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We integrate the third and a half post-Newtonian equations of motion for a fully generic binary black
hole system, allowing both for noncircular orbits, and for one or both of the black holes to spin, in any
orientation. Using the second post-Newtonian order expression beyond the leading order quadrupole
formula, we study the gravitational waveforms produced from such systems. Our results are validated by
comparing to Taylor T4 in the aligned-spin circular cases, and the additional effects and modulations
introduced by the eccentricity and the spins are analyzed. We use the framework to evaluate the evolution of
eccentricity, and trace its contributions to source terms corresponding to the different definitions. Finally,
we discuss how this direct integration equations-of-motion code may be relevant to existing and upcoming
gravitational wave detectors, showing fully generic, precessing, eccentric gravitational waveforms from a
fiducial binary system with the orbital plane and spin precession, and the eccentricity reduction.
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I. INTRODUCTION

The direct detections of gravitational waves (GWs) [1-3]
by the LIGO/VIRGO Collaboration [4-6] have launched
the era of multimessenger astrophysics, both in providing a
new window on events such as binary neutron star (BNS)
mergers [7], and by opening for study a completely new
field of astrophysical events previously invisible to us,
binary black hole (BBH) mergers [3], meriting the Nobel
Prize in Physics in 2017.

GWs from eccentric binaries [8—18] have become an
important topic of study as the next observing runs of
the Advanced Laser Interferometer Gravitational-wave
Observatory (aLIGO) and VIRGO approach. While it is
not expected that LIGO/VIRGO sources in isolated binaries
will have significant eccentricity in band, binaries in dense
stellar clusters [19] may, however, retain significant eccen-
tricity from dynamical interactions prior to entry into the
LIGO/VIRGO band. Recent simulations of globular clus-
ters indicate that a distinct population of compact binaries
exists (from Refs. [20,21], about 3% of binaries) and enter
the LIGO/VIRGO band (canonically taken to be 10 Hz as
the lower bound) with significant eccentricity (e > 0.1)
[20,22]. These results add further motivation, for if binaries
can form and merge in this way, then there will be a
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minority (but a distinct minority) that will enter with
eccentricity, and which may be missed without templates
for the match filtering.

In addition, a large fraction of binaries in globular
clusters will have significant eccentricity (~50% of in-
cluster mergers) and will be detectable for the entirety of
the Laser-Interferometer-Space-Antenna (LISA) band
(~1073-10"" Hz) [23,24]. Both 2-body mergers (highly
eccentric in cluster mergers in between single binary
interactions) and 3-body mergers (when a BBH forms
with such high eccentricity that it is essentially a GW
capture before it can interact with a third body) will occur in
clusters. LISA will be able to measure the 2-body mergers,
but not the 3-body mergers [25]. Current work is being
carried out to see if detection of eccentric sources will be
possible with the proposed space-based detector, and current
prospects look promising [23,24,26].

In this paper, we develop and calculate the GW wave-
forms and orbital dynamics from generically spinning,
eccentric BBHs. We use the Lagrangian formulation of
the post-Newtonian (PN) equations of motion (EOM) in the
harmonic gauge for the generation of precessing, eccentric
GW signatures [27—41]. Our approach allows us to use any
spin values, mass ratios, and eccentricities, without restrict-
ing to planar orbits or coprecessing frames, so long as the
binary has a large enough separation (around a periapsis
passage of r ~ 10M), such that the underlying PN theory
does not break down [42—47]. This approach offers a major
step forward as a way to generate eccentric, precessing GW
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waveforms in a direct and straightforward way, without
carrying any of the additional restrictive assumptions of
quasiellipticity or adiabaticity that many current waveform
generators use. Furthermore, we can give more precise
waveforms since we do not ignore any timescale effect (see,
e.g., Ref. [48]).

This work is an extension of work first done by Lincoln
and Will [49], and of integrations as in Refs. [50,51]. In more
recent works, Refs. [52,53] used this framework to 3.5PN to
generate eccentric binaries in the PN harmonic gauge and
calculate the relevant waveforms. The research focus of this
project is to calculate the orbital quantities and GW wave-
forms from generic binaries with the requisite accuracy to
enable potential future observations from GW detectors.
This paper details the methodology and extends the previous
work done by other authors by giving quantitative compar-
isons to other known PN methods for the first time.

This Lagrangian formulation has larger applications as
well. Developing a general EOM that can handle arbitrarily
precessing and eccentric BBHs means that we can apply
this EOM to the precessing spacetime developed in our
previous work [54]. We must have an accurate EOM for the
general precessing BBH that can handle the orbital plane
precession of the binary due to spin coupling with the orbit
[55] and also the individual spins precessing in order to
evolve the BBH. The Lagrangian formulation excels at all
of these and can directly be used for this evolution.

The regime of final inspiral to plunge and merger can only
be modeled by numerical relativity [56-64]. This does,
however, provide us a unique opportunity to use the numerical
relativity regime; we can stitch our PN evolution onto the
beginning of NR simulations, and thus create a full waveform
model for the binary using hybridization of waveforms [65,66].

This paper is organized as follows. Section II gives an
overview of the PN EOMs for generic spins and eccen-
tricities. Section III shows the power and flexibility of the
EOM code and demonstrates our main results with orbital
and waveform quantities for some fiducial systems with
eccentricity and spins. Section IV quantifies the compar-
isons of the EOM code with the Taylor T4 method, the
initial conditions for quasicircular orbits, including orbital
frequency comparison, and waveform overlaps. In Sec. V,
we discuss a simple test of orbital eccentricity by using the
EOM. Section VI contains discussion, conclusions, and
future work.

Throughout this paper, we use the geometric unit
system, where ¢ = G =1, with the useful conversion
factor 1 My = 1.477 km = 4.926 x 107® s, although we
will keep some 1/¢ factors to count PN orders.

