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Abstract. We present in this paper construction and analysis of a block-centered finite dif-5
ference method for the spatial discretization of the scalar auxiliary variable Crank-Nicolson scheme6
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1. Introduction. Gradient flows are widely used in mathematical models for15

problems in many fields of science and engineering, particularly in materials science16

and fluid dynamics, cf. [1, 2, 27, 18] and the references therein. Therefore it is17

important to develop efficient and accurate numerical schemes for their simulation.18

There exists an extensive literature on the numerical analysis of gradient flows, see19

for instance [3, 11, 6, 8, 20, 7, 12] and the references therein.20

In the algorithm design of gradient flows, an important goal is to guarantee the21

energy stability at the discrete level, in order to capture the correct long-time dynam-22

ics of the system and provide enough flexibility for dealing with the stiffness problem23

induced by the thin interface. Many schemes for gradient flows are based on the24

traditional fully-implicit or explicit discretization for the nonlinear term, which may25

suffer from harsh time step constraint due to the thin interfacial width [9, 19]. In26

order to deal with this problem, the convex splitting approach [15, 21, 13] and linear27

stabilization approach [14, 19, 24, 29] have been widely used to construct uncondi-28

tionally energy stable schemes. However, the convex splitting approach usually leads29

to nonlinear schemes and linear stabilization approach is usually limited to first-order30

accuracy.31

Recently, a novel numerical method, the so called invariant energy quadratization32

(IEQ), was proposed in [25, 28, 26]. This method is a generalization of the method33

of Lagrange multipliers or of auxiliary variable. The IEQ approach is remarkable as34

it permits us to construct linear, unconditionally stable, and second-order uncondi-35

tionally energy stable schemes for a large class of gradient flows. However, it leads36

to coupled systems with variable coefficients that may be difficult or expensive to37

solve. The scalar auxiliary variable (SAV) approach [18, 17] was inspired by the IEQ38

approach, which inherits its main advantages but overcomes many of its shortcom-39

ings. In particular, in a recent paper [16], the authors established the first-order40

convergence and error estimates for the semi-discrete SAV scheme.41
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In this paper, we construct a SAV/CN scheme with block-centered finite differ-42

ences for gradient flows, carried out a rigorous stability and error analysis, and imple-43

mented an adaptive time stepping strategy so that the time step is only dictated by44

accuracy rather than by stability. The block-centered finite difference method can be45

thought as the lowest order Raviart-Thomas mixed element method with a suitable46

quadrature. Its main advantage over using a regular finite difference method is that47

it can approximate both the phase function and chemical potential with Neumann48

boundary conditions in the mixed formulation to second-order accuracy, and it guar-49

antees local mass conservation. Our approach for error estimates here is very different50

from that in [16] which is based on deriving H2 bounds for the numerical solution.51

However, this approach can not be used in the fully discrete case with finite-differences52

in space. The essential tools used in the proof are the summation-by-parts formulae53

both in space and time to derive energy stability, and an induction process to show54

that the discrete L∞ norm of the numerical solution is uniformly bounded, without55

assuming a uniform Lipschitz condition on the nonlinear potential. To the best of56

the authors’ knowledge, this is the first paper with rigorous proof of second-order57

convergence both in time and space for a linear scheme to a class of gradient flows58

without assuming a uniform Lipschitz condition for the nonlinear potential.59

The paper is organized as follows. In Section 2, we describe our numerical scheme,60

including the temporal discretization and spacial discretization. In Section 3, we61

demonstrate the energy stability for our SAV/CN-BCFD scheme. In Section 4, we62

carry out error estimates for the SAV/CN-BCFD schemes. In Section 5, we present63

some numerical experiments to verify the energy stability and accuracy of the pro-64

posed schemes.65

Throughout the paper we use C, with or without subscript, to denote a positive66

constant, which could have different values at different places.67

2. The SAV/CN-BCFD scheme. Given a typical energy functional [16]:68

E(φ) =

∫
Ω

(
λ

2
φ2 +

1

2
|∇φ|2)dx + E1(φ), (2.1)69

where Ω is a rectangular domain in R2, λ ≥ 0 and E1(φ) =
∫

Ω
F (φ)dx ≥ −c0 for70

some c0 > 0, i.e., it is bounded from below. We consider the following gradient flow:71 {
∂φ

∂t
= MGµ, in Ω× J,

µ = −∆φ+ λφ+ F ′(φ), in Ω× J,
(2.2)72

J = (0, T ], and T denotes the final time. M is the mobility constant which is positive.73

The chemical potential µ = δE
δφ . G = −1 for the L2 gradient flow and G = ∆ for the74

H−1 gradient flow. F (φ) is the nonlinear free energy density and we focus on as75

an example, when E1(φ) =
∫

Ω
α(1 − φ2)2dx, the L2 and H−1 gradient flows are the76

well-known Allen-Cahn and Cahn-Hilliard equations, respectively.77

The boundary and initial conditions are as follows.78 {
∂nφ|∂Ω = 0, ∂nµ|∂Ω = 0,
φ|t=0 = φ0,

(2.3)79

where n is the unit outward normal vector of the domain Ω. The equation satisfies80

the following energy dissipation law:81

dE

dt
=

∫
Ω

∂φ

∂t
µdx = M

∫
Ω

µGµdx ≤ 0. (2.4)82
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2.1. The semi discrete SAV/CN scheme. We recall the SAV/CN scheme83

introduced in [18] first.84

Let C0 > c0 so that E1(φ) + C0 > 0. Without loss of generality, we substitute85

E1 with E1 + C0 without changing the gradient flow. Then E1 has a positive lower86

bound Ĉ0 = C0 − c0, which we still denote as C0 for simplicity.87

In the SAV approach, a scalar variable r(t) =
√
E1(φ) is introduced, and the

system (2.2) can be transformed into:

∂φ

∂t
= MGµ, (2.5)

µ = −∆φ+ λφ+
r√
E1(φ)

F ′(φ), (2.6)

rt =
1

2
√
E1(φ)

∫
Ω

F ′(φ)φtdx, (2.7)

Then, the SAV/CN scheme is given as follows:

φn+1 − φn

∆t
= MGµn+1/2, (2.8)

µn+1/2 = −∆φn+1/2 + λφn+1/2 +
rn+1/2√
E1(φ̃n+1/2)

F ′(φ̃n+1/2), (2.9)

rn+1 − rn

∆t
=

1

2
√
E1(φ̃n+1/2)

∫
Ω

F ′(φ̃n+1/2)
φn+1 − φn

∆t
dx, (2.10)

where φn+1/2 = 1
2 (φn + φn+1), rn+1/2 = 1

2 (rn + rn+1), φ̃n+1/2 can be any explicit88

approximation of φ(tn+1/2) with an error of O(∆t2). For instance, we may let φ̃n+1/289

be the extrapolation by90

φ̃n+1/2 =
1

2
(3φn − φn−1). (2.11)91

2.2. Spacial discretization. we apply the BCFD method on the staggered92

grids for the spacial discretization.93

First we give some preliminaries. Let Lm(Ω) be the standard Banach space with
norm

‖v‖Lm(Ω) =

(∫
Ω

|v|mdΩ

)1/m

.

