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Operators of Intermediate Dimension
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ABSTRACT. This paper establishes L”-improving estimates for
a variety of Radon-like transforms which integrate functions
over submanifolds of intermediate dimension. In each case, the
results rely on a unique notion of curvature which relates to, but
is distinct from, Phong-Stein rotational curvature. The results
obtained are sharp up to the loss of endpoints. The methods
used are a new adaprtation of the familiar method of inflation
developed by Christ and others. Unlike most previous instances
of this method, the present application does not require any par-
ticular linear algebraic relations to hold for the dimension and
codimension.
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1.1. Quadratic model cases The purpose of this paper is to develop broadly
appllcable methods to understand the L”-L? mapping properties of geometric
averaging operators which are truly intermediate dimensional, meaning that they
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are not well understood by existing arguments applicable to either curves or hy-
persurfaces. The methods are based on an L”-adapted version of the method of
TT*T, which is itself derived using ideas from Christ’s method of inflation, first
introduced in the study of the corkscrew curve [8]. The resulting arguments can
be successfully applied in a wide variety of settings, in contrast to most earlier
work in intermediate dimensions, which tends to be limited to analyses of isolated
special cases. Here, a wide variety of cases means, for example, that there are no
combinatorial constraints on the dimensions and codimensions of the manifolds
involved. More precisely, the methods developed here were specifically intended
to overcome the fairly common problem in inflation-type arguments in which
certain integer quantities related to dimension need to have some precise factor-
ization properties in order to proceed. Some important special cases whose analysis
is unified by this new common framework include the following operators:

o Convolution with the maximal quadratic surface in R>: here, for every
t:= (t;,t2) € R2, let yy(t) := (t1, ty, t2,2t1t,, t3) and define

(1.1) RFGO) = | focsyu(o)dt

for x € R and any sufficiently regular function f on R’. This operator
belongs to an explicit family studied by Ricci [33] using Fourier-analytic
methods, in contrast to the geometric-combinatorial methods used here.

o Convolution with the maximal quadratic surface in C>: here, for every
t:= (t1,ty) € C2, let yy (1) := (t1, b, t3, 2115, t3) and define

(1.2) Ref(x) = FOx+ yuo (D) 1dE A dE|

[ti|+]ta]<1

for x € C° and any sufficiently regular function f on C°.
o Convolution with the harmonic quadratic 3-surface in R3: for t € R, let
yu(t) := (t1,ta, t3, 7 — 13,83 — 13, 2t1ty, 2t t3, 2t £3). Define

(1.3) Sf(x):= J[ 1 1Pf(x + yu(t))dt

for x € R® and all sufficiently regular functions f on R8.
o Asymmetric averages over half-dimensional subspaces of R*": for any
fixed natural number n > 1, define

(1.4) Tf(y,t):= J[ 1]n’f(x,y +tx)dx

for y € R, t € R, and any sufficiently regular function f on R™ x R™.
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These four examples were explicitly chosen to demonstrate that, indeed, no spe-
cific affine linear relationship must hold among the dimensions of the input vari-
ables, output variables, and integration variables. In each case, the full range of
LP-L% estimates may be attained except for the extremal cases, as follows.

Theorem 1.1. Regarding the operators given by (1.1)—(1.4), the following hold:

o The operator (1.1) is bounded from L¥ (R5) into L1(R) provided that the

pair (1/p,1/q) is in the interior of the triangle with vertices (0,0), (1, 1),
5 3
ﬂnd (g, §)

o The operator (1.2) is bounded from LP(C>) into L9(C3) provided that the

pair (1/p,1/q) is in the interior of the triangle with vertices (0,0), (1, 1),
5 3
ﬂnd (g, §)

o The aperator (1.3) is bounded from LP (R®) into L1(R®) provided that the
pair (1/p,1/q) is in the interior of the triangle with vertices (0,0), (1,1),
and (Z,3).

o For any compact set QO C R", the operator (1.4) restricted to QO maps
LP(R2") into L1(Q) provided that the pair (1/p,1/q) is in the interior of
the triangle with vertices (0,0), (1,1), and (n+1)/(n +2),n/(n +2)).

In each case, if (1/p,1/q) lies outside the closure of the indicated triangle and q > p,
then no such inequality holds.

A consequence of Theorem 1.1 is that the submanifolds associated with (1.1)—
(1.3) are model surfaces in the sense of Ricci [33] and D. Oberlin [29].

1.2. Geometrically-formulated results Another important sense in which
the methods developed here apply broadly is that they do not rely heavily on rigid
algebraic properties of the family of submainfolds. All of the results above will be
formulated via the vector field geometry approach as employed by Christ, Nagel,
Stein, Wainger [9], and Tao and Wright [45], among others. Specifically, this
means that one uses duality to study the bilinear versions of the operators (1.1)—
(1.4) and then analyzes the geometry of the associated projections. In this general
setting, let £ and R be real-analytic Riemannian manifolds of dimension #; and
Ng, respectively, with corresponding Riemannian measures of smooth density du
and dpz. In the product space £ X R, suppose there is a real-analytic subman-
ifold M of dimension ny + ng — €, and let 1, : M — L and 1t : M — R be
the canonical projections onto the first and second factors of the product space
L x R, respectively. The differentials dmr; and dmg are assumed to be every-
where surjective on M and have kernels ker dmr; and ker dmrg whose intersection
at each point is trivial. It is also assumed that M has a measure of smooth density
dpm which is dominated by the Riemannian measure, meaning that the quantity
Um(Vi, ..., Vi, ing—e) at the point m € M for any (ng + ng —¥)-tuple of vectors
V; tangent to M is bounded by a uniform constant (independent of m) times the
volume of the parallelepiped generated by Vi,...,Vy, 1y, —¢ in the tangent space
of £ x R at m as measured by the Riemannian metric on £ X R.
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In this geometric setting, the object of study is the familiar bilinear form

(1.5) B(f,9) := Jm(f" 11)(g © 1) ditag,

which we initially define for all nonnegative Borel measurable functions f and g
on £ and R, respectively. The analysis of (1.5) focuses on vector fields X}, ... X
and X}, ..., X2% which form bases of the kernels of dr; and drrg, respectively. It
is known by results of Christ, Nagel, Stein, and Wainger [9] that the bilinear form
(1.5) can satisfy nontrivial estimates only when the algebra generated by the vector

fields X} and X3 and all their iterated Lie brackets spans the tangent space of M
at every point (this is the so-called Hérmander condition). However, for most
choices of a triple (1, ng,¥), it is not known exactly what refinement of this
spanning condition gives rise to the largest-possible set of LP-L4 estimates. In the
special case np = ng = n and € = 1, for example, the Phong-Stein rotational
curvature condition fills exactly this role. In particular, when ny = ng = n
and ¢ = 1, the bilinear form (1.5) will satisfy the full range of possible LP-L4
inequalities exactly when, for any nonzero v = (vy,...,Vn—1) € R""!, there is a
nonzero w € R™"! such that the set

(1.6) (XL XU X XL v - X, w - XR ]

spans the tangent space of M at every point, where, for example, we have that
v-X; := 3" v X} This is a substantially stronger criterion than the Hérmander
condition because it does not consider the role of higher commutators, and it
guarantees that there are, in fact, many different ways to find spanning sets.

In general, it is not at all obvious what the natural analogue is of the condition
(1.6) in higher codimensions. There are, however, two new cases, corresponding
to the geometric analogues of (1.1) and (1.4), which the present approach makes
it possible to identify as follows.

Theorem 1.2. Suppose that M, L, and R are as defined above, and that M is
seven dimensional and both L and R are five dimensional. Suppose that X| and X}
span ker A1ty and likewise for Xy and X} and ker dmtg. Then, suppose also that the
Jollowing curvature conditions hold:

o For any linearly independent v, v’ € R, there isa w € R? such that
(X[, X2, X, X, [X], v - X ), [XE, v - Xg] [w - X, v - Xg 13

spans the tangent space of ‘M at every point.
o For any linearly independent u,u' € R?, there isa w € R? such that

(X}, X3, Xh, X3, [u - Xp, Xp1, [u - X, X31, [w - X, w - Xgl}

spans the tangent space of ‘M at every point.
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(Note that these conditions are independent of the choice of bases.) Then, for any
compact Q C M, we have that

' j@f(m(m))g(nR(m))dum(m) < Ol w19z 0

Jor some C < o0 and all f € LI and g € LI provided that (1/qr,1/qr) belongs
to the interior of the triangle with vertices (1,0), (0, 1), and (%, %). Furthermore, no
such estimate can hold when (1/qr, 1/qR) lies outside the closure of this triangle when
l/qL + l/qR > 1.

Theorem 1.3. Let M, L, and R as identified at the beginning of this section
have the properties that M is (2dg + 1)-dimensional and that L and R are 2dg-
dimensional and (dg + 1)-dimensional, respectively. Let X1 be a nonvanishing vector

freld in the kernel of d1ty, and let X, ... ,XgR be vector fields spanning ker drtg.
Suppose that

(X0, Xhy oo, XAR X0, XR ], o, (XL, XERT

spans the tangent space at every point of M. (Note once again that the condition is
independent of the choice of basis.) Then, for any compact Q C M,

' sz("TL(m))g(TrR(m))dHWl(m) < Cllfllzac oy gl Lar (»)

Jor some C' < o and all f € L and g € LI provided thar (1/qr,1/ar) is in the
interior of the triangle with vertices (1,0), (0,1), ((dgr +1)/(dr +2),2/(dr +2)).
When 1/qr + 1/ar = 1, no such estimates can hold outside the closure of the triangle.

1.3. Background. Interest in LP-L9 mapping properties of geometric av-
eraging operators can be found in the literature as early as the 1970s in work of
Strichartz [43] and Littman [23] on the wave equation. As work progressed on a
number of different problems, the first major unification of the field came through
techniques of Phong and Stein [30-32], who identified the so-called Phong-Stein
rotational curvature condition. Rotational curvature is nonvanishing, for example,
when averaging over a translation-invariant family of hypersurfaces with nonvan-
ishing Gaussian curvature. At the time, Phong and Stein were interested in geo-
metric generalizations of the classical Calder6n-Zygmund singular integral theory.
This work progressed through the efforts of various authors to reach significant
milestones in the work of Christ, Nagel, Stein, and Wainger [9] and the more
recent advances of Street and Stein [36—38] and Street [42]. In the breakthrough
paper [9], the authors developed a sharp qualitative geometric nondegeneracy con-
dition which sufficed for the study of singular integrals, but in that area of the lit-
erature, the quantitative relationship between more refined nondegeneracy criteria
and quantitative mapping properties of nonsingular operators is not a primary
concern.
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Outside the context of singular integral theory, on the other hand, there is
strong and sustained interest in understanding sharp mapping properties of non-
singular geometric averaging operators. The literature in this direction is truly
vast. Most of this work focuses on questions relating to averages over curves or
hypersurfaces; of the many truly significant contributions in this area, some of
the most interesting and noteworthy advances include the work of D. Oberlin
[24-28], losevich and Sawyer [21], Seeger [35], Choi [6,7], Christ [8], Greenleaf,
Seeger, and Wainger [15], Secco [34], Bak [1], Tao and Wright [45], Lee [22],
Dendrinos, Laghi, and Wright [10], Erdogan and R. Oberlin [12], and Stovall
[39,41]. (See also [16,17,19] for related work on curves and hypersurfaces.)

