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ABSTRACT. This paper establishes Lp-improving estimates for
a variety of Radon-like transforms which integrate functions
over submanifolds of intermediate dimension. In each case, the
results rely on a unique notion of curvature which relates to, but
is distinct from, Phong-Stein rotational curvature. The results
obtained are sharp up to the loss of endpoints. The methods
used are a new adaptation of the familiar method of inflation
developed by Christ and others. Unlike most previous instances
of this method, the present application does not require any par-
ticular linear algebraic relations to hold for the dimension and
codimension.
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1. INTRODUCTION

1.1. Quadratic model cases The purpose of this paper is to develop broadly
applicable methods to understand the Lp-Lq mapping properties of geometric
averaging operators which are truly intermediate dimensional, meaning that they
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are not well understood by existing arguments applicable to either curves or hy-
persurfaces. The methods are based on an Lp-adapted version of the method of
TT∗T , which is itself derived using ideas from Christ’s method of inflation, first
introduced in the study of the corkscrew curve [8]. The resulting arguments can
be successfully applied in a wide variety of settings, in contrast to most earlier
work in intermediate dimensions, which tends to be limited to analyses of isolated
special cases. Here, a wide variety of cases means, for example, that there are no
combinatorial constraints on the dimensions and codimensions of the manifolds
involved. More precisely, the methods developed here were specifically intended
to overcome the fairly common problem in inflation-type arguments in which
certain integer quantities related to dimension need to have some precise factor-
ization properties in order to proceed. Some important special cases whose analysis
is unified by this new common framework include the following operators:

• Convolution with the maximal quadratic surface in R5: here, for every
t := (t1, t2) ∈ R2, let γM(t) := (t1, t2, t

2
1 ,2t1t2, t

2
2) and define

(1.1) Rf(x) :=
∫

[−1,1]2
f (x + γM(t))dt

for x ∈ R5 and any sufficiently regular function f on R5. This operator
belongs to an explicit family studied by Ricci [33] using Fourier-analytic
methods, in contrast to the geometric-combinatorial methods used here.

• Convolution with the maximal quadratic surface in C5: here, for every
t := (t1, t2) ∈ C2, let γMC(t) := (t1, t2, t

2
1 ,2t1t2, t

2
2) and define

(1.2) RCf (x) :=
∫

|t1|+|t2|≤1
f (x + γMC

(t))|dt ∧ dt̄ |

for x ∈ C5 and any sufficiently regular function f on C5.
• Convolution with the harmonic quadratic 3-surface in R8: for t ∈ R3, let
γH(t) := (t1, t2, t3, t

2
1 − t

2
2 , t

2
2 − t

2
3 ,2t1t2,2t2t3,2t1t3). Define

(1.3) Sf (x) :=
∫

[−1,1]3
f (x + γH(t))dt

for x ∈ R8 and all sufficiently regular functions f on R8.
• Asymmetric averages over half-dimensional subspaces of R2n: for any

fixed natural number n ≥ 1, define

(1.4) Tf(y, t) :=
∫

[−1,1]n
f (x,y + tx)dx

for y ∈ Rn, t ∈ R, and any sufficiently regular function f on Rn ×Rn.
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These four examples were explicitly chosen to demonstrate that, indeed, no spe-
cific affine linear relationship must hold among the dimensions of the input vari-
ables, output variables, and integration variables. In each case, the full range of
Lp-Lq estimates may be attained except for the extremal cases, as follows.

Theorem 1.1. Regarding the operators given by (1.1)–(1.4), the following hold:

• The operator (1.1) is bounded from Lp(R5) into Lq(R5) provided that the
pair (1/p,1/q) is in the interior of the triangle with vertices (0,0), (1,1),
and ( 5

8 ,
3
8).

• The operator (1.2) is bounded from Lp(C5) into Lq(C5) provided that the
pair (1/p,1/q) is in the interior of the triangle with vertices (0,0), (1,1),
and ( 5

8 ,
3
8).

• The operator (1.3) is bounded from Lp(R8) into Lq(R8) provided that the
pair (1/p,1/q) is in the interior of the triangle with vertices (0,0), (1,1),
and ( 8

13 ,
5
13).

• For any compact set Ω ⊂ Rn+1, the operator (1.4) restricted to Ω maps
Lp(R2n) into Lq(Ω) provided that the pair (1/p,1/q) is in the interior of
the triangle with vertices (0,0), (1,1), and ((n+ 1)/(n+ 2),n/(n+ 2)).

In each case, if (1/p,1/q) lies outside the closure of the indicated triangle and q > p,
then no such inequality holds.

A consequence of Theorem 1.1 is that the submanifolds associated with (1.1)–
(1.3) are model surfaces in the sense of Ricci [33] and D. Oberlin [29].

1.2. Geometrically-formulated results Another important sense in which
the methods developed here apply broadly is that they do not rely heavily on rigid
algebraic properties of the family of submainfolds. All of the results above will be
formulated via the vector field geometry approach as employed by Christ, Nagel,
Stein, Wainger [9], and Tao and Wright [45], among others. Specifically, this
means that one uses duality to study the bilinear versions of the operators (1.1)–
(1.4) and then analyzes the geometry of the associated projections. In this general
setting, let L and R be real-analytic Riemannian manifolds of dimension nL and
nR, respectively, with corresponding Riemannian measures of smooth density dµL
and dµR. In the product space L × R, suppose there is a real-analytic subman-
ifold M of dimension nL + nR − ℓ, and let πL : M → L and πR : M → R be
the canonical projections onto the first and second factors of the product space
L × R, respectively. The differentials dπL and dπR are assumed to be every-
where surjective on M and have kernels ker dπL and kerdπR whose intersection
at each point is trivial. It is also assumed that M has a measure of smooth density
dµM which is dominated by the Riemannian measure, meaning that the quantity
µM(V1, . . . , VnL+nR−ℓ) at the pointm ∈M for any (nL+nR−ℓ)-tuple of vectors
Vi tangent to M is bounded by a uniform constant (independent of m) times the
volume of the parallelepiped generated by V1, . . . , VnL+nR−ℓ in the tangent space
of L×R at m as measured by the Riemannian metric on L×R.
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In this geometric setting, the object of study is the familiar bilinear form

(1.5) B(f , g) :=
∫

M
(f ◦πL)(g ◦πR)dµM,

which we initially define for all nonnegative Borel measurable functions f and g

on L andR, respectively. The analysis of (1.5) focuses on vector fields X1
L, . . . , X

dL
L

and X1
R, . . . , X

dR
R which form bases of the kernels of dπL and dπR, respectively. It

is known by results of Christ, Nagel, Stein, and Wainger [9] that the bilinear form
(1.5) can satisfy nontrivial estimates only when the algebra generated by the vector

fields XiL and X
j
R and all their iterated Lie brackets spans the tangent space of M

at every point (this is the so-called Hörmander condition). However, for most
choices of a triple (nL, nR, ℓ), it is not known exactly what refinement of this
spanning condition gives rise to the largest-possible set of Lp-Lq estimates. In the
special case nL = nR = n and ℓ = 1, for example, the Phong-Stein rotational
curvature condition fills exactly this role. In particular, when nL = nR = n
and ℓ = 1, the bilinear form (1.5) will satisfy the full range of possible Lp-Lq

inequalities exactly when, for any nonzero v = (v1, . . . , vn−1) ∈ Rn−1, there is a
nonzero w ∈ Rn−1 such that the set

(1.6) {X1
L, . . . , X

n−1
L , X1

R, . . . , X
n−1
R , [v ·XL,w ·XR]}

spans the tangent space of M at every point, where, for example, we have that

v·XL :=
∑n−1
i=1 viX

i
L. This is a substantially stronger criterion than the Hörmander

condition because it does not consider the role of higher commutators, and it
guarantees that there are, in fact, many different ways to find spanning sets.

In general, it is not at all obvious what the natural analogue is of the condition
(1.6) in higher codimensions. There are, however, two new cases, corresponding
to the geometric analogues of (1.1) and (1.4), which the present approach makes
it possible to identify as follows.

Theorem 1.2. Suppose that M, L, and R are as defined above, and that M is
seven dimensional and both L and R are five dimensional. Suppose that X1

L and X2
L

span kerdπL and likewise for X1
R and X2

R and ker dπR. Then, suppose also that the
following curvature conditions hold:

• For any linearly independent v,v′ ∈ R2, there is a w ∈ R2 such that

{X1
L, X

2
L, X

1
R, X

2
R, [X

1
L, v ·XR], [X

2
L, v ·XR], [w ·XL, v

′ ·XR]}

spans the tangent space of M at every point.
• For any linearly independent u,u′ ∈ R2, there is a w ∈ R2 such that

{X1
L, X

2
L, X

1
R, X

2
R, [u ·XL, X

1
R], [u ·XL, X

2
R], [u

′ ·XL,w ·XR]}

spans the tangent space of M at every point.
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(Note that these conditions are independent of the choice of bases.) Then, for any
compact Ω ⊂M, we have that

∣∣∣∣
∫

Ω
f (πL(m))g(πR(m))dµM(m)

∣∣∣∣ ≤ C‖f‖LqL(L) ‖g‖LqR (R)

for some C < ∞ and all f ∈ LqL and g ∈ LqR provided that (1/qL,1/qR) belongs
to the interior of the triangle with vertices (1,0), (0,1), and ( 5

8 ,
5
8). Furthermore, no

such estimate can hold when (1/qL,1/qR) lies outside the closure of this triangle when
1/qL + 1/qR ≥ 1.

Theorem 1.3. Let M, L, and R as identified at the beginning of this section
have the properties that M is (2dR + 1)-dimensional and that L and R are 2dR-
dimensional and (dR + 1)-dimensional, respectively. Let XL be a nonvanishing vector

field in the kernel of dπL, and let X1
R, . . . , X

dR
R be vector fields spanning kerdπR.

Suppose that

{XL, X
1
R, . . . , X

dR
R , [XL, X

1
R], . . . , [XL, X

dR
R ]}

spans the tangent space at every point of M. (Note once again that the condition is
independent of the choice of basis.) Then, for any compact Ω ⊂M,

∣∣∣∣
∫

Ω
f (πL(m))g(πR(m))dµM(m)

∣∣∣∣ ≤ C‖f‖LqL(L) ‖g‖LqR (R)

for some C < ∞ and all f ∈ LqL and g ∈ LqR provided that (1/qL,1/qR) is in the
interior of the triangle with vertices (1,0), (0,1), ((dR +1)/(dR +2),2/(dR +2)).
When 1/qL+1/qR ≥ 1, no such estimates can hold outside the closure of the triangle.

1.3. Background. Interest in Lp-Lq mapping properties of geometric av-
eraging operators can be found in the literature as early as the 1970s in work of
Strichartz [43] and Littman [23] on the wave equation. As work progressed on a
number of different problems, the first major unification of the field came through
techniques of Phong and Stein [30–32], who identified the so-called Phong-Stein
rotational curvature condition. Rotational curvature is nonvanishing, for example,
when averaging over a translation-invariant family of hypersurfaces with nonvan-
ishing Gaussian curvature. At the time, Phong and Stein were interested in geo-
metric generalizations of the classical Calderón-Zygmund singular integral theory.
This work progressed through the efforts of various authors to reach significant
milestones in the work of Christ, Nagel, Stein, and Wainger [9] and the more
recent advances of Street and Stein [36–38] and Street [42]. In the breakthrough
paper [9], the authors developed a sharp qualitative geometric nondegeneracy con-
dition which sufficed for the study of singular integrals, but in that area of the lit-
erature, the quantitative relationship between more refined nondegeneracy criteria
and quantitative mapping properties of nonsingular operators is not a primary
concern.
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Outside the context of singular integral theory, on the other hand, there is
strong and sustained interest in understanding sharp mapping properties of non-
singular geometric averaging operators. The literature in this direction is truly
vast. Most of this work focuses on questions relating to averages over curves or
hypersurfaces; of the many truly significant contributions in this area, some of
the most interesting and noteworthy advances include the work of D. Oberlin
[24–28], Iosevich and Sawyer [21], Seeger [35], Choi [6,7], Christ [8], Greenleaf,
Seeger, and Wainger [15], Secco [34], Bak [1], Tao and Wright [45], Lee [22],
Dendrinos, Laghi, and Wright [10], Erdoğan and R. Oberlin [12], and Stovall
[39, 41]. (See also [16, 17, 19] for related work on curves and hypersurfaces.)

Of the important results briefly noted above, the work upon which the present
analysis is most directly built is that of Christ [8]. Christ’s paper studies Lp-Lq

averages for the convolution operator on Rd given by

Tf(x) :=
∫ 1

0
f (x + (t, t2, . . . , td))dt.

Christ establishes sharp boundedness (up to for endpoints) via a method he devel-
oped which is sometimes referred to as the method of inflation or the method of
refinements. A particularly useful feature of this method is that it is very concrete
and combinatorial in nature (in contrast to many earlier works which study these
operators indirectly via oscillatory integrals or analytic interpolation theorems).
Roughly speaking, the idea is to study the d-fold alternating composition of T
and T∗. The map

(1.7) Φ(t1, . . . , td) :=
( d∑

i=1

(−1)iti, . . . ,
d∑

i=1

(−1)itdi

)

which appears in the d-fold composition is regarded as a singular change of vari-
ables, and the goal of the analysis is, roughly, to bound for any Borel sets E and
F in Rd the size of the set in which x ∈ F , x + Φ(t) ∈ E, and t is near the
set where the Jacobian determinant of Φ vanishes. In Christ’s original paper, it
proved useful to over-iterate T and T∗ in higher dimensions. This was not due to
a failure of the heuristic, but rather made it possible find more accommodating d-
tuples (ti1 , . . . , tid) to work with in certain degenerate situations. Tao and Wright
[45] ultimately merged Christ’s approach with the geometric vector field formula-
tion used by Christ, Nagel, Stein, and Wainger [9] and others. In so doing, they
eliminated the necessity of over-iterating the maps, and were able to provide a
remarkable and essentially complete calculus for determining Lp-Lq boundedness
of averages over curves.