II. POST-NEWTONIAN FORMULATION

A. Orbital position and spin equations of motion

The general case of unaligned spins (i.e., spins that are
neither aligned nor antialigned with the orbital angular

momentum) leads to precession of the individual spins as
well as precession of the orbital angular momentum vector,
and therefore precession of the orbital plane. To describe
this complicated motion requires two sets of evolution
equations: one set describing the positions (trajectories) of
the point masses, and one set describing the evolution of the
spin of each point mass. We will review the position
equations first, then the precession equations. There are
several PN papers that go through this in detail. See
Ref. [38] for the nonspinning terms, and Refs. [36,37]
for the spin dependent terms.

The system comprises two bodies (a =1, 2), each

described by a mass m,, a spin S,, a spin precession
vector ﬁa, and position and velocity vectors 7,, 7,,. We also
define the total combinations M = m; + m, for the total
mass, 7 = m,m,/M? for the symmetric mass ratio, y = Mp
for the reduced mass, and

§ - §1 + §2, (1)

for the total spin, as well as the relative combinations 7 =
71 — F, = rit (where r = |F|) denoting the relative separa-
tion vector, 7 = 7; — 7, for the relative velocity, and the
relative spin difference 5, given by

£ 55, 5

M ) ny

The schematic EOM for the orbital positions, in terms of
relative variables and in the center-of-mass frame, then
takes the form:

dv M R N
+Cy (A x §) + Cy(7 x £
+C3(S x B) + Cy(E x D), (3)

with the nonspinning components of these .4 and B terms
defined in Ref. [38], and the spin terms and expressions for
Cy, Cy, C5, and Cy4 defined in Refs. [33,34,36,37].

The corresponding precession equations from Ref. [37]
take the form:

s mQ, +m9Q, = = = =
E:%XS—I—W(QZ—QQ x X, (4a)
di m ﬁ + m é - - - -
E:%xzﬂgz—gl) x S.  (4b)

Following Refs. [32,34,38], we use the Tulczyjew spin
supplementary condition (SSC) to define a spin vector with
conserved Euclidean norm. For this SSC, the higher order
spin-orbit terms have been derived in Refs. [33,34,36-38].
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The next-to-leading order spin-spin terms were derived in
Ref. [40], and the leading order cubic-in-spin terms were
derived in Ref. [39]. To date, leading order quartic- and
quintic-in-spin contributions to the EOM have not been
derived in PN harmonic coordinates with this SSC. See
Appendix B for some details.

Up to 3.5PN' order in this formalism, and for maximal
spins (|, =~ 1 where y, = §a /m?2), spin-orbit effects con-
tribute to the EOM at 1.5PN, 2.5PN, and 3.5PN. Spin-spin
effects contribute at 2PN and 3PN. Cubic-in-spin effects
start from 3.5PN. Quartic- and higher order in-spin effects
are beyond 3.5PN.

Equations (4a) and (4b), along with the acceleration
equation (3) comprise the EOMs of the two-body system.
For a given set of initial conditions, this system of ordinary
differential equations is easily solved numerically.?

We close this section with some brief comments about
radiation reaction. Through 3.5PN order (inclusive), radi-
ation reaction effects arise exclusively in the nonspin part of
B. Radiation reaction effects first appear in the nonspin part
of A at 6PN. Spin effects enter radiation reaction at 4PN,
and radiation reaction effects enter spin contributions at
4PN. Furthermore, for quasicircular orbits, the nonspin part
of BB contains only radiation reaction effects. In that case,
the radiation reaction is completely controlled to 3.5PN by
turning on/off the nonspin part of B.

B. Generation of gravitational radiation

To calculate the polarization of GWs, i, and h,, we
need to define the principle axes for the GWs. In particular,
we define N which is the radial direction to the observer, p,
which lies along the line of nodes (for our purposes we can
set to be along the y axis), and § which is orthogonal to N
and p [67]. Note that N # p x §.

This allows us to define the inclination i, and the phase
¢, with respect to the Newtonian angular momentum
L = u¥ x ¥ (see Fig. 1).

For the GW calculation, we use the 2PN order formula
beyond the leading order quadrupole approximation by
following Ref. [67]:

hil = EM[QU +P1/2Qz] —|—PQU +PQ,S]O
_|_P3/2Qij +P3/2ng0 _|_P2Qij
+ P2Qdy + P? Q4] (5)

where R denotes the distance between the observer and
the binary, and the individual PN terms are broken up
into nonspinning, spin-orbit (SO), and spin-spin (SS)

'A PN order N is said to be a term of order (v/c)2N.
2We have used Mathematica’s built-in RK4 solver to solve the
EOMs.

20 L

>

X

FIG. 1. The orbit-adapted vectors for GW polarizations. N is
the direction to the observer, p is along the line of nodes, and

G = N x p. The phase of the binary ¢ is defined in a right-handed
sense. For the initial conditions, the binary starts on the x axis,
and the phase is defined from there. The Newtonian angular

g - el . . . . .
momentum L = u7 x v defines the inclination i.

contributions. For example, P/2QY, is the 1.5PN SO
contribution, and TT means the transverse-traceless part.
We have implemented all of the nonspinning contributions
to the quadrupole moment up to 2PN, in order to be in
agreement with the GW calculations for Taylor T4.