Of the important results briefly noted above, the work upon which the present
analysis is most directly built is that of Christ [8]. Christ’s paper studies L?-L4
averages for the convolution operator on R given by

1
Tf(x):= JO fx+ (t,t%,...,t%) dt.

Christ establishes sharp boundedness (up to for endpoints) via a method he devel-
oped which is sometimes referred to as the method of inflation or the method of
refinements. A particularly useful feature of this method is that it is very concrete
and combinatorial in nature (in contrast to many earlier works which study these
operators indirectly via oscillatory integrals or analytic interpolation theorems).
Roughly speaking, the idea is to study the d-fold alternating composition of T
and T*. The map

d d
(1.7) D(ty,...,tq) = (Z(—l)iti,...,Z(—l)it?>
i=1

i=1

which appears in the d-fold composition is regarded as a singular change of vari-
ables, and the goal of the analysis is, roughly, to bound for any Borel sets E and
F in R4 the size of the set in which x € F, x + ®(t) € E, and t is near the
set where the Jacobian determinant of ® vanishes. In Christ’s original paper, it
proved useful to over-iterate T and T* in higher dimensions. This was not due to
a failure of the heuristic, but rather made it possible find more accommodating d-
tuples (ti,,...,ti,) to work with in certain degenerate situations. Tao and Wright
[45] ultimately merged Christ’s approach with the geometric vector field formula-
tion used by Christ, Nagel, Stein, and Wainger [9] and others. In so doing, they
eliminated the necessity of over-iterating the maps, and were able to provide a
remarkable and essentially complete calculus for determining LP-L4 boundedness
of averages over curves.

It should also be noted that, aside from averages over curves and hypersurfaces,
interest in the Kakeya problem contributed to the development of the multilinear
theory of singular geometric averages relating to (1.5). Here, the goal is to develop
nonlinear generalizations of a series of inequalities found in the literature typically
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bearing some subset of the names Holder, Brascamp, Lieb, Luttinger, Loomis, and
Whitney. Some recent work in the harmonic analysis community in this direction
includes Bennett, Carbery, and Wright [5]; Bennett, Carbery, Christ, and Tao [4];
Bennett and Bez [2]; and Bennett, Bez, and Gutiérrez, [3]. Geometrically, most of
this work is characterized by a transversality condition playing the central role that
is occupied by rotational curvature in the earlier work on non-multilinear aver-
ages (although Tao, Vargas, and Vega [44], Stovall [40], and Grafakos, Greenleaf,
Tosevich, and Palsson [14] stand as some of the most notable examples of multilin-
ear geometric averages in which both curvature and transversality play important
roles).

In contrast to the cases above, very little work has been done to understand
linear geometric averaging operators in the case of submanifolds which are neither
curves nor hypersurfaces. Various examples of such objects have been identified
by Ricci [33] and D. Oberlin [29], and somewhat broader classes were considered
by Drury and Guo [11] and Gressman [20] when the averages were taken over
submanifolds of half the ambient dimension, but until now there does not appear
to have been any results of a broadly applicable nature analogous to Phong-Stein
rotational curvature results or the Tao-Wright result.

1.4. Approach and organization. Inflation arguments typically involve the
construction of some geometrically-inspired mapping analogous to (1.7) which
can be regarded as a singular coordinate system on one of the spaces involved
(which can happen only when the number of variables involved satisfy some co-
incidental factorization constraints). In the case of the arguments that follow,
the relevant geometric mappings are typically overdetermined, meaning that the
number of parameters exceeds the dimension of the space on which the mapping
is built. The sort of over-iteration encountered here is of a fundamentally different
nature than the kind encountered, for example, in Christ’s work on the corkscrew
curve, and the difference leads to a number of new challenges. Chief among them
is that the solution-counting problems that one typically encounters before ap-
plying the generalized change-of-variables formula are replaced with a much more
subtle problem of bounding integrals over very poorly-understood and potentially
singular submanifolds which solve some complicated system of equations. For ex-
ample, an important technical issue is to show that, when ® is a sufficiently regular
map from some bounded open set in R™ into Rk for any Euclidean ball B, (x)
of radius 7, the k-dimensional Hausdorff measure of the set

{y €By(x) | ®(y) =c}

is (generically in ¢) bounded by some fixed constant times 7. In the particular
context in which we would like to apply this result, it is not possible to assume that
the Jacobian of ® is nonsingular. Consequently, it is necessary to assume additional
regularity beyond C'®. Real analyticity is sufficient (but note that other, larger
function spaces would also suffice thanks to the theory of 0-minimal structures),
and in Appendix A we prove the necessary regularity results. This can be regarded
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as a replacement tool for Bézout’s theorem as it is typically applied in inflation
arguments, and is a largely stand-alone result.

Technical issues aside, the proof of each part of Theorems 1.1-1.3 proceeds by
reducing the problem to the study of a geometrically-defined sublevel set operator.
The path from Radon-like transform to the corresponding sublevel set operator is
somewhat lengthy, but for the model case of bilinear-type Radon-like transforms,
the result of this calculation may be succinctly stated as follows.

Theorem 1.4. Let Q : R4 x Rk — RY pe any bilinear map with di +dg = 4.
For any compact set Q C R x R4& x RY, Jer

Bo(f,9) = JQf(y,z +Q(x,¥))g(x,z)dx dydz.

Let Vol (x, ) equal the largest possible volume of a parallelepiped in RY generated
by vectors in the collection {Q(ei,y)}fli1 U {Q(X,ej)}?il (where ei’s and ej’s are
standard basis vectors), and consider the function

Vol(x, y)
(Ix]2 + |y|?)@dr+dr—£)/2

¢ (x,y) :=
together with the associated sublevel set operator

Wo,a(g, f) = L) gx)f(y)dxdy.

o (x,y)<«

If there exists s > 0 and py, pr € [1, ] such that
(1.8) Wo,a (Xgt, Xpr) S o [EL| P |ET | VP

for all measurable sets E! ¢ R and E" C R and all o« > 0 (where the notation
< used here and throughout means that the inequality holds up to an implied constant
factor which is independent of all varying quantities like & and the sets E' and E),
then Bo(f,g) S | fllta l1gllLar for all measurable functions f and g whenever
(a;',agh) belongs to the interior of the triangle with vertices (1,0), (0,1), and

2+ (spp~! 2+ (spy)!
3+ (Gsp)t+(spr) V' 3+ (sp) M+ (spr)7 )T

If (1.8) holds only for sets E* and E” belonging to fixed neighborhoods of the origins
in R and RAR, then the conclusion remains true provided that the diameter of Q) is
sufficiently small.

Establishing boundedness of the sublevel set operator (1.8) is not always a
simple matter, but its geometric nature makes it amenable to methods not unlike
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those employed in [18] to establish boundedness of multilinear determinant-type
sublevel set functionals. In Section 4.1 we prove a useful lemma for establishing
such geometric sublevel set functional inequalities which effectively reduces the
problem to the estimation of scalar sublevel sets (i.e., not involving integration
against any L? functions).

The general organization of the rest of this paper is as follows. Section 1.5
establishes a self-contained version of the method of TT*T which implies L7 -L4
estimates even when p, g # 2. The proof relies on a trivial application of Christ’s
method of refinements (interestingly, no further applications of the method are
necessary aside from the use of the generalized TT*T inequality established by
Lemma 1.5). The introduction ends with Section 1.6, which gives the Knapp
examples establishing sharpness of Theorems 1.1-1.3. Section 2 contains defini-
tions and basic calculations which connect the vector field geometry formulation
to TT*T. In particular, this section identifies the geometry of the incidence man-
ifold M3 which captures the geometry of TT*T. Section 3 uses the geometric
calculations of the previous section to reduce the estimation of TT*T to the prob-
lem of bounding the associated geometric sublevel set operator (3.14). All the
calculations in Sections 2 and 3 apply in a general way without any nondegen-
eracy assumptions. Section 4 establishes a general principle for proving bounds
for sublevel set operators, and then breaks into subsections to analyze the partic-
ular details of the cases put forward in Theorems 1.1-1.4. Finally, Appendix A
establishes the necessary regularity of measures used in Section 3.

1.5. Generalized TT*T. Suppose T is any positive operator for which one
wishes to establish the restricted weak-type inequality of the form

[ TXF < C|F|1/61L |G|1/61R
G

for all measurable sets F and G. If we define T¢r to be the operator
Terf (x) := X ()T (fXp) (x),

then it would suffice, for example, to show that Tr¢ maps L? to L? with an oper-
ator norm bounded above by C|F|[1/4.=1/2|G|1/ar=1/2 for all such sets F and G,
since

jG Txp = jG Torxp < I Terllaez [F1M2 G112,

A major advantage of shifting focus to L? is that the L? — L? norm of T¢F can
be studied via the L? — L? norm of TgrTirTer (or any number of other iter-
ated, alternating compositions of Tgr and T¢p). This is the essence of the main
argument in this paper. Unfortunately, there are circumstances in which Tgr does
not behave as well on L? as one would like: namely, if one of g1 or gr exceeds 2,
then for trivial reasons the estimate || Tgrll2—2 < C|F|Y/a.=12|G|Y4ar=1/2Z cannot
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hold. This, however, turns out to be only a minor inconvenience. In the gen-
eral case, one can use the method of refinements as a substitute for the inequality
||TGF||§ﬁ2 < ITerTE:Ter|l2—2 to obtain a sufficiently useful replacement for a
norm estimate of || Tgrll2—3.

Lemma 1.5 (Generalized TT*T). Suppose T is a positive linear operator which
maps L*(L) to L>(R). For any measurable sets F and G in L and R with finite,
nonzero measure, let

’ * .[G TXF
(1.9) Fi=1x €F [T x;(x) = 31F]
and

J e
(1.10) G =1y eGCG|Txp(y) = 31C]
Then,
1 3 .

(1.11) (3], 7x) < 1FUIGH| TerTer Torxs.

Proof. The proof is a small variation on a familiar argument in the method of
refinements. For convenience, define

1 1
O = 3 o Txr and dei= e | T
It follows that

JG TGFT&k'F/TGFXF = L:,(T*Xg)(Ték'p TGFXF) > OF JF,(Ték'F/TGFXF)

= 0F JG,(TG’F’XF')(TXF) > 6rd¢ JG’ Txp

and
S P A
G’ Xr G XF G\G' Xr F\F’' X¢
1
> | Txy—96¢glG| — OfF|F z—J TX:,
JG XF GlG| FIF] 3] XF
which together establish (1.11). O

By (1.11), one can deduce a restricted weak-type inequality for T if a similar
such inequality can be proved for Tgr T Ter uniformly in G and F. Note that
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the appearance of G’ and F”’ on the righthand side of (1.11) represents a very slight
gain over the inequality which would be obtained by a simple TT*T argument.
Technically the factor of % on the left-hand side of (1.11) is a loss over a direct
TT*T argument, but it is only reasonable to classify this loss as insignificant for
the present purposes. The advantage of (1.11), of course, is that it makes no
reference to, and hence no assumptions about, the exponents qr and gg.

In the context of the averaging operators studied in this paper, the main ap-
plication of (1.11) involves an argument similar to “Bourgain’s trick,” in which it
will be shown that

(1.12) L TerTg p TorXp
1
< c[&(m GD' + o j |T*xcl“‘”T&“rpITxpl””f]

for some fixed constant C and all positive . The two terms on the righthand
side of (1.12) follow from estimates of an integral where a certain Jacobian-like
quantity is large and small, respectively. In the former case, a generalization of the
coarea formula applies, and in the latter case the estimate is reduced to a sublevel
set operator estimate. The transition from (1.12) to an estimate for Tgr T TGF,
and consequently for T itself, is also fairly immediate.