For simplicity, let

(f, g) = (f, g)L2(Ω) =

∫
Ω

fg dΩ

denote the L2(Ω) inner product, ‖v‖∞ = ‖v‖L∞(Ω). And W k,p(Ω) be the standard
Sobolev space

W k,p(Ω) = {g : ‖g‖Wk
p (Ω) <∞},

where94

‖g‖Wk,p(Ω) =

∑
|α|≤k

‖Dαg‖pLp(Ω)

1/p

. (2.12)95

The grid points are denoted by

(xi+1/2, yj+1/2), i = 0, ..., Nx, j = 0, ..., Ny,
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and the notations similar to those in [22] are used.96

xi = (xi− 1
2

+ xi+ 1
2
)/2, i = 1, ..., Nx,

hx = xi+ 1
2
− xi− 1

2
, i = 1, ..., Nx,

yj = (yj− 1
2

+ yj+ 1
2
)/2, j = 1, ..., Ny,

hy = yj+ 1
2
− yj− 1

2
, j = 1, ..., Ny,

97

where hx and hy are grid spacings in x and y directions, and Nx and Ny are the98

number of grids along the x and y coordinates, respectively.99

Let gi,j , gi+ 1
2 ,j
, gi,j+ 1

2
denote g(xi, yj), g(xi+ 1

2
, yj), g(xi, yj+ 1

2
). Define the dis-100

crete inner products and norms as follows,101

(f, g)m =

Nx∑
i=1

Ny∑
j=1

hxhyfi,jgi,j ,

(f, g)x =

Nx−1∑
i=1

Ny∑
j=1

hxhyfi+ 1
2 ,j
gi+ 1

2 ,j
,

(f, g)y =

Nx∑
i=1

Ny−1∑
j=1

hxhyfi,j+ 1
2
gi,j+ 1

2
,

(v, r)TM = (v1, r1)x + (v2, r2)y.

102

For simplicity, from now on we always omit the superscript n (the time level) if the103

omission does not cause conflicts. Define104

[dxg]i+ 1
2 ,j

= (gi+1,j − gi,j)/hx,

[dyg]i,j+ 1
2

= (gi,j+1 − gi,j)/hy,

[Dxg]i,j = (gi+ 1
2 ,j
− gi− 1

2 ,j
)/hx,

[Dyg]i,j = (gi,j+ 1
2
− gi,j− 1

2
)/hy,

[dtg]ni,j = (gni,j − gn−1
i,j )/∆t.

105

The following discrete-integration-by-part lemma [22] plays an important role in the106

analysis.107

Lemma 1. Let qi,j , w1,i+1/2,j and w2,i,j+1/2 be any values such that w1,1/2,j =
w1,Nx+1/2,j = w2,i,1/2 = w2,i,Ny+1/2 = 0, then

(q,Dxw1)m = −(dxq, w1)x,

(q,Dyw2)m = −(dyq, w2)y.

2.2.1. SAV/CV-BCFD scheme for H−1 gradient flow. Let us denote by
{Zn,Wn, Rn}Nn=0 the BCFD approximations to {φn, µn, rn}Nn=0. The scheme for H−1
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gradient flow is as follows: for 1 ≤ i ≤ Nx, 1 ≤ j ≤ Ny,

[dtZ]n+1
i,j = M [DxdxW +DydyW ]

n+1/2
i,j , (2.13)

W
n+1/2
i,j = −[DxdxZ +DydyZ]

n+1/2
i,j + λZ

n+1/2
i,j (2.14)

+
Rn+1/2√
Eh1 (Z̃n+1/2)

F ′(Z̃
n+1/2
i,j ),

dtR
n+1 =

1

2
√
Eh1 (Z̃n+1/2)

(F ′(Z̃n+1/2), dtZ
n+1)m, (2.15)

where Z̃n+1/2 is an approximation of φ̃n+1/2, and

Eh1 (Z̃n+1/2) =

Nx∑
i=1

Ny∑
j=1

hxhyF (Z̃
n+1/2
i,j ).

The boundary and initial approximations as follows.108 
[dxZ]n1/2,j = [dxZ]nNx+1/2,j = 0, 1 ≤ j ≤ Ny,
[dyZ]ni,1/2 = [dyZ]ni,Ny+1/2 = 0, 1 ≤ i ≤ Nx,
[dxW ]n1/2,j = [dxW ]nNx+1/2,j = 0, 1 ≤ j ≤ Ny,
[dyW ]ni,1/2 = [dyW ]ni,Ny+1/2 = 0, 1 ≤ i ≤ Nx,
Z0
i,j = φ0,i,j , 1 ≤ i ≤ Nx, 1 ≤ j ≤ Ny.

(2.16)109

Remark. The solution procedure of the above scheme is described in detail in110

[18, 17], and hence is omitted here.111

2.2.2. SAV/CV-BCFD scheme for L2 gradient flow. Let us denote by
{Zn,Wn, Rn}Nn=0 the BCFD approximations to {φn, µn, rn}Nn=0. The scheme for L2

gradient flow is as follows: for 1 ≤ i ≤ Nx, 1 ≤ j ≤ Ny,

[dtZ]n+1
i,j = −MW

n+1/2
i,j , (2.17)

W
n+1/2
i,j = −[DxdxZ +DydyZ]

n+1/2
i,j + λZ

n+1/2
i,j (2.18)

+
Rn+1/2√
Eh1 (Z̃n+1/2)

F ′(Z̃
n+1/2
i,j ),

dtR
n+1 =

1

2
√
Eh1 (Z̃n+1/2)

(F ′(Z̃n+1/2), dtZ
n+1)m, (2.19)

where Z̃n+1/2 is an approximation of φ̃n+1/2. The boundary and initial conditions112

are given in (2.16).113

3. Unconditional energy stability. We demonstrate below that the full dis-114

crete SAV/CN-BCFD schemes are unconditionally energy stable with the discrete115

energy functional116

Ed(Z
n) =

λ

2
‖Zn‖2m +

1

2
‖dZn‖2TM + (Rn)2, (3.1)117

where dZ = (dxZ, dyZ).118
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3.1. H−1 gradient flow.119

Theorem 2. The scheme (2.13)-(2.15) is unconditionally stable and the follow-120

ing discrete energy law holds for any ∆t:121

1

∆t
[Ed(Z

n+1)− Ed(Zn)] = −M‖dWn+1/2‖2TM , ∀n ≥ 0. (3.2)122

Proof. Multiplying equation (2.13) by W
n+1/2
i,j hxhy, and making summation on123

i, j for 1 ≤ i ≤ Nx, 1 ≤ j ≤ Ny, we have124

(dtZ
n+1,Wn+1/2)m = M(DxdxW

n+1/2 +DydyW
n+1/2,Wn+1/2)m. (3.3)125

Using Lemma 1, equation (3.3) can be transformed into the following:126

(dtZ
n+1,Wn+1/2)m =−M(‖dxWn+1/2‖2x + ‖dyWn+1/2‖2y)

=−M‖dWn+1/2‖2TM .
(3.4)127

Multiplying equation (2.14) by dtZ
n+1
i,j hxhy, and making summation on i, j for 1 ≤128

i ≤ Nx, 1 ≤ j ≤ Ny, we have129

(dtZ
n+1,Wn+1/2)m =− (DxdxZ

n+1/2 +DydyZ
n+1/2, dtZ

n+1)m

+
Rn+1/2√
Eh1 (Z̃n+1/2)

(F ′(Z̃n+1/2), dtZ
n+1)m

+ λ(Zn+1/2, dtZ
n+1)m.

(3.5)130

Using Lemma 1 again, the first term on the right hand side of equation (3.5) can be131

written as:132

− (DxdxZ
n+1/2 +DydyZ

n+1/2, dtZ
n+1)m

=(dxZ
n+1/2, dtdxZ

n+1)x + (dyZ
n+1/2, dtdyZ

n+1)y

=
‖dZn+1‖2TM − ‖dZn‖2TM

2∆t
.