For the Taylor T4 GW waveforms, we follow Ref. [38],
which expands the waveforms /4, and £, into PN orders as
powers of the frequency variable x = (MQ)%/?3,

Zﬂx +00 .
hx = TZXP/ZHWQH,X(VA cos i, sin i; Inx)
p=0

‘o <1%) (6)

to the desired PN order. The phase variable y is related
to the binary orbital phase ¢ by the auxiliary phase
variable [38]:

Q
W =¢—2MxpuQIn (Q_> (7)

0

The constant frequency € can be chosen at will, and for
our analysis is set to the one related to 10 Hz (chosen
naively as the entry frequency into the LIGO/VIRGO
band). The mass variable in the GW calculation is the
Arnowitt-Deser-Misner (ADM) mass of the binary:

no.n 1
Mapymy =M 1—§7+§(1—’7)72+0(c—6>} (8)

where y = M/ r is an expression of the PN parameter of the
system. The H(,/) « (y,cosi,sini;lnx) terms are the
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specific expansion coefficients, and are dependent on the
auxiliary phase variable y, and the inclination of the binary i.
The log terms of the frequency variable first occur at 3PN in
the GW waveform. Explicit expressions for H,, »),. . appear
in Egs. (322) and (323) of Ref. [38], which can be easily
computed from the output of our EOM integrator.

ITII. ECCENTRIC, PRECESSING BINARIES

We now demonstrate the power of our framework for
the most generic systems of BBHs, ones with nonunity
mass ratios, spin orientations, and eccentricities. Since this
parameter space is very large, we use a fiducial example for
a demonstration of the orbital and waveform quantities, and
know that the formalism is generic for any set of mass, spin,
and eccentricity parameters.

For the following example, we follow Ref. [20] to draw a
fiducial binary from the histograms that globular cluster
simulations produce. Other than picking physically relevant
parameters, we do not restrict ourselves to any particular
parameters.

The system that we chose to evaluate is a binary with an
initial periapsis passage of 35M, an initial value eccen-
tricity picked to be 0.4, a mass ratio ¢ =3/2, and
dimensionless spin parameter values of y; = (—0.3,0,0)
and y, = (0,0, 0.3). The initial periapsis passage and initial
eccentricity were selected such that a binary with masses
comparable to detected LIGO sources (we use a total mass
of 25 solar masses in the analysis of the GW waveform later
to dimensionalize the units) would fall just into the LIGO
band at periapsis. The chosen spin parameters have low
spin to lie in the physically relevant globular cluster results
and are initially strongly misaligned to give lots of spin-
spin and spin-orbit precession.

The extrinsic parameters for waveform production that
we chose for this fiducial system are optimized for ease.
The distance from the source we set to be 500 Mpc
(a redshift of ~0.1, small enough not to need to take
cosmological effects into account), with the orientation set
to (i,w, Q) = (0,0,0) where i, w and Q are the extrinsic
orbital parameters, and denote the inclination angle, argu-
ment of periapsis and longitude of the ascending node,
respectively. This is referred to as the optimal orientation,
where the binary is face on (inclination equal to zero), the
argument of periapsis is set to zero, and the longitude of the
ascending node is equal to zero (the binary is not tilted with
respect to the observer). These 13 parameters are enough to
completely specify the binary that we are describing
(though it will not give sky localization, as this set of
parameters is only for one detector, and a second detector
would be needed for localization purposes). For a real
source, it is a straightforward generalization to put in the
detector antenna patterns.

The final thing that we will need for the analysis is the
eccentricity definition which we use for generic eccen-
tricities. This is given as:

0 100000 200000 300000 400000 500000 600000 700000 800000
t[M]

10

FIG. 2. The orbital separation as a function of time for the
fiducial system that we lay out below. The binary has an initial
periapsis passage of 35M, an initial eccentricity of 0.4, a mass
ratio ¢ = 3/2, and initial dimensionless spin parameter values of
71 = (=0.3,0,0) and y, = (0,0, 0.3). The orbital eccentricity as
the binary evolves is calculated from Eq. (9).

k)

e = Tmax — "min (9)
Tmax + "min

which is a workable definition of eccentricity for the orbits
[52,53] in the situation of non-negligible eccentricity. It is
noted that this definition relies on the position of the binary
at different points in the orbit; therefore, it is not an
instantaneous definition at a point, but is instead averaged
over the orbit.

0

separation [M]

-100

0 100000 200000 300000 400000 500000 600000 700000 800000
t{M]

FIG. 3. The individual components of the trajectory as a
function of time in the center of mass variables for the fiducial
binary system that we outlined below. The binary has an initial
periapsis passage of 35M, an initial eccentricity of 0.4, a mass
ratio ¢ = 3/2, and initial dimensionless spin parameter values of
x1 =(-0.3,0,0) and y, = (0,0,0.3). Note here the spin-orbit
coupling giving rise to a non zero z component of the orbital
motion.
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FIG. 4. Left: The individual components of the total spin vectors as a function of time for the fiducial binary system that we outlined
below. The spins are precessing about the total angular momentum. Center: The individual components of 7, as a function of time. The
spin magnitude is conserved in time. Right: The individual components of , as a function of time. The spin magnitude is conserved in
time. The binary has an initial periapsis passage of 35M, an initial eccentricity of 0.4, a mass ratio ¢ = 3/2, and initial dimensionless
spin parameter values of y; = (—0.3,0,0) and y, = (0,0,0.3).

We start by evolving this binary and plotting the orbital We calculate the initial and final periapsis and apoapsis
trajectories and spin vectors, shown in Figs. 2-4. The = GW frequencies directly from the waveform as opposed to
eccentricity of the orbit is measured following Eq. (9), from  an approximate GW frequency from the orbital frequency
which we calculate the eccentricity in the beginning of the  in order to be as accurate as possible in the calculation of
evolution as e;,;; = 0.449 and the final one as e, = 0.074.  the GW frequency for the entry into a relevant detector
The discrepancy between the initial eccentricity in the code  (such as LIGO). For this binary, the measured initial
and the eccentricity that we calculate is due to the setup of  frequencies are 3.5 Hz at apoapsis and 10.5 Hz at periapsis,
the initial conditions, as the initial inputs to the code are  and the end frequencies are 55.5 Hz at apoapsis and
calculated as Newtonian initial parameters givena PN 7and ~ 66.2 Hz at periapsis.

w, which still does not fully incorporate the PN effects. The spin precession frequency is calculated in the same

The eccentricity reduction can be observed fully in the  way as the periapsis and apoapsis frequencies by the peak to
orbital separation as a function of time (see Fig. 2), and  peak calculation on the waveform. This is not an exact
efficiently radiates the eccentricity away over the evolution.  calculation for this frequency, as the spin precession has

With the orbital quantities, we can calculate the wave-  some ambiguity in the waveform. Since one needs to be able
forms as well, using the GW waveform prescription in  to define the peak in the precessional modulation, this may
Ref. [67], using the quadrupole formula up to 2PN  off by an orbit or two. For the purposes of these calculations,
corrections in Eq. (5). The plus and cross polarizations  we use the peak amplitude in the waveform for each larger
are tabulated in Figs. 5 and 6. spin precession modulation, getting a value of 0.1 Hz.