It should also be noted that, aside from averages over curves and hypersurfaces,
interest in the Kakeya problem contributed to the development of the multilinear
theory of singular geometric averages relating to (1.5). Here, the goal is to develop
nonlinear generalizations of a series of inequalities found in the literature typically
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bearing some subset of the names Hölder, Brascamp, Lieb, Luttinger, Loomis, and
Whitney. Some recent work in the harmonic analysis community in this direction
includes Bennett, Carbery, and Wright [5]; Bennett, Carbery, Christ, and Tao [4];
Bennett and Bez [2]; and Bennett, Bez, and Gutiérrez, [3]. Geometrically, most of
this work is characterized by a transversality condition playing the central role that
is occupied by rotational curvature in the earlier work on non-multilinear aver-
ages (although Tao, Vargas, and Vega [44], Stovall [40], and Grafakos, Greenleaf,
Iosevich, and Palsson [14] stand as some of the most notable examples of multilin-
ear geometric averages in which both curvature and transversality play important
roles).

In contrast to the cases above, very little work has been done to understand
linear geometric averaging operators in the case of submanifolds which are neither
curves nor hypersurfaces. Various examples of such objects have been identified
by Ricci [33] and D. Oberlin [29], and somewhat broader classes were considered
by Drury and Guo [11] and Gressman [20] when the averages were taken over
submanifolds of half the ambient dimension, but until now there does not appear
to have been any results of a broadly applicable nature analogous to Phong-Stein
rotational curvature results or the Tao-Wright result.

1.4. Approach and organization. Inflation arguments typically involve the
construction of some geometrically-inspired mapping analogous to (1.7) which
can be regarded as a singular coordinate system on one of the spaces involved
(which can happen only when the number of variables involved satisfy some co-
incidental factorization constraints). In the case of the arguments that follow,
the relevant geometric mappings are typically overdetermined, meaning that the
number of parameters exceeds the dimension of the space on which the mapping
is built. The sort of over-iteration encountered here is of a fundamentally different
nature than the kind encountered, for example, in Christ’s work on the corkscrew
curve, and the difference leads to a number of new challenges. Chief among them
is that the solution-counting problems that one typically encounters before ap-
plying the generalized change-of-variables formula are replaced with a much more
subtle problem of bounding integrals over very poorly-understood and potentially
singular submanifolds which solve some complicated system of equations. For ex-
ample, an important technical issue is to show that, when Φ is a sufficiently regular
map from some bounded open set in Rn into Rn−k, for any Euclidean ball Br (x)
of radius r , the k-dimensional Hausdorff measure of the set

{y ∈ Br (x) | Φ(y) = c}

is (generically in c) bounded by some fixed constant times rk. In the particular
context in which we would like to apply this result, it is not possible to assume that
the Jacobian of Φ is nonsingular. Consequently, it is necessary to assume additional
regularity beyond C∞. Real analyticity is sufficient (but note that other, larger
function spaces would also suffice thanks to the theory of o-minimal structures),
and in Appendix A we prove the necessary regularity results. This can be regarded
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as a replacement tool for Bézout’s theorem as it is typically applied in inflation
arguments, and is a largely stand-alone result.

Technical issues aside, the proof of each part of Theorems 1.1–1.3 proceeds by
reducing the problem to the study of a geometrically-defined sublevel set operator.
The path from Radon-like transform to the corresponding sublevel set operator is
somewhat lengthy, but for the model case of bilinear-type Radon-like transforms,
the result of this calculation may be succinctly stated as follows.

Theorem 1.4. Let Q : RdL×RdR → Rℓ be any bilinear map with dL+dR ≥ ℓ.
For any compact set Ω ⊂ RdL ×RdR ×Rℓ, let

BQ(f , g) :=
∫

Ω
f (y, z +Q(x,y))g(x, z)dx dy dz.

Let VolQ(x,y) equal the largest possible volume of a parallelepiped in Rℓ generated

by vectors in the collection {Q(ei, y)}
dL
i=1 ∪ {Q(x, ej)}

dR
j=1 (where ei’s and ej ’s are

standard basis vectors), and consider the function

ΦQ(x,y) :=
Vol(x,y)

(|x|2 + |y|2)(dL+dR−ℓ)/2

together with the associated sublevel set operator

WQ,α(g, f ) :=
∫

ΦQ(x,y)≤α
g(x)f (y)dx dy.

If there exists s > 0 and pl, pr ∈ [1,∞] such that

(1.8) WQ,α(χEl , χEr ) ≲ α
s|El|1/pl |Er |1/pr

for all measurable sets El ⊂ RdL and Er ⊂ RdR and all α > 0 (where the notation
≲ used here and throughout means that the inequality holds up to an implied constant
factor which is independent of all varying quantities like α and the sets El and Er ),
then BQ(f , g) ≲ ‖f‖LqL ‖g‖LqR for all measurable functions f and g whenever
(q−1
L , q

−1
R ) belongs to the interior of the triangle with vertices (1,0), (0,1), and

(
2+ (sp′l)

−1

3+ (sp′l)
−1 + (sp′r )−1

,
2+ (sp′r )

−1

3+ (sp′l)
−1 + (sp′r )−1

)
.

If (1.8) holds only for sets El and Er belonging to fixed neighborhoods of the origins
in RdL and RdR , then the conclusion remains true provided that the diameter of Ω is
sufficiently small.

Establishing boundedness of the sublevel set operator (1.8) is not always a
simple matter, but its geometric nature makes it amenable to methods not unlike
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those employed in [18] to establish boundedness of multilinear determinant-type
sublevel set functionals. In Section 4.1 we prove a useful lemma for establishing
such geometric sublevel set functional inequalities which effectively reduces the
problem to the estimation of scalar sublevel sets (i.e., not involving integration
against any Lp functions).

The general organization of the rest of this paper is as follows. Section 1.5
establishes a self-contained version of the method of TT∗T which implies Lp-Lq

estimates even when p,q ≠ 2. The proof relies on a trivial application of Christ’s
method of refinements (interestingly, no further applications of the method are
necessary aside from the use of the generalized TT∗T inequality established by
Lemma 1.5). The introduction ends with Section 1.6, which gives the Knapp
examples establishing sharpness of Theorems 1.1–1.3. Section 2 contains defini-
tions and basic calculations which connect the vector field geometry formulation
to TT∗T . In particular, this section identifies the geometry of the incidence man-
ifold M3 which captures the geometry of TT∗T . Section 3 uses the geometric
calculations of the previous section to reduce the estimation of TT∗T to the prob-
lem of bounding the associated geometric sublevel set operator (3.14). All the
calculations in Sections 2 and 3 apply in a general way without any nondegen-
eracy assumptions. Section 4 establishes a general principle for proving bounds
for sublevel set operators, and then breaks into subsections to analyze the partic-
ular details of the cases put forward in Theorems 1.1–1.4. Finally, Appendix A
establishes the necessary regularity of measures used in Section 3.

1.5. Generalized TT∗T . Suppose T is any positive operator for which one
wishes to establish the restricted weak-type inequality of the form

∫

G
TχF ≤ C|F|1/qL |G|1/qR

for all measurable sets F and G. If we define TGF to be the operator

TGFf (x) := χG(x)T(fχF)(x),

then it would suffice, for example, to show that TFG maps L2 to L2 with an oper-
ator norm bounded above by C|F|1/qL−1/2 |G|1/qR−1/2 for all such sets F and G,
since ∫

G
TχF =

∫

G
TGFχF ≤ ‖TGF‖2→2 |F|

1/2 |G|1/2.

A major advantage of shifting focus to L2 is that the L2 → L2 norm of TGF can
be studied via the L2 → L2 norm of TGFT∗GFTGF (or any number of other iter-
ated, alternating compositions of TGF and T∗GF ). This is the essence of the main
argument in this paper. Unfortunately, there are circumstances in which TGF does
not behave as well on L2 as one would like: namely, if one of qL or qR exceeds 2,
then for trivial reasons the estimate ‖TGF‖2→2 ≤ C|F|1/qL−1/2 |G|1/qR−1/2 cannot
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hold. This, however, turns out to be only a minor inconvenience. In the gen-
eral case, one can use the method of refinements as a substitute for the inequality
‖TGF‖

3
2→2 ≤ ‖TGFT

∗
GFTGF‖2→2 to obtain a sufficiently useful replacement for a

norm estimate of ‖TGF‖2→2.

Lemma 1.5 (Generalized TT∗T ). Suppose T is a positive linear operator which
maps L2(L) to L2(R). For any measurable sets F and G in L and R with finite,
nonzero measure, let

F ′ :=




x ∈ F | T∗χG(x) ≥

∫

G
TχF

3|F|





(1.9)

and

G′ :=




y ∈ G | TχF(y) ≥

∫

G
TχF

3|G|




.(1.10)

Then,

(1.11)
(

1
3

∫

G
TχF

)3

≤ |F| |G|

∫

G
TGFT

∗
G′F ′TGFχF .

Proof. The proof is a small variation on a familiar argument in the method of
refinements. For convenience, define

δF :=
1

3|F|

∫

G
TχF and δG :=

1
3|G|

∫

G
TχF .

It follows that
∫

G
TGFT

∗
G′F ′TGFχF =

∫

F ′
(T∗χG)(T

∗
G′F ′TGFχF) ≥ δF

∫

F ′
(T∗G′F ′TGFχF)

= δF

∫

G′
(TG′F ′χF ′)(TχF) ≥ δFδG

∫

G′
TχF ′

and ∫

G′
TχF ′ =

∫

G
TχF −

∫

G\G′
TχF −

∫

F\F ′
T∗χG′

≥

∫

G
TχF − δG|G| − δF |F| ≥

1
3

∫

G
TχF ,

which together establish (1.11). ❐

By (1.11), one can deduce a restricted weak-type inequality for T if a similar
such inequality can be proved for TGFT∗G′F ′TGF uniformly in G and F . Note that
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the appearance ofG′ and F ′ on the righthand side of (1.11) represents a very slight
gain over the inequality which would be obtained by a simple TT∗T argument.

Technically the factor of 1
27 on the left-hand side of (1.11) is a loss over a direct

TT∗T argument, but it is only reasonable to classify this loss as insignificant for
the present purposes. The advantage of (1.11), of course, is that it makes no
reference to, and hence no assumptions about, the exponents qL and qR.

In the context of the averaging operators studied in this paper, the main ap-
plication of (1.11) involves an argument similar to “Bourgain’s trick,” in which it
will be shown that

∫

G
TGFT

∗
G′F ′TGFχF(1.12)

≤ C

[
1
α
(|F| |G|)1−ε + αs

∫
|T∗χG|

1/plT∗G′F ′|TχF |
1/pr

]

for some fixed constant C and all positive α. The two terms on the righthand
side of (1.12) follow from estimates of an integral where a certain Jacobian-like
quantity is large and small, respectively. In the former case, a generalization of the
coarea formula applies, and in the latter case the estimate is reduced to a sublevel
set operator estimate. The transition from (1.12) to an estimate for TGFT∗GFTGF ,
and consequently for T itself, is also fairly immediate.

Lemma 1.6. Suppose that T is a positive operator which is known to be bounded
from L2(L) to L2(R). Suppose also there exist exponents pl, pr ∈ [1,∞], real pa-
rameters ε ∈ [0,1] and s > 0, and a finite constant C such that for any measurable
sets F and G in L and R, respectively, and any α > 0, the inequality (1.12) holds,
where F ′ and G′ are the sets defined by (1.9) and (1.10). Then, for some constant C′

depending only on C and s,

(1.13)
∫

G
TχF ≤ C

′|F|1/qL |G|1/qR ,

where the exponents qL and qR are given by

1
qL

:=
2− ε + (sp′l)

−1

3+ (sp′l)
−1 + (sp′r )−1

and
1
qR

:=
2− ε + (sp′r )

−1

3+ (sp′l)
−1 + (sp′r )−1

.

Proof. By virtue of (1.9) and (1.10),
∫
|T∗χG|

1/plT∗G′F ′|TχF |
1/pr ≤ δ

−1/p′l
F

∫
(T∗χG)T

∗
G′F ′|TχF |

1/pr

≤ δ
−1/p′l
F

∫
(TG′F ′T

∗χG)|TχF |
1/pr

≤ δ
−1/p′l
F δ

−1/p′r
G

∫
(TG′F ′T

∗χG)(TχF)

= δ
−1/p′l
F δ

−1/p′r
G

∫

G
(TGFT

∗
G′F ′TGFχF).
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Consequently,

∫

G
TGFT

∗
G′F ′TGFχF

≤ C

[
1
α
(|F| |G|)1−ε +αs

∫
|T∗χG|

1/plT∗G′F ′|TχF |
1/pr

]

≤ C

[
1
α
(|F| |G|)1−ε +αsδ

−1/p′l
F δ

−1/p′r
G

∫

G
TGFT

∗
G′F ′TGFχF

]
.

To establish (1.13), we may assume that the measures of F and G are both finite,
and since T maps L2 to L2 and is positive, we also have that

∫

G
TGFT

∗
G′F ′TGFχF <∞.