(3.6)133

Multiplying equation (2.15) by Rn+1 +Rn leads to134

(Rn+1)2 − (Rn)2

∆t
=

Rn+1/2√
Eh1 (Z̃n+1/2)

(F ′(Z̃n+1/2), dtZ
n+1)M . (3.7)135

Combining equation (3.7) with equations (3.4) - (3.6) gives that136

(Rn+1)2 − (Rn)2

∆t
+ λ
‖Zn+1‖2m − ‖Zn‖2m

2∆t

+
‖dZn+1‖2TM − ‖dZn‖2TM

2∆t

=−M‖dWn+1/2‖2TM ≤ 0,

(3.8)137

which implies the desired results (3.2).138
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3.2. L2 gradient flow. For L2 gradient flow, we shall only state the result, as139

its proof is essentially the same as for the H−1 gradient flow.140

Theorem 3. The scheme (2.17)-(2.19) is unconditionally stable and the follow-141

ing discrete energy law holds for any ∆t:142

1

∆t
[Ed(Z

n+1)− Ed(Zn)] = −M‖Wn+1/2‖2m, ∀n ≥ 0. (3.9)143

4. Error estimates. In this section, we derive our main results of this paper,144

i.e., error estimates for the fully discrete SAV/CN-BCFD schemes.145

For simplicity, we set146

enφ = Zn − φn, enµ = Wn − µn, enr = Rn − rn.147

4.1. H−1 gradient flow. We shall first derive error estimates for the case of148

H−1 gradient flow.149

Theorem 4. We assume that F (φ) ∈ C3(R) and φ ∈ W 1,∞(J ;W 4,∞(Ω)) ∩150

W 3,∞(J ;W 1,∞(Ω)), µ ∈ L∞(J ;W 4,∞(Ω)). Let ∆t ≤ C(hx + hy), then for the dis-151

crete scheme (2.13)-(2.15), there exists a positive constant C independent of hx, hy152

and ∆t such that153

‖Zk+1 − φk+1‖m + ‖dZk+1 − dφk+1‖TM + |Rk+1 − rk+1|

+

(
k∑

n=0

∆t‖dWn+1/2 − dµn+1/2‖2TM

)1/2

+

(
k∑

n=0

∆t‖Wn+1/2 − µn+1/2‖2m

)1/2

≤C(‖φ‖W 1,∞(J;W 4,∞(Ω)) + ‖µ‖L∞(J;W 4,∞(Ω)))(h
2
x + h2

y)

+ C‖φ‖W 3,∞(J;W 1,∞(Ω))∆t
2.

(4.1)154

We shall split the proof of the above results into three lemmas below.155

Lemma 5. Under the condition of Theorem 4, there exists a positive constant C156

independent of hx, hy and ∆t such that157

(ek+1
r )2 +

1

2
‖dek+1

φ ‖2TM +
λ

2
‖ek+1
φ ‖2m +

M

2

k∑
n=0

∆t‖den+1/2
µ ‖2TM

≤C
k+1∑
n=0

∆t‖denφ‖2TM +
M

2

k+1∑
n=0

∆t‖en+1/2
µ ‖2m

+ C
k+1∑
n=0

∆t‖enφ‖2m + C
k+1∑
n=0

∆t(enr )2

+ C(‖φ‖2W 1,∞(J;W 4,∞(Ω)) + ‖µ‖2L∞(J;W 4,∞(Ω)))(h
4
x + h4

y)

+ C‖φ‖2W 3,∞(J;W 1,∞(Ω))∆t
4.

(4.2)158

Proof. Denote159

δx(φ) = dxφ−
∂φ

∂x
, δy(φ) = dyφ−

∂φ

∂y
,

δx(µ) = dxµ−
∂µ

∂x
, δy(µ) = dyµ−

∂µ

∂y
.

160
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Subtracting equation (2.5) from equation (2.13), we obtain161

[dteφ]n+1
i,j =M [Dx(dxeµ + δx(µ)) +Dy(dyeµ + δy(µ))]

n+1/2
i,j

+ T
n+1/2
1,i,j + T

n+1/2
2,i,j ,

(4.3)162

where163

T
n+1/2
1,i,j =

∂φ

∂t

∣∣n+1/2

i,j
− [dtφ]n+1

i,j ≤ C‖φ‖W 3,∞(J;L∞(Ω))∆t
2, (4.4)164

T
n+1/2
2,i,j = M [Dx

∂µ

∂x
+Dy

∂µ

∂y
]
n+1/2
i,j −M∆µ

n+1/2
i,j

≤ CM(h2
x + h2

y)‖µ‖L∞(J;W 4,∞(Ω)).

(4.5)165

Subtracting equation (2.6) from equation (2.14) leads to166

e
n+1/2
µ,i,j =− [Dx(dxeφ + δx(φ)) +Dy(dyeφ + δy(φ))]

n+1/2
i,j

+ λe
n+1/2
φ,i,j +

Rn+1/2√
Eh1 (Z̃n+1/2)

F ′(Z̃
n+1/2
i,j )

− rn+1/2√
E1(φn+1/2)

F ′(φ
n+1/2
i,j ) + T

n+1/2
3,i,j ,

(4.6)167

where168

T
n+1/2
3,i,j = ∆φ

n+1/2
i,j − [Dx

∂φ

∂x
+Dy

∂φ

∂y
]
n+1/2
i,j

≤ C(h2
x + h2

y)‖φ‖L∞(J;W 4,∞(Ω)).

(4.7)169

Subtracting equation (2.7) from equation (2.15) gives that170

dte
n+1
r =

1

2
√
Eh1 (Z̃n+1/2)

(F ′(Z̃n+1/2), dtZ
n+1)m

− 1

2
√
E1(φn+1/2)

∫
Ω

F ′(φn+1/2)φ
n+1/2
t dx + T

n+1/2
4 ,

(4.8)171

where172

T
n+1/2
4 = r

n+1/2
t − dtrn+1 ≤ C‖r‖W 3,∞(J)∆t

2. (4.9)173

Multiplying equation (4.3) by e
n+1/2
µ,i,j hxhy, and making summation on i, j for 1 ≤ i ≤174

Nx, 1 ≤ j ≤ Ny, we have175

(dte
n+1
φ , en+1/2

µ )m

=M
(
Dx(dxeµ + δx(µ))n+1/2 +Dy(dyeµ + δy(µ))n+1/2, en+1/2

µ

)
m

+ (T
n+1/2
1 , en+1/2

µ )m + (T
n+1/2
2 , en+1/2

µ )m.

(4.10)176

Using Lemma 1, we can write the first term on the right hand side of equation (4.10)177
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as:178

M
(
Dx(dxeµ + δx(µ))n+1/2 +Dy(dyeµ + δy(µ))n+1/2, en+1/2

µ

)
m

=−M
(

(dxeµ + δx(µ))n+1/2, dxe
n+1/2
µ

)
x
−M

(
(dyeµ + δy(µ))n+1/2, dye

n+1/2
µ

)
y

=−M‖den+1/2
µ ‖2TM −M(δx(µ)n+1/2, dxe

n+1/2
µ )x

−M(δy(µ)n+1/2, dye
n+1/2
µ )y.