2.0le=22

1.0 1.0
05 05

E
3 00 0.0
-0.5, -05
-1.0 i
=izl | — ¢, =04,x, =(—0.3,0,0),x, =(0,0,0.3) | L=
-2.0 - 1 . 2.0

0.0 02 0.4 06 08 0 20 20 60 80 892 9.4 896 898 50.0 902

t[s] tfs] tls]

FIG. 5. The plus polarization of the GW waveform starting with an eccentricity of 0.4, and the dimensionless spin vectors y; =
(—0.3,0,0) and y, = (0,0,0.3). The horizontal axis is time in seconds, where we have dimensionalized the units by using a total binary
mass of 25 solar masses. The vertical axis is dimensionless strain §L /L, where we have calculated the strain with a distance to the source
at 500 Mpc, and optimal orientation of the binary. See Sec. III for discussion on initial conditions. The measured initial frequencies are
3.5 Hz at apoapsis, and 10.5 Hz at periapsis. The measured end frequencies are 55.5 Hz at apoapsis, and 66.2 Hz at periapsis. The left
and right panels show close-ups of the first and last seconds, respectively. In addition, the spin precession frequency of the GW is
roughly 0.1 Hz.
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FIG. 6. The cross polarization of the GW waveform with the same parameters as the plus polarization shown in Fig. 5. The frequencies
are the same as for the plus polarization, but the phase is 90° off (for this system and orientation).

An interesting note with these calculations is that the
peak periapsis frequency actually drops with time. This is
an artifact of averaging over half an orbit, and when
calculating the frequency through d¢p/dt, this is not an
issue. The period in the later stages of the orbit are cleanly
broken up into periapsis and apoapsis frequencies. We
observe that the sharp periapsis smooths out as the binary
circularizes, as expected.

IV. COMPARISONS AND VALIDATION

We now turn to comparing the methodology of the direct
integration to our implementation of the Taylor T4 method
(see Appendix C based on, e.g., Ref. [68]), restricted to the
case when both should be valid.

Taylor T4 is a PN approximant that assumes quasicir-
cular, nonprecessing orbits. So to compare to Taylor T4, we
restrict ourselves to black holes (BHs) that are sufficiently
separated, have vanishing orbital eccentricity, and with both
spins only along the axis of the orbital angular momentum

L (each could be either aligned, antialigned, or zero).

To begin, we will define a consistent comparison for both
Taylor T4 and the direct integration EOMs, and outline the
steps needed to reduce to this comparison. We will then
compare the orbital frequency and other orbital quantities,
and the GW waveforms generated by these systems.

A. Quasicircular orbits in the direct integration

Until now we have made no assumptions about eccen-
tricity; all of the expressions to this point are valid for
general orbits. Here, we reduce the EOMs to the case of
quasicircular orbits, which is important for our compar-
isons to other quasicircular approximants.

To do this, following Ref. [33], we introduce a moving
orthonormal triad {7, W }, where 7 is the same as above,
/=nxv/|axD|, and 1=7xh (see Appendix A).
Notice that 7 and 1 span the orbital plane, while 7 is
normal to it. In this basis, general kinematic considerations
lead to the acceleration equation

dz . A A
d_’t’ = (F = r)A + (rQ + 2iQ)1 + rwQ?,  (10)

where the dot denotes d/dz, Q is the orbital frequency, and
w is the orbital plane precession frequency defined by
w = —4-d#/dt. Quasicircular orbits 7~ ~Q~0, the
acceleration equation reduces to

s )
d—’;z—rgzwr roQ?. (11)

By identifying Eqs. (11) and (Al), one obtains PN
expansions for Q> and .

Introducing the frequency-related parameter x = (MQ)
gives a relation x(y), which may then be inverted order-by-
order to obtain a relation y(x). With y(x) in hand, one may
reexpress any function of the coordinate-related parameter y
in terms of the frequency-related parameter x. This is often
preferable, since expressions in terms of the frequency-
related parameter are gauge-invariant, whereas expressions
in terms of the coordinate-related parameter are not.
Examples of quantities that are useful to express as functions
of x are the energy, E(x), the flux, F(x), and the orbital
phase, ¢(x). Expressions for these are given in Ref. [69]
in terms of phase variable v (see Appendix C), and is the
jumping off point for the Taylor T4 approximant (see,
e.g., Ref. [68]).

2/3

B. Eccentricity reduction

For comparing to adiabatic methods such as Taylor T4,
we need to be able to accurately and reliably give
quasicircular initial conditions to the direct EOMs numeri-
cally. This is more challenging than at first glance, because
if we were to simply give Newtonian (or even PN [70,71])
initial conditions (detailed above), there would be an error
on the order of the neglected PN terms in the initial
trajectories. This would manifest as a spurious eccentricity
and add undesirable dynamics into the simulation.
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We follow a simple procedure to remove this unwanted
eccentricity. This procedure has been developed to set up
low eccentricity numerical relativity initial data [72,73]. We
begin by modeling the inspiral as a superposition of two
effects, the (real) inspiral, which is a smooth decrease in the
orbital separation as a function of time, and the (unphys-
ical) oscillation due to the spurious eccentricity.