Lemma 1.6. Suppose that T is a positive operator which is known to be bounded
from L*(L) to L*>(R). Suppose also there exist exponents pi, py € [1, ], real pa-
rameters € € [0,1] and s > 0, and a finite constant C such that for any measurable
sets F and G in L and R, respectively, and any o« > 0, the inequality (1.12) holds,
where F' and G' are the sets defined by (1.9) and (1.10). Then, for some constant C’
depending only on C and. s,

(1.13) J Txp < C'|F|Var |G| Var
G

where the exponents qr, and qr are given by
1 2—¢e+ (spp!

a3+ (sp) 1+ (spy)!

Proof- By virtue of (1.9) and (1.10),

2—¢e+ (spy)!

and T3y (sp)T+ (spr)1

-1/ ’
[ 1T xgl oz p e < 5[0 T T
-1/ ’
<51 J(TG’F’T*X5)|TXF|1/W
-1/p; «—1/p}
<5\ PSP J(TG'FrT*x(;)(TxF)

-1/p; <—1/p;
= 6786 | (Tar T Tarxe).
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Consequently,

JG TorTE p TerXF
1
sc[&(m|G|>1—f+afj|T*xG|”mrgﬁp|TxF|”m]
1 TPV
< c[&(m G + a8y Mg P JG TGFTg,F,TGFxF].

To establish (1.13), we may assume that the measures of F and G are both finite,
and since T maps L? to L? and is positive, we also have that

| Terter Torxy < .

: 1/(sp; ; :
Choosing « := 2C) 155/ PV 5P and using that J TerTg p TorXp must
G

be finite, it follows that
JG Tor T p Torxy < (20)S+D/s§ P s VSPD (1B G pyi-e

so by (1.11), it follows that

3+1/(sp)+1/(spy) , /
(JG TXp) < 27(20)(3+1)/s |F|2—s+1/(spl) |G|2—s+1/(spr)’

which gives exactly (1.13). O

1.6. Sharpness calculation. We conclude the introduction with a review
of the Knapp examples for (1.5). Fix any point m € M, and let F; be the ball
of radius ¢ centered at 7. (m) in L. For sufficiently small &, it must be the case
that pr(Fe) = €™. Next, let M¢ equal the set Tr[l(Fg) restricted to some open
set U € M with compact closure. Because drry, is surjective, it is possible by the
Implicit Function Theorem to find a coordinate system on a neighborhood of m
such that, in these coordinates, 11; ' (F¢) contains the box [—&, £]™ x [—1, 1]"* —t
for all € sufficiently small and is contained in a box of comparable side lengths
as well. In particular, then, we must have that pw (Mg) ~ €"t. Lastly, since the
kernels of d7r; and d7rg are transverse, 117 !71 (1) projects via TTg to an immersed
submanifold of dimension ng — € in R (which is the same dimension as the em-
bedded submanifold 7r; !7r; () in M). Since all points in M are distance at most
£ to Tr[lﬂL(m), we must have by smoothness of 11z that all points of g (M)
are within distance comparable to ¢ of the immersed submanifold g7 Lt (m).
Consequently, if the neighborhood U is reduced to a sufficiently small size, it will

be the case that G¢ := 1Tr(M;) has pr-measure bounded by a factor times el



Generalized Curvature for Certain Radon-like Operators 213

Consequently, if (1.5) is bounded for all f € L9 (L) and g € L% (R), we must
have for all € sufficiently small that

€ S IMel = | (o ) (X, o ) b

S (Up(F)V (g (Ge))Var < gni/auttiar,
This can only hold when

(1.14) 1, e1
qr.  Npqr

By symmetry, we must also have that

(1.15) iiJrisl.
Nrdqdr qr

For the constraint (1.14), equality occurs when (1/qr,1/qr) lies on the line
through the points (1,0) and

(1.16) (nR(nL—ﬁ) ni(ng —3))

NiNg — £2° NiNg — 2

and equality occurs in (1.15) when (1/4r, 1/qr) lies on the line through the point
(0,1) and the point given by (1.16). Quick calculations give that (1.16) equals
(%,%) when ny =ng =5and € =3 orn; =ng = 10and £ = 6, (1—83,%) when
ng = Ng = 8and ¥ = 5, and ((dR + 1)/(dR + 2),2/(dR +2)) when ng = 2dR,
ng = dr+1,and € = dg. This implies sharpness of Theorems 1.1-1.3 up to cases
on the boundary of the respective triangles. Also note for the sake of completeness
that Theorem 1.4 will yield sharp estimates for Bg when s, pi, and p; satisfy

1 4 1 4

1+ = 1+ = .
sp; np—+4 and spr ng-+¥

An interesting feature of this criterion is that any estimate for (1.8) which satisfies
this constraint will continue to do so when it is interpolated with the trivial L! X L!
estimate. Thus, there is always a range of possible estimates for (1.8) which would
prove best-possible results for Theorem 1.4.

2. GENERAL GEOMETRIC FRAMEWORK

2.1. Geometry of one projection. A k-multivector field on an n-dimensional
manifold M is any smooth section of the k-th exterior power of tangent bundle of
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M. These objects are naturally identifiable as dual to k-forms (which are instead
built on the cotangent bundle) by extending the definition

0 0
(dxi, /\---/\dxlk)(ﬁ/\---/\ ayjk>

d d
dxi, [— 1 ... dxi, [—
; (53’jl> ; <5yjk)
d d
i (5yj ) o <5yj )
1 k

by linearity and verifying that the definition is independent of the choice of bases
dxi,...,dxy of cotangent vectors and 0/0y1,...,0/0yy of tangent vectors. In
particular, if M is n-dimensional and possesses a nonvanishing n-form p, then
there is a unique nonvanishing n-multivector field Ea such that pa(Ea) = 1
everywhere (where uniqueness follows from the fact that both n-forms and n-
multivectors form one-dimensional vector spaces at every point).

Now suppose that the n-dimensional M is equipped with a nonvanishing n-
form pay and as well as a smooth map 7™ : M — X into some k-dimensional
manifold X which is itself equipped with a nonvanishing k-form px. If the differ-
ential A7t is everywhere surjective, then the Implicit Function Theorem guarantees
that the fibers of the map 1T are embedded (n — k)-dimensional submanifolds of
M. It is possible, by the following construction, to identify a unique (1 — k)-
multivector field on M which encodes the kernel of d1r at every point. To begin,
fix any point m € M, and let V1, ..., Vy_i be any linearly-independent vectors
in the kernel of dmr at m. For any additional tangent vectors Xi,..., Xk at m,
consider the quantities

UMXT A AXk AVIA---AVux) and pxdmm(Xy) A - - AdTT(Xk)).

Both quantities are unchanged if any vector X; is replaced by X; + Z?;{{ ciVi,
and consequently both expressions extend to alternating k-linear forms on the
vector space Ty (M) / ker drr, which is k-dimensional. Therefore, uniqueness of
the determinant implies that they differ by a constant independent of the choice
of Xi,..., Xx. Since u is assumed nonvanishing, we may always choose Vi, ...,
Vu-k € kerdrr so that

2.1) pumMXi A Xk AVEA - AV k) = uxdTt(X7) A - - AdTT(XR))
Y X1,..., Xk € Tyn(M).

Notice that d1T(X71) A - - - A dTT(Xk) depends only on X; A - - - A Xi, and so will
be abbreviated d7r (X; A - - - A Xi) for convenience. Because the space of (1 —k)-
multivectors generated by ker d7t is one dimensional, the value of Vi A - - - AV
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is constant for any V1, ..., V4 satisfying (2.1). Thus, the multivector
Vi=ViA-- AV

depends only on pa, px, and the map 7.

Since V is nonvanishing, when it is restricted to the fibers of 77, it is dual to
a unique nonvanishing (n — k)-form on those fibers, which we will call ™ (note
that uniqueness here only holds on the fibers; any extension of 4™ to all of M will
not be unique). Therefore, if V1,..., Vy_k are any vectors in ker d1r at the point
m (not necessarily normalized as in (2.1)), it must be the case that

UMXi A - AXgk AVIA--- AVy_k)
=puxdm(Xy A - AXIDUT(VEA - AV k)

forall Xi,..., Xk € Tiu(M) and all V1, ..., Vi_i € kerdrrls,. This equality leads
to a geometric Fubini/coarea formula for the integration of functions f against
the density |ua |—we may factor integrals over M into an integral over the fibers
of 1t followed by an integral over X:

(22) [, P = [ ] Fatum|alixll.

One small but important note is that this construction works equally well if M
and X are only equipped with smooth nonvanishing densities [uam| and [px|.
The only problem introduced by this change is an ambiguity in the sign of V.
This does not affect the integration formula (2.2), and uniqueness can be restored
by working with what will be called unsigned multivectors, which are simply mul-
tivectors modulo scalar multiplication by +1. We also note that a k-multivector
(signed or unsigned) will be called decomposable when it may be written as a wedge
product of k vectors in Ty, (M).

2.2. Geometry of two projections and TT*T. The intrinsic geometry of
(1.5) is governed by the structure of the two projections 117 and g. For any
measurable sets F and G in £ and R, we will be interested in the restriction of
(1.5) to F X G defined by

(2.3) Ber(frg) i= Jm((fo) o 1) ((gXg) © TTr) ditng.

By (2.2), there are measures of smooth density du™ and du™ on the fibers of 111
and TR, respectively, such that

(2.4) Lw(f o TML) (g © TR) dum = Lﬂx)Hn 1

T (x

)g ° TTRdH"L] dpr(x)

2.5) = Jowal | Foman™ |aun o
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for any measurable functions f on £ and g on R. In particular, replacing f and
g by fxg and gx shows that the operators

(2.6) Terf (xr) := X;(XR) J‘n"(x )(fxp) o1 du™®,

2.7) TErg(xr) := Xp(x1) J L (gXg) o TtRAM™,
o (xL)

satisfy
Ber(f,9) = JR(TGFf)gdUR = J£f(TékFg)le£-

Note that by (2.4) and (2.5), if Q is a compact subset of M, it must be that

< Cmin{ll fllpro) 1gll=®), I f =) l1gllL (r) }

| [, (Femigom

for all f and g because the integrals

J du™ and du™r
o (x)NQ R (xr)NQ

will be finite and uniformly bounded as a function of x € 1.(Q) and TR(Q),
respectively (and both are compact as well). Boundedness of Tgr from L? to L?
(the main technical hypothesis of Lemma 1.6) when restricted to integration over
Q must follow by the Schur test.