(4.11)179

Thanks to Cauchy-Schwarz inequality, the last two terms on the right hand side of180

equation (4.11) can be transformed into:181

−M(δx(µ)n+1/2, dxe
n+1/2
µ )x −M(δy(µ)n+1/2, dye

n+1/2
µ )y

≤M
6
‖dµn+1/2‖2TM + C‖µ‖2L∞(J;W 3,∞(Ω))(h

4
x + h4

y).
(4.12)182

Multiplying equation (4.6) by dte
n+1
φ,i,jhxhy, and making summation on i, j for183

1 ≤ i ≤ Nx, 1 ≤ j ≤ Ny, we have184

(en+1/2
µ , dte

n+1
φ )m = −(Dx(dxeφ + δx(φ))n+1/2 +Dy(dyeφ + δy(φ))n+1/2, dte

n+1
φ )m

+ (
Rn+1/2√
Eh1 (Z̃n+1/2)

F ′(Z̃n+1/2)− rn+1/2√
E1(φn+1/2)

F ′(φn+1/2), dte
n+1
φ )m

+ λ(e
n+1/2
φ , dte

n+1
φ )m + (T

n+1/2
3 , dte

n+1
φ )m.

(4.13)185

Similar to the estimate of equation (3.6), the first term on the right hand side of186

equation (4.13) can be transformed into the following:187

− (Dx(dxeφ + δx(φ))n+1/2 +Dy(dyeφ + δy(φ))n+1/2, dte
n+1
φ )m

=(dxe
n+1/2
φ , dtdxe

n+1
φ )x + (dye

n+1/2
φ , dtdye

n+1
φ )y

+ (δx(φ)n+1/2, dtdxe
n+1/2
φ )x + (δy(φ)n+1/2, dtdye

n+1/2
φ )y

=
‖den+1

φ ‖2TM − ‖denφ‖2TM
2∆t

+ (δx(φ)n+1/2, dtdxe
n+1/2
φ )x

+ (δy(φ)n+1/2, dtdye
n+1/2
φ )y.

(4.14)188

The second term on the right hand side of equation (4.13) can be rewritten as follows:189

(
Rn+1/2√
Eh1 (Z̃n+1/2)

F ′(Z̃n+1/2)− rn+1/2√
E1(φn+1/2)

F ′(φn+1/2), dte
n+1
φ )m

=rn+1/2(
F ′(Z̃n+1/2)√
Eh1 (Z̃n+1/2)

− F ′(φ̃n+1/2)√
Eh1 (φ̃n+1/2)

, dte
n+1
φ )m

+ rn+1/2(
F ′(φ̃n+1/2)√
Eh1 (φ̃n+1/2)

− F ′(φn+1/2)√
E1(φn+1/2)

, dte
n+1
φ )m

+ en+1/2
r (

F ′(Z̃n+1/2)√
Eh1 (Z̃n+1/2)

, dte
n+1
φ )m.

(4.15)190
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Recalling equation (4.3), the first term on the right hand side of equation (4.15) can191

be transformed into the following:192

rn+1/2(
F ′(Z̃n+1/2)√
Eh1 (Z̃n+1/2)

− F ′(φ̃n+1/2)√
Eh1 (φ̃n+1/2)

, dte
n+1
φ )m

=Mrn+1/2(
F ′(Z̃n+1/2)√
Eh1 (Z̃n+1/2)

− F ′(φ̃n+1/2)√
Eh1 (φ̃n+1/2)

, Dx(dxeµ + δx(µ))n+1/2)m

+Mrn+1/2(
F ′(Z̃n+1/2)√
Eh1 (Z̃n+1/2)

− F ′(φ̃n+1/2)√
Eh1 (φ̃n+1/2)

, Dy(dyeµ + δy(µ))n+1/2)m

+ rn+1/2(
F ′(Z̃n+1/2)√
Eh1 (Z̃n+1/2)

− F ′(φ̃n+1/2)√
Eh1 (φ̃n+1/2)

, T
n+1/2
1 + T

n+1/2
2 )m.

(4.16)193

Next, we shall first make the hypothesis that there exists a positive constant C∗ such194

that195

‖Zn‖∞ ≤ C∗. (4.17)196

This hypothesis will be verified in Lemma 7 using a bootstrap argument.197

Since F (φ) ∈ C3(R), we have198

dxF
′(Z̃n+1/2)√

Eh1 (Z̃n+1/2)
− dxF

′(φ̃n+1/2)√
Eh1 (φ̃n+1/2)

=dxF
′(φ̃n+1/2)

Eh1 (φ̃n+1/2)− Eh1 (Z̃n+1/2)√
Eh1 (Z̃n+1/2)Eh1 (φ̃n+1/2)(Eh1 (Z̃n+1/2) + Eh1 (φ̃n+1/2))

+
dxF

′(Z̃n+1/2)− dxF ′(φ̃n+1/2)√
Eh1 (Z̃n+1/2)

.

(4.18)199

Using above and the Cauchy-Schwartz inequality, we can deduce that200

Mrn+1/2(
F ′(Z̃n+1/2)√
Eh1 (Z̃n+1/2)

− F ′(φ̃n+1/2)√
Eh1 (φ̃n+1/2)

, Dx(dxeµ + δx(µ))n+1/2)m

=−Mrn+1/2(
dxF

′(Z̃n+1/2)√
Eh1 (Z̃n+1/2)

− dxF
′(φ̃n+1/2)√

Eh1 (φ̃n+1/2)
, (dxeµ + δx(µ))n+1/2)x

≤M
6
‖dxen+1/2

µ ‖2x + C‖r‖2L∞(J)(‖e
n
φ‖2m + ‖en−1

φ ‖2m)

+ C‖r‖2L∞(J)(‖dxe
n
φ‖2x + ‖dxen−1

φ ‖2x)

+ C‖µ‖2L∞(J;W 3,∞(Ω))(h
4
x + h4

y).

(4.19)201
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Similarly we can obtain202

Mrn+1/2(
F ′(Z̃n+1/2)√
Eh1 (Z̃n+1/2)

− F ′(φ̃n+1/2)√
Eh1 (φ̃n+1/2)

, Dy(dyeµ + δy(µ))n+1/2)m

≤M
6
‖dyen+1/2

µ ‖2y + C‖r‖2L∞(J)(‖e
n
φ‖2m + ‖en−1

φ ‖2m)

+ C‖r‖2L∞(J)(‖dye
n
φ‖2y + ‖dyen−1

φ ‖2y)

+ C‖µ‖2L∞(J;W 3,∞(Ω))(h
4
x + h4

y).

(4.20)203

Then equation (4.16) can be estimated by:204

rn+1/2(
F ′(Z̃n+1/2)√
Eh1 (Z̃n+1/2)

− F ′(φ̃n+1/2)√
Eh1 (φ̃n+1/2)

, dte
n+1
φ )m

≤M
6
‖den+1/2

µ ‖2TM + C‖r‖L∞(J)(‖enφ‖2m + ‖en−1
φ ‖2m)

+ C‖r‖L∞(J)(‖denφ‖2TM + ‖den−1
φ ‖2TM )

+ C‖µ‖2L∞(J;W 4,∞(Ω))(h
4
x + h4

y) + C‖φ‖2W 3,∞(J;L∞(Ω))∆t
4.

(4.21)205

Similar to (4.16), the second term on the right hand side of equation (4.15) can be206

controlled by:207

rn+1/2(
F ′(φ̃n+1/2)√
Eh1 (φ̃n+1/2)

− F ′(φn+1/2)√
E1(φn+1/2)

, dte
n+1
φ )m

≤M
6
‖den+1/2

µ ‖2TM + C‖µ‖2L∞(J;W 4,∞(Ω))(h
4
x + h4

y)

+ C‖φ‖2L∞(J;W 2,∞(Ω))(h
4
x + h4

y)

+ C‖φ‖2W 3,∞(J;W 1,∞(Ω))∆t
4.

