\phi^{n+1} \right)_m.
\end{aligned} \tag{4.15}$$

191 Recalling equation (4.3), the first term on the right hand side of equation (4.15) can
 192 be transformed into the following:

$$\begin{aligned}
 & r^{n+1/2} \left(\frac{F'(\tilde{Z}^{n+1/2})}{\sqrt{E_1^h(\tilde{Z}^{n+1/2})}} - \frac{F'(\tilde{\phi}^{n+1/2})}{\sqrt{E_1^h(\tilde{\phi}^{n+1/2})}}, d_t e_\phi^{n+1} \right)_m \\
 & = Mr^{n+1/2} \left(\frac{F'(\tilde{Z}^{n+1/2})}{\sqrt{E_1^h(\tilde{Z}^{n+1/2})}} - \frac{F'(\tilde{\phi}^{n+1/2})}{\sqrt{E_1^h(\tilde{\phi}^{n+1/2})}}, D_x (d_x e_\mu + \delta_x(\mu))^{n+1/2} \right)_m \\
 & \quad + Mr^{n+1/2} \left(\frac{F'(\tilde{Z}^{n+1/2})}{\sqrt{E_1^h(\tilde{Z}^{n+1/2})}} - \frac{F'(\tilde{\phi}^{n+1/2})}{\sqrt{E_1^h(\tilde{\phi}^{n+1/2})}}, D_y (d_y e_\mu + \delta_y(\mu))^{n+1/2} \right)_m \\
 & \quad + r^{n+1/2} \left(\frac{F'(\tilde{Z}^{n+1/2})}{\sqrt{E_1^h(\tilde{Z}^{n+1/2})}} - \frac{F'(\tilde{\phi}^{n+1/2})}{\sqrt{E_1^h(\tilde{\phi}^{n+1/2})}}, T_1^{n+1/2} + T_2^{n+1/2} \right)_m. \tag{4.16}
 \end{aligned}$$

194 Next, we shall first make the hypothesis that there exists a positive constant C_* such
 195 that

$$196 \quad \|Z^n\|_\infty \leq C_*. \tag{4.17}$$

197 This hypothesis will be verified in Lemma 7 using a bootstrap argument.

198 Since $F(\phi) \in C^3(\mathbb{R})$, we have

$$\begin{aligned}
 & \frac{d_x F'(\tilde{Z}^{n+1/2})}{\sqrt{E_1^h(\tilde{Z}^{n+1/2})}} - \frac{d_x F'(\tilde{\phi}^{n+1/2})}{\sqrt{E_1^h(\tilde{\phi}^{n+1/2})}} \\
 & = d_x F'(\tilde{\phi}^{n+1/2}) \frac{E_1^h(\tilde{\phi}^{n+1/2}) - E_1^h(\tilde{Z}^{n+1/2})}{\sqrt{E_1^h(\tilde{Z}^{n+1/2}) E_1^h(\tilde{\phi}^{n+1/2}) (E_1^h(\tilde{Z}^{n+1/2}) + E_1^h(\tilde{\phi}^{n+1/2}))}} \\
 & \quad + \frac{d_x F'(\tilde{Z}^{n+1/2}) - d_x F'(\tilde{\phi}^{n+1/2})}{\sqrt{E_1^h(\tilde{Z}^{n+1/2})}}. \tag{4.18}
 \end{aligned}$$

200 Using above and the Cauchy-Schwartz inequality, we can deduce that

$$\begin{aligned}
 & Mr^{n+1/2} \left(\frac{F'(\tilde{Z}^{n+1/2})}{\sqrt{E_1^h(\tilde{Z}^{n+1/2})}} - \frac{F'(\tilde{\phi}^{n+1/2})}{\sqrt{E_1^h(\tilde{\phi}^{n+1/2})}}, D_x (d_x e_\mu + \delta_x(\mu))^{n+1/2} \right)_m \\
 & = - Mr^{n+1/2} \left(\frac{d_x F'(\tilde{Z}^{n+1/2})}{\sqrt{E_1^h(\tilde{Z}^{n+1/2})}} - \frac{d_x F'(\tilde{\phi}^{n+1/2})}{\sqrt{E_1^h(\tilde{\phi}^{n+1/2})}}, (d_x e_\mu + \delta_x(\mu))^{n+1/2} \right)_x \\
 & \leq \frac{M}{6} \|d_x e_\mu^{n+1/2}\|_x^2 + C \|r\|_{L^\infty(J)}^2 (\|e_\phi^n\|_m^2 + \|e_\phi^{n-1}\|_m^2) \\
 & \quad + C \|r\|_{L^\infty(J)}^2 (\|d_x e_\phi^n\|_x^2 + \|d_x e_\phi^{n-1}\|_x^2) \\
 & \quad + C \|\mu\|_{L^\infty(J; W^{3,\infty}(\Omega))}^2 (h_x^4 + h_y^4). \tag{4.19}
 \end{aligned}$$

202 Similarly we can obtain

$$\begin{aligned}
 & Mr^{n+1/2} \left(\frac{F'(\tilde{Z}^{n+1/2})}{\sqrt{E_1^h(\tilde{Z}^{n+1/2})}} - \frac{F'(\tilde{\phi}^{n+1/2})}{\sqrt{E_1^h(\tilde{\phi}^{n+1/2})}}, D_y(d_y e_\mu + \delta_y(\mu))^{n+1/2} \right)_m \\
 & \leq \frac{M}{6} \|d_y e_\mu^{n+1/2}\|_y^2 + C \|r\|_{L^\infty(J)}^2 (\|e_\phi^n\|_m^2 + \|e_\phi^{n-1}\|_m^2) \\
 & \quad + C \|r\|_{L^\infty(J)}^2 (\|d_y e_\phi^n\|_y^2 + \|d_y e_\phi^{n-1}\|_y^2) \\
 & \quad + C \|\mu\|_{L^\infty(J; W^{3,\infty}(\Omega))}^2 (h_x^4 + h_y^4).
 \end{aligned} \tag{4.20}$$