Returning to (2.6) and (2.7), these operators will be analyzed via the general-
ized TT*T inequality (1.11), which requires study of the more elaborate object

[R(TGFT&, Torf)g dun = L(Tg;p Torf) (Térg) duz
= Ber (TEeg, Terf).-

In terms of integration, this last object may be expressed in terms of an integral
with respect to some measure du of smooth, nonvanishing density on the space
M; = {(m!,me,m") € Mx Mx M|
1 (m!) = m.(mC) and TR (M) = 11p(mM) .
For any p := (m!,m¢,m") € Ms, let w/(p) := m/ for any superscript j =

I,c,r. Likewise, define TT} (= T o mtl forany j = L,R and any i = L,¢,7. One
may expand Bg'r (T¢pg, Ter.f) by using (2.3) to write Bgpr as an integral over
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M, and then write Trg and Tgrf in terms of (2.7) and (2.6), respectively, to
conclude that B¢ (T g, Te rr f) equals

(2.8) B (g,f)

= Jm ((gXg) ° T"]lz)(XF’ o1t ) (X © TR) ((fXp) o 1) dpt

when dp is simply taken to be the measure generated by the integrals over M and
the fibers of 117 and 1tR.

2.3. Construction of vectors tangent to the incidence manifold Ms. Any
tangent vector Z € Ty, (M3) is uniquely determined by the triple

(drrh(Z),dm(2),dn" (2)) |, € Ty (p) (M) X Trre () (M) X Tyer () (M),

and any such triple identifies a tangent vector exactly when it satisfies the compat-
ibility conditions dTrf(Z) = dmf (Z) and dmg(Z) = dmg(Z) (here and through-
out the rest of the paper, angle brackets will be used to represent elements of a
Cartesian product of vector spaces). In other words, if one wishes to find U, V,
and W so that

(u,v,wj |p € Tri(p) (M) X Tre(p) (M) X Trr (p) (M)
is tangent to M3, one only needs to verify that
(2.9) d‘ITL(U) = d‘ITL(V) and dTl'R(V) = d‘ITR(W).

Since both drr; and drrg are everywhere surjective, given any one of U, V or W,
it is always possible to solve (2.9) for the other two, but the solution is never
unique. Note, for example, that when h(p) = m¢(p), U =V is always possible;
likewise, when " (p) = ¢ (p), V = W is always possible. To consistently choose
solutions, let us first fix at each point p € M3 a map

Ep : Trep) (M) [ (ker drrp + kerdmg) — T (M3)
such that, for every v € Tre(p) (M) / (ker d1ry + ker d1rr), we have

(2.10) v =dm®(E,v) modulo (kerdm + kerdrrg) |-’Tc(p).
Such a map E,, can easily be constructed (for example) by choosing any maximal
set of tangent vectors {Z;} of M3 at p whose “center parts” d1¢(Z;) are linearly
independent modulo ker d7r; +ker d1rg and defining ) to send d7r¢(Z;) (modulo
the sum of kernels) to Z; for each i. To see how E, can be used to consistently
construct tangent vectors, let us show that for any U € T,y (M) there must
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exist unique choices of V € Tye(p) (M) [/ (ker drrp + kerdmg) and Vi € kerdmg so
that

(2.11) ELU |, := (U, dm Epv + Vg, dt" Epv)

is tangent to M3 at p. Because dTTRE, = Az Ep, and dmg(Vg) = 0, it suffices
to show that dm (U) = dmp(dmE,v + Vg). After counting dimensions, we
need only show that drmr; (dm¢E,v + Vi) = 0 implies v = 0 and Vg = 0. But
dmp (dmEpv + V) = 0 implies dT¢E,v € kerdmy, + ker dmg, which by (2.10)
implies that v = 0. Then, v = 0 forces Vg = 0 as well because ker drr; N ker d1rg
is trivial. By similar reasoning, for any W &€ Trr(p) (M), there must exist unique
U € Trep) (M) /(kerdrry + kerdmrg) and Vi, € kerdmy, so that

(2.12) EpW |, = (AT Epv, AT Epv + VL, W) € Ty (M).

Two important special cases of these constructions include the vectors

(2.13) EhXL|, = (X1,0,0)|, and ZE,Xg|,:=(0,0,Xg)|,,

when X; belongs to ker drry at wl(p) and when Xg belongs to ker drrg at " (p).

Another very important set of linear maps to consider in this direction has the
forms

(2.14) CL: Tri(py (M) — Tre(p) (M) ] (ker drrp + ker drrg),
(215) C; : T-n-r(p) (M) — T-,-,-C(p) (.’M)/(ker dmp + kCI‘d7TR),

and is defined so that CLU is the equivalence class of dm¢ELU and CLW is the
equivalence class of dTE, W (modulo kerdmr; + kerdmg). It so happens that
these maps Cl, and C}, are independent of the choice of Z,, since, for example,

(U,dmEpv + Vg, dt"Epv) — (U, dtE, v’ + Vi, dt"E,v")
is tangent to M3, so by (2.9) it must be the case that

0 = dm ((dmEpv — dncf,:,v') + Vg = Vi),
which is to say that dTE,v — dm¢E, v’ vanishes modulo ker dmr; + kerdrmg. A
satisfying consequence of this observation is that in formulas (2.11) and (2.12), we
have v = C%,U and v = cLw, respectively, since, in the case of Cé, U, dm E,v is
equivalent to v modulo kerdrr; + ker drg by definition of E,, and, also modulo
the sum of kernels, is equal to C,f, U by definition.

This section concludes with a calculation demonstrating how the maps Cl,
and Cy encode the Lie algebra generated by the vector fields X; and Xg. This will
be an important piece of the variable coefficient Theorems 1.2 and 1.3.
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Lemma2.1. Let C é, and C}, be the maps (2.14) and (2.15) which map vectors at
wh(p) and " (p), respectively, to vectors ar Tt° (p) modulo the kernels ATty and drtg.
IfV is any smooth vector field on M, then CLV is a smooth function on the manifold
which is vector valued in a vector space depending on Tt°(p). Consequently, along the
submanifold where T (p) is constant, Cé,V can be intrinsically differentiated (i.e.,
independently of any choice of basis or coordinates). Likewise, C,)V can be intrinsically
differentiated along the submanifold where Tt°(p) is constant. In particular, if X; and
XRr are any vectors in the kernel of ATty and ATtR, respectively, it must be the case that

(2.16) XL | () CHV = CLIX1, V],
(2.17) XR | qor ( CpV = CplXg, V1.

Proof: We will give the calculation for Cé, only, as the calculation for Cp is

completely symmetric. Furthermore, since ¢ (p) is constant as 1l (p) varies in
the direction X7, any vector-valued function with values in ker dmry +ker dmtg [ 7r¢ ()
will have derivatives of all orders belonging to that same vector subspace. There-
fore, it suffices to show that

Q18) X |y (WTOELY) [ ) = @REELLXL, VD) e + XE' + X

where X" € kerdmg at m¢ and X; € kerdmy at m°©.

Given a smooth vector field V, the formula (2.11) together with the con-
straints (2.9) implies the existence of a smooth vector function Xy with values in
kerdrrg at 7T¢(p) such that

A (V| i (p)) = dmp (A ELV + Xp).

Let us denote the point wh(p) by m! and regard 1€ (p) and " (p) as constants.
Then, for any smooth function f on £,

Xt (Vg f o T ) = (X, V| f o T |

since X, belongs to the kernel of drr;. However,

Vi o T |t = @10V | gy f Ly omy
= AT (AT ELV + Xp) Ly (i S ey o)
= dr (AT ELV + Xp) |y mer S |y ome)
= (AT ELV + X) [ye f © L | e

so it must be the case that

XL |t (ATELV + XR) [ e f 0 T [ pe) = (XL, V] i f © L] -
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Now, the only dependence of the function (dTrCféV + Xg) lme f o T lme on m!
is through the vector-valued function (dTrcf,f,V + Xg)|me itself. Therefore, we
must have that

(XL ] ((ATTELV + X2) [pe) 1 © T | e = [X0, V] i f © L |t
which is to say that

dTl'L[XL |m1((dTrCf§,V + XI,Q) |m¢)]
=dm [ X, V] |ml = dTTL(dTTCf;,[XL,V] |mC + X}/{ |mc)

for some smooth vector-valued function Xy with values in ker drtg. Thus,
XL |t (@TOELY + XR) | o) = ATELIXL, V] + X2 | e + X[ | e

for some X; with values in kerdm;, which then implies (2.18) when we set
XR' = Xg — Xl Xy, since the derivative of a function with values in ker d7rg is
also in ker drrg. |

3. REDUCTION OF GEOMETRIC AVERAGES TO
SUBLEVEL SET ESTIMATES

Recall that the main goal is to prove the inequality (1.12), where the lefthand
side is now given by the bilinear form (2.8) acting on the characteristic functions
X and Xp. The first term on the righthand side comes from an application of
a coarea-type formula, which is essentially the only formula one can appeal to
when trying to prove some approximate boundedness of (2.8) on L' (£) x L'(R).
Unfortunately, such boundedness does not actually hold. However, we may regard
the upcoming quantity X identified in (3.6) as a Jacobian which governs finiteness
of the functional. We will use K to break the functional (2.8) into two pieces. On
the first piece, we will be able to regard K as essentially large (although we will
not decompose directly in terms of the value of K, but rather a slightly more
elaborate function depending on it). The second piece will reduce to a sublevel
set functional which, if bounded, gives the second term on the righthand side of
(1.12).

3.1. Projection and a coarea-type formula for TT*T. In this subsection
we consider the effect in the bilinear functional (2.8) for TT*T of placing both g
and f in L'. Unfortunately, the result is not always finite, but we will calculate
the Jacobian-type which governs finiteness. The key is to understand and quantify
the degeneracy of the map IT: M3 — £ X R given by

3.1) (p) := (1] (p), Tk (P)).
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For convenience, let d; and dr be the dimensions of the kernels of d7r; and
dmg, that is, di := ng — € and dg := ny — ¢. Now II maps the incidence
manifold M3, which is a space of dimension 2d + 2dg + ¥ into £ x R, which has
dimension n; + ng. Consequently, we expect the fibers of IT to have dimension
K := dr + dg — ¥ (assuming that k > 0), and by the coarea formula, we further
expect

[ Jn—l (x1,XR) Fd}[K ] dp () dpg (XR)

Fau= | J

M3 LXR

where dH ¥ is the k-dimensional Hausdorff measure and J is the corresponding
Jacobian. Technical justification aside, this turns out not to be a particularly con-
venient way to express the integral of F on M3, since the Jacobian J is somewhat
difficult to analyze. For this reason, we will derive a slightly different expression for
the integral which, among other things, has an explicit dependence on the maps
which encode the generalized rotational curvature.

To that end, fix any vectors X i and XIJQ' at th(p) belonging to the kernels of
dmp foralli =1,...,dr and dmg for all j = 1,...,dg, respectively. We have by
(2.13) and (2.11) that

(3.2)  dI(ELX}) = (0,dmr(X})) and dIN(ELXY) = (dmf ELXE,0)

since dTrTf,f,Xi = 0 and dTr}zfé,sz = dmr X% = 0. In the calculations below,
bold symbols are used to represent unsigned decomposable multivectors; when
nonbold, enumerated variables have also been defined, bold will represent the
ordered wedge product of the enumerated vectors. For example,

Xpi=X} A AXM and Xgi= XhA - A XER,
We will assume that the vectors X} and XIJQ' satisfy the normalization condition
(3.3) UM Xy AB) = pr(dmE) and  pm(Xg A E) = pg (dmgRE)

where 2 is any decomposable unsigned #;-multivector in the former case and ng-
multivector in the latter. Recall that, once normalized in this way, X; and Xg
are uniquely determined. If S; € {1,...,dr} and Sg C {1,...,dgr}, we will also
define

. . . ,
Xihi= X0 Ao A X and X3Ri= X A A X

where i1,...,1ss, and ji,..., jgs; are enumerations of Sy and Sg, respectively.