We start with a simple assumption for the inspiral part
and oscillatory part, namely:

dr

= Vinsp(t) + B cos(wt + ¢). (12)

We take the inspiral model vj,,() to be a simple poly-
nomial, which we can fit for vy, (1) = vo + vt + vyt
with coefficients vy, v; and v,, and the oscillatory piece
B cos(wt + @) with the amplitude B, frequency ®, and
initial phase ¢. With this model, we run our EOM code with
the quasicircular initial conditions detailed above and fit the
data with this model. We can then subtract out the
oscillatory piece and iterate on this model as many times
as we need to attain the quasicircular initial conditions. This
is illustrated in Fig. 7.

Mathematically, this is taking the initial conditions 7 and
Q, and after fitting the inspiral, we update

;'new = }old+Aiﬂ’ (13)
and
Qnew = Qold + AQ, (14)
with Aj and AQ given by:

Ai = —Bcos ¢, (15a)

-10 = lteration 1
= lIteration 2
= lteration 3

0 500 1000 1500
(M)

FIG. 7. Log of the residuals of 7 in the eccentricity removal
from the data and the model (12), over the first three orbits of
evolution to refine the initial conditions. This example is at an
initial separation of 20M, with equal masses, and no spin.

AQ =

_Bmsinzpz_Bsinq)’ (15b)
2r, OQO 2r, 0
where ry is the initial separation of the binary, and € is the
initial orbital frequency.

C. Consistent PN order in Taylor T4

The flux formula in Taylor T4 is higher order than what
we can calculate in the EOM formalism. To combat this, we
need to tailor the T4 fluxes to a consistent PN order. From,
e.g., Eq. (A.13) of Ref. [69], we can see that the leading
order of v is a 2.5PN term. We can also see the series
expansion in the flux is out to 7, which is 3.5PN beyond
leading order. The absolute PN order for the fluxes is then
6PN, which is far beyond the highest order terms in the
EOM formalism. To be consistent with our nonadiabatic
EOM formalism above, we must truncate the flux terms
above next to leading order so that the total reexpanded
rational fraction is consistently 3.5PN, i.e., for nonspinning
binaries:

R, L[ 1247 35
]:(U)_SU n{l—l—v 36 "1 (- (16)

This is what we mean by a “consistent” PN order when
we compare to the EOMs in the following sections. When
quantifying comparisons, we will use the consistent PN
order and the high PN order (keeping the flux terms to 6PN)
to track the effects of PN orders.

D. Orbital frequency comparison: No spin

With the orbital quantities from solving Eq. (C3), and the
direct EOM orbital quantities from solving Eq. (3), we can
explore how to compare these to one another.

First, we need to give both methodologies the same
initial conditions, to ensure an apples-to-apples compari-
son. This is achieved by using the orbital frequency
calculated for the EOM orbit initially [see Eq. (18) below]
and setting the initial frequency of the T4 code to the same
initial value. This is simple using the relation Q = (v3/M)
and solving for €. We also define the binary phase to start
in the same location on the orbit; i.e., the binary starts on
the x-axis and the angular momentum is defined in the
usual right-handed sense.

The first and most direct comparisons that we can make
are with the orbital frequencies themselves. The orbital
frequency via the Taylor T4 method is given by the second
integration equation, d¢p/dr = v®/M, as d¢/dt = Q.

When we talk about the direct EOM method, however,
we need to be careful in how we define the orbital phase.
Since the EOM method directly outputs the trajectories and
velocities, we can calculate the orbital frequency in the
Newtonian sense:
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The relative error §(3PN, Aprx2) of the orbital frequencies as a function of time at different PN orders, starting the binary at

orbital separations of rqy = 20M (left), ry = S50M (center) and r( = 100M (right). All lines compare the 3PN term in Eq. (18) to other
approximants. The orange (dashed) line compares 3PN to the Newtonian (OPN) term, so the leading order PN error is IPN. The green/
red (longer-dashed/shortest-dashed) line compares to 1PN/2PN, so the leading order error is 2PN/3PN. The purple (shorter-dashed) line
is the relative error of the different orbital frequency definitions for the EOM code, which is similar to the 3PN error for the entire
evolution. The blue (solid) line is the relative error between the 3PN EOM code and the consistent PN order Taylor T4.

|7 x 7]
r2 ’

Q=

(17)

_|_

which specifies the orbital frequency given the orbital
trajectories and velocities, 7 and 7. To contrast this, we can
use an alternate definition from PN given in Ref. [38] for no
spins as
M 7 4 1
Q? _7{1 + ( —+ 14;7>7/+ (—§+§9 U 2) ?
235  [46031 123 24 22 r
( 64 {2240 64 (r{) ]
27 5 1
+ 35T T >y3}+0<§>, (18)

where r{, is a gauge constant that we set to 10M, which is
also used in the direct EOM method, and y is the PN
parameter M /r. This allows us to quantify a PN order by
dropping higher order terms and plotting the differences.

For the following analysis, we are restricting to a
nonspinning binary in a quasicircular orbit, that starts in
the same initial position for the evolutions of the binary
with both Taylor T4 and our direct EOM integration.
We give the results of these different PN orders in Fig. 8
by calculating

(19)

'Qaprxl - Qaper
—Q .

6aprx lLaprx2 =
aprx |

We can see immediately that they follow a strict hierarchy
of decreasing relative difference as the PN orders are
increased; i.e., the differences &;py;py decrease with
increasing PN order i, which is a good initial sanity check.