204 Then equation (4.16) can be estimated by:

$$\begin{aligned}
 & r^{n+1/2} \left(\frac{F'(\tilde{Z}^{n+1/2})}{\sqrt{E_1^h(\tilde{Z}^{n+1/2})}} - \frac{F'(\tilde{\phi}^{n+1/2})}{\sqrt{E_1^h(\tilde{\phi}^{n+1/2})}}, d_t e_\phi^{n+1} \right)_m \\
 & \leq \frac{M}{6} \|\mathbf{d}e_\mu^{n+1/2}\|_{TM}^2 + C \|r\|_{L^\infty(J)} (\|e_\phi^n\|_m^2 + \|e_\phi^{n-1}\|_m^2) \\
 & \quad + C \|r\|_{L^\infty(J)} (\|\mathbf{d}e_\phi^n\|_{TM}^2 + \|\mathbf{d}e_\phi^{n-1}\|_{TM}^2) \\
 & \quad + C \|\mu\|_{L^\infty(J; W^{4,\infty}(\Omega))}^2 (h_x^4 + h_y^4) + C \|\phi\|_{W^{3,\infty}(J; L^\infty(\Omega))}^2 \Delta t^4.
 \end{aligned} \tag{4.21}$$

206 Similar to (4.16), the second term on the right hand side of equation (4.15) can be
207 controlled by:

$$\begin{aligned}
 & r^{n+1/2} \left(\frac{F'(\tilde{\phi}^{n+1/2})}{\sqrt{E_1^h(\tilde{\phi}^{n+1/2})}} - \frac{F'(\phi^{n+1/2})}{\sqrt{E_1(\phi^{n+1/2})}}, d_t e_\phi^{n+1} \right)_m \\
 & \leq \frac{M}{6} \|\mathbf{d}e_\mu^{n+1/2}\|_{TM}^2 + C \|\mu\|_{L^\infty(J; W^{4,\infty}(\Omega))}^2 (h_x^4 + h_y^4) \\
 & \quad + C \|\phi\|_{L^\infty(J; W^{2,\infty}(\Omega))}^2 (h_x^4 + h_y^4) \\
 & \quad + C \|\phi\|_{W^{3,\infty}(J; W^{1,\infty}(\Omega))}^2 \Delta t^4.
 \end{aligned} \tag{4.22}$$

209 The third term on the right hand side of equation (4.13) can be estimated by:

$$\lambda(e_\phi^{n+1/2}, d_t e_\phi^{n+1})_m = \lambda \frac{\|e_\phi^{n+1}\|_m^2 - \|e_\phi^n\|_m^2}{2\Delta t}. \tag{4.23}$$

211 Multiplying equation (4.8) by $e_r^{n+1} + e_r^n$ leads to

$$\begin{aligned}
 \frac{(e_r^{n+1})^2 - (e_r^n)^2}{\Delta t} &= \frac{e_r^{n+1/2}}{\sqrt{E_1^h(\tilde{Z}^{n+1/2})}} (F'(\tilde{Z}^{n+1/2}), d_t Z^{n+1})_m \\
 & \quad - \frac{e_r^{n+1/2}}{\sqrt{E_1(\phi^{n+1/2})}} \int_{\Omega} F'(\phi^{n+1/2}) \phi_t^{n+1/2} d\mathbf{x} \\
 & \quad + T_4^{n+1/2} \cdot (e_r^{n+1} + e_r^n).
 \end{aligned} \tag{4.24}$$

213 The first and second terms on the right hand side of equation (4.24) can be transformed

214 into:

$$\begin{aligned}
& \frac{e_r^{n+1/2}}{\sqrt{E_1^h(\tilde{Z}^{n+1/2})}} (F'(\tilde{Z}^{n+1/2}), d_t Z^{n+1})_m - \frac{e_r^{n+1/2}}{\sqrt{E_1(\phi^{n+1/2})}} \int_{\Omega} F'(\phi^{n+1/2}) \phi_t^{n+1/2} d\mathbf{x} \\
&= \frac{e_r^{n+1/2}}{\sqrt{E_1(\phi^{n+1/2})}} \left((F'(\phi^{n+1/2}), d_t \phi^{n+1})_m - \int_{\Omega} F'(\phi^{n+1/2}) \phi_t^{n+1/2} d\mathbf{x} \right) \\
&+ \frac{e_r^{n+1/2}}{\sqrt{E_1^h(\tilde{Z}^{n+1/2})}} (F'(\tilde{Z}^{n+1/2}), d_t e_{\phi}^{n+1})_m \\
&+ e_r^{n+1/2} \left(\frac{F'(\tilde{Z}^{n+1/2})}{\sqrt{E_1^h(\tilde{Z}^{n+1/2})}} - \frac{F'(\phi^{n+1/2})}{\sqrt{E_1(\phi^{n+1/2})}}, d_t \phi^{n+1} \right)_m.
\end{aligned} \tag{4.25}$$

215

216 Since $F(\phi) \in C^3(\mathbb{R})$, we have that

$$\begin{aligned}
& e_r^{n+1/2} \left(\frac{F'(\tilde{Z}^{n+1/2})}{\sqrt{E_1^h(\tilde{Z}^{n+1/2})}} - \frac{F'(\phi^{n+1/2})}{\sqrt{E_1(\phi^{n+1/2})}}, d_t \phi^{n+1} \right)_m \\
&= e_r^{n+1/2} \left(\frac{F'(\tilde{Z}^{n+1/2})}{\sqrt{E_1^h(\tilde{Z}^{n+1/2})}} - \frac{F'(\phi^{n+1/2})}{\sqrt{E_1^h(\tilde{Z}^{n+1/2})}}, d_t \phi^{n+1} \right)_m \\
&+ e_r^{n+1/2} \left(\frac{F'(\phi^{n+1/2})}{\sqrt{E_1^h(\tilde{Z}^{n+1/2})}} - \frac{F'(\phi^{n+1/2})}{\sqrt{E_1(\phi^{n+1/2})}}, d_t \phi^{n+1} \right)_m \\
&\leq C(e_r^{n+1/2})^2 + C\|\phi\|_{W^{1,\infty}(J; L^\infty(\Omega))}^2 (\|e_{\phi}^n\|_m^2 + \|e_{\phi}^{n-1}\|_m^2).
\end{aligned} \tag{4.26}$$

218 Recalling the midpoint approximation property of the rectangle quadrature formula,
219 we can obtain that

$$\begin{aligned}
& \frac{e_r^{n+1/2}}{\sqrt{E_1(\phi^{n+1/2})}} \left((F'(\phi^{n+1/2}), d_t \phi^{n+1})_m - \int_{\Omega} F'(\phi^{n+1/2}) \phi_t^{n+1/2} d\mathbf{x} \right) \\
&\leq C(e_r^{n+1/2})^2 + C\|\phi\|_{W^{1,\infty}(J; W^{2,\infty}(\Omega))}^2 (h_x^4 + h_y^4).
\end{aligned} \tag{4.27}$$