Choosing α := (2C)−1/sδ
1/(sp′l)
F δ

1/(sp′r )
G and using that

∫

G
TGFT

∗
G′F ′TGFχF must

be finite, it follows that
∫

G
TGFT

∗
G′F ′TGFχF ≤ (2C)

(s+1)/sδ
−1/(sp′l)
F δ

−1/(sp′r )
G (|F| |G|)1−ε ,

so by (1.11), it follows that

(∫

G
TχF

)3+1/(sp′l )+1/(sp′r )

≤ 27(2C)(s+1)/s |F|2−ε+1/(sp′l ) |G|2−ε+1/(sp′r ),

which gives exactly (1.13). ❐
1.6. Sharpness calculation. We conclude the introduction with a review

of the Knapp examples for (1.5). Fix any point m ∈ M, and let Fε be the ball
of radius ε centered at πL(m) in L. For sufficiently small ε, it must be the case
that µL(Fε) ≈ εnL . Next, let Mε equal the set π−1

L (Fε) restricted to some open
set U ⊂ M with compact closure. Because dπL is surjective, it is possible by the
Implicit Function Theorem to find a coordinate system on a neighborhood of m
such that, in these coordinates, π−1

L (Fε) contains the box [−ε, ε]nL×[−1,1]nR−ℓ

for all ε sufficiently small and is contained in a box of comparable side lengths
as well. In particular, then, we must have that µM(Mε) ≈ εnL . Lastly, since the
kernels of dπL and dπR are transverse, π−1

L πL(m) projects via πR to an immersed
submanifold of dimension nR − ℓ in R (which is the same dimension as the em-
bedded submanifoldπ−1

L πL(m) inM). Since all points inMε are distance at most
ε to π−1

L πL(m), we must have by smoothness of πR that all points of πR(Mε)

are within distance comparable to ε of the immersed submanifold πRπ
−1
L πL(m).

Consequently, if the neighborhood U is reduced to a sufficiently small size, it will
be the case that Gε := πR(Mε) has µR-measure bounded by a factor times εℓ.
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Consequently, if (1.5) is bounded for all f ∈ LqL(L) and g ∈ LqR(R), we must
have for all ε sufficiently small that

εnL ≲ |Mε| =

∫

U
(χFε ◦πL)(χGε ◦πR)dµM

≲ (µL(Fε))
1/qL(µR(Gε))

1/qR ≲ εnL/qL+ℓ/qR .

This can only hold when

1
qL
+
ℓ

nL

1
qR

≤ 1.(1.14)

By symmetry, we must also have that

ℓ

nR

1
qL
+

1
qR

≤ 1.(1.15)

For the constraint (1.14), equality occurs when (1/qL,1/qR) lies on the line
through the points (1,0) and

(1.16)

(
nR(nL − ℓ)

nLnR − ℓ2
,
nL(nR − ℓ)

nLnR − ℓ2

)
,

and equality occurs in (1.15) when (1/qL,1/qR) lies on the line through the point
(0,1) and the point given by (1.16). Quick calculations give that (1.16) equals

( 5
8 ,

5
8) when nL = nR = 5 and ℓ = 3 or nL = nR = 10 and ℓ = 6, ( 8

13 ,
8
13) when

nL = nR = 8 and ℓ = 5, and ((dR + 1)/(dR + 2),2/(dR + 2)) when nL = 2dR,
nR = dR+1, and ℓ = dR. This implies sharpness of Theorems 1.1–1.3 up to cases
on the boundary of the respective triangles. Also note for the sake of completeness
that Theorem 1.4 will yield sharp estimates for BQ when s, pl, and pr satisfy

1+
1
sp′l

=
ℓ

nL − ℓ
and 1+

1
sp′r

=
ℓ

nR − ℓ
.

An interesting feature of this criterion is that any estimate for (1.8) which satisfies
this constraint will continue to do so when it is interpolated with the trivial L1×L1

estimate. Thus, there is always a range of possible estimates for (1.8) which would
prove best-possible results for Theorem 1.4.

2. GENERAL GEOMETRIC FRAMEWORK

2.1. Geometry of one projection. A k-multivector field on ann-dimensional
manifoldM is any smooth section of the k-th exterior power of tangent bundle of
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M. These objects are naturally identifiable as dual to k-forms (which are instead
built on the cotangent bundle) by extending the definition

(dxi1 ∧ · · · ∧ dxik)

(
∂

∂yj1

∧ · · · ∧
∂

∂yjk

)

:= det




dxi1

(
∂

∂yj1

)
. . . dxi1

(
∂

∂yjk

)

...
. . .

...

dxik

(
∂

∂yj1

)
· · · dxik

(
∂

∂yjk

)




by linearity and verifying that the definition is independent of the choice of bases
dx1, . . . ,dxn of cotangent vectors and ∂/∂y1, . . . , ∂/∂yn of tangent vectors. In
particular, if M is n-dimensional and possesses a nonvanishing n-form µM, then
there is a unique nonvanishing n-multivector field ΞM such that µM(ΞM) = 1
everywhere (where uniqueness follows from the fact that both n-forms and n-
multivectors form one-dimensional vector spaces at every point).

Now suppose that the n-dimensional M is equipped with a nonvanishing n-
form µM and as well as a smooth map π : M → X into some k-dimensional
manifoldX which is itself equipped with a nonvanishing k-form µX . If the differ-
ential dπ is everywhere surjective, then the Implicit Function Theorem guarantees
that the fibers of the map π are embedded (n − k)-dimensional submanifolds of
M. It is possible, by the following construction, to identify a unique (n − k)-
multivector field on M which encodes the kernel of dπ at every point. To begin,
fix any point m ∈ M, and let V1, . . . , Vn−k be any linearly-independent vectors
in the kernel of dπ at m. For any additional tangent vectors X1, . . . , Xk at m,
consider the quantities

µM(X1 ∧ · · · ∧Xk ∧ V1 ∧ · · · ∧ Vn−k) and µX(dπ(X1)∧ · · · ∧ dπ(Xk)).

Both quantities are unchanged if any vector Xi is replaced by Xi +
∑d−k
j=1 cjVj ,

and consequently both expressions extend to alternating k-linear forms on the
vector space Tm(M)/ker dπ , which is k-dimensional. Therefore, uniqueness of
the determinant implies that they differ by a constant independent of the choice
of X1, . . . , Xk. Since µM is assumed nonvanishing, we may always choose V1, . . . ,
Vn−k ∈ ker dπ so that

µM(X1 ∧ . . . Xk ∧ V1 ∧ · · · ∧ Vd−k) = µX(dπ(X1)∧ · · · ∧ dπ(Xk))(2.1)

∀X1, . . . , Xk ∈ Tm(M).

Notice that dπ(X1)∧ · · · ∧ dπ(Xk) depends only on X1∧ · · · ∧Xk, and so will
be abbreviated dπ(X1∧· · ·∧Xk) for convenience. Because the space of (n−k)-
multivectors generated by kerdπ is one dimensional, the value of V1∧· · ·∧Vd−k
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is constant for any V1, . . . , Vd−k satisfying (2.1). Thus, the multivector

V := V1 ∧ · · · ∧ Vn−k

depends only on µM, µX , and the map π .
Since V is nonvanishing, when it is restricted to the fibers of π , it is dual to

a unique nonvanishing (n− k)-form on those fibers, which we will call µπ (note
that uniqueness here only holds on the fibers; any extension of µπ to all ofM will
not be unique). Therefore, if V1, . . . , Vn−k are any vectors in ker dπ at the point
m (not necessarily normalized as in (2.1)), it must be the case that

µM(X1 ∧ · · · ∧Xk ∧ V1 ∧ · · · ∧ Vn−k)

= µX(dπ(X1 ∧ · · · ∧Xk))µ
π (V1 ∧ · · · ∧ Vn−k)

for all X1, . . . , Xk ∈ Tm(M) and all V1, . . . , Vn−k ∈ ker dπ|m. This equality leads
to a geometric Fubini/coarea formula for the integration of functions f against
the density |µM|—we may factor integrals over M into an integral over the fibers
of π followed by an integral over X:

(2.2)
∫

M
f d|µM| =

∫

X

[∫

π−1(x)
f d|µπ |

]
d
∣∣µX |x

∣∣.

One small but important note is that this construction works equally well if M
and X are only equipped with smooth nonvanishing densities |µM| and |µX |.
The only problem introduced by this change is an ambiguity in the sign of V .
This does not affect the integration formula (2.2), and uniqueness can be restored
by working with what will be called unsigned multivectors, which are simply mul-
tivectors modulo scalar multiplication by ±1. We also note that a k-multivector
(signed or unsigned) will be called decomposable when it may be written as a wedge
product of k vectors in Tm(M).

2.2. Geometry of two projections and TT∗T . The intrinsic geometry of
(1.5) is governed by the structure of the two projections πL and πR. For any
measurable sets F and G in L and R, we will be interested in the restriction of
(1.5) to F ×G defined by

(2.3) BGF(f , g) :=
∫

M
((fχF) ◦πL)((gχG) ◦πR)dµM.

By (2.2), there are measures of smooth density dµπL and dµπR on the fibers of πL
and πR, respectively, such that

∫

M
(f ◦πL)(g ◦πR)dµM =

∫

L
f (x)

[∫

π−1
L (x)

g ◦πR dµ
πL

]
dµL(x)(2.4)

=

∫

R
g(x)

[∫

π−1
R (x)

f ◦πL dµ
πR

]
dµR(x)(2.5)
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for any measurable functions f on L and g on R. In particular, replacing f and
g by fχF and gχG shows that the operators

TGFf (xR) := χG(xR)
∫

π−1
R (xR)

(fχF) ◦πL dµ
πR ,(2.6)

T∗GFg(xL) := χF(xL)
∫

π−1
L (xL)

(gχG) ◦πR dµ
πL ,(2.7)

satisfy

BGF(f , g) =

∫

R
(TGFf )g dµR =

∫

L
f (T∗GFg)dµL.

Note that by (2.4) and (2.5), if Ω is a compact subset of M, it must be that

∣∣∣∣
∫

M∩Ω
(f ◦πL)(g ◦πR)

∣∣∣∣ ≤ C min{‖f‖L1(L) ‖g‖L∞(R),‖f‖L∞(L)‖g‖L1(R)}

for all f and g because the integrals

∫

π−1
L (xL)∩Ω

dµπL and
∫

π−1
R (xR)∩Ω

dµπR

will be finite and uniformly bounded as a function of x ∈ πL(Ω) and πR(Ω),
respectively (and both are compact as well). Boundedness of TGF from L2 to L2

(the main technical hypothesis of Lemma 1.6) when restricted to integration over
Ω must follow by the Schur test.

Returning to (2.6) and (2.7), these operators will be analyzed via the general-
ized TT∗T inequality (1.11), which requires study of the more elaborate object

∫

R
(TGFT

∗
G′F ′TGFf )g dµR =

∫

L
(T∗G′F ′TGFf )(T

∗
GFg)dµL

= BG′F ′(T
∗
GFg, TGFf ).

In terms of integration, this last object may be expressed in terms of an integral
with respect to some measure dµ of smooth, nonvanishing density on the space

M3 :=
{
(ml,mc,mr ) ∈M×M×M |

πL(m
l) = πL(m

c) and πR(mr) = πR(m
c)
}
.

For any p := (ml,mc ,mr) ∈ M3, let πj(p) := mj for any superscript j =
l, c, r . Likewise, define π ij := πj ◦ π i for any j = L,R and any i = l, c, r . One
may expand BG′F ′(T∗GFg, TGFf ) by using (2.3) to write BG′F ′ as an integral over
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M, and then write T∗GFg and TGFf in terms of (2.7) and (2.6), respectively, to
conclude that BG′F ′(T∗GFg, TG′F ′f ) equals

B(3)G′F ′(g, f )(2.8)

:=
∫

M3

((gχG) ◦π
l
R)(χF ′ ◦π

c
L)(χG′ ◦π

c
R)((fχF) ◦π

r
L )dµ

when dµ is simply taken to be the measure generated by the integrals over M and
the fibers of πL and πR.

2.3. Construction of vectors tangent to the incidence manifold M3. Any
tangent vector Z ∈ Tp(M3) is uniquely determined by the triple

〈dπ l(Z),dπc(Z),dπr (Z)〉
∣∣
p ∈ Tπ l(p)(M)× Tπc(p)(M)× Tπr (p)(M),

and any such triple identifies a tangent vector exactly when it satisfies the compat-
ibility conditions dπ lL(Z) = dπcL(Z) and dπrR(Z) = dπcR(Z) (here and through-
out the rest of the paper, angle brackets will be used to represent elements of a
Cartesian product of vector spaces). In other words, if one wishes to find U , V ,
and W so that

〈U,V,W 〉
∣∣
p ∈ Tπ l(p)(M)× Tπc(p)(M)× Tπr (p)(M)

is tangent to M3, one only needs to verify that

(2.9) dπL(U) = dπL(V) and dπR(V) = dπR(W).

Since both dπL and dπR are everywhere surjective, given any one of U , V or W ,
it is always possible to solve (2.9) for the other two, but the solution is never
unique. Note, for example, that when π l(p) = πc(p), U = V is always possible;
likewise, when πr (p) = πc(p), V = W is always possible. To consistently choose
solutions, let us first fix at each point p ∈M3 a map

Ep : Tπc(p)(M)/(ker dπL + ker dπR)→ Tp(M3)

such that, for every v ∈ Tπc(p)(M)/(ker dπL + ker dπR), we have

(2.10) v = dπc(Epv) modulo (kerdπL + ker dπR)
∣∣
πc(p).