(4.22)208

The third term on the right hand side of equation (4.13) can be estimated by:209

λ(e
n+1/2
φ , dte

n+1
φ )m = λ

‖en+1
φ ‖2m − ‖enφ‖2m

2∆t
. (4.23)210

Multiplying equation (4.8) by en+1
r + enr leads to211

(en+1
r )2 − (enr )2

∆t
=

e
n+1/2
r√

Eh1 (Z̃n+1/2)
(F ′(Z̃n+1/2), dtZ

n+1)m

− e
n+1/2
r√

E1(φn+1/2)

∫
Ω

F ′(φn+1/2)φ
n+1/2
t dx

+ T
n+1/2
4 · (en+1

r + enr ).

(4.24)212

The first and second terms on the right hand side of equation (4.24) can be transformed213
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into:214

e
n+1/2
r√

Eh1 (Z̃n+1/2)
(F ′(Z̃n+1/2), dtZ

n+1)m −
e
n+1/2
r√

E1(φn+1/2)

∫
Ω

F ′(φn+1/2)φ
n+1/2
t dx

=
e
n+1/2
r√

E1(φn+1/2)

(
(F ′(φn+1/2), dtφ

n+1)m −
∫

Ω

F ′(φn+1/2)φ
n+1/2
t dx

)
+

e
n+1/2
r√

Eh1 (Z̃n+1/2)
(F ′(Z̃n+1/2), dte

n+1
φ )m

+ en+1/2
r (

F ′(Z̃n+1/2)√
Eh1 (Z̃n+1/2)

− F ′(φn+1/2)√
E1(φn+1/2)

, dtφ
n+1)m.

(4.25)215

Since F (φ) ∈ C3(R), we have that216

en+1/2
r (

F ′(Z̃n+1/2)√
Eh1 (Z̃n+1/2)

− F ′(φn+1/2)√
E1(φn+1/2)

, dtφ
n+1)m

=en+1/2
r (

F ′(Z̃n+1/2)√
Eh1 (Z̃n+1/2)

− F ′(φn+1/2)√
Eh1 (Z̃n+1/2)

, dtφ
n+1)m

+ en+1/2
r (

F ′(φn+1/2)√
Eh1 (Z̃n+1/2)

− F ′(φn+1/2)√
E1(φn+1/2)

, dtφ
n+1)m

≤C(en+1/2
r )2 + C‖φ‖2W 1,∞(J;L∞(Ω))(‖e

n
φ‖2m + ‖en−1

φ ‖2m).

(4.26)217

Recalling the midpoint approximation property of the rectangle quadrature formula,218

we can obtain that219

e
n+1/2
r√

E1(φn+1/2)

(
(F ′(φn+1/2), dtφ

n+1)m −
∫

Ω

F ′(φn+1/2)φ
n+1/2
t dx

)
≤C(en+1/2

r )2 + C‖φ‖2W 1,∞(J;W 2,∞(Ω))(h
4
x + h4

y).

(4.27)220

Combining equation (4.24) with equations (4.10)-(4.27) and using Cauchy-Schwarz221

inequality result in222

(en+1
r )2 − (enr )2

∆t
+
‖den+1

φ ‖2TM − ‖denφ‖2TM
2∆t

223

+λ
‖en+1
φ ‖2m − ‖enφ‖2m

2∆t
+M‖den+1/2

µ ‖2TM (4.28)224

≤ M

2
‖den+1/2

µ ‖2TM + C‖r‖2L∞(J)(‖e
n
φ‖2m + ‖en−1

φ ‖2m)225

+C‖r‖2L∞(J)(‖de
n
φ‖2TM + ‖den−1

φ ‖2TM )226

−(δx(φ)n+1/2, dtdxe
n+1/2
φ )x − (δy(φ)n+1/2, dtdye

n+1/2
φ )y227

+(T
n+1/2
3 , dte

n+1
φ )m − (T

n+1/2
1 , en+1/2

µ )m228

−(T
n+1/2
2 , en+1/2

µ )m + T
n+1/2
4 · (en+1

r + enr )229
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+C(en+1/2
r )2 + C‖φ‖2W 1,∞(J;L∞(Ω))(‖e

n
φ‖2m + ‖en−1

φ ‖2m)230

+C(‖φ‖2W 1,∞(J;W 2,∞(Ω)) + ‖µ‖2L∞(J;W 4,∞(Ω)))(h
4
x + h4

y)231

+C‖φ‖2W 3,∞(J;W 1,∞(Ω))∆t
4. (4.29)232

From the discrete-integration-by-parts,233

k∑
n=0

∆t(fn, dtg
n+1) = −

k∑
n=1

∆t(dtf
n, gn)

+ (fk, gk+1) + (f0, g0).

(4.30)234

we find235

k∑
n=0

∆t(T
n+1/2
3 , dte

n+1
φ )

=−
k∑

n=1

∆t(dtT
n+1/2
3 , enφ) + (T

k+1/2
3 , ek+1

φ ) + (T
1/2
3 , e0

φ)

≤C
k∑

n=1

∆t‖enφ‖2m +
λ

4
‖ek+1
φ ‖2m + C‖φ‖2W 1,∞(J;W 4,∞(Ω))(h

4
x + h4

y).

(4.31)236

Similarly we have237

−
k∑

n=0

∆t(δx(φ)n+1/2, dtdxe
n+1/2
φ )x −

k∑
n=0

∆t(δy(φ)n+1/2, dtdye
n+1/2
φ )y

≤C
k∑

n=1

∆t‖denφ‖2TM +
λ

4
‖ek+1
φ ‖2m + C‖φ‖2W 1,∞(J;W 3,∞(Ω))(h

4
x + h4

y).

(4.32)238

Multiplying equation (4.28) by ∆t, summing over n, n = 0, 1, . . . , k and combining239

with equations (4.31) and (4.32), we can obtain (4.2).240

Lemma 6. Under the condition of Theorem 4, there exists a positive constant C241

independent of hx, hy and ∆t such that242

‖ek+1
φ ‖2m +M

k∑
n=0

∆t‖en+1/2
µ ‖2m

≤C
k∑

n=0

∆t(en+1
r )2 + C

k∑
n=0

∆t‖enφ‖2m

+
M

4

k∑
n=0

∆t‖den+1/2
µ ‖2TM + C

k∑
n=0

∆t‖den+1/2
φ ‖2TM

+ C(‖µ‖2L∞(J;W 4,∞(Ω)) + ‖φ‖2L∞(J;W 4,∞(Ω)))(h
4
x + h4

y)

+ C‖φ‖2W 3,∞(J;L∞(Ω))∆t
4.

(4.33)243
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Proof. Multiplying equation (4.3) by e
n+1/2
φ,i,j hxhy, and making summation on i, j244

for 1 ≤ i ≤ Nx, 1 ≤ j ≤ Ny, we have245

(dte
n+1
φ , e

n+1/2
φ )m

=M
(
Dx(dxeµ + δx(µ))n+1/2 +Dy(dyeµ + δy(µ))n+1/2, e

n+1/2
φ

)
m

+ (T
n+1/2
1 , e

n+1/2
φ )m + (T

n+1/2
2 , e

n+1/2
φ )m.

(4.34)246

Using Lemma 1, the first term on the right hand side of equation (4.34) can be247

transformed into the following:248

M
(
Dx(dxeµ + δx(µ))n+1/2 +Dy(dyeµ + δy(µ))n+1/2, e

n+1/2
φ

)
m

=−M
(

(dxeµ + δx(µ))n+1/2, dxe
n+1/2
φ

)
x

−M
(

(dyeµ + δy(µ))n+1/2, dye
n+1/2
φ

)
y
.