221 Combining equation (4.24) with equations (4.10)-(4.27) and using Cauchy-Schwarz
222 inequality result in

$$\begin{aligned}
& \frac{(e_r^{n+1})^2 - (e_r^n)^2}{\Delta t} + \frac{\|\mathbf{d}e_{\phi}^{n+1}\|_{TM}^2 - \|\mathbf{d}e_{\phi}^n\|_{TM}^2}{2\Delta t} \\
&+ \lambda \frac{\|e_{\phi}^{n+1}\|_m^2 - \|e_{\phi}^n\|_m^2}{2\Delta t} + M\|\mathbf{d}e_{\mu}^{n+1/2}\|_{TM}^2 \\
&\leq \frac{M}{2}\|\mathbf{d}e_{\mu}^{n+1/2}\|_{TM}^2 + C\|r\|_{L^\infty(J)}^2 (\|e_{\phi}^n\|_m^2 + \|e_{\phi}^{n-1}\|_m^2) \\
&+ C\|r\|_{L^\infty(J)}^2 (\|\mathbf{d}e_{\phi}^n\|_{TM}^2 + \|\mathbf{d}e_{\phi}^{n-1}\|_{TM}^2) \\
&- (\delta_x(\phi)^{n+1/2}, d_t d_x e_{\phi}^{n+1/2})_x - (\delta_y(\phi)^{n+1/2}, d_t d_y e_{\phi}^{n+1/2})_y \\
&+ (T_3^{n+1/2}, d_t e_{\phi}^{n+1})_m - (T_1^{n+1/2}, e_{\mu}^{n+1/2})_m \\
&- (T_2^{n+1/2}, e_{\mu}^{n+1/2})_m + T_4^{n+1/2} \cdot (e_r^{n+1} + e_r^n)
\end{aligned} \tag{4.28}$$

$$\begin{aligned}
230 \quad & + C(e_r^{n+1/2})^2 + C\|\phi\|_{W^{1,\infty}(J;L^\infty(\Omega))}^2(\|e_\phi^n\|_m^2 + \|e_\phi^{n-1}\|_m^2) \\
231 \quad & + C(\|\phi\|_{W^{1,\infty}(J;W^{2,\infty}(\Omega))}^2 + \|\mu\|_{L^\infty(J;W^{4,\infty}(\Omega))}^2)(h_x^4 + h_y^4) \\
232 \quad & + C\|\phi\|_{W^{3,\infty}(J;W^{1,\infty}(\Omega))}^2\Delta t^4. \tag{4.29}
\end{aligned}$$

233 From the discrete-integration-by-parts,

$$\begin{aligned}
234 \quad & \sum_{n=0}^k \Delta t(f^n, d_t g^{n+1}) = - \sum_{n=1}^k \Delta t(d_t f^n, g^n) \\
& + (f^k, g^{k+1}) + (f^0, g^0). \tag{4.30}
\end{aligned}$$

235 we find

$$\begin{aligned}
236 \quad & \sum_{n=0}^k \Delta t(T_3^{n+1/2}, d_t e_\phi^{n+1}) \\
& = - \sum_{n=1}^k \Delta t(d_t T_3^{n+1/2}, e_\phi^n) + (T_3^{k+1/2}, e_\phi^{k+1}) + (T_3^{1/2}, e_\phi^0) \\
& \leq C \sum_{n=1}^k \Delta t \|e_\phi^n\|_m^2 + \frac{\lambda}{4} \|e_\phi^{k+1}\|_m^2 + C\|\phi\|_{W^{1,\infty}(J;W^{4,\infty}(\Omega))}^2(h_x^4 + h_y^4). \tag{4.31}
\end{aligned}$$

237 Similarly we have

$$\begin{aligned}
238 \quad & - \sum_{n=0}^k \Delta t(\delta_x(\phi)^{n+1/2}, d_t d_x e_\phi^{n+1/2})_x - \sum_{n=0}^k \Delta t(\delta_y(\phi)^{n+1/2}, d_t d_y e_\phi^{n+1/2})_y \\
& \leq C \sum_{n=1}^k \Delta t \|\mathbf{d}e_\phi^n\|_{TM}^2 + \frac{\lambda}{4} \|e_\phi^{k+1}\|_m^2 + C\|\phi\|_{W^{1,\infty}(J;W^{3,\infty}(\Omega))}^2(h_x^4 + h_y^4). \tag{4.32}
\end{aligned}$$

239 Multiplying equation (4.28) by Δt , summing over n , $n = 0, 1, \dots, k$ and combining
240 with equations (4.31) and (4.32), we can obtain (4.2). \square

241 LEMMA 6. *Under the condition of Theorem 4, there exists a positive constant C
242 independent of h_x , h_y and Δt such that*

$$\begin{aligned}
243 \quad & \|e_\phi^{k+1}\|_m^2 + M \sum_{n=0}^k \Delta t \|e_\mu^{n+1/2}\|_m^2 \\
& \leq C \sum_{n=0}^k \Delta t (e_r^{n+1})^2 + C \sum_{n=0}^k \Delta t \|e_\phi^n\|_m^2 \\
& + \frac{M}{4} \sum_{n=0}^k \Delta t \|\mathbf{d}e_\mu^{n+1/2}\|_{TM}^2 + C \sum_{n=0}^k \Delta t \|\mathbf{d}e_\phi^{n+1/2}\|_{TM}^2 \\
& + C(\|\mu\|_{L^\infty(J;W^{4,\infty}(\Omega))}^2 + \|\phi\|_{L^\infty(J;W^{4,\infty}(\Omega))}^2)(h_x^4 + h_y^4) \\
& + C\|\phi\|_{W^{3,\infty}(J;L^\infty(\Omega))}^2\Delta t^4. \tag{4.33}
\end{aligned}$$

244 *Proof.* Multiplying equation (4.3) by $e_{\phi,i,j}^{n+1/2} h_x h_y$, and making summation on i, j
 245 for $1 \leq i \leq N_x, 1 \leq j \leq N_y$, we have

$$246 \quad \begin{aligned} & (d_t e_{\phi}^{n+1}, e_{\phi}^{n+1/2})_m \\ & = M \left(D_x (d_x e_{\mu} + \delta_x(\mu))^{n+1/2} + D_y (d_y e_{\mu} + \delta_y(\mu))^{n+1/2}, e_{\phi}^{n+1/2} \right)_m \\ & + (T_1^{n+1/2}, e_{\phi}^{n+1/2})_m + (T_2^{n+1/2}, e_{\phi}^{n+1/2})_m. \end{aligned} \quad (4.34)$$