Such a map Ep can easily be constructed (for example) by choosing any maximal
set of tangent vectors {Zi} of M3 at p whose “center parts” dπc(Zi) are linearly
independent modulo ker dπL+ker dπR and defining Ep to send dπc(Zi) (modulo
the sum of kernels) to Zi for each i. To see how Ep can be used to consistently
construct tangent vectors, let us show that for any U ∈ Tπ l(p)(M) there must
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exist unique choices of v ∈ Tπc(p)(M)/(ker dπL+kerdπR) and VR ∈ ker dπR so
that

(2.11) ElpU
∣∣
p := 〈U,dπcEpv + VR,dπrEpv〉

is tangent to M3 at p. Because dπcREp = dπrREp and dπR(VR) = 0, it suffices
to show that dπL(U) = dπL(dπcEpv + VR). After counting dimensions, we
need only show that dπL(dπcEpv + VR) = 0 implies v = 0 and VR = 0. But
dπL(dπcEpv + VR) = 0 implies dπcEpv ∈ ker dπL + kerdπR, which by (2.10)
implies that v = 0. Then, v = 0 forces VR = 0 as well because ker dπL ∩ ker dπR
is trivial. By similar reasoning, for any W ∈ Tπr (p)(M), there must exist unique
v ∈ Tπc(p)(M)/(ker dπL + kerdπR) and VL ∈ ker dπL so that

(2.12) ErpW
∣∣
p := 〈dπ lEpv,dπcEpv + VL,W〉 ∈ Tp(M).

Two important special cases of these constructions include the vectors

(2.13) ElpXL
∣∣
p := 〈XL,0,0〉

∣∣
p and ErpXR

∣∣
p := 〈0,0, XR〉

∣∣
p,

when XL belongs to ker dπL at π l(p) and when XR belongs to ker dπR at πr (p).
Another very important set of linear maps to consider in this direction has the
forms

Clp : Tπ l(p)(M)→ Tπc(p)(M)/(ker dπL + ker dπR),(2.14)

Crp : Tπr (p)(M)→ Tπc(p)(M)/(ker dπL + ker dπR),(2.15)

and is defined so that ClpU is the equivalence class of dπcElpU and CrpW is the
equivalence class of dπcErpW (modulo ker dπL + ker dπR). It so happens that

these maps Clp and Crp are independent of the choice of Ep, since, for example,

〈U,dπcEpv + VR,dπ
rEpv〉 − 〈U,dπ

cE′pv
′ + V ′R,dπ

rE′pv
′〉

is tangent to M3, so by (2.9) it must be the case that

0 = dπL((dπ
cEpv − dπcE′pv

′)+ VR − V
′
R),

which is to say that dπcEpv − dπcE′pv
′ vanishes modulo ker dπL + ker dπR. A

satisfying consequence of this observation is that in formulas (2.11) and (2.12), we
have v = ClpU and v = CrpW , respectively, since, in the case of ClpU , dπcEpv is
equivalent to v modulo kerdπL + ker dπR by definition of Ep, and, also modulo
the sum of kernels, is equal to ClpU by definition.

This section concludes with a calculation demonstrating how the maps Clp
and Crp encode the Lie algebra generated by the vector fields XL and XR. This will
be an important piece of the variable coefficient Theorems 1.2 and 1.3.
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Lemma 2.1. Let Clp and Crp be the maps (2.14) and (2.15) which map vectors at
π l(p) and πr (p), respectively, to vectors at πc(p)modulo the kernels dπL and dπR.
If V is any smooth vector field on M, then ClpV is a smooth function on the manifold
which is vector valued in a vector space depending on πc(p). Consequently, along the
submanifold where πc(p) is constant, ClpV can be intrinsically differentiated (i.e.,
independently of any choice of basis or coordinates). Likewise, CrpV can be intrinsically
differentiated along the submanifold where πc(p) is constant. In particular, if XL and
XR are any vectors in the kernel of dπL and dπR, respectively, it must be the case that

XL
∣∣
π l(p)C

l
pV = C

l
p[XL, V],(2.16)

XR
∣∣
πr (p)C

r
pV = C

r
p[XR, V].(2.17)

Proof. We will give the calculation for Clp only, as the calculation for Crp is

completely symmetric. Furthermore, since πc(p) is constant as π l(p) varies in
the directionXL, any vector-valued function with values in kerdπL+ker dπR|πc(p)
will have derivatives of all orders belonging to that same vector subspace. There-
fore, it suffices to show that

(2.18) XL
∣∣
ml

(
(dπcElpV)

∣∣
mc

)
= (dπcElp[XL, V])

∣∣
mc + X′′′R +X′L

where X′′′R ∈ kerdπR at mc and X′L ∈ ker dπL at mc .
Given a smooth vector field V , the formula (2.11) together with the con-

straints (2.9) implies the existence of a smooth vector function X′R with values in
kerdπR at πc(p) such that

dπL
(
V
∣∣
π l(p)

)
= dπL(dπ

cElpV +X
′
R).

Let us denote the point π l(p) by ml and regard πc(p) and πr (p) as constants.
Then, for any smooth function f on L,

XL
∣∣
ml

(
V
∣∣
mlf ◦πL

∣∣
ml

)
= [XL, V]

∣∣
mlf ◦πL

∣∣
ml

since XL belongs to the kernel of dπL. However,

V
∣∣
mlf ◦πL

∣∣
ml = (dπLV)

∣∣
πL(ml)f

∣∣
πL(ml)

= dπL(dπ
cElpV + X

′
R)
∣∣
πL(ml)f

∣∣
πL(ml)

= dπL(dπ
cElpV + X

′
R)
∣∣
πL(mc)f

∣∣
πL(mc)

= (dπcElpV +X
′
R)
∣∣
mcf ◦πL

∣∣
mc ,

so it must be the case that

XL
∣∣
ml

(
(dπcElpV +X

′
R)
∣∣
mcf ◦πL

∣∣
mc

)
= [XL, V]

∣∣
mlf ◦πL

∣∣
ml .
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Now, the only dependence of the function (dπcElpV + X
′
R)|mcf ◦πL|mc on ml

is through the vector-valued function (dπcElpV + X
′
R)|mc itself. Therefore, we

must have that

[
XL
∣∣
ml

(
(dπcElpV +X

′
R)
∣∣
mc

)]
f ◦πL

∣∣
mc = [XL, V]

∣∣
mlf ◦πL

∣∣
ml ,

which is to say that

dπL
[
XL
∣∣
ml

(
(dπcElpV +X

′
R)
∣∣
mc

)]

= dπL[XL, V]
∣∣
ml = dπL

(
dπcElp[XL, V]

∣∣
mc +X′′R

∣∣
mc

)

for some smooth vector-valued function X′′R with values in ker dπR. Thus,

XL
∣∣
ml

(
(dπcElpV +X

′
R)
∣∣
mc

)
= (dπcElp[XL, V]+X

′′
R )
∣∣
mc + X′L

∣∣
mc

for some X′L with values in ker dπL, which then implies (2.18) when we set
X′′′R := X′′R −XL|mlX′R, since the derivative of a function with values in ker dπR is
also in ker dπR. ❐

3. REDUCTION OF GEOMETRIC AVERAGES TO

SUBLEVEL SET ESTIMATES

Recall that the main goal is to prove the inequality (1.12), where the lefthand
side is now given by the bilinear form (2.8) acting on the characteristic functions
χG and χF . The first term on the righthand side comes from an application of
a coarea-type formula, which is essentially the only formula one can appeal to
when trying to prove some approximate boundedness of (2.8) on L1(L)×L1(R).
Unfortunately, such boundedness does not actually hold. However, we may regard
the upcoming quantityK identified in (3.6) as a Jacobian which governs finiteness
of the functional. We will useK to break the functional (2.8) into two pieces. On
the first piece, we will be able to regard K as essentially large (although we will
not decompose directly in terms of the value of K, but rather a slightly more
elaborate function depending on it). The second piece will reduce to a sublevel
set functional which, if bounded, gives the second term on the righthand side of
(1.12).

3.1. Projection and a coarea-type formula for TT∗T . In this subsection
we consider the effect in the bilinear functional (2.8) for TT∗T of placing both g
and f in L1. Unfortunately, the result is not always finite, but we will calculate
the Jacobian-type which governs finiteness. The key is to understand and quantify
the degeneracy of the map Π : M3 → L×R given by

(3.1) Π(p) := (πrL (p),π
l
R(p)).
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For convenience, let dL and dR be the dimensions of the kernels of dπL and
dπR, that is, dL := nR − ℓ and dR := nL − ℓ. Now Π maps the incidence
manifoldM3, which is a space of dimension 2dL+2dR+ℓ into L×R, which has
dimension nL + nR. Consequently, we expect the fibers of Π to have dimension
κ := dL + dR − ℓ (assuming that κ ≥ 0), and by the coarea formula, we further
expect

∫

M3

F dµ =

∫

L×R

[∫

Π−1(xL,xR)
F
dH κ

J

]
dµL(xL)dµR(xR)

where dH κ is the κ-dimensional Hausdorff measure and J is the corresponding
Jacobian. Technical justification aside, this turns out not to be a particularly con-
venient way to express the integral of F on M3, since the Jacobian J is somewhat
difficult to analyze. For this reason, we will derive a slightly different expression for
the integral which, among other things, has an explicit dependence on the maps
which encode the generalized rotational curvature.

To that end, fix any vectors XiL and X
j
R at π l(p) belonging to the kernels of

dπL for all i = 1, . . . , dL and dπR for all j = 1, . . . , dR, respectively. We have by
(2.13) and (2.11) that

(3.2) dΠ(ElpXiL) = 〈0,dπR(XiL)〉 and dΠ(ElpX
j
R) = 〈dπ

r
LE

l
pX

j
R,0〉

since dπrElpX
i
L = 0 and dπ lRE

l
pX

j
R = dπRX

j
R = 0. In the calculations below,

bold symbols are used to represent unsigned decomposable multivectors; when
nonbold, enumerated variables have also been defined, bold will represent the
ordered wedge product of the enumerated vectors. For example,

XL := X1
L ∧ · · · ∧ X

dL
L and XR := X1

R ∧ · · · ∧X
dR
R .

We will assume that the vectors XiL and XjR satisfy the normalization condition

(3.3) µM(XL ∧ Ξ) = µL(dπLΞ) and µM(XR ∧ Ξ) = µR(dπRΞ)

where Ξ is any decomposable unsigned nL-multivector in the former case and nR-
multivector in the latter. Recall that, once normalized in this way, XL and XR
are uniquely determined. If SL ⊂ {1, . . . , dL} and SR ⊂ {1, . . . , dR}, we will also
define

X
SL
L := Xi1L ∧ · · · ∧X

i#SL
L and X

SR
R := X

j1

R ∧ · · · ∧X
j#SR
R

where i1, . . . , i#SL and j1, . . . , j#SR are enumerations of SL and SR, respectively.

Next, if XiL and X
j
R are also defined at πr (p), still belonging to ker dπL and

kerdπR, respectively, and satisfy the normalization (3.3), then we have

(3.4) dΠ(ErpXiL) = 〈0,dπ lRErpXiL〉 and dΠ(ErpX
j
R) = 〈dπL(X

j
R),0〉
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analogously to (3.2) as well as the formula

(3.5) dΠ(ErpXiL −EpCrpXiL) = 〈−dπrLEpCrpXiL,0〉.

Finally, fix any elements v1, . . . , vℓ ∈ Tπc(p)(M)/(ker dπL+kerdπR). Assuming
that #SR + #SL = ℓ, by (3.2), (3.4), and (3.5), it must be the case that

dΠ(ElpX
SR
R ∧Erp(X

SL
L ∧XR)∧ (E

l
pXL ∧Epv))

= 〈dπrL (E
l
pX

SR
R ∧ EpC

r
pX

SL
L ∧E

r
pXR),0〉 ∧ 〈0,dπ

l
R(E

l
pXL ∧Epv)〉,

since we may replace each ErpX
i
L by ErpX

i
L − EpC

r
pX

i
L so long as the vi span

Tπc(p)(M)/(ker dπL + kerdπR). In particular, it follows that

µL×RdΠ(ElpX
SR
R ∧Erp(X

SL
L ∧XR)∧ (E

l
pXL ∧Epv))

= µLdπ
r
L (E

l
pX

SR
R ∧EpC

r
pX

SL
L ∧E

r
pXR)µRdπ

l
R(E

l
pXL ∧Epv)

= µM(XL ∧ XR ∧ dπr (ElpX
SR
R ∧EpC

r
pX

SL
L ))µM(XL ∧XR ∧ dπ lEpv)

= µM(XL ∧ XR ∧ dπrEp(C
l
pX

SR
R ∧CrpX

SL
L ))µM(XL ∧XR ∧ dπ lEpv).

Observe that µM(XL∧XR∧v) and µM(XL∧XR∧dπ lEpv) are both densities
(as a function of v) on Tπc(p)(M)/(ker dπL + kerdπR). In particular, they differ
at most by a multiplicative constant, and moreover this constant must equal 1
when πc(p) = π l(p). By similar reasoning, it follows that the quantity

CE :=
µM(XR ∧XL ∧ dπ lEpv)µM(XR ∧XL ∧ dπrEpv)

(µM(XL ∧XR ∧ v))2

is independent of v, equal to 1 on π l(p) = πc(p) = πr (p) and

µL×RdΠ(ElpX
SR
R ∧Erp(X

SL
L ∧XR)∧ (E

l
pXL ∧ Epv))

= CEµM(XL ∧XR ∧ C
l
pX

SR
R ∧CrpX

SL
L )µM(XL ∧XR ∧ v).