Next, if X} and X} are also defined at 77" (p), still belonging to ker drr;, and
ker d7tg, respectively, and satisfy the normalization (3.3), then we have

(3.4)  dI(ERX}) = (0,dmyEyX}) and  dI(ELXE) = (dmm(X3),0)
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analogously to (3.2) as well as the formula
(3.5) dI(EL X[ — EpCpX[) = (—dm] E,Ch X[, 0).

Finally, fix any elements v!,..., vt e Tree(py (M) [ (ker d1rp + ker d1rr). Assuming
that #Sg + #S1. = €, by (3.2), (3.4), and (3.5), it must be the case that
ATH(EL X A EL (X AXR) A (ELXL A EpV)
= (dn] (ELXRE A EpChX' A ELXR), 0) A (0, dTTh (ELX; A Epv)),
since we may replace each £, X} by ELX[ — E,CLX] so long as the v span
Tre(p)y (M) [ (ker d1rp, + kerdrg). In particular, it follows that
HexrdTTELXGE A EL(X) A XR) A (ELXL A Epv))
= pedmt] (ELXE A EpChX3t A ERXR)URATTR (EL XL A Epv)
= (X, A Xg A dTeT (ELXRE A Ep ChXE) ) o (X A XR A ATTHE, V)
= (X, A Xg A dTT7Ep (CLXRE A CHXEH) U (X A Xk A dTTVER V).
Observe that piy (X, AXg AV) and pa (Xp AXg AdTTHE, V) are both densities
(as a function of V) on Trre(p) (M) / (ker drp, + kerdmg). In particular, they differ

at most by a multiplicative constant, and moreover this constant must equal 1
when 71¢(p) = wl(p). By similar reasoning, it follows that the quantity

UM (Xr AX A ATV E, V) (Xr A XL A AT EpV)

Cr:
£ (HM(XL /\XR /\V))2

is independent of v, equal to 1 on ml(p) = m¢(p) = " (p) and

Hrxr dTHELXRE A ED (XD AXR) A (VXL A EpV)
= Cfu_']\/l(XL /\XR A CZLJXISQR AN C;XiL)[lm(XL /\XR A V).

For simplicity, let us normalize each viso that uy (Xp AXg AV) = 1.

Now, by the smooth coarea formula (2.2), there is a density p'' on the nonde-
generate fibers of IT (meaning only those points at which dIT is surjective) which
satisfies

qu:J

U qu“] dpr (xr) dpg (xR)
LXR IT-1(x,XxR)

M3

when F is any integrable function equaling zero on the set where dIT is not surjec-
tive. This density p must satisfy

U(EAP) = prur (dAII(E)) u(P)
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for any unsigned decomposable k-multivector field P generated by the vectors

tangent to the fibers of IT and any unsigned decomposable (11 + ng)-multivector
field E. It follows that

U (P (Xp, A X A CLXRE A CHXG)
= CF U(ELXE A EL(XTE AXR) A (ELX A EpV) AP)

= O U d T (ELXRE A ERXGE A Epv AP).

Notice that the top line does not depend on the choice of Z, so the density on
fibers as written on the bottom line must also be independent of the choice of E.
Moreover, it is always possible to choose Z, defined in terms of vector fields Z;
as done following (2.10), for which Cf is nonzero at any particular point (simply
require dTT¢Z A X1 A Xg # 0 and likewise

A1r¢Z A ATt gre (p) (AT0L (XR i () A XL # 0

and
dmc(Z) A dﬂ§1 |1TC(p) (d1rg (XL|7TV(p))) AXg *+0).

Thus, we may assume that Cr is nonvanishing. In particular, if we define the
weight function

1/2
(3.6)  K(p):= [SZS [ (Xo A X A CLXSE A CpXENT2]
LyOR

and density

1/2
(3.7) Ho(P) := Cgl[ > [umdﬁc(fléxfg2 A T;X? ANEpV A P)]2] ,
SL,Sr

then we have the identity

d
(3.8) [qu - U P | ap (o) dpm ()
LXR -1 (xr,xR) X

whenever F is supported away from the set where K = 0. We also note explicitly
that Ho is a measure of smooth density that only depends on the projection 17¢-
projection of the fibers of IT rather than on the full fiber in Ms3.

3.2. Proof of (1.12) up to geometric sublevel set estimates. In this section
we complete the L'-L!-type estimates for the TT*T functional (2.8) using the
coarea formula (3.8), and then explain how (1.12) follows if estimates of a certain
geometric sublevel set functional are known to hold. Recall that we may regard
the manifold M as a subset of £ x R by identifying the point m € M with the
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point (117, (m), mr(m)) € L x R. Likewise, for any point x = (x1,xgr) € LXR,
the points in the set w¢(IT"!(x)) are identified with the set

{(vr,Yr) € LXR | Im € TN (xp, xR), YL = Tf (M), Ygr = TR(M)}.

In general, the set ¢TI (x) will be an immersed k-dimensional submanifold,
although it may be possible that dIT is not surjective at some points m € IT"!(x).
To avoid confusion, let TTy! (x) consist only of those points in TT~!(x) at which
dIT is surjective, and define WCH(]I(X) analogously to I Y(x). In Appendix
A we will establish that the py-measure of each ball B, (x) C £ x R intersected
with the fiber T¢I ! (x) is controlled by some uniform constant times % when
x ranges over any compact set. (When convenient, we will abuse notation as
we have just done and consider g to be defined either on M3 or on ¢ (M3)).
Consequently, when F and G are Borel measurable sets in £ and R with bounded
diameter, it follows that

dpo(m)
(3.9) Jncngl(x)mfx(;) (dist(m, x))¥

< Z 27ij duo

jez eIl (xX)N(FXG)NB,j (x)

( diam(F x G) )
< ln 2 + N ] 3
dist(x, 7¢I, ' (x) N (F X G))

where dist(m, x) is the distance in £ X R as measured by the standard metric on
that space.
Recall from (2.8) that

(3.10) Bg’}r(xc,xp) = Lw (Xp o ) (Xgr © T08) (X © T1F) (X © Th) d.
3

Fix any positive real number o; we will estimate the righthand side of (3.10) when
the domain of integration is restricted to the set

Swi={p € Mz | K(p)(distI(p), m(p))) ¥ > «}.
It follows from (3.8) that
(3.11) L (Xp o ) (X o TTR) (Xpr © T0E) (X © TTR) du =
C C dIJ
ool Gt o Gt o s, R | duac ) i e,

which applies because Sy is disjoint from the set where XK is zero. Ideally, we
would like to show that the integrand in brackets on the righthand side of (3.11)
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is uniformly bounded above by Cx™!. This turns out not to be the case, but it
only fails logarithmically. To see this, we begin by further simplifying (3.11) by
exploiting the definition of S to conclude that

L (Xp o ) (X o TTR) (Xpr © T0E) (X © Th) du
< 1 dpo(m)

& JFxG [JNCH*I(xL,xR)m(F’XG’) (dist(m, (x1,xRr)))¥

] dpyg(xp) dug (xr).
We estimate the integrand using (3.9) to conclude that

(Xr © ) (Xgr © TTR) (Xpr © TTF) (X © TTR) dit

Sa
1 diam(F x G)
S o e [ln <2 " distOx, T, () 1 (F X G)) )] duz duz

1 diam(F X G)
& Jxe [l“ <2 T distx, M0 (FXG))

A

) ] durdug

(where we can replace F' and G’ on the righthand side with F and G since F’ C F
and G" C G). Assuming that F and G are supported in a sufficiently small ball, the
set of points x in £ X R at distance 6 to M N (F X G) will have measure controlled
by &Y (diam(F x G))m+ne=t, Consequently, fixing any 6 > 0 and breaking the
integral into pieces on which dist(x, M (FXG)) = 6 and dist(x, MN(FxG)) €
[277718,2778]) for j = 0,1,2,..., we will have that

JFXG [ln (2 - dist(()ici?f’]r\l/l(i >(<FG>3 ) )] dug dug

N diam(F X G)
o

=In (2 ) (IF1G| + 6€(dlam(F X G))"L+WR*'€),
and choosing 6 appropriately gives
JS (XF o 'ITZ)(XGr o 'IT]CQ)(XFr o TrLC)(XG ° Trzlz)dIJ

s

: (np+ng) /€
FLIG|In (2+ (diam(F x G)) )

1
P (IF[1G[)1/?

In particular, for any € > 0, it must be the case that
(3.12) L (Xp © 1) (Xgr © T08) (X © T0E) (X © TR) du

(diam(F x G))m+nee|p|1-¢ |G|1-¢

s

Q=
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uniformly in « and the sets F, G, F’, and G'. This is exactly the first term on the
righthand side of (1.12), since the diameters of F X G are assumed to be bounded.
More precisely, we have shown that

BE ) (Xer Xp)

s o HFII |G E + J (Xg © TR) (Xp © TE) (Xgr © TT8) (Xp © 1) dy,

3\«

and what remains is to understand the integral over M3 \ S« as a sublevel set func-
tional and use the bounds on that sublevel set functional to complete an inequality
of the form (1.12). For convenience, let us define

K(p)
(dist(tre(p), (p)))«"

(3.13) ®(p) :=

By Fubini, we may write

J (Xp © 1) (Xgr © TTR) (X © T0E) (X © TTR) du(p)
d(p)<x

| Weome (Xg © TTRs X © 1) dpto (m©)
Mnmp (F)nmg'(G)

where Wy me (g, f) is the bilinear sublevel set functional

(3-14) W(X,mc (g, f)

::J 1 J - Xo(p<ad (M) f(m”) du™ (m") du™ (m"),
TR mr (me) Jrrp g (me)

where p = (mb, m¢, m"). In particular, if Wy me satisfies a restricted weak-type
estimate
Wame (Xt Xpr) S o |u™ (ED [VPU ™ (E7) |1Pr

uniformly in &« and m¢ for all measurable sets E! and E” contained in 11 ' 177, (m€)
and 115 'R (M€) (ie., belonging to the fibers of 71 and TTg passing through m¢),
respectively, then it follows that

J (Xp o 1) (Xgr © TT8) (Xpr © TTE) (X © k) du(p)
®(p)<x

< of J |T&I<FXG|1/mTék'F' |TXG1:X1:|1/ms

which combines with (3.12) to prove (1.12). Thus, the question of boundedness
of the functional (1.5) is reduced to the study of (3.14). Since we have made no
use up to this point of any notion of nondegeneracy whatsoever, the geometry of
(1.5) is now entirely captured by the sublevel set operator (3.14). In particular,
this means that if the bilinear form (1.5) fails to exhibit any meaningful curvature,
there is no reason to expect that (3.14) will satisfy any nontrivial estimates. The
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problem of proving boundedness of (3.14) using the geometry of (1.5) is taken
up in the following section after an auxiliary lemma is established to help prove
sublevel set functional inequalities in a systematic way.