247 Using Lemma 1, the first term on the right hand side of equation (4.34) can be
 248 transformed into the following:

$$249 \quad \begin{aligned} & M \left(D_x (d_x e_{\mu} + \delta_x(\mu))^{n+1/2} + D_y (d_y e_{\mu} + \delta_y(\mu))^{n+1/2}, e_{\phi}^{n+1/2} \right)_m \\ & = - M \left((d_x e_{\mu} + \delta_x(\mu))^{n+1/2}, d_x e_{\phi}^{n+1/2} \right)_x \\ & \quad - M \left((d_y e_{\mu} + \delta_y(\mu))^{n+1/2}, d_y e_{\phi}^{n+1/2} \right)_y. \end{aligned} \quad (4.35)$$

250 The first term on the right hand side of equation (4.35) can be estimated as:

$$251 \quad \begin{aligned} & - M \left((d_x e_{\mu} + \delta_x(\mu))^{n+1/2}, d_x e_{\phi}^{n+1/2} \right)_x \\ & = - M \left(d_x e_{\mu}^{n+1/2}, (d_x e_{\phi} + \delta_x(\phi))^{n+1/2} \right)_x \\ & \quad + M(d_x e_{\mu}^{n+1/2}, \delta_x(\phi)^{n+1/2})_x - M(\delta_x(\mu)^{n+1/2}, d_x e_{\phi}^{n+1/2})_x \\ & \leq M \left(e_{\mu}^{n+1/2}, D_x (d_x e_{\phi} + \delta_x(\phi))^{n+1/2} \right)_m \\ & \quad + \frac{M}{4} \|d_x e_{\mu}^{n+1/2}\|_x^2 + C \|d_x e_{\phi}^{n+1/2}\|_x^2 \\ & \quad + C(\|\mu\|_{L^{\infty}(J; W^{3,\infty}(\Omega))}^2 + \|\phi\|_{L^{\infty}(J; W^{3,\infty}(\Omega))}^2)(h_x^4 + h_y^4). \end{aligned} \quad (4.36)$$

252 In the y direction, we have the similar estimates. Then the left hand side in (4.35)
 253 can be bounded by:

$$254 \quad \begin{aligned} & M \left(D_x (d_x e_{\mu} + \delta_x(\mu))^{n+1/2} + D_y (d_y e_{\mu} + \delta_y(\mu))^{n+1/2}, e_{\phi}^{n+1/2} \right)_m \\ & \leq M \left(e_{\mu}^{n+1/2}, D_x (d_x e_{\phi} + \delta_x(\phi))^{n+1/2} + D_y (d_y e_{\phi} + \delta_y(\phi))^{n+1/2} \right)_m \\ & \quad + \frac{M}{4} \|\mathbf{d}e_{\mu}^{n+1/2}\|_{TM}^2 + C \|\mathbf{d}e_{\phi}^{n+1/2}\|_{TM}^2 \\ & \quad + C(\|\mu\|_{L^{\infty}(J; W^{3,\infty}(\Omega))}^2 + \|\phi\|_{L^{\infty}(J; W^{3,\infty}(\Omega))}^2)(h_x^4 + h_y^4). \end{aligned} \quad (4.37)$$

255 Thanks to (4.6) and (4.15), the first term on the right hand side of (4.37) can be
 256 estimated as follows:

$$257 \quad \begin{aligned} & M \left(e_{\mu}^{n+1/2}, D_x (d_x e_{\phi} + \delta_x(\phi))^{n+1/2} + D_y (d_y e_{\phi} + \delta_y(\phi))^{n+1/2} \right)_m \\ & = M \left(e_{\mu}^{n+1/2}, \frac{R^{n+1/2}}{\sqrt{E_1^h(\tilde{Z}^{n+1/2})}} F'(\tilde{Z}^{n+1/2}) - \frac{r^{n+1/2}}{\sqrt{E_1(\phi^{n+1/2})}} F'(\phi^{n+1/2}) \right)_m \\ & \quad + M(e_{\mu}^{n+1/2}, \lambda e_{\phi}^{n+1/2})_m + M(e_{\mu}^{n+1/2}, T_3^{n+1/2})_m - M\|e_{\mu}^{n+1/2}\|_m^2 \\ & \leq \frac{M}{2} \|e_{\mu}^{n+1/2}\|_m^2 + C(e_r^{n+1} + e_r^n)^2 + C(\|e_{\phi}^n\|_m^2 + \|e_{\phi}^{n-1}\|_m^2) \\ & \quad - M\|e_{\mu}^{n+1/2}\|_m^2 + C\|\phi\|_{L^{\infty}(J; W^{4,\infty}(\Omega))}^2 (h_x^4 + h_y^4). \end{aligned} \quad (4.38)$$

258 Combining equation (4.34) with equations (4.37) and (4.38) and multiplying equation
 259 (4.28) by $2\Delta t$, summing over n , $n = 0, 1, \dots, k$ lead to (4.33). \square

LEMMA 7. *Under the condition of Theorem 4, there exists a positive constant C_* independent of h_x , h_y and Δt such that*

$$\|Z^n\|_\infty \leq C_* \text{ for all } n.$$

260 *Proof.* We proceed in two steps.

261 **Step 1** (Definition of C_*): Using the scheme (2.13)-(2.15) for $n = 0$ and applying
 262 the inverse assumption, we can get the approximation Z^1 with the following property:

$$\begin{aligned} \|Z^1\|_\infty &\leq \|Z^1 - \phi^1\|_\infty + \|\phi^1\|_\infty \leq \|Z^1 - \Pi_h \phi^1\|_\infty + \|\Pi_h \phi^1 - \phi^1\|_\infty + \|\phi^1\|_\infty \\ 263 &\leq Ch^{-1}(\|Z^1 - \phi^1\|_m + \|\phi^1 - \Pi_h \phi^1\|_m) + \|\Pi_h \phi^1 - \phi^1\|_\infty + \|\phi^1\|_\infty \\ &\leq C(h + h^{-1}\Delta t^2) + \|\phi^1\|_\infty \leq C. \end{aligned}$$