For simplicity, let us normalize each vi so that µM(XL ∧ XR ∧ v) = 1.
Now, by the smooth coarea formula (2.2), there is a density µΠ on the nonde-

generate fibers of Π (meaning only those points at which dΠ is surjective) which
satisfies

∫

M3

F dµ =

∫

L×R

[∫

Π−1(xL,xR)
F dµΠ

]
dµL(xL)dµR(xR)

when F is any integrable function equaling zero on the set where dΠ is not surjec-
tive. This density µΠ must satisfy

µ(Ξ∧ P) = µL×R(dΠ(Ξ))µΠ(P)
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for any unsigned decomposable κ-multivector field P generated by the vectors
tangent to the fibers of Π and any unsigned decomposable (nL+nR)-multivector
field Ξ. It follows that

µΠ(P)µM(XL ∧XR ∧C
l
pX

SR
R ∧CrpX

SL
L )

= C
−1
E µ(E

l
pX

SR
R ∧Erp(X

SL
L ∧XR)∧ (E

l
pXL ∧Epv)∧ P)

= C
−1
E µMdπc(ElpX

SR
R ∧ ErpX

SL
L ∧Epv ∧ P).

Notice that the top line does not depend on the choice of E, so the density on
fibers as written on the bottom line must also be independent of the choice of E.
Moreover, it is always possible to choose E, defined in terms of vector fields Zi
as done following (2.10), for which CE is nonzero at any particular point (simply
require dπcZ∧XL ∧XR ≠ 0 and likewise

dπcZ∧ dπ−1
L |πc(p)(dπL(XR|π l(p)))∧XL ≠ 0

and
dπc(Z)∧ dπ−1

R |πc(p)(dπR(XL|πr (p)))∧XR ≠ 0).

Thus, we may assume that CE is nonvanishing. In particular, if we define the
weight function

K(p) :=
[ ∑

SL,SR

[µM(XL ∧XR ∧C
l
pX

SR
R ∧CrpX

SL
L )]

2
]1/2

,(3.6)

and density

µ0(P) := C
−1
E

[ ∑

SL,SR

[µMdπc(ElpX
SR
R ∧ErpX

SL
L ∧ Epv ∧ P)]

2
]1/2

,(3.7)

then we have the identity

(3.8)
∫
Fdµ =

∫

L×R

[∫

Π−1(xL,xR)
F
dµ0

K

]
dµL(xL)dµR(xR)

whenever F is supported away from the set where K = 0. We also note explicitly
that µ0 is a measure of smooth density that only depends on the projection πc-
projection of the fibers of Π rather than on the full fiber in M3.

3.2. Proof of (1.12) up to geometric sublevel set estimates. In this section
we complete the L1-L1-type estimates for the TT∗T functional (2.8) using the
coarea formula (3.8), and then explain how (1.12) follows if estimates of a certain
geometric sublevel set functional are known to hold. Recall that we may regard
the manifold M as a subset of L ×R by identifying the point m ∈ M with the
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point (πL(m),πR(m)) ∈ L×R. Likewise, for any point x = (xL, xR) ∈ L×R,
the points in the set πc(Π−1(x)) are identified with the set

{(yL, yR) ∈ L×R | ∃m ∈ Π−1(xL, xR), yL = π
c
L(m), yR = π

c
R(m)}.

In general, the set πcΠ−1(x) will be an immersed κ-dimensional submanifold,
although it may be possible that dΠ is not surjective at some points m ∈ Π−1(x).
To avoid confusion, let Π−1

0 (x) consist only of those points in Π−1(x) at which
dΠ is surjective, and define πcΠ−1

0 (x) analogously to πcΠ−1(x). In Appendix
A we will establish that the µ0-measure of each ball Br (x) ⊂ L ×R intersected
with the fiber πcΠ−1

0 (x) is controlled by some uniform constant times rκ when
x ranges over any compact set. (When convenient, we will abuse notation as
we have just done and consider µ0 to be defined either on M3 or on πc(M3)).
Consequently, when F and G are Borel measurable sets in L and R with bounded
diameter, it follows that

∫

πcΠ−1
0 (x)∩(F×G)

dµ0(m)

(dist(m,x))κ
(3.9)

≤
∑

j∈Z

2−κj
∫

πcΠ−1
0 (x)∩(F×G)∩B

2j
(x)

dµ0

≲ ln

(
2+

diam(F ×G)

dist(x,πcΠ−1
0 (x)∩ (F ×G))

)
,

where dist(m,x) is the distance in L ×R as measured by the standard metric on
that space.

Recall from (2.8) that

(3.10) B(3)G′F ′(χG, χF) =

∫

M3

(χF ◦π
r
L )(χG′ ◦π

c
R)(χF ′ ◦π

c
L)(χG ◦π

l
R)dµ.

Fix any positive real number α; we will estimate the righthand side of (3.10) when
the domain of integration is restricted to the set

Sα := {p ∈M3 | K(p)(dist(Π(p),πc(p)))−κ > α}.

It follows from (3.8) that

(3.11)
∫

Sα
(χF ◦π

r
L )(χG′ ◦π

c
R)(χF ′ ◦π

c
L)(χG ◦π

l
R)dµ =

=

∫

F×G

[∫

Π−1(xL,xR)
(χG′ ◦π

c
R)(χF ′ ◦π

c
L)χSα

dµ0

K

]
dµL(xL)dµR(xR),

which applies because Sα is disjoint from the set where K is zero. Ideally, we
would like to show that the integrand in brackets on the righthand side of (3.11)
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is uniformly bounded above by Cα−1. This turns out not to be the case, but it
only fails logarithmically. To see this, we begin by further simplifying (3.11) by
exploiting the definition of Sα to conclude that

∫

Sα
(χF ◦π

r
L )(χG′ ◦π

c
R)(χF ′ ◦π

c
L)(χG ◦π

l
R)dµ

≤
1
α

∫

F×G

[ ∫

πcΠ−1(xL,xR)∩(F ′×G′)

dµ0(m)

(dist(m, (xL, xR)))κ

]
dµL(xL)dµR(xR).

We estimate the integrand using (3.9) to conclude that

∫

Sα
(χF ◦π

r
L )(χG′ ◦π

c
R)(χF ′ ◦π

c
L)(χG ◦π

l
R)dµ

≲
1
α

∫

F×G

[
ln

(
2+

diam(F ×G)

dist(x,πcΠ−1
0 (x)∩ (F ×G))

)]
dµL dµR

≲
1
α

∫

F×G

[
ln
(

2+
diam(F ×G)

dist(x,M∩ (F ×G))

)]
dµL dµR

(where we can replace F ′ and G′ on the righthand side with F and G since F ′ ⊂ F
and G′ ⊂ G). Assuming that F and G are supported in a sufficiently small ball, the
set of points x in L×R at distance δ toM∩(F×G) will have measure controlled
by δℓ(diam(F × G))nL+nR−ℓ. Consequently, fixing any δ > 0 and breaking the
integral into pieces on which dist(x,M∩(F×G)) ≥ δ and dist(x,M∩(F×G)) ∈

[2−j−1δ,2−jδ] for j = 0,1,2, . . . , we will have that

∫

F×G

[
ln
(

2+
diam(F ×G)

dist(x,M∩ (F ×G))

)]
dµL dµR

≤ ln
(

2+
diam(F ×G)

δ

)
(|F| |G| + δℓ(diam(F ×G))nL+nR−ℓ),

and choosing δ appropriately gives

∫

Sα
(χF ◦π

r
L )(χG′ ◦π

c
R)(χF ′ ◦π

c
L)(χG ◦π

l
R)dµ

≲
1
α
|F| |G| ln

(
2+

(diam(F ×G))(nL+nR)/ℓ

(|F| |G|)1/ℓ

)
.

In particular, for any ε > 0, it must be the case that

∫

Sα
(χF ◦π

r
L )(χG′ ◦π

c
R)(χF ′ ◦π

c
L)(χG ◦π

l
R)dµ(3.12)

≲
1
α
(diam(F ×G))(nL+nR)ε|F|1−ε |G|1−ε
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uniformly in α and the sets F , G, F ′, and G′. This is exactly the first term on the
righthand side of (1.12), since the diameters of F ×G are assumed to be bounded.
More precisely, we have shown that

B(3)G′F ′(χG, χF)

≲ α−1|F|1−ε |G|1−ε +

∫

M3\Sα
(χG ◦π

l
R)(χF ′ ◦π

c
L)(χG′ ◦π

c
R)(χF ◦π

r
L )dµ,

and what remains is to understand the integral overM3 \Sα as a sublevel set func-
tional and use the bounds on that sublevel set functional to complete an inequality
of the form (1.12). For convenience, let us define

(3.13) Φ(p) :=
K(p)

(dist(πc(p),Π(p)))κ .

By Fubini, we may write
∫

Φ(p)≤α
(χF ◦π

r
L )(χG′ ◦π

c
R)(χF ′ ◦π

c
L)(χG ◦π

l
R)dµ(p)

=

∫

M∩π−1
L (F ′)∩π−1

R (G′)
Wα,mc (χG ◦πR, χF ◦πL)dµM(m

c)

where Wα,mc (g, f ) is the bilinear sublevel set functional

(3.14) Wα,mc (g, f )

:=
∫

π−1
R πR(mc)

∫

π−1
L πL(mc)

χΦ(p)≤αg(m
l)f (mr)dµπL(ml)dµπR(mr ),

where p = (ml,mc ,mr ). In particular, if Wα,mc satisfies a restricted weak-type
estimate

Wα,mc (χEl , χEr ) ≲ α
s|µπL(El)|1/pl |µπR(Er )|1/pr

uniformly inα andmc for all measurable sets El and Er contained inπ−1
L πL(mc)

and π−1
R πR(mc) (i.e., belonging to the fibers of πL and πR passing through mc),

respectively, then it follows that
∫

Φ(p)≤α
(χF ◦π

r
L )(χG′ ◦π

c
R)(χF ′ ◦π

c
L)(χG ◦π

l
R)dµ(p)

≲ αs
∫
|T∗GFχG|

1/plT∗G′F ′|TχGFχF |
1/pr ,

which combines with (3.12) to prove (1.12). Thus, the question of boundedness
of the functional (1.5) is reduced to the study of (3.14). Since we have made no
use up to this point of any notion of nondegeneracy whatsoever, the geometry of
(1.5) is now entirely captured by the sublevel set operator (3.14). In particular,
this means that if the bilinear form (1.5) fails to exhibit any meaningful curvature,
there is no reason to expect that (3.14) will satisfy any nontrivial estimates. The
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problem of proving boundedness of (3.14) using the geometry of (1.5) is taken
up in the following section after an auxiliary lemma is established to help prove
sublevel set functional inequalities in a systematic way.

4. APPLICATIONS AND EXAMPLES

4.1. An auxiliary lemma for establishing sublevel set estimates. A par-
ticularly successful general strategy for proving restricted weak-type estimates for
sublevel set functionals like (3.14) is to independently decompose both ml and
mr into dyadic annuli with centers at the point mc , since, in particular, we know
that K(p) is expected to be identically zero when ml =mc and when mr =mc .
This is due to the fact that Clp and Crp, respectively, reduce to the identity (mod-

ulo the sum of kernels), meaning that ClpX
j
R = 0 when ml = mc and CrpX

i
L = 0

when mr = mc . The following lemma establishes a type of interpolation result
which is particularly useful in this case. Roughly speaking, if there are two nat-
ural restricted weak-type inequalities which hold on each individual product of
annuli (i.e., ‖ml −mc‖ ∼ 2i and ‖mr −mc‖ ∼ 2j), then under appropriate
technical hypotheses, the interpolated restricted weak-type inequalities hold not
just for individual annuli, but for the sum over all annuli as well. Readers will
note that the argument is essentially the same one that appears in the proof of the
Marcinkiewicz interpolation theorem.

Lemma 4.1. Suppose a0, a1, b0, b1 are real numbers and p0, p1, q0, q1∈[1,∞]
are exponents satisfying

det

[
a0 p

−1
0

a1 p
−1
1

]
≠ 0, det

[
b0 q

−1
0

b1 q
−1
1

]
≠ 0,(4.1)

1
pk
+

1
qk
≥ 1, k = 0,1.(4.2)

Then, for any θ ∈ (0,1), let aθ, bθ, pθ, qθ be defined by the formulas

1
pθ

:=
1− θ
p0

+
θ

p1
and

1
qθ

:=
1− θ
q0

+
θ

q1
,

aθ := (1− θ)a0 + θa1 and bθ := (1− θ)b0 + θb1.

There is a constant C depending only on the choices of each ak, bk, pk, qk, and θ
such that

∑

i,j∈Z

min{A02a0i+b0j|fi|
1/p0 |gj|

1/q0 , A12a1i+b1j|fi|
1/p1 |gj|

1/q1}(4.3)

≤ CA1−θ
0 Aθ1

( ∑

i∈Z

2aθpθi|fi|
)1/pθ( ∑

j∈Z

2bθqθj|gj|
)1/qθ

for any nonnegative constants A0 and A1 and any sequences {fi}i∈Z, {gj}j∈Z of real
or complex numbers.
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Proof. By the definition of aθ, bθ, pθ , and qθ, we have the identities

(1− θ)

(
a0 −

aθpθ
p0

)
+ θ

(
a1 −

aθpθ
p1

)
= 0,

(1− θ)

(
b0 −

bθqθ
q0

)
+ θ

(
b1 −

bθqθ
q1

)
= 0;

by (4.1), it is not possible to choose p−1
0 = p−1

1 = 0, so pθ must be finite. Like-
wise, qθ < ∞. Moreover, it cannot be that both a0−aθpθp

−1
0 and a1−aθpθp

−1
1

are zero, since this would also force the first determinant (4.1) to be zero. Con-
sequently, neither is zero (since their convex combination vanishes). Likewise,
neither b0 − bθqθq

−1
0 nor b1 − bθqθq

−1
1 is zero, and since θ ∈ (0,1), one must

be positive and the other negative. Rewriting the lefthand side of (4.3) in terms of
sequences

f̃i := 2aθpθifi and g̃j := 2bθqθjgj ,

it suffices to assume that aθ = bθ = 0 and that none of a0, b0, a1, b1 is zero. This
amounts to replacing ak by ak−aθpθ/pk and likewise for bk. These changes pre-
serve the value of the determinants (4.1). By symmetry, it also suffices to assume
that b0 > 0 > b1.