4. APPLICATIONS AND EXAMPLES

4.1. An auxiliary lemma for establishing sublevel set estimates. A par-
ticularly successful general strategy for proving restricted weak-type estimates for
sublevel set functionals like (3.14) is to independently decompose both m! and
m" into dyadic annuli with centers at the point m¢, since, in particular, we know
that K (p) is expected to be identically zero when m! = m€ and when m" = m°.
This is due to the fact that Cé, and Cp» respectively, reduce to the identity (mod-

ulo the sum of kernels), meaning that C, X3 = 0 when m! = m® and C, X} = 0
when m" = m¢. The following lemma establishes a type of interpolation result
which is particularly useful in this case. Roughly speaking, if there are two nat-
ural restricted weak-type inequalities which hold on each individual product of
annuli (ie., [lm! — m¢|| ~ 2t and [|[m” — m€|| ~ 2J), then under appropriate
technical hypotheses, the interpolated restricted weak-type inequalities hold not
just for individual annuli, but for the sum over all annuli as well. Readers will
note that the argument is essentially the same one that appears in the proof of the
Marcinkiewicz interpolation theorem.

Lemma 4.1. Suppose ay, a1, by, by are real numbers and po, p1, qo, a1 €[ 1, ]
are exponents satisfying

ao pg! by ay’
(4.1) det [a? 5?1] +0, det [b? Zfl] +0,
4.2) Lol koo
Pr 4k
Then, for any 0 € (0,1), let ap, bo, po, qo be defined by the formulas
1 1-0 6 1 1-0 0
— = + — and — := + —,
po Po P1 de qo a1

ag = (1—9)01()-%-9611 and be: (1—9)190-1—9191.

There is a constant C' depending only on the choices of each ax, by, px, ax, and 0
such that

(43) 2 min{Ag2M P |fi|1Po| gy, A 20T i P gty
i,jeZ
_ . 1/po . 1/a0
< CAYOA] (D 2mret 1) (X 2benod gy )
i€z jez

for any nonnegative constants Ay and Ay and any sequences { fi}icz, 19} jez of real
or complex numbers.
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Proof. By the definition of ag, bg, pe, and qg, we have the identities

(1_9)(010_%)%(@1_%):0,

0 pi
(1-0) (bo—w> +9(bl—M) = 0;
do a1

by (4.1), it is not possible to choose py! = p;! = 0, so pg must be finite. Like-
wise, g < 0. Moreover, it cannot be that both ag —agpepy ' and a; —agpep;!
are zero, since this would also force the first determinant (4.1) to be zero. Con-
sequently, neither is zero (since their convex combination vanishes). Likewise,
neither by — bg&lgqal nor by — bg&lgql_l is zero, and since @ € (0, 1), one must
be positive and the other negative. Rewriting the lefthand side of (4.3) in terms of
sequences

fi = 2a0p0ifi and gj = Zboq‘)jgj,

it suffices to assume that ag = bg = 0 and that none of ag, by, a1, by is zero. This
amounts to replacing ax by ax—aepe/px and likewise for by. These changes pre-
serve the value of the determinants (4.1). By symmetry, it also suffices to assume
that bg > 0 > b;.

Let T = —aopb, I and let s be any real number (to be fixed shortly). Now,

> min{Ag2% bl | f;|1/Po | g |10, A 2THDu | £ VP g tany
jez
:Aozbos z A02a0i+hoj*b05|gj|1/110
J<Ti+s
+A12b13|fi|1/lﬂl z 2a1i+b1j*b15|gj|1/111_

J=Ti+s
Consider the mappings Ty and T which act on sequences as follows:

(Toe); := Z 2a°i+b0j7b(}s€j and (Tre); := z 2a1i+b1j—blsej_

J<Ti+s J=Ti+s

Using standard sum estimation techniques (along with the fact that by > 0 > by),
we have that

lellos lell,

IToelle < 2% 1Toelh < 7=,
lell lell,

ITiell = 7oy ITielh < 7=,
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and, in particular, T; is bounded on ¥ with constant independent of s, where p;
is dual to p;. Therefore,

Z |fi|l/p0 Z 2b0(j—-ri—s)|gj|1/110 < ||f||}/lﬂo|||g|1/110||;€l70

ieZ J<Ti+s
1/ 1/
<[IFI Mgl ™,
Sl S 2T g A (£ gl

ieZ J=Ti+s
since p;, = qx for k = 0, 1. Therefore,

> min {Ag20ttbod | £;|1Po | g |10 A 20l Ve gt
i,jeZ
1 1 1 1
< A2 (£ gl ™™ + AP £ P gl

Optimizing over the choice of s gives

> min {Ag20t ol | £ 1Po | g |10, A 20l VP gt
i,jeZ

< (Aoll £ gl ™) = Carll £ gl ™)

with 6 = bo/(by — b1), which is the correct value of 0 to give bg = 0. O

A final remark about the lemma: although it will not be needed here, the
constraint (4.2) can be weakened somewhat. In particular, if p,' + g5' > 1 for
the chosen value of 0, then one does not need to explicitly assume (4.2), since
one can instead apply the lemma using some convex combination of the estimates
on the lefthand side of (4.3). It will always be possible in this setting to find
two different convex combinations which automatically both satisfy (4.2) and still
yield the same conclusion (4.3) for the desired exponents pg and go.

4.2. General bilinear averages. e now begin the study of the geometric
sublevel set operators (3.14) in earnest. The first case to be considered corresponds
to the setting of Theorem 1.4 for the averaging operators constructed from bilinear
mappings. Let Q : R4 x R4 — R? be any such bilinear map. Let Q ¢ R +dr+?
be compact, fix M to be any open set containing Q, and consider the bilinear
functional

Bq(f,9) := JQf(y,z +Q(x,¥)g(x,z)dx dydz.

By duality, this bilinear functional corresponds to the integral operator

TF(x,2) = jQ Fr,z+0Q(x, ) dy.
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If we define 1. (x,y,2) := (¥,z+Q(x,y)) and Tr (x, ¥, 2) := (), 2), one can
easily identify vector fields X} and X3 annihilated by drr; and drrg, respectively:
0

) 2 .
i._ _ . . J .
X} ax Q(ei, )V, and Xi: 5y’

where the vectors e; and e; denote standard basis vectors in R4 and R9*, respec-
tively. On the space M3 we can calculate that

0 0
l _ c L_yC 5y, ¢
drry (aﬂ) drry (83/; +Q(x" —x%ej) -V, )

J

0
dmg (W - Q(ei, y") - Vzr)

0x¢

2

= dmg ( o Qe;, ) - Vze +Qle, ¥ = ") - Vzc) :

Since we have that Cé, and C}, from (2.14) and (2.15) are intrinsically defined
modulo kerdrr;, + ker dmr (not depending on Ep), it follows that

CLXH) ~Q(x! —xe) - Voo and  Ch(X}) ~ Qles, ¥ — ¥") - Ve,

If we take the standard measure ppy = dxdy dz, then by (3.6) we have that
(K (p))? is the sum of squares of all £ x £ determinants whose columns are of the
form Q (x! — x¢,ej) or Q(e;, ¥° — ) as ej and e; range over all elements of the
standard bases. Consequently, if we define

Vol ({Q(ei,y)}‘iiil, {Q(X,ej)}?il)
(Ix]2 + |y |2)di+dr—0)/2 ,

Qo (x,y) =

then the sublevel set operator (3.14) is nearly translation invariant under the map
(m!,me,m") » (m! + T,m¢ + T,m" + 1), with the only failure of invariance
coming implicitly through the fact that M may not contain all of R4 +4x+¢, Con-
sequently, to prove estimates for (3.14) uniformly in m¢, it suffices to bound the
fixed sublevel set operator

(4.4) Wa(g, f) = j

RAL x R4R

Xog e <ad (XD (Y7) dx dy.

Moreover, even if g and f in (4.4) are restricted to fixed neighborhoods of the
origin, it will still be the case that Wy e is dominated by W provided that the
diameter of Q is sufficiently small. Thus, by (3.12), (3.14), and Lemma 1.6,
Theorem 1.4 must hold.
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4.3. The maximal 2D quadratic surface in R°> and generalizations. In
the case of the bilinear functional

(4.5) B(f,9)

1 1
= J S <X1 +t, X2 + b2, X3 + ztf,m + t1t, x5 + Et%)g(x)dxdt
Q

corresponding to the operator (1.1), we choose vector fields X} and X3} as follows:

) ) ) )
1.~ _ N R
X= 50 T Yo, Poxg
e 2,0 2

L7 0t 0xy  0xy 0xs

;0

‘]':— [ =

XR' atJ! J 1)2

By using these vector fields, the maps C,f, and Cy,, defined by (2.14) and (2.15),
give

0 0
ChXg ~ (t] - tf)axg + (t) - tg)axz,
L yv2 1 c 0 l c 0
CPXR ~ (tl - tl)axg + (t2 - tz)@,
7yl c v 0 c r 0
CpXLN(tl_tl)@_‘_(tz_tz)@’

0 0
CpXE ~ (1] - tf)@ + (85 - t{)@

(with ~ meaning modulo (kerdrr; + ker dmtg) | (xc ic)). Consequently, by (3.6),

det [t% Sh - tf] ‘ .

(4.6)  K(p)=(It" =P + [It7 =)' e gr e
2 2 %2 2

The fibers of the map IT defined by (3.1) are generically one dimensional; conse-
quently, k = 1, and by (3.13) and (3.14), it suffices to study

(47) Wo(,mC (g,f) = JQ deet(tl—tC tr_tc)‘s‘xg(tl)f(ty) dtl dt’.

m

In particular, we will use (4.3) to show that

(4.8) Weyme (Xgt, Xgr) < Coe| EHV2 |ET|12,
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Without loss of generality, we may assume t¢ = 0. For each j € Z, let Aj C R?
be the annulus {t € R? | 27-1 < ||t|| < 27}. To prove (4.8), we break (4.7) into
a sum over dyadic annuli in ¢! and in t”, at which point it suffices by (4.3) with
0 = 3 to prove that

(4.9) Xetna, (D Xproa, (1) dttdt”

J\ det(t! t7)| =
< Comin{2"7[E" 0 Aj], 27 |EL n Ay}

Both estimates on the righthand side follow from Fubini’s theorem (in the former
case integrating over t! first and in the latter integrating over t” first) and the
inequalities

(4.10)  [{t' e R?:|dec(t! t")] < xand 27" < |ItH) < 21} | < Cce2F|1E7 )Y,

(4.11)  [{t" e R?: |det(t' t")] < @xand 2771 < ||t7]| < 27}| < Cax2/|ItH)1 7Y,

which hold trivially since, for fixed v € R?, the set {x € R? : |det(x )| < «}
is simply those points at distance less than «||[| ™! to the line through the origin
with direction y. Thus, (4.8) follows from (4.9) and Lemma 4.1.

In light of (4.8), by Lemma 1.6 together with the trivial estimates

IB(f, ) < ClfIllIglle,
IB(f,9) | = Clliflle gl

(assuming the compactness of 2), we have that

IB(f,9)| < Cllfllg. 19lar

whenever (1/qr,1/qr) belongs to the interior of the triangle with vertices (1,0),
(0,1), and (3, 2).

8’38
Incidentally, the compactness of Q can be easily removed using translation
invariance: for any j € 2°, if we let
Qj:=[j1,j1 + 11X --- X [js,js + 11 x [-1,11%
we have uniformly in j that

which self-improves to the estimate

Bo,; (f,9)| = CllfXqzllar 19X, llax
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where Q;j := [j1,j1 + 11X - - - X [js, js + 1] and
Qf:==1[ji—1Lj1+2Ix---x[js— 1,75 +2].