We similarly define the difference stemming from using
different definitions of the frequency itself,

Qdef 1 _ Qdef2

ok (20)

Sdef1.def2 :‘

and note that the difference 5"N"*¥/* accounts for roughly
the same order error as the 3PN term (which is reassuring,
since the orbital frequency is given to 3PN order in the
alternate PN definition stated above). There is a curious
thing happening at the initial separation r = 50M, where
this difference §°""*/" is larger than the 3PN error. This is
explained in Fig. 9, where it becomes apparent that the 3PN
term has a zero crossing, and thus dips lower than the
difference from the frequency definition. This zero crossing
is directly dependent on the gauge term in Eq. (18) and can
be shifted at will for different choices of .

The relative difference of separate PN orders gives a
measure of the error in terms of the PN order. We can use
this to quantify any comparison in terms of the orbital

10—10,
= 03pN,0PN = 03PN T4

= O3pN,1 PN . 63 PN X VI
< 63PN 2PN

10—13,

10 100 1000 104

r(M)
FIG. 9. Tracking the PN order of the orbital frequencies as a
function of time. We measure the slope of the functional form of
the orbital frequency (in solid), through the evolution data
(points) for the orbital frequency PN scalings. The T4-EOM
comparisons are obtained by fitting the data to a simple
polynomial and over plotting the resultant fit function through
the data.
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frequency PN order and to check the PN scaling of the
discrepancies of Taylor T4 and the EOM methods, d3py 14-
What we find is a strong scaling as a function of separation.
When the binary is closely separated (r < 12M), the
discrepancy is greater than 1% after an initial discrepancy
below the 3PN line. As the binary inspirals, the discrepancy
grows, crossing the 2PN line after a short amount of
evolution (¢ ~3000M), and crosses the 1PN line after
(t ~10800M). When we look at larger separations of
50M, we see again this same trend of a sharply scaling
function of separation, but in this case, it stays below the
2PN line. When we look at the 100M case, we find that
the discrepancy between the Taylor T4 and EOM codes
again stays below the 2PN line, but with a lower relative
difference.

Of course, to demonstrate that this is indeed a PN scaling
and not another effect, we need to show that the relative
differences between the PN orders scale as the proper
powers of r* when we look over a large range of
separations. We do this in Fig. 9. This figure shows the
relative differences scaling as a function of separation. In
each case, we fit a power law to the line and record the
slope. The slopes that we find scale with orbital separation
r*, where the slope s is measured for the individual relative
errors. We find that the 1PN error scales with separation as
s~ —0.976, the 2PN error scales with separation as
s &~ —1.9995, the 3PN error scales with separation as s =~
—4.002 at far separations (r = 1000M), and s =~ —2.7577 at
small separations (r ~ 12M). The 3PN error does not scale
as s~ —3.0 because of the gauge dependent logarithm
term. When looking at separations that are even farther out
than r ~ 100M, like r ~ 1000000M, we find that the slope
approaches the correct PN scaling of —3. The scaling of the
different PN definitions is also tracked here, and while there
is not a clear power law trend on this plot, we do note that
the definitional discrepancy falls at or below the 3PN line
(except for the special case around 50M), so we can say
from this that either definition is acceptable in the EOM
code. For our purposes, we will use the geometric definition
of Q = |A x ?|/r. When we measure the scaling of the
Taylor T4—EOM relative error in Fig. 9, we find it is
s ~ —4.545. We do not attribute this discrepancy to the PN
order since this does not obey any obvious PN scaling.

This begs the question of what is causing this rapid drop
in relative difference as the separation is increased.

To investigate this, we need to consider what kinds of
effects could be at play: this could be a numeric effect (e.g.,
one of the codes is not calculating to the requisite precision,
which is causing a discrepancy at close separations where
time steps are smaller); an eccentricity that is deviating the
orbit from quasicircularity in the EOM code; or an effect of
the adiabatic approximation breaking down.

To test whether or not this is a numeric effect, we
doubled the precision of both codes and reran the test at
20M again, with the same results. Therefore, we conclude

that this is not a numeric issue. To test whether this is an
eccentric effect, we ran the EOM code with different levels
of the eccentricity remover (which should, in principle,
solve the quasicircularity problem if indeed it is one), and
checked the relative differences. We find preliminarily that
the residual eccentricity does scale the relative difference of
the orbital frequencies, not quite one-to-one, and is
removed by the iterative eccentricity removal procedure.

The final plausible possibility is the adiabatic approxi-
mation breaking down at close separations, which leads to a
high discrepancy between the two methods. This is the
most challenging possibility to eliminate. The best method
for tracing this is to orbit average all of the EOM code,
essentially making it adiabatic. We have done this for the
lowest order Peters-Mathews test [OPN (Newtonian)
conservative terms, with a 2.5PN radiation reaction term
added], and find that this does not seem to affect the
evolution at lowest order. Of course, to show that this is
indeed unaffected in the general sense, we need to go
beyond the leading order evolutions and demonstrate this
for 3.5PN.

E. Waveform comparisons for aligned spins
and different mass ratios

With the orbital frequency analysis concluded, we now
turn to calculating the GW waveform overlaps between
Taylor T4 and the EOM methods. We pick several fiducial
separations, mass ratios, and spins (both aligned and
antialigned, denoted by y; and y,). The initial separations
for which we choose to calculate the overlaps are 100M,
50M, and 20M, with mass ratios g = m,/m; (m, > m;)
of 1, 2, 10, and 100. The spin parameters that we pick
are y; = {0,0.3,0.6,0.9} and y, = {0,0.3,0.6,0.9, -0.3,
-0.5,-0.6, —0.9}, at separations of 50M and 100M.

We calculate the overlap and maximize over time and
phase (e.g., Ref. [74]), by calculating the inner product in
the frequency domain

(h]h,y) = 4max

c

dafl, (21)

/ Shigh M
low Sn (f)

where §,, is a noise power spectrum density of a detector.
The maximization over time is handled by maximizing over
t., and the phase maximization is handled by the shifting of
h; in the frequency domain. The low frequency cutoff on
the integration is set to a reasonable frequency for a detector
(for this analysis we set the low frequency cutoff to 10 Hz,
which is a reasonable if a bit ambitious lower frequency
bound for LIGO). The high frequency cutoff is not set, to
capture the maximum overlap of the waveform if the
endpoint is not exactly set to the same frequency.