(4.35)249

The first term on the right hand side of equation (4.35) can be estimated as:250

−M
(

(dxeµ + δx(µ))n+1/2, dxe
n+1/2
φ

)
x

=−M
(
dxe

n+1/2
µ , (dxeφ + δx(φ))n+1/2

)
x

+M(dxe
n+1/2
µ , δx(φ)n+1/2)x −M(δx(µ)n+1/2, dxe

n+1/2
φ )x

≤M
(
en+1/2
µ , Dx(dxeφ + δx(φ))n+1/2

)
m

+
M

4
‖dxen+1/2

µ ‖2x + C‖dxen+1/2
φ ‖2x

+ C(‖µ‖2L∞(J;W 3,∞(Ω)) + ‖φ‖2L∞(J;W 3,∞(Ω)))(h
4
x + h4

y).

(4.36)251

In the y direction, we have the similar estimates. Then the left hand side in (4.35)252

can be bounded by:253

M
(
Dx(dxeµ + δx(µ))n+1/2 +Dy(dyeµ + δy(µ))n+1/2, e

n+1/2
φ

)
m

≤M
(
en+1/2
µ , Dx(dxeφ + δx(φ))n+1/2 +Dy(dyeφ + δy(φ))n+1/2

)
m

+
M

4
‖den+1/2

µ ‖2TM + C‖den+1/2
φ ‖2TM

+ C(‖µ‖2L∞(J;W 3,∞(Ω)) + ‖φ‖2L∞(J;W 3,∞(Ω)))(h
4
x + h4

y).

(4.37)254

Thanks to (4.6) and (4.15), the first term on the right hand side of (4.37) can be255

estimated as follows:256

M
(
en+1/2
µ , Dx(dxeφ + δx(φ))n+1/2 +Dy(dyeφ + δy(φ))n+1/2

)
m

=M

en+1/2
µ ,

Rn+1/2√
Eh1 (Z̃n+1/2)

F ′(Z̃n+1/2)− rn+1/2√
E1(φn+1/2)

F ′(φn+1/2)


m

+M(en+1/2
µ , λe

n+1/2
φ )m +M(en+1/2

µ , T
n+1/2
3 )m −M‖en+1/2

µ ‖2m

≤M
2
‖en+1/2
µ ‖2m + C(en+1

r + enr )2 + C(‖enφ‖2m + ‖en−1
φ ‖2m)

−M‖en+1/2
µ ‖2m + C‖φ‖2L∞(J;W 4,∞(Ω))(h

4
x + h4

y).

(4.38)257
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Combining equation (4.34) with equations (4.37) and (4.38) and multiplying equation258

(4.28) by 2∆t, summing over n, n = 0, 1, . . . , k lead to (4.33).259

Lemma 7. Under the condition of Theorem 4, there exists a positive constant C∗
independent of hx, hy and ∆t such that

‖Zn‖∞ ≤ C∗ for all n.

Proof. We proceed in two steps.260

Step 1 (Definition of C∗): Using the scheme (2.13)-(2.15) for n = 0 and applying261

the inverse assumption, we can get the approximation Z1 with the following property:262

‖Z1‖∞ ≤‖Z1 − φ1‖∞ + ‖φ1‖∞ ≤ ‖Z1 −Πhφ
1‖∞ + ‖Πhφ

1 − φ1‖∞ + ‖φ1‖∞
≤Ch−1(‖Z1 − φ1‖m + ‖φ1 −Πhφ

1‖m) + ‖Πhφ
1 − φ1‖∞ + ‖φ1‖∞

≤C(h+ h−1∆t2) + ‖φ1‖∞ ≤ C.
263

where h = max{hx, hy} and Πh is an bilinear interpolant operator with the following264

estimate [5]:265

‖Πhφ
1 − φ1‖∞ ≤ Ch2. (4.39)266

Thus we can choose the positive constant C∗ independent of h and ∆t such that267

C∗ ≥ max{‖Z1‖∞, 2‖φn‖∞}.268269

Step 2 (Induction): By the definition of C∗, it is trivial that hypothesis (4.17)
holds true for l = 1. Supposing that ‖Zl−1‖∞ ≤ C∗ holds true for an integer l =
1, · · · , k + 1, with the aid of the estimate (4.42), we have that

‖Zl − φl‖m ≤ C(∆t2 + h2).

Next we prove that ‖Zl‖∞ ≤ C∗ holds true. Since270

‖Zl‖∞ ≤‖Zl − φl‖∞ + ‖φl‖∞ ≤ ‖Zl −Πhφ
l‖∞ + ‖Πhφ

l − φl‖∞ + ‖φl‖∞
≤Ch−1(‖Zl − φl‖m + ‖φl −Πhφ

l‖m) + ‖Πhφ
l − φl‖∞ + ‖φl‖∞

≤C1(h+ h−1∆t2) + ‖φ1‖∞.
(4.40)271

Let ∆t ≤ C2h and a positive constant h1 be small enough to satisfy

C1(1 + C2
2 )h1 ≤

C∗
2
.

Then for h ∈ (0, h1], we derive from (4.40) that272

‖Zl‖∞ ≤C1(h+ h−1∆t2) + ‖φl‖∞

≤C1(h1 + C2
2h1) +

C∗
2
≤ C∗.

273

This completes the induction.274

We are now in position to prove our main results.275
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Proof of Theorem 4. Thanks to the above three lemmas, we can obtain276

(ek+1
r )2 +

1

2
‖dek+1

φ ‖2TM + ‖ek+1
φ ‖2m

+
M

4

k∑
n=0

∆t‖den+1/2
µ ‖2TM +

M

2

k∑
n=0

∆t‖en+1/2
µ ‖2m

≤C
k+1∑
n=0

∆t‖denφ‖2TM + C
k+1∑
n=0

∆t‖enφ‖2m + C
k+1∑
n=0

∆t(enr )2

+ C(‖φ‖2W 1,∞(J;W 4,∞(Ω)) + ‖µ‖2L∞(J;W 4,∞(Ω)))(h
4
x + h4

y)

+ C‖φ‖2W 3,∞(J;W 1,∞(Ω))∆t
4.

(4.41)277

Finally applying the discrete Gronwall’s inequality, we arrive at the desired result:278

(ek+1
r )2 + ‖dek+1

φ ‖2TM + ‖ek+1
φ ‖2m

+
k∑

n=0

∆t‖den+1/2
µ ‖2TM +

k∑
n=0

∆t‖en+1/2
µ ‖2m

≤C(‖φ‖2W 1,∞(J;W 4,∞(Ω)) + ‖µ‖2L∞(J;W 4,∞(Ω)))(h
4
x + h4

y)

+ C‖φ‖2W 3,∞(J;W 1,∞(Ω))∆t
4.