Therefore, recalling yu from the notation of (1.1), it must be the case that

‘ LRSg(x) J[—m]zf(x +ym(t))g(x)dt dx'

< 2. 1Bo,(f,9)] = 2. Cllfxo+lla, 19X, lax
jer jer ! i

1/qL 1/ar
=C( 3 rxgellyr) (X Nlaxo,lgs) ™ = 1fllay g lan
jers jers

by Hoélder’s inequality together with the observation that g; ' + qg' > 1. By the
Marcinkiewicz interpolation theorem, this completes the claims of Theorem 1.1
for the maximal quadratic submanifold in R> given by (1.1).

Let us now turn to the geometric setting of Theorem 1.2. When the dimen-
sion of M is seven and d; = dr = 5, we say that the pair of projections 117 and
TR are nondegenerate when, at every point m € M, the following conditions hold:

e Forany v,v’ € R? with det(v v’) # 0, there is an @y € R? such that
(4.12)  Xp AXr ALXL, v - XRIA[XE v - XRI A [ap .y - X1,V - Xg] # 0.

o Forany u,u’ € R? with det(u u’) # 0, there is a by 1 € R? such that
(4.13) X AXpAlu- X, XpIA[u- X, X31 A [u' - X, by - Xg] # 0.

(Note that the condition is independent of the choice of bases {X}, X7} and
{Xg, X3} of kerdrr;, and kerdrrg.) Theorem 1.2 asserts that, under the regularity
assumptions of real analyticity, any pair of nondegenerate projections as defined
above gives rise to a bilinear functional (1.5) which is bounded for pairs of ex-
ponents (q[l,qlgl) in the interior of the triangle with vertices (1,0), (0,1), and
(3:3)-

’ 8The proof of Theorem 1.2 proceeds as follows. For each fixed m¢ € M, we
can coordinatize a small neighborhood of (m¢, m¢, m¢) € Mj by exponentiating
as follows: for u € R4 and v € R9%, we define

p(m u,v) := (exp(u - Xp)(m), m, exp(v - Xg) (m°)).

The advantage of this representation is that we get an explicit approximation
of CL(Xg) and CL(X]) in terms of commutators. In particular, since we have
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C,f, (XIJQ') = C;(Xi') =0 when u = v =0, by (2.16), (2.17), and Taylor’s theorem,
we must have that

CL e ) (XR) = [ - X1, X1+ O(lull?)
and

Chme ey (XE) = ~[XE,v - Xe] + O(v]1?),

where the error term O(||u||?), for example, must be real analytic and vanish
quadratically as u — 0. Thus, up to first order, the terms whose square sums give
X2 in (3.6) are merely wedge products of the X1, Xg, and their first commutators.

More precisely, when ii,..., iss, enumerates Sy and ji, ..., jss, enumerates Sg,
we have
(4.14) X AXg ACL X3k A CT X5t

: L R p(me,u,v)*R p(me,u,v)*L

= (—DPSIX,AXR AU XL, XETA - A [u- Xp, X5
AXE U XRTA - A TXT v - XR]

+ OIS v [#57) + O (ullSt [l ]| #5x+1).

Using this calculation and the machinery already produced, to prove Theorem 1.2,
it suffices for us to establish the following result.

Lemma 4.2. Assume that Tty and Ttg are nondegenerate as in (4.12) and (4.13).
Let

Aj:i={x e R*| 277! < x|l <2/}

as before. Then, for any compact set K C M, there is a finite constant C and an integer
Jo such that

[{u € A« [®(p(m®,u,v))| < o] < Ca2,

Hv € Aj: [®(p(m°,u,v))| < a}| < Ca27HH,

Jor all « = 0 and all (m°,u,v) € K X A; X Aj whenever i, j < jo. Here, ® is the
function defined by (3.13).

Proof- We must have #S; + #Sg = 3, meaning that one set should have cardi-
nality one and the other cardinality two. Both options are completely symmetric,
so let us consider the case when #S; = 2. For convenience below, given any vector
v := (V1,V2), we define v+ := (—v3,v1). For any fixed v € R?, let w be any
nonzero unit vector such that

X; AXg A LXE v - XRIA[XE U - XgI A [w - X, vt - Xg] =0
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(notice that w is unique up to sign). It follows that

Xp AXp A lu- X, XpIA[u- X0, Xa] A [w - X, v - Xg]
V172X, AXR A U - X, v - Xp] A [u - X, vt - Xgl A [w - X1, v - Xg]

. 1
:Linvlﬁj XL/\XR/\[wL.XL!v'XR]/\[u'XL,'Ul-XR]/\[w-XL"U.XR]
u-wt )
T X1 AXR A XLV - Xp] A Tu - Xp, 0% - Xe] A [X, 0 - Xg]
u.

- X A X A XL v X A DX X A B X v X

_(w-w)(u-wt)
vl

X AXg ALX], U - XR]

AXE v Xg] A [wt - X, vt - Xg].

By (4.12), the wedge product on the final line cannot be zero unless u = w or
u = w' (otherwise, no such ay v could exist since any linear combination of
w and w* would return zero when put in the place of @y 7). In particular, the
u-derivative of this expression is never zero. By compactness of the domain from
which (m€, u,v) is drawn and the continuity of all vector fields, this means

V(XL AXR A Chime i Xk A Chime un X8 A Chme X0 1+
+ |Vu (X; AXg ACL XR/\C XR/\C
> cllull vl

2
p(mc,u,v) p(mc,u,v) p(mc,u,v) XL)|

for some constant ¢ > 0, provided ||u|| and [[v]| are sufficiently small. By (4.14),
we also have that there is a finite constant C' such that

|V%L(XL /\XR A Ci)(mﬁ uv)XIIQ A CY (me uv)XI% A CY (me uv)XL1)|
+ V2 (X AXg ACE Xz A C Xz ACh
< Clv|

2
p(mc,u,v) p(mc,u,v) p(mc,u,v) XL)|

for the same range of m¢, u, and v. Thus, for all sufficiently small annuli, for any
fixed values of m* and v, we may cover the annulus A; by boundedly many balls
(independent of the annulus, m¢, and v), on which there are indices k; and k;
such that

0
ﬁ(XL A\ XR AN Cp(mc ‘bL‘U XR A Cp(mc ‘bL‘U XR A Cp(mc ‘M.‘U)X )
1

> ¢ 2tv].
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By the usual Fubini argument, it follows that
(4.15) {u e A;: | K(p(m€,u,v))| <} <C' 277

uniformly as desired.
Next, if we let w’ be any unit vector such that

Xp AXp Alu- X, XA [u- X, X321 A [ut - X, w' - Xg] =0,

we must have that

Xp AXp Alu - X, XpI A [u - Xp, Xa] A [ut Xy, v - Xg] =
= (- (WXL AXR A [u - X, Xg] A [u- Xp, Xg] A [utXp, (w')* - Xg1

Once again, with the exception of the coefficient v - (w’)* vanishing, the wedge
product on the righthand side cannot be zero without contradicting the existence
of by in (4.13). Reasoning just as before, we find that

1 1 2 1
|V‘U (XL A XR A Cp(mﬁ,u,v)XR A C;(mﬁ,u,v)XR A C;(‘WLC,‘M.,‘U)XL)|

+ |V (XL AXR A Ci)(mﬁ,u,v)Xlli A C;(W’M’U)X}Z2 A C;(mc,u,v)Xf)l > cllul?

and
|V2 (X AXg A CE Xk ACh \ Xk A Chy

p(mec,u,v p(mec,u,v

1
mﬂ,u,v)XL)H'
llull?

vl

(where the factor of ||v|~! is easily obtained by bounding the second derivatives
by Cllul|? and then fixing an upper bound for || ]), and consequently that

+ V2 (XL AXg ACL X ACh VXA Chime XD < C

p(mc,u,v p(m,u,v p(me

(416 v € Ay 1K (p(me,u,v))]| < | < C a2 2,

Now if i > j, then ®(p(m,u,v)) =~ 27K (p(m,u,v)), so (4.15) and (4.16)
imply the lemma by merely replacing o in (4.15) and (4.16) with 2?«. The case
i < j is obtained in exactly the same manner by fixing #S; = 1 and #Sg = 2 (and
effectively interchanging the roles of u and v). O

4.4. The maximal complex quadratic submanifold. In the case of the bi-
linear functional (4.5) corresponding to the operator (1.1), if we complexify the
manifolds M, £, and R, we are naturally led to the following functional repre-
senting an integral over a quadratic four-dimensional submanifold of R1% which
corresponds to the bilinear functional for (1.2) written in real coordinates:

1
(4.17) B(f,g9) := Jgf(xl + 1, e, X4+ B4y X5 + E(t% —t3), x6 + tita,

1
X7 + tits — totg, xg + L1t + L2t3, X9 + E(t% - ti), X10 + t3t4>g(x) dt dx.
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We take the following definitions of X} and X 7

> 2 2 d d d
1.~ _ 7 42 4 Yy,
X= 50 T Yaxs Paxe P Haxg
> 2 2 d d d
2.7 Y - . 7 =
A TR PR F L L L N
> 2 2 d d d
3. Y Y 4 Y 4 Yy Yy Y
XL ) at3 aX3 18)(7 b2 axg ts aX9 L4 6x10’
> 2 2 d d d
4. Y Y Yy 2 v
X = 5 T 20 Yaxs THaxe  Baxgy’
2
ji._ 9 ._
Xi 5, j=1,...,4.

In this case, we need not even sum over all S; and Sg in (3.6) to estimate K from
below well enough to establish boundedness of the sublevel set operators (3.14).
In particular, we need only sum over those S; and Sk in which the indices 1 and
2 are either both omitted or occur simultaneously as a pair, and likewise with the
indices 3 and 4. This gives all the determinants a block complex structure which
is easy to evaluate: if zjx = ajk + ibjk, where i is the imaginary unit, then

an —biy -+ amn —bin 5

byy an -+ bin am Z11 st Zin
det| : oo : = |det

an1 —bn1 - -+ Ann —bnn Znl " Znn

bni an1 -+ bun ann

In particular, this reduction brings us back to the same calculations encountered in
(4.6); the only difference is that the entries of the various determinants are allowed
to be complex. The end result is that the sublevel set operators Wy me (g, f) are
dominated (modulo the multiplication of & by a constant factor) by the complex-
ified sublevel set operator

J(Cz I X|le2722wl|2§o(f(zllZz)g(wlywz)|dzl A dz_l/\ A dwz A dw_2|!
X

where z; and w; are now, of course, complex. If A; C C? is the complex annulus

{(z1,2z2) € C* | 2771 < IZ112 + |z2]2 < 27}, then just as in (4.10) and (4.11),

Jx\zlwz—zzwl\zsaxEVmAk (z1,22)
X Xgina; (W1, w2)ldzy AdZr A - - A dwy A dw;]

< Cmin{2% 2K |E" n Ag], 272" | E 1 A3,
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which gives just as in the real case that the bilinear functional (4.17) satisfies

IB(f,9)| < Cllfllg. 19llax

whenever (1/qr,1/qr) belongs to the interior of the triangle with vertices (1,0),
(0,1), and (%, %). Just as in the previous section, the constraint that Q in (4.17)
be compact can be relaxed by Hélder to establish boundedness of (1.2).

4.5. The 3D harmonic quadratic surface in R® and generalizations. In
the case of the bilinear functional corresponding to (1.3), we have

t7 3
B(f;g)::J Xl+t1,X2+t2,X3+t3,x4+_1__2’
Q 2 2

7 t
Xs + ?2 - 53 X6 + titz, X7 + tal3, X5 + t1t3) g(x) dx dt.