Let τ = −a0b
−1
0 , and let s be any real number (to be fixed shortly). Now,

∑

j∈Z

min{A02a0i+b0j|fi|
1/p0 |gj|

1/q0 , A12a1i+b1j |fi|
1/p1 |gj|

1/q1}

= A02b0s
∑

j<τi+s

A02a0i+b0j−b0s|gj|
1/q0

+ A12b1s|fi|
1/p1

∑

j≥τi+s

2a1i+b1j−b1s|gj|
1/q1 .

Consider the mappings T0 and T1 which act on sequences as follows:

(T0e)i :=
∑

j<τi+s

2a0i+b0j−b0sej and (T1e)i :=
∑

j≥τi+s

2a1i+b1j−b1sej .

Using standard sum estimation techniques (along with the fact that b0 > 0 > b1),
we have that

‖T0e‖∞ ≤
‖e‖∞

1− 2−b0
, ‖T0e‖1 ≤

‖e‖1

1− 2−|a0|
,

‖T1e‖∞ ≤
‖e‖∞

1− 2b1
, ‖T1e‖1 ≤

‖e‖1

1− 2−|a1|
,
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and, in particular, Ti is bounded on ℓp
′
i with constant independent of s, where p′i

is dual to pi. Therefore,

∑

i∈Z

|fi|
1/p0

∑

j<τi+s

2b0(j−τi−s)|gj|
1/q0 ≲

∥∥f
∥∥1/p0

1

∥∥|g|1/q0
∥∥1/p′0
p′0

≤
∥∥f
∥∥1/p0

1

∥∥g
∥∥1/q0

1 ,
∑

i∈Z

|fi|
1/p1

∑

j≥τi+s

2b1(j−τi−s)|gj|
1/q1 ≲

∥∥f
∥∥1/p1

1

∥∥g
∥∥1/q1

1 ,

since p′k ≥ qk for k = 0,1. Therefore,

∑

i,j∈Z

min
{
A02a0i+b0j|fi|

1/p0 |gj|
1/q0 , A12a1i+b1j|fi|

1/p1 |gj|
1/q1

}

≲ A02b0s
∥∥f
∥∥1/p0

1

∥∥g
∥∥1/q0

1 +A12b1s
∥∥f
∥∥1/p1

1

∥∥g
∥∥1/q1

1 .

Optimizing over the choice of s gives

∑

i,j∈Z

min
{
A02a0i+b0j|fi|

1/p0 |gj|
1/q0 , A12a1i+b1j|fi|

1/p1 |gj|
1/q1

}

≲
(
A0

∥∥f
∥∥1/p0

1

∥∥g
∥∥1/q0

1

)1−θ(
A1

∥∥f
∥∥1/p1

1

∥∥g
∥∥1/q1

1

)θ

with θ = b0/(b0 − b1), which is the correct value of θ to give bθ = 0. ❐

A final remark about the lemma: although it will not be needed here, the
constraint (4.2) can be weakened somewhat. In particular, if p−1

θ + q−1
θ > 1 for

the chosen value of θ, then one does not need to explicitly assume (4.2), since
one can instead apply the lemma using some convex combination of the estimates
on the lefthand side of (4.3). It will always be possible in this setting to find
two different convex combinations which automatically both satisfy (4.2) and still
yield the same conclusion (4.3) for the desired exponents pθ and qθ.

4.2. General bilinear averages. We now begin the study of the geometric
sublevel set operators (3.14) in earnest. The first case to be considered corresponds
to the setting of Theorem 1.4 for the averaging operators constructed from bilinear
mappings. Let Q : RdL ×RdR → Rℓ be any such bilinear map. Let Ω ⊂ RdL+dR+ℓ
be compact, fix M to be any open set containing Ω, and consider the bilinear
functional

BQ(f , g) :=
∫

Ω
f (y, z +Q(x,y))g(x, z)dx dy dz.

By duality, this bilinear functional corresponds to the integral operator

Tf(x, z) :=
∫

Ωx,z
f (y, z +Q(x,y))dy.
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If we define πL(x,y, z) := (y, z+Q(x,y)) and πR(x,y, z) := (y, z), one can

easily identify vector fields XiL and X
j
R annihilated by dπL and dπR, respectively:

XiL :=
∂

∂xi
−Q(ei, y) · ∇z and X

j
R :=

∂

∂yj
,

where the vectors ei and ej denote standard basis vectors in RdL and RdR , respec-
tively. On the space M3 we can calculate that

dπ lL


 ∂

∂yℓj


 = dπcL

(
∂

∂ycj
+Q(xl − xc , ej) · ∇zc

)
,

dπrR

(
∂

∂xri
−Q(ei, y

r ) · ∇zr

)

= dπcR

(
∂

∂xci
−Q(ei, y

c) · ∇zc +Q(ei, y
c −yr ) · ∇zc

)
.

Since we have that Clp and Crp from (2.14) and (2.15) are intrinsically defined
modulo kerdπL + ker dπR (not depending on Ep), it follows that

Clp(X
j
R) ∼ Q(x

l − xc , ej) · ∇zc and Crp(X
i
L) ∼ Q(ei, y

c −yr ) · ∇zc .

If we take the standard measure µM = dx dy dz, then by (3.6) we have that
(K(p))2 is the sum of squares of all ℓ×ℓ determinants whose columns are of the
formQ(xl−xc , ej) or Q(ei, yc −yr ) as ej and ei range over all elements of the
standard bases. Consequently, if we define

ΦQ(x,y) =
Vol

({
Q(ei, y)

}dL
i=1,

{
Q(x, ej)

}dR
j=1

)

(|x|2 + |y|2)(dL+dR−ℓ)/2
,

then the sublevel set operator (3.14) is nearly translation invariant under the map
(ml,mc ,mr) ֏ (ml + τ,mc + τ,mr + τ), with the only failure of invariance
coming implicitly through the fact that Mmay not contain all of RdL+dR+ℓ. Con-
sequently, to prove estimates for (3.14) uniformly in mc, it suffices to bound the
fixed sublevel set operator

(4.4) Wα(g, f ) =

∫

RdL×RdR
χΦQ(x,y)≤αg(x

l)f (yr )dx dy.

Moreover, even if g and f in (4.4) are restricted to fixed neighborhoods of the
origin, it will still be the case that Wα,mc is dominated by Wα provided that the
diameter of Ω is sufficiently small. Thus, by (3.12), (3.14), and Lemma 1.6,
Theorem 1.4 must hold.
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4.3. The maximal 2D quadratic surface in R5 and generalizations. In
the case of the bilinear functional

(4.5) B(f , g)

:=
∫

Ω
f

(
x1 + t1, x2 + t2, x3 +

1
2
t2

1 , x4 + t1t2, x5 +
1
2
t2

2

)
g(x)dx dt

corresponding to the operator (1.1), we choose vector fields XiL and X
j
R as follows:

X1
L :=

∂

∂t1
−

∂

∂x1
− t1

∂

∂x3
− t2

∂

∂x4
,

X2
L :=

∂

∂t2
−

∂

∂x2
t1

∂

∂x4
− t2

∂

∂x5
,

X
j
R :=

∂

∂tj
, j = 1,2.

By using these vector fields, the maps Clp and Crp, defined by (2.14) and (2.15),
give

ClpX
1
R ∼ (t

l
1 − t

c
1)

∂

∂xc3
+ (tl2 − t

c
2)

∂

∂xc4
,

ClpX
2
R ∼ (t

l
1 − t

c
1)

∂

∂xc4
+ (tl2 − t

c
2)

∂

∂xc5
,

CrpX
1
L ∼ (t

c
1 − t

r
1 )

∂

∂xc3
+ (tc2 − t

r
2 )

∂

∂xc4
,

CrpX
2
L ∼ (t

c
1 − t

r
1 )

∂

∂xc4
+ (tc2 − t

r
2 )

∂

∂xc5

(with ∼ meaning modulo (ker dπL + kerdπR)|(xc ,tc)). Consequently, by (3.6),

(4.6) K(p) = (‖tl − tc‖2 + ‖tr − tc‖2)1/2

∣∣∣∣∣det

[
tl1 − t

c
1 t

r
1 − t

c
1

tl2 − t
c
2 t

r
2 − t

c
2

]∣∣∣∣∣ .

The fibers of the map Π defined by (3.1) are generically one dimensional; conse-
quently, κ = 1, and by (3.13) and (3.14), it suffices to study

(4.7) Wα,mc (g, f ) :=
∫

Ωmc
χ|det(tl−tc tr−tc)|≤αg(t

l)f (tr )dtl dtr .

In particular, we will use (4.3) to show that

(4.8) Wα,mc (χEl , χEr ) ≤ Cα|El|1/2 |Er |1/2.
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Without loss of generality, we may assume tc = 0. For each j ∈ Z, let Aj ⊂ R2

be the annulus {t ∈ R2 | 2j−1 ≤ ‖t‖ < 2j}. To prove (4.8), we break (4.7) into
a sum over dyadic annuli in tl and in tr , at which point it suffices by (4.3) with
θ = 1

2 to prove that

∫

|det(tl tr )|≤α
χEl∩Ai(t

l)χEr∩Aj (t
r )dtl dtr(4.9)

≤ Cαmin{2i−j|Er ∩Aj|,2−i+j|El ∩Ai|}.

Both estimates on the righthand side follow from Fubini’s theorem (in the former
case integrating over tl first and in the latter integrating over tr first) and the
inequalities

|{tl ∈ R2 : |det(tl tr )| ≤ α and 2i−1 ≤ ‖tl‖ < 2i}| ≤ Cα2i‖tr‖−1,(4.10)

|{tr ∈ R2 : |det(tl tr )| ≤ α and 2j−1 ≤ ‖tr‖ < 2j}| ≤ Cα2j‖tl‖−1,(4.11)

which hold trivially since, for fixed y ∈ R2, the set {x ∈ R2 : |det(x y)| ≤ α}
is simply those points at distance less than α‖y‖−1 to the line through the origin
with direction y . Thus, (4.8) follows from (4.9) and Lemma 4.1.

In light of (4.8), by Lemma 1.6 together with the trivial estimates

|B(f , g)| ≤ C‖f‖1 ‖g‖∞,

|B(f , g)| ≤ C‖f‖∞ ‖g‖1

(assuming the compactness of Ω), we have that

|B(f , g)| ≤ C‖f‖qL ‖g‖qR

whenever (1/qL,1/qR) belongs to the interior of the triangle with vertices (1,0),

(0,1), and ( 5
8 ,

5
8).

Incidentally, the compactness of Ω can be easily removed using translation
invariance: for any j ∈ Z5, if we let

Ωj := [j1, j1 + 1]× · · · × [j5, j5 + 1]× [−1,1]2,

we have uniformly in j that

|BΩj(f , g)| ≤ C‖f‖qL ‖g‖qR ,

which self-improves to the estimate

|BΩj(f , g)| ≤ C‖fχQ∗j
‖qL ‖gχQj‖qR
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where Qj := [j1, j1 + 1]× · · · × [j5, j5 + 1] and

Q∗j := [j1 − 1, j1 + 2]× · · · × [j5 − 1, j5 + 2].

Therefore, recalling γM from the notation of (1.1), it must be the case that

∣∣∣∣
∫

R5
g(x)

∫

[−1,1]2
f (x + γM(t))g(x)dt dx

∣∣∣∣

≤
∑

j∈Z5

|BΩj(f , g)| ≤
∑

j∈Z5

C‖fχQ∗j
‖qL ‖gχQj‖qR

≤ C

( ∑

j∈Z5

∥∥fχQ∗j
∥∥qL
qL

)1/qL( ∑

j∈Z5

∥∥gχQj
∥∥qR
qR

)1/qR
≲ ‖f‖qL ‖g‖qR

by Hölder’s inequality together with the observation that q−1
L + q−1

R ≥ 1. By the
Marcinkiewicz interpolation theorem, this completes the claims of Theorem 1.1
for the maximal quadratic submanifold in R5 given by (1.1).

Let us now turn to the geometric setting of Theorem 1.2. When the dimen-
sion of M is seven and dL = dR = 5, we say that the pair of projections πL and
πR are nondegenerate when, at every pointm ∈M, the following conditions hold:

• For any v,v′ ∈ R2 with det(v v′) ≠ 0, there is an av,v′ ∈ R2 such that

(4.12) XL ∧XR ∧ [X
1
L, v ·XR]∧ [X

2
L, v ·XR]∧ [av,v′ ·XL, v

′ ·XR] ≠ 0.

• For any u,u′ ∈ R2 with det(u u′) ≠ 0, there is a bu,u′ ∈ R2 such that

(4.13) XL ∧XR ∧ [u ·Xl, X
1
R]∧ [u ·XL, X

2
R]∧ [u

′ ·XL, bu,u′ ·XR] ≠ 0.

(Note that the condition is independent of the choice of bases {X1
L, X

2
L} and

{X1
R, X

2
R} of kerdπL and kerdπR.) Theorem 1.2 asserts that, under the regularity

assumptions of real analyticity, any pair of nondegenerate projections as defined
above gives rise to a bilinear functional (1.5) which is bounded for pairs of ex-
ponents (q−1

L , q
−1
R ) in the interior of the triangle with vertices (1,0), (0,1), and

( 5
8 ,

5
8).
The proof of Theorem 1.2 proceeds as follows. For each fixed mc ∈ M, we

can coordinatize a small neighborhood of (mc,mc ,mc) ∈M3 by exponentiating
as follows: for u ∈ RdL and v ∈ RdR , we define

p(mc , u, v) := (exp(u ·XL)(mc),mc , exp(v ·XR)(mc)).