264 where $h = \max\{h_x, h_y\}$ and Π_h is an bilinear interpolant operator with the following
 265 estimate [5]:

$$266 \quad \|\Pi_h \phi^1 - \phi^1\|_\infty \leq Ch^2. \quad (4.39)$$

267 Thus we can choose the positive constant C_* independent of h and Δt such that

$$268 \quad C_* \geq \max\{\|Z^1\|_\infty, 2\|\phi^1\|_\infty\}.$$

Step 2 (Induction): By the definition of C_* , it is trivial that hypothesis (4.17) holds true for $l = 1$. Supposing that $\|Z^{l-1}\|_\infty \leq C_*$ holds true for an integer $l = 1, \dots, k+1$, with the aid of the estimate (4.42), we have that

$$\|Z^l - \phi^l\|_m \leq C(\Delta t^2 + h^2).$$

270 Next we prove that $\|Z^l\|_\infty \leq C_*$ holds true. Since

$$\begin{aligned} \|Z^l\|_\infty &\leq \|Z^l - \phi^l\|_\infty + \|\phi^l\|_\infty \leq \|Z^l - \Pi_h \phi^l\|_\infty + \|\Pi_h \phi^l - \phi^l\|_\infty + \|\phi^l\|_\infty \\ 271 &\leq Ch^{-1}(\|Z^l - \phi^l\|_m + \|\phi^l - \Pi_h \phi^l\|_m) + \|\Pi_h \phi^l - \phi^l\|_\infty + \|\phi^l\|_\infty \\ &\leq C_1(h + h^{-1}\Delta t^2) + \|\phi^l\|_\infty. \end{aligned} \quad (4.40)$$

Let $\Delta t \leq C_2 h$ and a positive constant h_1 be small enough to satisfy

$$C_1(1 + C_2^2)h_1 \leq \frac{C_*}{2}.$$

272 Then for $h \in (0, h_1]$, we derive from (4.40) that

$$\begin{aligned} \|Z^l\|_\infty &\leq C_1(h + h^{-1}\Delta t^2) + \|\phi^l\|_\infty \\ 273 &\leq C_1(h_1 + C_2^2 h_1) + \frac{C_*}{2} \leq C_*. \end{aligned}$$

274 This completes the induction. \square

275 We are now in position to prove our main results.

276 *Proof of Theorem 4.* Thanks to the above three lemmas, we can obtain

$$\begin{aligned}
& (e_r^{k+1})^2 + \frac{1}{2} \|\mathbf{d}e_\phi^{k+1}\|_{TM}^2 + \|e_\phi^{k+1}\|_m^2 \\
& + \frac{M}{4} \sum_{n=0}^k \Delta t \|\mathbf{d}e_\mu^{n+1/2}\|_{TM}^2 + \frac{M}{2} \sum_{n=0}^k \Delta t \|e_\mu^{n+1/2}\|_m^2 \\
277 & \leq C \sum_{n=0}^{k+1} \Delta t \|\mathbf{d}e_\phi^n\|_{TM}^2 + C \sum_{n=0}^{k+1} \Delta t \|e_\phi^n\|_m^2 + C \sum_{n=0}^{k+1} \Delta t (e_r^n)^2 \\
& + C(\|\phi\|_{W^{1,\infty}(J;W^{4,\infty}(\Omega))}^2 + \|\mu\|_{L^\infty(J;W^{4,\infty}(\Omega))}^2)(h_x^4 + h_y^4) \\
& + C\|\phi\|_{W^{3,\infty}(J;W^{1,\infty}(\Omega))}^2 \Delta t^4.
\end{aligned} \tag{4.41}$$

278 Finally applying the discrete Gronwall's inequality, we arrive at the desired result:

$$\begin{aligned}
& (e_r^{k+1})^2 + \|\mathbf{d}e_\phi^{k+1}\|_{TM}^2 + \|e_\phi^{k+1}\|_m^2 \\
& + \sum_{n=0}^k \Delta t \|\mathbf{d}e_\mu^{n+1/2}\|_{TM}^2 + \sum_{n=0}^k \Delta t \|e_\mu^{n+1/2}\|_m^2 \\
279 & \leq C(\|\phi\|_{W^{1,\infty}(J;W^{4,\infty}(\Omega))}^2 + \|\mu\|_{L^\infty(J;W^{4,\infty}(\Omega))}^2)(h_x^4 + h_y^4) \\
& + C\|\phi\|_{W^{3,\infty}(J;W^{1,\infty}(\Omega))}^2 \Delta t^4. \quad \square
\end{aligned} \tag{4.42}$$

280 Thus, the proof of Theorem 4 is complete.

281 **4.2. L^2 gradient flow.** For the L^2 gradient flow, we shall only state the error
282 estimates below, as their proofs are essentially the same as for the H^{-1} gradient flow.
283 **THEOREM 8.** *We assume that $F(\phi) \in C^3(\mathbb{R})$ and $\phi \in W^{1,\infty}(J;W^{4,\infty}(\Omega)) \cap$
284 $W^{3,\infty}(J;W^{1,\infty}(\Omega))$ and $\Delta t \leq C(h_x + h_y)$. Then for the discrete scheme (2.17)-
285 (2.19), there exists a positive constant C independent of h_x , h_y and Δt such that*

$$\begin{aligned}
& \|Z^{k+1} - \phi^{k+1}\|_m + \|\mathbf{d}Z^{k+1} - \mathbf{d}\phi^{k+1}\|_{TM} + |R^{k+1} - r^{k+1}| \\
286 & \leq C\|\phi\|_{W^{3,\infty}(J;W^{1,\infty}(\Omega))} \Delta t^2 + C\|\phi\|_{W^{1,\infty}(J;W^{4,\infty}(\Omega))} (h_x^2 + h_y^2).
\end{aligned} \tag{4.43}$$

287 **5. Numerical simulations.** We present in this section various numerical experiments to verify the energy stability and accuracy of the proposed numerical schemes.

289 **5.1. Accuracy test for Allen-Cahn and Cahn-Hilliard equations.** We
290 consider the free energy

$$E(\phi) = \int_{\Omega} \left(\frac{1}{2} |\nabla \phi|^2 + \frac{1}{4\epsilon^2} (\phi^2 - 1)^2 \right) d\mathbf{x}. \tag{5.1}$$

292 and for better accuracy, rewrite it as

$$E(\phi) = \int_{\Omega} \left(\frac{1}{2} |\nabla \phi|^2 + \frac{\beta}{2\epsilon^2} \phi^2 + \frac{1}{4\epsilon^2} (\phi^2 - 1 - \beta)^2 - \frac{\beta^2 + 2\beta}{4\epsilon^2} \right) d\mathbf{x}, \tag{5.2}$$

294 where β is a positive number to be chosen. To apply our schemes (2.13)-(2.15) or
295 (2.17)-(2.19) to the system (2.2), we drop the constant in the free energy and specify
296 the operator \mathcal{G} , the energy $E_1(\phi)$ and λ as follows:

$$\mathcal{G} = -(-\Delta)^s, \quad E_1(\phi) = \frac{1}{4\epsilon^2} \int_{\Omega} (\phi^2 - 1 - \beta)^2 d\mathbf{x}, \quad \lambda = \frac{\beta}{\epsilon^2}. \tag{5.3}$$

298 The system (2.2) becomes the standard Allen-Cahn equation with $s = 0$, and the
 299 standard Cahn-Hilliard equation with $s = 1$.