Calculating just as before using the vector fields

N R - - R

XL::a_tl_a_aq”lﬁ”zﬁ”%_xg
Xf::aitz_aim_tzai;q”za%s”laim”%im’
Xf:z%—a%—tai;%+tza%c7+tlai;8,

X} = % j=1,2,3,

we come to the conclusion that the function ® given by (3.13) governing the
relevant sublevel set functional is given by the formula

®(p) = Ith =12 IIE" — )% — (=) - (1" = t9))%

Also in agreement with previous cases, we may assume without loss of generality
that t¢ = 0, and we let A; be the annulus {t € R3 | 2i~! < ||t]|| < 2}. For fixed,
nonzero y € R3, we observe that the set

{x e R :IxIPIXI? = (x-»)? < o

consists of exactly those points at a distance &!/2||y||~! to the line through the
origin with direction y. Therefore, using Fubini’s theorem exactly as in the earlier
case of the two-dimensional surface in R, we conclude that

() Xproa, (E7) dt! de”
J\WHZHt”l\z—(tl.tr)zSO(XElﬁAz XETnA;

< Coamin{2H[E" n Aj],27 2 |E n Ay,
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which implies by (4.3) with 0 =  that

tl) v tT)dtldtr
JW”Z”””L(tl-ﬂ)zscxxy( Xpr (

<o S 27 nad) (S 27 0 Ayl)
iez jez

1/2

This inequality, by itself, does not immediately imply boundedness of (3.14), but
the desired inequality follows from the observation that

. 1/2
(4.18) (X 27UE nAyl) " < CVIEYY,
i€z

and likewise for the sum over j. The observation itself is a consequence of the fact
that |E! n A;| < 231; breaking the sum into parts i < ip and i > i and estimating
separately gives

> 27HENn Al s YD 27123 < 2%,

i<iy i<ip
> 27HE N Al =270 DT |E N Ay < 270 EL.
i>ip ieZ

Therefore,
i 1/2 . .
<22*1|E10Ai|> < (2210+2710|El|)1/2-

ieZ

Optimizing the choice of iy gives (4.18). Consequently,

J Xp (Y xp (87 dttdt” < C|EY Y3 |ET |13
eI Er 2= (£ )2 <cx

and
[B(f,g)| = Il.fllg. 191l gx

for (1/qr,1/qr) in the interior of the triangle with vertices (1,0),(0,1) and
(&, 3). Using Holder's inequality as in previous cases to allow Q := R® x

[—1,11°, and then applying Marcinkiewicz interpolation gives the boundedness
of (1.3) as asserted by Theorem 1.1.

4.6. Uneven half-dimensional averages and generalizations. The final
calculations deal with the operator (1.4) and its geometric variants described by
Theorem 1.3. In the case of (1.4), the relevant bilinear functional is given by

B(f,9) := sz(x,y +tx)g(t,y)dxdtdy.
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Here, ¥ = dg and d; = 1. Using Theorem 1.4, we have that

da
oo (1 oo YoLUeh i, 1)) maxt bl el 1E1t)
QEXE= T eir T (kP '

The corresponding sublevel set inequality we come to is simply that
[ Xp (D) xpr (x) dx dt s ol /dr=D|ET],
[t14R 1 <ox

This estimate is trivial to obtain by integrating over t first. Since we also have
IB(f,9)] = CllflhlIglle and IB(f,9)| = Cll fll« gl it follows that

IB(f,9)| < Cllfllg. 19lar

provided that (1/4r,1/qr) belongs to the interior of the triangle with vertices
(1,0), (0,1),and ((dg + 1)/(dr +2),2/(dgr + 2)).

Regarding Theorem 1.3, the calculation proceeds in much the same fashion as
the proof of Theorem 1.2. In particular, we continue to use the coordinate system

p(m u,v) := (exp(u - Xp)m, me, exp(v - Xg)m°).

In the definition (3.6) of K, either #S; = 0, #Sg = dg or #S; = 1,#Sg = dg — 1.
In the former case, using (4.14), we have

(4.19) Xi AXR A Ct XRr

p(me,u,v)

= uRXp A X A [XL, XEIA -+ A [X2, XaR] + O (Ju |4+,

and in the latter case we must have that

) I " |
(420) XL A XR A Cé(mc‘u‘v)xl{z J &} A C;(mc‘u‘v)(XL)
= —udR1X; A Xg A [XL, XEIA

o AIXE XRTA - A TXL XRET A [XL, v - XR]
+ 0 (Jul*) + o (Jul“=1v])
(= 1)@ =i 1y @RV X) A Xp A [XL, XETA -+ A [Xp, X2R]

+ O (Jul®) + o(Jul%=1v|).

Assuming the nondegeneracy condition
Xy AXR A (XL, XEI A -+ A [XL, XRR] # 0,

when we sum the squares of (4.19) and (4.20) (in the latter case, when we sum
over j), we must have that ®(p(m¢,u,v)) = Clu|4r! provided that |u| and
lv |l are sufficiently small. Thus, the sublevel set estimate follows exactly as in the
model case.
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APPENDIX A. REGULARITY OF FIBER MEASURES

In this section, we take up the last remaining technical issue, namely that the
measure Lo, defined by (3.7), on the nondegenerate part of the fibers of 1, satisfy
the regularity condition

(A1) Ho(By(x)) s 7¥

for all » sufliciently small and all x in some compact subset of £ X R. This is also
the only place in this paper where the real analyticity assumption becomes im-
portant; in particular, if one could establish (A.1) directly by other means (which
seems likely to be possible in the cases of Theorems 1.2 and 1.3), then real analyt-
icity would no longer be necessary.

The interesting feature of (A.1) is that, under the assumption of real analytic-
ity, the estimate is closer to a counting statement than it is to an integral estimate.
Thus, in switching from the Inverse Function Theorem to the Implicit Function
Theorem in the method of refinements, while Bézout’s theorem is no longer di-
rectly applicable, the results of this section which take its place are not so different
in spirit. The proof of (A.1) begins with a general lemma which highlights the

fundamentally discrete nature of integrals over fibers.

Lemma A.1. Let M, X, and Z be smooth manifolds of dimension n, k, n — k,
respectively. Suppose that Z is equipped with a measure of smooth density uz. If
II:M— X and p : M — Z are smooth maps, then for any x € X and any Borel
measurable set E C M such that 11 is surjective at all points m € E,

[ Xg p*(duz) = [ Ng(x,z)duz(z),
II-1(x) p(E)

where Ng (X, z) is the number of solutions m € E of the systemII(m) = x, p(m) = z
at which ker dIl |, N kerdp |y, s trivial.

Proof- Without loss of generality, we may assume that dIT is surjective at every
point of M. The Implicit Function Theorem guarantees that II"! (x) is a smooth
(n — k)-dimensional submanifold (when nonempty). Since E is Borel, the restric-
tion of E to IT"!(x) will also be Borel. The mapping p, when restricted to the
submanifold IT~!(x), will have surjective differential at exactly those points m at
which ker dIT|,, Nkerdply, is trivial. By Sard’s lemma, the integral over the image
under p of the complement of this set (namely, the set where the intersection of
kernels is nontrivial) will have pz-measure zero, so we may assume without loss
of generality that E also does not contain any such points. When the differential
dp is surjective, p is locally bijective and the Inverse Function Theorem may be
applied. In particular, for any point m € E and any sufficiently small open set U
containing m, we must have that

s, @UXEP ) = | @007 @) 07 @)z ()
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for any smooth function @y supported on U. Taking @y to be elements of a
partition of unity on M subordinate to the neighborhoods U, and summing over
U, gives the conclusion of the lemma. O

In light of Lemma A.1, the usefulness of real analyticity comes in to sharp
focus: fundamental work of Gabrielov [13] establishes that, when the manifolds
M, Z, and X and mappings IT and p are all real analytic and E is contained
in a fixed compact set K, Ng(x,z) is uniformly bounded by some constant N
independent of E, x and z. Thus, the integral of p*(duz) over partial fibers
II-'(x) N E is controlled by a bounded constant times the piz-measure of the
projection p(E).

To apply this insight to the case of o, let Uy € £ and Uz C R be open sets,
and let pr : Uy — R™ and pg : Ur — R™ be coordinate charts satisfying

dist(xr, x1) = llpr(xr) — prixp)l
and
dist(xg, xg) = llpr (xR) — pr (xp)|l

for some finite implicit constants and every xr,x; € Ur and xg, x € Ug. For
p y L R
convenience, let U := 17 UL N 1! N Ug. If we also define

po(m) := (pg o Trr(M), pR © TTR(M)),

then pxy being subordinate to the Riemannian measure on M means in particular
that there is a uniform constant C such that

(A2) UM(Vli---’VnL+nR—£’)

=C[ X | detles;, ... es,,dpo(V1), -, dpo(Viy ing-0)] |
#S=10

1/2

for any vectors Vi,...,Vy, sn,—¢ at any point in Up, where S ranges over all
cardinality € subsets of any orthonormal basis of R™:*"%,

Now, for any choice 0 of a k-dimensional subset of R"™:*"* spanned by a
subset of the basis vectors ey, let ps : (M3 N Uga\,l) — R¥ be defined by the map

po(mlt,mé,m") := Py po(m¢(ml,me,m")),

where Py is the projection onto the span of the unit vectors determined by o . If
dZ is the Lebesgue measure on R¥, we must have the following identity for the

pullback measure p (dZ) on the incidence manifold M3 N Ugaw:

(A3) ps(d2)(V1,..., Vi)

= | det[e;, .. dpodm€(Vy),...,dpodmt (Vi) 1],

bR einLJrnR—K’
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where e;,,...,ei, ., . are precisely those basis vectors not belonging to o. In
comparing (A.3) to the righthand side of (A.2), note that £ < n; + ng — K, so
that there are more elements of the orthonormal basis appearing on the righthand
side of (A.3).

Recall the definition (3.7) of the density . We may assume that the constant
Ct is smooth and nonvanishing. Likewise, we may assume that £, X3, Z5X}, and
Epv are all smooth and have bounded norms. At any particular point, we may
also assume that the span of these vectors is equal to the span of some collection of
orthonormal basis vectors of the same cardinality (since if this were not the case,
the density pp would trivially vanish). Therefore, we have the inequality

Ho(P) < C" > pk(d2)(P)

when P is any decomposable k-multivector field generated by fibers of IT. In
particular, we must have the integral inequality

Mo (By (x1,XR))

N JH—I(XL XR)N(Un)? X(dist(rrf (m),x1))2+ (dist(rr (m) xg )2 <1 dpo(m)

sC%JH

*
: dz).
“Hxr,xr)N(Um)3 XdlSt(P?}(WL),P(;(xL,xR))grpo'( Z)

The righthand side can now be estimated by Lemma A.1. If we assume that the
number of nondegenerate solutions in M3 N U3, of the system

Im) =x, ps(m)=z

is bounded for all m, which by a result of Gabrielov [13] will be the case when
the closure of Ua is compact and the manifolds and mappings are all real analytic,
then it must follow that

K
Jnfl(x (U )3X(dist(nf(m),xL))2+(dist(nI§(m),xR))Zsrz duo(m) = r*,
LsXR M

since the projection of the set

(dist(1rf (M), x1))* + (dist(w5 (M), xg))* < 72

via po is contained in a Euclidean ball of radius comparable to 7.
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