The advantage of this representation is that we get an explicit approximation

of Clp(X
j
R) and Crp(X

i
L) in terms of commutators. In particular, since we have
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Clp(X
j
R) = C

r
p(X

i
L) = 0 when u = v = 0, by (2.16), (2.17), and Taylor’s theorem,

we must have that

Clp(mc ,u,v)(X
j
R) = [u ·XL, X

j
R]+O(‖u‖

2)

and

Crp(mc ,u,v)(X
i
L) = −[X

i
L, v ·XR]+O(‖v‖

2),

where the error term O(‖u‖2), for example, must be real analytic and vanish
quadratically as u → 0. Thus, up to first order, the terms whose square sums give
K2 in (3.6) are merely wedge products of the XL, XR, and their first commutators.
More precisely, when i1, . . . , i#SL enumerates SL and j1, . . . , j#SR enumerates SR,
we have

XL ∧ XR ∧C
l
p(mc ,u,v)X

SR
R ∧Crp(mc ,u,v)X

SL
L(4.14)

= (−1)#SLXL ∧XR ∧ [u ·XL, X
j1

R ]∧ · · · ∧ [u ·XL, X
j#SR
R ]

∧ [Xi1L , v ·XR]∧ · · · ∧ [X
i#SL
L , v ·XR]

+ O(‖u‖#SL+1 ‖v‖#SR)+O(‖u‖#SL ‖v‖#SR+1).

Using this calculation and the machinery already produced, to prove Theorem 1.2,
it suffices for us to establish the following result.

Lemma 4.2. Assume that πL and πR are nondegenerate as in (4.12) and (4.13).
Let

Aj := {x ∈ R2 | 2j−1 ≤ ‖x‖ < 2j}

as before. Then, for any compact set K ⊂M, there is a finite constant C and an integer
j0 such that

|{u ∈ Ai : |Φ(p(mc , u, v))| ≤ α}| ≤ Cα2i−j ,

|{v ∈ Aj : |Φ(p(mc , u, v))| ≤ α}| ≤ Cα2−i+j ,

for all α ≥ 0 and all (mc, u, v) ∈ K ×Ai ×Aj whenever i, j ≤ j0. Here, Φ is the
function defined by (3.13).

Proof. We must have #SL + #SR = 3, meaning that one set should have cardi-
nality one and the other cardinality two. Both options are completely symmetric,
so let us consider the case when #SL = 2. For convenience below, given any vector
v := (v1, v2), we define v⊥ := (−v2, v1). For any fixed v ∈ R2, let w be any
nonzero unit vector such that

XL ∧XR ∧ [X
1
L, v ·XR]∧ [X

2
L, v ·XR]∧ [w ·XL, v

⊥ ·XR] = 0
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(notice that w is unique up to sign). It follows that

XL ∧XR ∧ [u ·XL, X
1
R]∧ [u ·XL, X

2
R]∧ [w ·XL, v ·XR]

= ‖v‖−2
XL ∧XR ∧ [u ·XL, v ·XR]∧ [u ·XL, v

⊥ ·XR]∧ [w ·XL, v ·XR]

=
u ·w⊥

‖v‖2
XL∧XR ∧ [w

⊥ ·XL, v ·XR]∧ [u ·XL, v
⊥ ·XR]∧ [w ·XL, v ·XR]

= −
u ·w⊥

‖v‖2
XL ∧XR ∧ [X

1
L, v ·XR]∧ [u ·XL, v

⊥ ·XR]∧ [X
2
L, v ·XR]

=
u ·w⊥

‖v‖2
XL ∧XR ∧ [X

1
L, v ·XR]∧ [X

2
L, v ·XR]∧ [u ·XL, v

⊥ ·XR]

=
(u ·w)(u ·w⊥)

‖v‖2
XL ∧XR ∧ [X

1
L, v ·XR]

∧ [X2
L, v ·XR]∧ [w

⊥ ·XL, v
⊥ ·XR].

By (4.12), the wedge product on the final line cannot be zero unless u = w or
u = w⊥ (otherwise, no such av,v′ could exist since any linear combination of
w and w⊥ would return zero when put in the place of av,v′). In particular, the
u-derivative of this expression is never zero. By compactness of the domain from
which (mc , u, v) is drawn and the continuity of all vector fields, this means

|∇u(XL ∧XR ∧ C
l
p(mc ,u,v)X

1
R ∧C

r
p(mc ,u,v)X

2
R ∧C

r
p(mc ,u,v)X

1
L)|+

+ |∇u(XL ∧XR ∧C
l
p(mc ,u,v)X

1
R ∧C

r
p(mc ,u,v)X

2
R ∧C

r
p(mc ,u,v)X

2
L)|

≥ c‖u‖‖v‖

for some constant c > 0, provided ‖u‖ and ‖v‖ are sufficiently small. By (4.14),
we also have that there is a finite constant C such that

|∇2
u(XL ∧XR ∧ C

l
p(mc ,u,v)X

1
R ∧C

r
p(mc ,u,v)X

2
R ∧C

r
p(mc ,u,v)X

1
L)|

+ |∇2
u(XL ∧XR ∧C

l
p(mc ,u,v)X

1
R ∧C

r
p(mc ,u,v)X

2
R ∧C

r
p(mc ,u,v)X

2
L)|

≤ C‖v‖

for the same range ofmc , u, and v. Thus, for all sufficiently small annuli, for any
fixed values of mc and v, we may cover the annulus Ai by boundedly many balls
(independent of the annulus, mc, and v), on which there are indices k1 and k2

such that

∣∣∣∣∣
∂

∂uk1

(XL ∧XR ∧C
l
p(mc ,u,v)X

1
R ∧C

r
p(mc ,u,v)X

2
R ∧C

r
p(mc ,u,v)X

k2
L )

∣∣∣∣∣

≥ c′2i‖v‖.



236 PHILIP T. GRESSMAN

By the usual Fubini argument, it follows that

(4.15) |{u ∈ Ai : |K(p(mc , u, v))| ≤ α}| ≤ C
′α2−j

uniformly as desired.
Next, if we let w′ be any unit vector such that

XL ∧XR ∧ [u ·Xl, X
1
R]∧ [u ·XL, X

2
R]∧ [u

⊥ ·XL,w
′ ·XR] = 0,

we must have that

XL ∧XR ∧ [u ·XL, X
1
R]∧ [u ·XL, X

2
R]∧ [u

⊥XL, v ·XR] =

= (v · (w′)⊥)XL ∧XR ∧ [u ·XL, X
1
R]∧ [u ·XL, X

2
R]∧ [u

⊥XL, (w
′)⊥ ·XR].

Once again, with the exception of the coefficient v · (w′)⊥ vanishing, the wedge
product on the righthand side cannot be zero without contradicting the existence
of bu,u⊥ in (4.13). Reasoning just as before, we find that

|∇v(XL ∧XR ∧C
l
p(mc ,u,v)X

1
R ∧ C

r
p(mc ,u,v)X

2
R ∧C

r
p(mc ,u,v)X

1
L)|

+ |∇v(XL ∧XR ∧C
l
p(mc ,u,v)X

1
R ∧C

r
p(mc ,u,v)X

2
R ∧ C

r
p(mc ,u,v)X

2
L)| ≥ c‖u‖

2

and

|∇2
v(XL ∧XR ∧C

l
p(mc ,u,v)X

1
R ∧ C

r
p(mc ,u,v)X

2
R ∧C

r
p(mc ,u,v)X

1
L)|+

+ |∇2
v(XL ∧XR ∧C

l
p(mc ,u,v)X

1
R ∧C

r
p(mc ,u,v)X

2
R ∧ C

r
p(mc ,u,v)X

2
L)| ≤ C

‖u‖2

‖v‖

(where the factor of ‖v‖−1 is easily obtained by bounding the second derivatives
by C‖u‖2 and then fixing an upper bound for ‖v‖), and consequently that

(4.16) |{v ∈ Aj : |K(p(mc , u, v))| ≤ α}| ≤ C
′α2−2i−j .

Now if i ≥ j, then Φ(p(mc, u, v)) ≈ 2−iK(p(mc , u, v)), so (4.15) and (4.16)
imply the lemma by merely replacing α in (4.15) and (4.16) with 2iα. The case
i ≤ j is obtained in exactly the same manner by fixing #SL = 1 and #SR = 2 (and
effectively interchanging the roles of u and v). ❐

4.4. The maximal complex quadratic submanifold. In the case of the bi-
linear functional (4.5) corresponding to the operator (1.1), if we complexify the
manifolds M, L, and R, we are naturally led to the following functional repre-
senting an integral over a quadratic four-dimensional submanifold of R10, which
corresponds to the bilinear functional for (1.2) written in real coordinates:

(4.17) B(f , g) :=
∫

Ω
f

(
x1 + t1, . . . , x4 + t4, x5 +

1
2
(t2

1 − t
2
2), x6 + t1t2,

x7 + t1t3 − t2t4, x8 + t1t4 + t2t3, x9 +
1
2
(t2

3 − t
2
4), x10 + t3t4

)
g(x)dt dx.
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We take the following definitions of XiL and X
j
R:

X1
L :=

∂

∂t1
−

∂

∂x1
− t1

∂

∂x5
− t2

∂

∂x6
− t3

∂

∂x7
− t4

∂

∂x8
,

X2
L :=

∂

∂t2
−

∂

∂x2
+ t2

∂

∂x5
− t1

∂

∂x6
+ t4

∂

∂x7
− t3

∂

∂x8
,

X3
L :=

∂

∂t3
−

∂

∂x3
− t1

∂

∂x7
− t2

∂

∂x8
− t3

∂

∂x9
− t4

∂

∂x10
,

X4
L :=

∂

∂t4
−

∂

∂x4
+ t2

∂

∂x7
− t1

∂

∂x8
+ t4

∂

∂x9
− t3

∂

∂x10
,

X
j
R :=

∂

∂tj
, j = 1, . . . ,4.

In this case, we need not even sum over all SL and SR in (3.6) to estimate K from
below well enough to establish boundedness of the sublevel set operators (3.14).
In particular, we need only sum over those SL and SR in which the indices 1 and
2 are either both omitted or occur simultaneously as a pair, and likewise with the
indices 3 and 4. This gives all the determinants a block complex structure which
is easy to evaluate: if zjk = ajk + ibjk, where i is the imaginary unit, then

det




a11 −b11 · · · a1n −b1n

b11 a11 · · · b1n a1n
...

...
. . .

...
...

an1 −bn1 · · · ann −bnn
bn1 an1 · · · bnn ann



=

∣∣∣∣∣∣∣∣
det




z11 · · · z1n
...

. . .
...

zn1 · · · znn




∣∣∣∣∣∣∣∣

2

.

In particular, this reduction brings us back to the same calculations encountered in
(4.6); the only difference is that the entries of the various determinants are allowed
to be complex. The end result is that the sublevel set operators Wα,mc (g, f ) are
dominated (modulo the multiplication of α by a constant factor) by the complex-
ified sublevel set operator

∫

C2×C2
χ|z1w2−z2w1|

2≤αf (z1, z2)g(w1,w2)|dz1 ∧ dz1 ∧ · · · ∧ dw2 ∧ dw2|,

where zj and wj are now, of course, complex. If Aj ⊂ C2 is the complex annulus
{(z1, z2) ∈ C2 | 2j−1 ≤

√
|z1|2 + |z2|2 < 2j}, then just as in (4.10) and (4.11),

∫
χ|z1w2−z2w1|

2≤αχEr∩Ak(z1, z2)

× χEl∩Aj (w1,w2)|dz1 ∧ dz1 ∧ · · · ∧ dw2 ∧ dw2|

≤ C min{22j−2kα|Er ∩Ak|,2−2j+2kα|El ∩Aj|},
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which gives just as in the real case that the bilinear functional (4.17) satisfies

|B(f , g)| ≤ C‖f‖qL ‖g‖qR

whenever (1/qL,1/qR) belongs to the interior of the triangle with vertices (1,0),

(0,1), and ( 5
8 ,

5
8). Just as in the previous section, the constraint that Ω in (4.17)

be compact can be relaxed by Hölder to establish boundedness of (1.2).

4.5. The 3D harmonic quadratic surface in R8 and generalizations. In
the case of the bilinear functional corresponding to (1.3), we have

B(f , g) :=
∫

Ω

(
x1 + t1, x2 + t2, x3 + t3, x4 +

t2
1

2
−
t2

2

2
,

x5 +
t2

2

2
−
t2

3

2
, x6 + t1t2, x7 + t2t3, x8 + t1t3

)
g(x)dx dt.

Calculating just as before using the vector fields

X1
L :=

∂

∂t1
−

∂

∂x1
+ t1

∂

∂x4
+ t2

∂

∂x6
+ t3

∂

∂x8
,

X2
L :=

∂

∂t2
−

∂

∂x2
− t2

∂

∂x4
+ t2

∂

∂x5
+ t1

∂

∂x6
+ t3

∂

∂x7
,

X3
L :=

∂

∂t3
−

∂

∂x3
− t3

∂

∂x5
+ t2

∂

∂x7
+ t1

∂

∂x8
,

X
j
R :=

∂

∂tj
, j = 1,2,3,

we come to the conclusion that the function Φ given by (3.13) governing the
relevant sublevel set functional is given by the formula

Φ(p) = ‖tl − tc‖2 ‖tr − tc‖2 − ((tl − tc) · (tr − tc))2.