300 We denote

$$301 \quad \begin{cases} \|f - g\|_{\infty,2} = \max_{0 \leq n \leq k} \{\|f^{n+q} - g^{n+q}\|_X\}, \\ \|f - g\|_{2,2} = \left(\sum_{n=0}^k \Delta t \|f^{n+q} - g^{n+q}\|_X^2 \right)^{1/2}, \\ \|R - r\|_{\infty} = \max_{0 \leq n \leq k} \{R^{n+1} - r^{n+1}\}, \end{cases}$$

302

303 where $q = \frac{1}{2}$, 1 and $X = m, TM$.

304 In the following simulations, we choose $\Omega = (0,1) \times (0,1)$ and $C_0 = 0$.

305 **5.1.1. Convergence rates of the SAV/CN-BCFD scheme for Allen-
 306 Cahn equation.** **Example 1.** We take $T = 0.5$, $\mathcal{G} = -1$, $\beta = 0$, $M = 0.01$, $\epsilon =$
 307 0.08, $\Delta t = 5E - 4$, and the initial solution $\phi_0 = \cos(\pi x) \cos(\pi y)$. To get around the
 308 fact that we do not have possession of exact solution, we measure Cauchy error, which
 309 is similar to [4, 23, 6]. Specifically, the error between two different grid spacings h
 310 and $\frac{h}{2}$ is calculated by $\|e_{\zeta}\| = \|\zeta_h - \zeta_{h/2}\|$.

311 The numerical results are listed in Table 1. we observe the second-order conver-
 312 gence predicted by the error estimates in Theorem 8.

TABLE 1
Errors and convergence rates of Example 1.

h	$\ e_Z\ _{\infty,2}$	Rate	$\ e_{dZ}\ _{\infty,2}$	Rate	$\ e_W\ _{\infty}$	Rate
1/10	6.36E-3	—	5.96E-2	—	5.93E-3	—
1/20	1.59E-3	2.00	1.57E-2	1.93	1.47E-3	2.01
1/40	3.98E-4	2.00	3.98E-3	1.98	3.69E-4	2.00
1/80	9.96E-5	2.00	9.98E-4	1.99	9.23E-5	2.00

313 **5.1.2. Convergence rates of SAV/CN-BCFD scheme for Cahn-Hilliard
 314 equation.** **Example 2.** We take $T = 0.5$, $\mathcal{G} = \Delta$, $\beta = 0$, $M = 0.01$, $\epsilon = 0.2$, $\Delta t =$
 315 $5E - 4$, with the same initial solution as in Example 1. The numerical results are
 316 listed in Tables 2 and 3. Again, we observe the expected second-order convergence
 317 rate in various discrete norms.

TABLE 2
Errors and convergence rates of example 2.

h	$\ e_Z\ _{\infty,2}$	Rate	$\ e_{dZ}\ _{\infty,2}$	Rate	$\ e_R\ _{\infty}$	Rate
1/10	5.49E-3	—	2.78E-2	—	4.88E-3	—
1/20	1.36E-3	2.01	6.91E-3	2.01	1.20E-3	2.02
1/40	3.41E-4	2.00	1.73E-3	2.00	3.00E-4	2.00
1/80	8.51E-5	2.00	4.31E-4	2.00	7.49E-5	2.00

318 **5.2. Coarsening dynamics and adaptive time stepping.** In this example,
 319 we simulate the coarsening dynamics of the Cahn-Hilliard equation.

320 Since the scheme (2.13)-(2.15) is unconditionally energy stable, we can choose
 321 time steps according to accuracy only with an adaptive time stepping. Actually in

TABLE 3
Errors and convergence rates of example 2.

h	$\ e_W\ _{2,2}$	Rate	$\ e_{AW}\ _{2,2}$	Rate
1/10	2.50E-2	—	2.18E-1	—
1/20	6.11E-3	2.03	5.46E-2	2.00
1/40	1.52E-3	2.01	1.37E-2	2.00
1/80	3.79E-4	2.00	3.42E-3	2.00

322 many situations, the energy and solution of gradient flows can vary drastically in
323 certain time intervals, but only slightly elsewhere. In order to maintain the desired
324 accuracy, we adjust the time sizes based on an adaptive time-stepping strategy below
(Ref. [10, 17]). We update the time step size by using the formula

Algorithm 1 Adaptive time stepping procedure

Given: \mathbf{Z}^n and Δt^n .

- 1: Computer \mathbf{Z}_{Ref}^{n+1} using a first order SAV-BCFD scheme and Δt^n .
- 2: Computer \mathbf{Z}^{n+1} using the SAV/CN-BCFD scheme (2.13)-(2.15) and Δt^n .
- 3: Calculate $e^{n+1} = \|\mathbf{Z}_{Ref}^{n+1} - \mathbf{Z}^{n+1}\| / \|\mathbf{Z}^{n+1}\|$.
- 4: **If** $e^{n+1} > tol$ **then**
 Recalculate time step $\Delta t^n \leftarrow \max\{\Delta t_{min}, \min\{A_{dp}(e^{n+1}, \Delta t^n), \Delta t_{max}\}\}$.
- 5: **goto** 1
- 6: **else**
 Update time step $\Delta t^{n+1} \leftarrow \max\{\Delta t_{min}, \min\{A_{dp}(e^{n+1}, \Delta t^n), \Delta t_{max}\}\}$.
- 7: **endif**

325

326

$$A_{dp}(e, \Delta t) = \rho \left(\frac{tol}{e} \right)^{1/2} \Delta t, \quad (5.4)$$

327 where ρ is a default safety coefficient, tol is a reference tolerance, and e is the relative
328 error at each time level. In this simulation, we take

329

$$\begin{cases} \mathcal{G} = \Delta, \Delta t_{max} = 10^{-2}, \Delta t_{min} = 10^{-5}, tol = 10^{-3}, \\ M = 0.002, \epsilon = 0.01, \beta = 6, \rho = 0.9, \end{cases}$$

330

331 with a random initial condition with values in $[-0.05, 0.05]$, and the initial time step
332 is taken as Δt_{min} .