(4.42)279

Thus, the proof of Theorem 4 is complete.280

4.2. L2 gradient flow. For the L2 gradient flow, we shall only state the error281

estimates below, as their proofs are essentially the same as for the H−1 gradient flow.282

Theorem 8. We assume that F (φ) ∈ C3(R) and φ ∈ W 1,∞(J ;W 4,∞(Ω)) ∩283

W 3,∞(J ;W 1,∞(Ω)) and ∆t ≤ C(hx + hy). Then for the discrete scheme (2.17)-284

(2.19), there exists a positive constant C independent of hx, hy and ∆t such that285

‖Zk+1 − φk+1‖m + ‖dZk+1 − dφk+1‖TM + |Rk+1 − rk+1|
≤C‖φ‖W 3,∞(J;W 1,∞(Ω))∆t

2 + C‖φ‖W 1,∞(J;W 4,∞(Ω))(h
2
x + h2

y).
(4.43)286

5. Numerical simulations. We present in this section various numerical exper-287

iments to verify the energy stability and accuracy of the proposed numerical schemes.288

5.1. Accuracy test for Allen-Cahn and Cahn-Hilliard equations. We289

consider the free energy290

E(φ) =

∫
Ω

(
1

2
|∇φ|2 +

1

4ε2
(φ2 − 1)2

)
dx. (5.1)291

and for better accuracy, rewrite it as292

E(φ) =

∫
Ω

(
1

2
|∇φ|2 +

β

2ε2
φ2 +

1

4ε2
(φ2 − 1− β)2 − β2 + 2β

4ε2

)
dx, (5.2)293

where β is a positive number to be chosen. To apply our schemes (2.13)-(2.15) or294

(2.17)-(2.19) to the system (2.2), we drop the constant in the free energy and specify295

the operator G, the energy E1(φ) and λ as follows:296

G = −(−∆)s, E1(φ) =
1

4ε2

∫
Ω

(φ2 − 1− β)2dx, λ =
β

ε2
. (5.3)297
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The system (2.2) becomes the standard Allen-Cahn equation with s = 0, and the298

standard Cahn-Hilliard equation with s = 1.299

We denote300 

‖f − g‖∞,2 = max
0≤n≤k

{‖fn+q − gn+q‖X} ,

‖f − g‖2,2 =

(
k∑

n=0
∆t ‖fn+q − gn+q‖2X

)1/2

,

‖R− r‖∞ = max
0≤n≤k

{Rn+1 − rn+1},

301

302

where q = 1
2 , 1 and X = m, TM .303

In the following simulations, we choose Ω = (0, 1)× (0, 1) and C0 = 0.304

5.1.1. Convergence rates of the SAV/CN-BCFD scheme for Allen-305

Cahn equation. Example 1. We take T = 0.5, G = −1, β = 0, M = 0.01, ε =306

0.08, ∆t = 5E − 4, and the initial solution φ0 = cos(πx) cos(πy). To get around the307

fact that we do not have possession of exact solution, we measure Cauchy error, which308

is similar to [4, 23, 6]. Specifically, the error between two different grid spacings h309

and h
2 is calculated by ‖eζ‖ = ‖ζh − ζh/2‖.310

The numerical results are listed in Table 1. we observe the second-order conver-311

gence predicted by the error estimates in Theorem 8.312

Table 1
Errors and convergence rates of Example 1.

h ‖eZ‖∞,2 Rate ‖edZ‖∞,2 Rate ‖eW ‖∞ Rate

1/10 6.36E-3 — 5.96E-2 — 5.93E-3 —

1/20 1.59E-3 2.00 1.57E-2 1.93 1.47E-3 2.01

1/40 3.98E-4 2.00 3.98E-3 1.98 3.69E-4 2.00

1/80 9.96E-5 2.00 9.98E-4 1.99 9.23E-5 2.00

5.1.2. Convergence rates of SAV/CN-BCFD scheme for Cahn-Hilliard313

equation. Example 2. We take T = 0.5, G = ∆, β = 0, M = 0.01, ε = 0.2, ∆t =314

5E − 4, with the same initial solution as in Example 1. The numerical results are315

listed in Tables 2 and 3. Again, we observe the expected second-order convergence316

rate in various discrete norms.317

Table 2
Errors and convergence rates of example 2.

h ‖eZ‖∞,2 Rate ‖edZ‖∞,2 Rate ‖eR‖∞ Rate

1/10 5.49E-3 — 2.78E-2 — 4.88E-3 —

1/20 1.36E-3 2.01 6.91E-3 2.01 1.20E-3 2.02

1/40 3.41E-4 2.00 1.73E-3 2.00 3.00E-4 2.00

1/80 8.51E-5 2.00 4.31E-4 2.00 7.49E-5 2.00

5.2. Coarsening dynamics and adaptive time stepping. In this example,318

we simulate the coarsening dynamics of the Cahn-Hilliard equation.319

Since the scheme (2.13)-(2.15) is unconditionally energy stable, we can choose320

time steps according to accuracy only with an adaptive time stepping. Actually in321
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Table 3
Errors and convergence rates of example 2.

h ‖eW ‖2,2 Rate ‖edW ‖2,2 Rate

1/10 2.50E-2 — 2.18E-1 —

1/20 6.11E-3 2.03 5.46E-2 2.00

1/40 1.52E-3 2.01 1.37E-2 2.00

1/80 3.79E-4 2.00 3.42E-3 2.00

many situations, the energy and solution of gradient flows can vary drastically in322

certain time intervals, but only slightly elsewhere. In order to maintain the desired323

accuracy, we adjust the time sizes based on an adaptive time-stepping strategy below324

(Ref. [10, 17]). We update the time step size by using the formula

Algorithm 1 Adaptive time stepping procedure

Given: Zn and ∆tn.

1: Computer Zn+1
Ref using a first order SAV-BCFD scheme and ∆tn.

2: Computer Zn+1 using the SAV/CN-BCFD scheme (2.13)-(2.15) and ∆tn.
3: Calculate en+1 = ‖Zn+1

Ref − Zn+1‖/‖Zn+1‖.
4: If en+1 > tol then

Recalculate time step ∆tn ← max{∆tmin,min{Adp(en+1,∆tn),∆tmax}}.
5: goto 1
6: else

Update time step ∆tn+1 ← max{∆tmin,min{Adp(en+1,∆tn),∆tmax}}.
7: endif

325

Adp(e,∆t) = ρ

(
tol

e

)1/2

∆t, (5.4)326

where ρ is a default safety coefficient, tol is a reference tolerance, and e is the relative327

error at each time level. In this simulation, we take328  G = ∆, ∆tmax = 10−2, ∆tmin = 10−5, tol = 10−3,

M = 0.002, ε = 0.01, β = 6, ρ = 0.9,
329

330

with a random initial condition with values in [−0.05, 0.05], and the initial time step331

is taken as ∆tmin.332

To demonstrate the effectivity of the SAC/CN-BCFD scheme with adaptive time333

stepping, we compute the reference solutions with a small uniform time step ∆t =334

10−5 and a large uniform time step ∆t = 10−3 respectively. Characteristic evolutions335

of the phase functions are presented in Fig. 1. We also present in Fig. 2 the energy336

evolutions and the roughness of interface, where the roughness measure function R(t)337

is defined as follows:338

R(t) =

√
1

|Ω|

∫
Ω

(φ− φ̄)2dΩ, (5.5)339

with φ̄ = 1
|Ω|
∫

Ω
φdΩ. One observes that the solution obtained with adaptive time340

steps is consistent with the reference solution obtained with a small time step, while341
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∆t = 10−5

(a) T = 0.02 (b) T=0.10 (c) T=1.0

Adaptive

(d) T=0.02000 (e) T=0.10000 (f) T=0.99990

∆t = 10−3

(g) T=0.02 (h) T=0.1 (i) T=1.0

Fig. 1. Snapshots of the phase function among small time steps, adaptive time steps and large
time steps in example 3.

the solution with large time step deviates from the reference solution. This is also342

verified by both the energy evolutions and roughness measure function R(t). We343

present in Fig. 3 the adaptive time steps for different ε = 0.02, 0.01, 0.005. We344

observe that there are about two-orders of magnitude variation in the time steps with345

the adaptive time stepping, which indicates that the adaptive time stepping for the346

SAV/CN-BCFD scheme is very efficient.347
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Fig. 2. Numerical comparisons of discrete scaled surface energy and roughness for the simula-
tion of spinodal decomposition in example 3.
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REFERENCES352

[1] J. W. Cahn and J. E. Hilliard, Free energy of a nonuniform system. I. Interfacial free353
energy, The Journal of chemical physics, 28 (1958), pp. 258–267.354