3Here, we used LIGO’s target sensitivity curve, Zero-Detuned
High-Power (v2) [75]; it has since been superseded by v5 [76].

024015-9



BRENNAN IRELAND et al.

PHYS. REV. D 100, 024015 (2019)

25 1.0 .
O©O 4.8
@)
20 O [} ©) 4.4
O]
0.5}F
4.0
1.5F ®
36 o
. s :
= 100 O ® =) 2 00r @ {32 =
g E 2
| |
{2.8
®
0.5}
—0.5¢ @ 42.4
®
0.0} {2.0
@ {1.6
—-1.0 L L L L L L]
_05 ‘ ‘ ‘ ‘ ‘ 0.0 0.2 0.4 0.6 0.8 1.0
20 40 60 80 100 X1
Tinit
FIG. 11. A visualization of the data in Table I, where we have

FIG. 10. A visualization of the data in Table I, where we have
suppressed all of the spin overlaps, and plot the initial separation
vs the log of the mass ratio, with the color scale indicating
—log,o(1 — O). This overlap was done over the shortest evolu-
tion; at 20M the simulation ran for only 20 orbits, so the rest of
the overlaps were calculated for 20 orbits to give an accurate
comparison. This parametrization of the color scale leads to the
darker colors indicating a better overlap (the number of nines is
indicated on the scale).

We then normalize (using the euclidean norm) over
and h, to obtain the overlap:

(7 ]ho)

- Norm(h;)Norm(h,) 22)

The results are tabulated in Table I (see also Figs. 10 and
11). We keep all of the parameters that we used to calculate
the overlaps in the table: the initial and final separations, the
mass ratio, the aligned dimensionless spin values y; and y»,
the total simulation time in units of M, the number of orbits
the waveform spanned, the time step of the overlap
calculation, and finally the maximized overlap for both
the Taylor T4 to EOM comparison at a consistent PN order
(3.5PN), and also at the highest T4 order (6PN).

We see that the overlap is a strong function of the orbital
separation: as the separation increases, the overlap
increases from a bad overlap at 20M of only O ~ 0.8 to
an overlap of O ~0.99999 at 100M. In addition, as the
mass ratio increases, the overlap also increases. For ex-
ample, at a separation of 50M, holding the spins of the
individual BHs to zero, we increase in overlap from
O0~098atg=11t0 O~0.99999 at ¢ = 100.

When we move to explore the spin parameter space, we
hold the mass ratio fixed and compute the overlaps for
separations of 100M and 50M. As the dimensionless spin
parameter increases in value to higher positive y effective
(r effective is the spin values projected along the orbital
angular momentum), the overlap goes down, at S0M, from

suppressed the mass ratios and initial separations, and plot the
¥1—x> plane, with the color scale indicating —log;o(1 — O). The
large circles indicate an initial separation of 50M, while some
configurations were also examined at 100M, marked with a
smaller inner dot. These overlaps were run on waveforms with a
simulation duration of 50 orbits. This parametrization of the color
scale leads to the darker colors indicating a better overlap (the
number of nines is indicated on the scale).

O ~ 0.995 at spins of zero, to O ~ 0.99 at a high positive y
effective.

When the spins are anti aligned with each other, keeping
the effective spin zero, the overlap stays fairly constant, but
increases slightly, with the y; = 0.9, y, = —0.9 having an
overlap of O ~ 0.999.

A final discussion point is to highlight the effects of PN
at higher order with Taylor T4, specifically when we add
higher order radiation reaction flux terms. The high order
T4 generically differs in overlap from the consistent order
T4 by 1078 at 100M, 1075 at 50M, and 1073 at 20M.
Though the overlap difference increases as the separation
decreases, the PN effects at 4PN do not account for the
discrepancy of the overlaps between Taylor T4 and the
direct integration EOM.

In addition to the results we tabulate in Table I, we
perform stability tests on the overlap between Taylor T4
and the direct integration EOM by inputting a small
x-component perturbation to the two spin vectors, which
will cause a small amount of spin precession, hence marked
EOMp. Specifically, we give the dimensionless spin vectors
71 = (107%,0,0.3), and y, = (-=107*,0,0.3), and we run
the same overlaps with the consistent T4 method, and also
run the overlap with the EOM code with no x-component
perturbation to the spins. The overlaps that we obtain are
Or4_rom = 0.983693663044, which is exactly the overlap
that we obtain when running without the x perturbation.
This is easily verifiable by redoing the overlap analysis
with the EOM code with and without the perturbation.
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We obtain an overlap of Ogop-_gom, = 1.0, which clearly
shows that a perturbation to the spin directions do not affect
the overlaps.

V. GENERIC TESTBED FOR OTHER
APPROXIMANTS: ECCENTRICITY DEFINITIONS

This direct EOM that we present is generic and can be
applied broadly to many different physical systems, and
can be used as a benchmark test for other formalisms. To
illustrate this, we apply to a simple test of orbital eccen-
tricity put forward recently [77].

Eccentricity in general relativity is difficult and unin-
tuitive to define [9,77-79]. As such, most Newtonian
definitions are not sufficient and can give wildly different
results. To illustrate this, we are going to take two different
parametrizations of the Newtonian eccentricity, the Runge-
Lenz vector and a low eccentricity definition of e used
in NR.