333 To demonstrate the effectivity of the SAC/CN-BCFD scheme with adaptive time
334 stepping, we compute the reference solutions with a small uniform time step $\Delta t =$
335 10^{-5} and a large uniform time step $\Delta t = 10^{-3}$ respectively. Characteristic evolutions
336 of the phase functions are presented in Fig. 1. We also present in Fig. 2 the energy
337 evolutions and the roughness of interface, where the roughness measure function $R(t)$
338 is defined as follows:

339

$$R(t) = \sqrt{\frac{1}{|\Omega|} \int_{\Omega} (\phi - \bar{\phi})^2 d\Omega}, \quad (5.5)$$

340 with $\bar{\phi} = \frac{1}{|\Omega|} \int_{\Omega} \phi d\Omega$. One observes that the solution obtained with adaptive time
341 steps is consistent with the reference solution obtained with a small time step, while

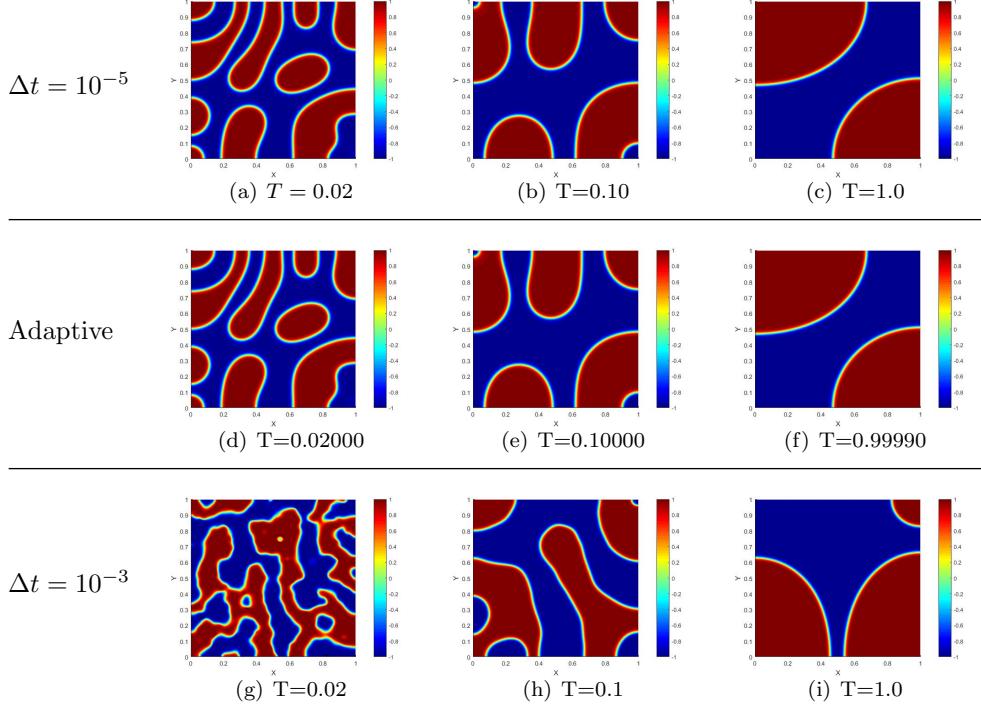


FIG. 1. *Snapshots of the phase function among small time steps, adaptive time steps and large time steps in example 3.*

342 the solution with large time step deviates from the reference solution. This is also
 343 verified by both the energy evolutions and roughness measure function $R(t)$. We
 344 present in Fig. 3 the adaptive time steps for different $\epsilon = 0.02, 0.01, 0.005$. We
 345 observe that there are about two-orders of magnitude variation in the time steps with
 346 the adaptive time stepping, which indicates that the adaptive time stepping for the
 347 SAV/CN-BCFD scheme is very efficient.

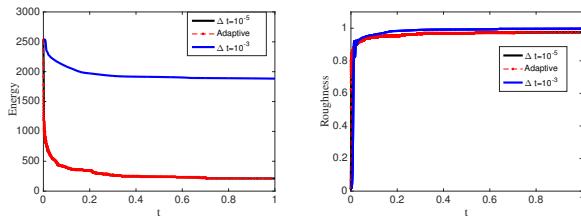
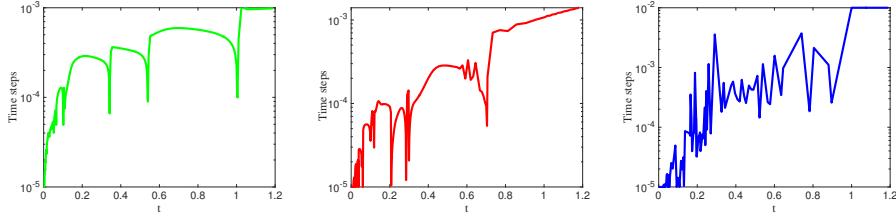


FIG. 2. *Numerical comparisons of discrete scaled surface energy and roughness for the simulation of spinodal decomposition in example 3.*

348 **Acknowledgments.** X. Li thanks for the financial support from China Scholar-
 349 ship Council. The work of J. Shen is supported in part by NSF grants DMS-1620262,
 350 DMS-1720442 and AFOSR grant FA9550-16-1-0102. The work of H. Rui is supported
 351 by the National Natural Science Foundation of China grant 11671233.

FIG. 3. Adaptive time steps for different ϵ : (a) $\epsilon = 0.02$, (b) $\epsilon = 0.01$, (c) $\epsilon = 0.005$

352

REFERENCES

353 [1] J. W. CAHN AND J. E. HILLIARD, *Free energy of a nonuniform system. I. Interfacial free*
354 *energy*, The Journal of chemical physics, 28 (1958), pp. 258–267.

355 [2] J. W. CAHN AND J. E. HILLIARD, *Free energy of a nonuniform system. III. nucleation in a*
356 *two-component incompressible fluid*, The Journal of chemical physics, 31 (1959), pp. 688–
357 699.

358 [3] W. CHEN, Y. LIU, C. WANG, AND S. WISE, *Convergence analysis of a fully discrete finite dif-*
359 *ference scheme for the Cahn-Hilliard-Hele-Shaw equation*, Mathematics of Computation, 85 (2015), pp. 2231–2257.