[2] J. W. Cahn and J. E. Hilliard, Free energy of a nonuniform system. III. nucleation in a355
two-component incompressible fluid, The Journal of chemical physics, 31 (1959), pp. 688–356
699.357

[3] W. Chen, Y. Liu, C. Wang, and S. Wise, Convergence analysis of a fully discrete finite dif-358
ference scheme for the Cahn-Hilliard-Hele-Shaw equation, Mathematics of Computation,359
85 (2015), pp. 2231–2257.360

[4] Y. Chen and J. Shen, Efficient, adaptive energy stable schemes for the incompressible Cahn-361
Hilliard Navier-Stokes phase-field models, Journal of Computational Physics, 308 (2016),362
pp. 40–56.363

[5] C. N. Dawson, M. F. Wheeler, and C. S. Woodward, A two-grid finite difference scheme for364
nonlinear parabolic equations, SIAM journal on numerical analysis, 35 (1998), pp. 435–452.365

[6] A. E. Diegel, X. H. Feng, and S. M. Wise, Analysis of a mixed finite element method for366
a Cahn-Hilliard-Darcy-Stokes system, SIAM Journal on Numerical Analysis, 53 (2015),367
pp. 127–152.368

[7] C. M. Elliott, D. A. French, and F. A. Milner, A second order splitting method for the369
Cahn-Hilliard equation, Numerische Mathematik, 54 (1989), pp. 575–590.370

[8] X. Feng, Fully discrete finite element approximations of the Navier-Stokes-Cahn-Hilliard dif-371
fuse interface model for two-phase fluid flows, Siam Journal on Numerical Analysis, 44372
(2006), pp. 1049–1072.373

[9] X. Feng and A. Prohl, Numerical analysis of the Allen-Cahn equation and approximation374
for mean curvature flows, Numerische Mathematik, 94 (2003), pp. 33–65.375

[10] H. Gomez and T. J. R. Hughes, Provably unconditionally stable, second-order time-accurate,376
mixed variational methods for phase-field models, Journal of Computational Physics, 230377
(2011), pp. 5310–5327.378

[11] G. Grün, On convergent schemes for diffuse interface models for two-phase flow of incompress-379
ible fluids with general mass densities, SIAM Journal on Numerical Analysis, 51 (2013),380
pp. 3036–3061.381

[12] J. Guo, C. Wang, S. Wise, and X. Yue, An h2 convergence of a second-order convex-splitting,382
finite difference scheme for the three-dimensional Cahn-Hilliard equation, Commun. Math.383
Sci., 14 (2016), pp. 489–515.384

[13] Z. Hu, S. M. Wise, C. Wang, and J. S. Lowengrub, Stable and efficient finite-difference385
nonlinear-multigrid schemes for the phase field crystal equation, Journal of Computational386
Physics, 228 (2009), pp. 5323–5339.387

[14] C. Liu, J. Shen, and X. Yang, Dynamics of defect motion in nematic liquid crystal flow:388
modeling and numerical simulation, Commun. Comput. Phys, 2 (2007), pp. 1184–1198.389

[15] J. Shen, C. Wang, X. Wang, and S. M. Wise, Second-order convex splitting schemes for390
gradient flows with Ehrlich-Schwoebel type energy: application to thin film epitaxy, SIAM391
Journal on Numerical Analysis, 50 (2012), pp. 105–125.392

[16] J. Shen and J. Xu, Convergence and error analysis for the scalar auxiliary variable (SAV)393
schemes to gradient flows, SIAM Journal on Numerical Analysis, 56 (2018), pp. 2895–2912.394

[17] J. Shen, J. Xu, and J. Yang, A new class of efficient and robust energy stable schemes for395
gradient flows, arXiv preprint arXiv:1710.01331, (2017).396

[18] J. Shen, J. Xu, and J. Yang, The scalar auxiliary variable (SAV) approach for gradient flows,397
Journal of Computational Physics, 353 (2018), pp. 407–416.398

[19] J. Shen and X. Yang, Numerical approximations of Allen-Cahn and Cahn-Hilliard equations,399

This manuscript is for review purposes only.



ENERGY STABILITY AND CONVERGENCE 21

Discrete Contin. Dyn. Syst, 28 (2010), pp. 1669–1691.400
[20] J. Shen and X. Yang, A phase-field model and its numerical approximation for two-phase401

incompressible flows with different densities and viscosities, SIAM Journal on Scientific402
Computing, 32 (2010), pp. 1159–1179.403

[21] C. Wang and S. M. Wise, An energy stable and convergent finite-difference scheme for the404
modified phase field crystal equation, SIAM Journal on Numerical Analysis, 49 (2011),405
pp. 945–969.406

[22] A. Weiser and M. F. Wheeler, On convergence of block-centered finite differences for elliptic407
problems, SIAM Journal on Numerical Analysis, 25 (1988), pp. 351–375.408

[23] S. Wise, J. Kim, and J. Lowengrub, Solving the regularized, strongly anisotropic Cahn-409
Hilliard equation by an adaptive nonlinear multigrid method, Journal of Computational410
Physics, 226 (2007), pp. 414–446.411

[24] C. Xu and T. Tang, Stability analysis of large time-stepping methods for epitaxial growth412
models, SIAM Journal on Numerical Analysis, 44 (2006), pp. 1759–1779.413

[25] X. Yang, Linear, first and second-order, unconditionally energy stable numerical schemes for414
the phase field model of homopolymer blends, J. Comput. Phys., 327 (2016), pp. 294–316,415
http://dx.doi.org/10.1016/j.jcp.2016.09.029, http://dx.doi.org/10.1016/j.jcp.2016.09.029.416

[26] X. Yang and G. Zhang, Numerical approximations of the Cahn-Hilliard and Allen-Cahn equa-417
tions with general nonlinear potential using the Invariant Energy Quadratization approach,418
arXiv preprint arXiv:1712.02760, (2017).419

[27] P. Yue, J. J. Feng, C. Liu, and J. Shen, A diffuse-interface method for simulating two-phase420
flows of complex fluids, Journal of Fluid Mechanics, 515 (2004), pp. 293–317.421

[28] J. Zhao, X. Yang, Y. Gong, and Q. Wang, A novel linear second order unconditionally energy422
stable scheme for a hydrodynamic-tensor model of liquid crystals, Computer Methods in423
Applied Mechanics and Engineering, 318 (2017), pp. 803–825.424

[29] J. Zhao, X. Yang, J. Li, and Q. Wang, Energy stable numerical schemes for a hydrody-425
namic model of nematic liquid crystals, SIAM Journal on Scientific Computing, 38 (2016),426
pp. A3264–A3290.427

This manuscript is for review purposes only.

http://dx.doi.org/10.1016/j.jcp.2016.09.029
http://dx.doi.org/10.1016/j.jcp.2016.09.029

	Introduction
	The SAV/CN-BCFD scheme
	The semi discrete SAV/CN scheme
	Spacial discretization
	SAV/CV-BCFD scheme for H-1 gradient flow
	SAV/CV-BCFD scheme for L2 gradient flow


	Unconditional energy stability
	H-1 gradient flow
	L2 gradient flow

	Error estimates
	H-1 gradient flow
	L2 gradient flow

	Numerical simulations
	Accuracy test for Allen-Cahn and Cahn-Hilliard equations
	Convergence rates of the SAV/CN-BCFD scheme for Allen-Cahn equation
	Convergence rates of SAV/CN-BCFD scheme for Cahn-Hilliard equation

	Coarsening dynamics and adaptive time stepping

	References