Also in agreement with previous cases, we may assume without loss of generality
that tc = 0, and we let Ai be the annulus {t ∈ R3 | 2i−1 ≤ ‖t‖ < 2i}. For fixed,
nonzero y ∈ R3, we observe that the set

{x ∈ R3 : ‖x‖2 ‖y‖2 − (x ·y)2 ≤ α}

consists of exactly those points at a distance α1/2‖y‖−1 to the line through the
origin with direction y . Therefore, using Fubini’s theorem exactly as in the earlier
case of the two-dimensional surface in R5, we conclude that

∫

‖tl‖2 ‖tr ‖2−(tl·tr )2≤α
χEl∩Ai(t

l)χEr∩Aj (t
r)dtl dtr

≤ Cαmin{2i−2j|Er ∩Aj|,2
−2i+j|El ∩Ai|},
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which implies by (4.3) with θ = 1
2 that

∫

‖tl‖2 ‖tr ‖2−(tl·tr )2≤α
χEl(t

l)χEr (t
r)dtl dtr

≤ C
′α
( ∑

i∈Z

2−i|El ∩Ai|
)1/2( ∑

j∈Z

2−j|Er ∩Aj|
)1/2

.

This inequality, by itself, does not immediately imply boundedness of (3.14), but
the desired inequality follows from the observation that

(4.18)
( ∑

i∈Z

2−i|El ∩Ai|
)1/2

≤ C
′′|El|1/3,

and likewise for the sum over j. The observation itself is a consequence of the fact
that |El ∩Ai| ≲ 23i; breaking the sum into parts i ≤ i0 and i > i0 and estimating
separately gives

∑

i≤i0

2−i|El ∩Ai| ≲
∑

i≤i0

2−i23i ≲ 22i0 ,

∑

i>i0

2−i|El ∩Ai| ≤ 2−i0
∑

i∈Z

|El ∩Ai| ≤ 2−i0|El|.

Therefore,
( ∑

i∈Z

2−i|El ∩Ai|
)1/2

≲ (22i0 + 2−i0|El|)1/2.

Optimizing the choice of i0 gives (4.18). Consequently,

∫

‖tl‖2 ‖tr ‖2−(tl·tr )2≤α
χEl(t

l)χEr (t
r )dtl dtr ≤ Cα|El|1/3 |Er |1/3

and
|B(f , g)| ≲ ‖f‖qL ‖g‖qR

for (1/qL,1/qR) in the interior of the triangle with vertices (1,0), (0,1) and

( 8
13 ,

8
13). Using Hölder’s inequality as in previous cases to allow Ω := R8 ×

[−1,1]3, and then applying Marcinkiewicz interpolation gives the boundedness
of (1.3) as asserted by Theorem 1.1.

4.6. Uneven half-dimensional averages and generalizations. The final
calculations deal with the operator (1.4) and its geometric variants described by
Theorem 1.3. In the case of (1.4), the relevant bilinear functional is given by

B(f , g) :=
∫

Ω
f (x,y + tx)g(t,y)dx dt dy.
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Here, ℓ = dR and dL = 1. Using Theorem 1.4, we have that

ΦQ(t, x) :=
Vol

({
tei
}dL
i=1, {x}

)

(|x|2 + |t|2)1/2
≈

max{|t|dR , |x| |t|dR−1}

(|x|2 + |t|2)1/2
≈ |t|dR−1.

The corresponding sublevel set inequality we come to is simply that
∫

|t|dR−1≤α
χEl(t)χEr (x)dx dt ≲ α1/(dR−1)|Er |.

This estimate is trivial to obtain by integrating over t first. Since we also have
|B(f , g)| ≤ C‖f‖1 ‖g‖∞ and |B(f , g)| ≤ C‖f‖∞ ‖g‖1, it follows that

|B(f , g)| ≤ C‖f‖qL ‖g‖qR

provided that (1/qL,1/qR) belongs to the interior of the triangle with vertices
(1,0), (0,1), and ((dR + 1)/(dR + 2),2/(dR + 2)).

Regarding Theorem 1.3, the calculation proceeds in much the same fashion as
the proof of Theorem 1.2. In particular, we continue to use the coordinate system

p(mc , u, v) := (exp(u ·XL)mc ,mc, exp(v ·XR)mc).

In the definition (3.6) of K, either #SL = 0,#SR = dR or #SL = 1,#SR = dR − 1.
In the former case, using (4.14), we have

XL ∧XR ∧C
l
p(mc ,u,v)XR(4.19)

= udRXL ∧XR ∧ [XL, X
1
R]∧ · · · ∧ [XL, X

dR
R ]+O(|u|

dR+1),

and in the latter case we must have that

XL ∧XR ∧ C
l
p(mc ,u,v)X

{1,...,̂,...,dR}
R ∧ Crp(mc ,u,v)(XL)(4.20)

= −udR−1XL ∧XR ∧ [XL, X
1
R]∧

· · · ∧
̂
[XL, X

j
R]∧ · · · ∧ [XL, X

dR
R ]∧ [XL, v ·XR]

+ O(|u|dR )+O(|u|dR−1‖v‖)

= (−1)dR−j+1vju
dR−1XL ∧ XR ∧ [XL, X

1
R]∧ · · · ∧ [XL, X

dR
R ]

+ O(|u|dR )+O(|u|dR−1 ‖v‖).

Assuming the nondegeneracy condition

XL ∧XR ∧ [XL, X
1
R]∧ · · · ∧ [XL, X

dR
R ] ≠ 0,

when we sum the squares of (4.19) and (4.20) (in the latter case, when we sum
over j), we must have that Φ(p(mc , u, v)) ≥ C|u|dR−1 provided that |u| and
‖v‖ are sufficiently small. Thus, the sublevel set estimate follows exactly as in the
model case.
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APPENDIX A. REGULARITY OF FIBER MEASURES

In this section, we take up the last remaining technical issue, namely that the
measure µ0, defined by (3.7), on the nondegenerate part of the fibers of Π, satisfy
the regularity condition

(A.1) µ0(Br (x)) ≲ r
κ

for all r sufficiently small and all x in some compact subset of L×R. This is also
the only place in this paper where the real analyticity assumption becomes im-
portant; in particular, if one could establish (A.1) directly by other means (which
seems likely to be possible in the cases of Theorems 1.2 and 1.3), then real analyt-
icity would no longer be necessary.

The interesting feature of (A.1) is that, under the assumption of real analytic-
ity, the estimate is closer to a counting statement than it is to an integral estimate.
Thus, in switching from the Inverse Function Theorem to the Implicit Function
Theorem in the method of refinements, while Bézout’s theorem is no longer di-
rectly applicable, the results of this section which take its place are not so different
in spirit. The proof of (A.1) begins with a general lemma which highlights the
fundamentally discrete nature of integrals over fibers.

Lemma A.1. Let M, X, and Z be smooth manifolds of dimension n, k, n− k,
respectively. Suppose that Z is equipped with a measure of smooth density µZ. If
Π : M → X and ρ : M → Z are smooth maps, then for any x ∈ X and any Borel
measurable set E ⊂M such that dΠ is surjective at all points m ∈ E,

∫

Π−1(x)
χE ρ

∗(dµZ) =

∫

ρ(E)
NE(x, z)dµZ(z),

whereNE(x, z) is the number of solutionsm∈ E of the systemΠ(m) = x, ρ(m) = z
at which kerdΠ|m ∩ ker dρ|m is trivial.

Proof. Without loss of generality, we may assume that dΠ is surjective at every
point of M. The Implicit Function Theorem guarantees that Π−1(x) is a smooth
(n−k)-dimensional submanifold (when nonempty). Since E is Borel, the restric-
tion of E to Π−1(x) will also be Borel. The mapping ρ, when restricted to the
submanifold Π−1(x), will have surjective differential at exactly those points m at
which ker dΠ|m∩kerdρ|m is trivial. By Sard’s lemma, the integral over the image
under ρ of the complement of this set (namely, the set where the intersection of
kernels is nontrivial) will have µZ-measure zero, so we may assume without loss
of generality that E also does not contain any such points. When the differential
dρ is surjective, ρ is locally bijective and the Inverse Function Theorem may be
applied. In particular, for any point m ∈ E and any sufficiently small open set U
containing m, we must have that

∫

Π−1(x)
ϕUχE∩Uρ

∗(dµZ) =

∫

ρ(U)
ϕU(ρ

−1(z))χE∩U(ρ
−1(z))dµZ(z)
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for any smooth function ϕU supported on U . Taking ϕU to be elements of a
partition of unity on M subordinate to the neighborhoods U , and summing over
U , gives the conclusion of the lemma. ❐

In light of Lemma A.1, the usefulness of real analyticity comes in to sharp
focus: fundamental work of Gabrielov [13] establishes that, when the manifolds
M, Z, and X and mappings Π and ρ are all real analytic and E is contained
in a fixed compact set K, NE(x, z) is uniformly bounded by some constant N
independent of E, x and z. Thus, the integral of ρ∗(dµZ) over partial fibers
Π−1(x) ∩ E is controlled by a bounded constant times the µZ-measure of the
projection ρ(E).

To apply this insight to the case of µ0, let UL ⊂ L and UR ⊂ R be open sets,
and let ρL : UL → RnL and ρR : UR → RnR be coordinate charts satisfying

dist(xL, x′L) ≈ ‖ρL(xL)− ρL(x
′
L)‖

and

dist(xR, x′R) ≈ ‖ρR(xR)− ρR(x
′
R)‖

for some finite implicit constants and every xL, x
′
L ∈ UL and xR, x

′
R ∈ UR. For

convenience, let UM := π−1
L UL ∩π

−1
R ∩ UR. If we also define

ρ0(m) := (ρL ◦πL(m), ρR ◦πR(m)),

then µM being subordinate to the Riemannian measure on Mmeans in particular
that there is a uniform constant C such that

µM(V1, . . . , VnL+nR−ℓ)(A.2)

≤ C

[ ∑

#S=ℓ

∣∣det[eS1 , . . . , eSℓ ,dρ0(V1), . . . ,dρ0(VnL+nR−ℓ)]
∣∣2
]1/2

for any vectors V1, . . . , VnL+nR−ℓ at any point in UM, where S ranges over all
cardinality ℓ subsets of any orthonormal basis of RnL+nR .

Now, for any choice σ of a κ-dimensional subset of RnL+nR spanned by a
subset of the basis vectors ek, let ρσ : (M3 ∩U

3
M) → Rκ be defined by the map

ρσ (m
l,mc,mr ) := Pσρ0(π

c(ml,mc,mr )),

where Pσ is the projection onto the span of the unit vectors determined by σ . If
dZ is the Lebesgue measure on Rκ , we must have the following identity for the
pullback measure ρ∗σ (dZ) on the incidence manifold M3 ∩ U

3
M:

ρ∗σ (dZ)(V1, . . . , Vκ)(A.3)

=
∣∣det[ei1 . . . , einL+nR−κ ,dρ0dπ

c(V1), . . . ,dρ0dπ
c(Vκ)]

∣∣,
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where ei1 , . . . , einL+nR−κ are precisely those basis vectors not belonging to σ . In
comparing (A.3) to the righthand side of (A.2), note that ℓ ≤ nL + nR − κ, so
that there are more elements of the orthonormal basis appearing on the righthand
side of (A.3).

Recall the definition (3.7) of the density µ0. We may assume that the constant

CE is smooth and nonvanishing. Likewise, we may assume that ElpX
j
R, ErpX

i
L, and

Epv are all smooth and have bounded norms. At any particular point, we may
also assume that the span of these vectors is equal to the span of some collection of
orthonormal basis vectors of the same cardinality (since if this were not the case,
the density µ0 would trivially vanish). Therefore, we have the inequality

µ0(P) ≤ C
′
∑

σ

ρ∗σ (dZ)(P)

when P is any decomposable κ-multivector field generated by fibers of Π. In
particular, we must have the integral inequality

µ0(Br (xL, xR))

=

∫

Π−1(xL,xR)∩(UM)3
χ(dist(πcL (m),xL))

2+(dist(πcR(m),xR))
2≤r 2 dµ0(m)

≤ C

∑

σ

∫

Π−1(xL,xR)∩(UM)3
χdist(ρ∗σ (m),Pσ (xL,xR))≤r

ρ∗σ (dZ).

The righthand side can now be estimated by Lemma A.1. If we assume that the
number of nondegenerate solutions in M3 ∩U

3
M of the system

Π(m) = x, ρσ (m) = z

is bounded for all m, which by a result of Gabrielov [13] will be the case when
the closure of UM is compact and the manifolds and mappings are all real analytic,
then it must follow that

∫

Π−1(xL,xR)∩(UM)3
χ(dist(πcL(m),xL))

2+(dist(πcR(m),xR))
2≤r 2 dµ0(m) ≲ r

κ ,

since the projection of the set

(dist(πcL(m),xL))
2 + (dist(πcR(m),xR))

2 ≤ r 2

via ρσ is contained in a Euclidean ball of radius comparable to r .

Acknowledgement. This research has been partially supported by NSF Grant
DMS-1361697.



244 PHILIP T. GRESSMAN

REFERENCES

[1] J. G. BAK, An Lp-Lq estimate for Radon transforms associated to polynomials, Duke Math. J. 101

(2000), no. 2, 259–269.
http://dx.doi.org/10.1215/S0012-7094-00-10125-1 . MR1738178

[2] J. BENNETT and N. BEZ, Some nonlinear Brascamp-Lieb inequalities and applications to harmonic
analysis, J. Funct. Anal. 259 (2010), no. 10, 2520–2556.
http://dx.doi.org/10.1016/j.jfa.2010.07.015 . MR2679017
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