360 [4] Y. CHEN AND J. SHEN, *Efficient, adaptive energy stable schemes for the incompressible Cahn-*
361 *Hilliard Navier-Stokes phase-field models*, Journal of Computational Physics, 308 (2016),
362 pp. 40–56.

363 [5] C. N. DAWSON, M. F. WHEELER, AND C. S. WOODWARD, *A two-grid finite difference scheme for*
364 *nonlinear parabolic equations*, SIAM journal on numerical analysis, 35 (1998), pp. 435–452.

365 [6] A. E. DIEGEL, X. H. FENG, AND S. M. WISE, *Analysis of a mixed finite element method for*
366 *a Cahn-Hilliard-Darcy-Stokes system*, SIAM Journal on Numerical Analysis, 53 (2015),
367 pp. 127–152.

368 [7] C. M. ELLIOTT, D. A. FRENCH, AND F. A. MILNER, *A second order splitting method for the*
369 *Cahn-Hilliard equation*, Numerische Mathematik, 54 (1989), pp. 575–590.

370 [8] X. FENG, *Fully discrete finite element approximations of the Navier-Stokes-Cahn-Hilliard dif-*
371 *fuse interface model for two-phase fluid flows*, Siam Journal on Numerical Analysis, 44
372 (2006), pp. 1049–1072.

373 [9] X. FENG AND A. PROHL, *Numerical analysis of the Allen-Cahn equation and approximation*
374 *for mean curvature flows*, Numerische Mathematik, 94 (2003), pp. 33–65.

375 [10] H. GOMEZ AND T. J. R. HUGHES, *Provably unconditionally stable, second-order time-accurate,*
376 *mixed variational methods for phase-field models*, Journal of Computational Physics, 230
377 (2011), pp. 5310–5327.

378 [11] G. GRÜN, *On convergent schemes for diffuse interface models for two-phase flow of incompress-*
379 *ible fluids with general mass densities*, SIAM Journal on Numerical Analysis, 51 (2013),
380 pp. 3036–3061.

381 [12] J. GUO, C. WANG, S. WISE, AND X. YUE, *An h^2 convergence of a second-order convex-splitting,*
382 *finite difference scheme for the three-dimensional Cahn-Hilliard equation*, Commun. Math.
383 Sci., 14 (2016), pp. 489–515.

384 [13] Z. HU, S. M. WISE, C. WANG, AND J. S. LOWENGRUB, *Stable and efficient finite-difference*
385 *nonlinear-multigrid schemes for the phase field crystal equation*, Journal of Computational
386 Physics, 228 (2009), pp. 5323–5339.

387 [14] C. LIU, J. SHEN, AND X. YANG, *Dynamics of defect motion in nematic liquid crystal flow:*
388 *modeling and numerical simulation*, Commun. Comput. Phys., 2 (2007), pp. 1184–1198.

389 [15] J. SHEN, C. WANG, X. WANG, AND S. M. WISE, *Second-order convex splitting schemes for*
390 *gradient flows with Ehrlich-Schwoebel type energy: application to thin film epitaxy*, SIAM
391 *Journal on Numerical Analysis*, 50 (2012), pp. 105–125.

392 [16] J. SHEN AND J. XU, *Convergence and error analysis for the scalar auxiliary variable (SAV)*
393 *schemes to gradient flows*, SIAM Journal on Numerical Analysis, 56 (2018), pp. 2895–2912.

394 [17] J. SHEN, J. XU, AND J. YANG, *A new class of efficient and robust energy stable schemes for*
395 *gradient flows*, arXiv preprint arXiv:1710.01331, (2017).

396 [18] J. SHEN, J. XU, AND J. YANG, *The scalar auxiliary variable (SAV) approach for gradient flows*,
397 *Journal of Computational Physics*, 353 (2018), pp. 407–416.

398 [19] J. SHEN AND X. YANG, *Numerical approximations of Allen-Cahn and Cahn-Hilliard equations*,

400 Discrete Contin. Dyn. Syst, 28 (2010), pp. 1669–1691.
401 [20] J. SHEN AND X. YANG, *A phase-field model and its numerical approximation for two-phase*
402 *incompressible flows with different densities and viscosities*, SIAM Journal on Scientific
403 Computing, 32 (2010), pp. 1159–1179.
404 [21] C. WANG AND S. M. WISE, *An energy stable and convergent finite-difference scheme for the*
405 *modified phase field crystal equation*, SIAM Journal on Numerical Analysis, 49 (2011),
406 pp. 945–969.
407 [22] A. WEISER AND M. F. WHEELER, *On convergence of block-centered finite differences for elliptic*
408 *problems*, SIAM Journal on Numerical Analysis, 25 (1988), pp. 351–375.
409 [23] S. WISE, J. KIM, AND J. LOWENGRUB, *Solving the regularized, strongly anisotropic Cahn-*
410 *Hilliard equation by an adaptive nonlinear multigrid method*, Journal of Computational
411 Physics, 226 (2007), pp. 414–446.
412 [24] C. XU AND T. TANG, *Stability analysis of large time-stepping methods for epitaxial growth*
413 *models*, SIAM Journal on Numerical Analysis, 44 (2006), pp. 1759–1779.
414 [25] X. YANG, *Linear, first and second-order, unconditionally energy stable numerical schemes for*
415 *the phase field model of homopolymer blends*, J. Comput. Phys., 327 (2016), pp. 294–316,
416 <http://dx.doi.org/10.1016/j.jcp.2016.09.029>, <http://dx.doi.org/10.1016/j.jcp.2016.09.029>.
417 [26] X. YANG AND G. ZHANG, *Numerical approximations of the Cahn-Hilliard and Allen-Cahn equa-*
418 *tions with general nonlinear potential using the Invariant Energy Quadratization approach*,
419 arXiv preprint arXiv:1712.02760, (2017).
420 [27] P. YUE, J. J. FENG, C. LIU, AND J. SHEN, *A diffuse-interface method for simulating two-phase*
421 *flows of complex fluids*, Journal of Fluid Mechanics, 515 (2004), pp. 293–317.
422 [28] J. ZHAO, X. YANG, Y. GONG, AND Q. WANG, *A novel linear second order unconditionally energy*
423 *stable scheme for a hydrodynamic-tensor model of liquid crystals*, Computer Methods in
424 Applied Mechanics and Engineering, 318 (2017), pp. 803–825.
425 [29] J. ZHAO, X. YANG, J. LI, AND Q. WANG, *Energy stable numerical schemes for a hydrody-*
426 *namic model of nematic liquid crystals*, SIAM Journal on Scientific Computing, 38 (2016),
427 pp. A3264–A3290.