The Newtonian Runge-Lenz vector is defined as [80]:

. 2 1\ F-D.
—(Z_ )l 2
¢ (M r)r 7 (23)

which, for a Newtonian orbit, is a constant of the motion
and implies that the eccentricity itself is another constant
of the motion. To obtain the scalar eccentricity, we simply
take the magnitude of this vector. This measure is shown in
Fig. 12, in a nonspinning binary system at a low PN order at
an initial separation of 20M, as it evolves down to 10M.

To contrast this, we will use another definition of
eccentricity taken from numerical relativity initial data,
using the radial acceleration 7, following Refs. [65,81].
Under the double assumptions of low eccentricity initial
data and adiabatic frequency Q, we can estimate r(¢) and its
derivatives (to leading order in e) by

r(t) ~ M'3Q723(1 4 esin(Qr)), (24)
i(t) ~ M'3Q+1Be cos(Qt), (25)
i#(t) ~ =M'3Q+ 43¢ sin(Qt1), (26)

and then define

Py

A(r) = S1~ —esin(@), (27)

so that the eccentricity is given by

¢ = Amp(A) = Amp (%) . (28)

A(r) is also shown in Fig. 12. We note that both measures,
as shown in Fig. 12, oscillate—and for A(7), we expect the
amplitude of these oscillations to be the actual eccentricity.

0.010
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Leading Order

0.008
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0.004
0.002| |

m\/\/\/\/\/\/\/\/\/\/V\/\/vvvvvvvv w»\
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FIG. 12. The difference that an eccentricity definition can make
in the calculated eccentricity at a given separation. For this figure,
the BHs are nonspinning, start at 20M separation, and are evolved
using the orbital EOM at low order that contains only the OPN
(Newtonian) +2.5PN (leading-order radiation reaction) terms.
The eccentricities are then calculated using the Runge-Lenz
definition Eq. (23) (blue), the full NR-derived leading-order
measure Eq. (30) (green), the # formula Eq. (28) (orange), and the
amplitude of Eq. (28) (red). The blue and green curves can be
seen to be almost identical.

We thus try to complement A(z)~ sin(Qf) with the
corresponding cos(Q), using

ri’
B(t) = A e? cos?(Qt), (29)

and then should have

VA + B = \/e2 sin?(Qt) + e cos*(Qt) = e.  (30)

However, in Fig. 12 we see that

(1) The curve for A(r) drifts downwards, and at late
times oscillates entirely below 0.

(2) The curve for VA? + B coincides (to ~1%) with the
Runge-Lenz eccentricity measure.

(3) The curve for A% + B, which is supposed to serve
as the nonoscillatory envelope of A(t), does oscillate
just like A(t); furthermore, it both starts off above
and drifts upwards faster than A(z).

(4) The amplitudes of oscillations themselves shrink for
both curves (which is what we would have expected
the full eccentricity to do).

As all “physical” eccentricities remain very low (e ~ 1073),
this suggests that the adiabatic approximation is breaking
down; we shall analyze just how:

We no longer take Q as a constant, but rather as Q(7); we

model its leading order behavior as Q(r) o (t. —t)7/8,
with 7, the projected leading order time of coalescence [82].

Then Q ~ Q/(t. — ) and Q ~ Q/(z, — 1)%. We note that for
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the evolution shown in Fig. 12, (. — ) decreases from
~10* to ~103, while Q changes over a few ~1072,
We then see that the derivatives of

r(t) ~ M'3[Q(1)] 723 (1 + e sin(Q1)) (31)
more accurately behave like

Q
#(t) ~ MV3QT1/3 [e cos(Q1) + s 4. } . (32)

(1) ~ =M'3Q+4/3 {e sin(Qr) + ﬂ% + - ] . (33)

with numerical factors of order unity, a and f.

For #, when (t.—t)~10* the drift term is ~(t, —1)~>
Q72 ~ (10%)72(1072)=2 = 107, and so is smaller than the
oscillating eccentricity term e; however when (7, — 1)~
103, the drift term grows to ~(10°)72(1072)=2 = 1072, and
so at late times dominates over the oscillations. This
explains why the term A(r) oscillates with the amplitude
of the eccentricity early on, but is later dominated by the
drift.

For 7 the situation is different: even at early
times, (t,—1t)~10% the drift term, ~(z.—1)7'Q '~
(104)~1(1072)~! = 1072, is already larger than the eccen-
tricity e, and so the behavior of B(¢) is governed by the
drift, rather than the eccentricity oscillations.

As the Runge-Lenz definition Eq. (23) is essentially
given by the velocity components, it adopts these features
of 7, and measures the drift associated to nonadiabaticity,
rather than the eccentricity itself; the eccentricity is given
only by the oscillations.

VI. DISCUSSION

We have developed and constructed a direct integration
of the PN EOM in the harmonic gauge for the construction
of eccentric BBHs with arbitrary spins. This work repre-
sents a step forward for the modeling of these systems by
extending known methods (such as Taylor T4, and the
current LIGO/VIRGO collaboration methods) to binaries
that evolve the spin procession equations and orbital
motion equations for a fully generic GW waveform.
This formalism is not limited by eccentricity as the
post-Keplerian eccentricity expansion models (e.g.,
Refs. [8-10,13,16]) and is capable of handling eccentricity
along with spin precession.

We test the validity of this method by comparing to
known results from the Taylor T4 method. In particular, we
look at the orbital frequencies produced by systems with
the same initial conditions and compare. The result we find
is that the relative difference in the orbital frequencies is a
strong function of separation, that does not scale with a

high order PN effect, and scales as a function of separation
as r* with s ~ —4.5.

This effect is not overly worrying, even though we
cannot ascribe exactly the cause of this scaling. This is most
likely the fundamental difference between Taylor T4 and
our method. The various PN dynamics methods do not
produce the same results even among the various Taylor T
approximants [74]. We rule out a numeric issue, and an
eccentric effect as the sole cause. We have confirmed that
the adiabatic approximation does not affect the evolution of
the binary at low order and are planning on verifying this
for the full 3.5PN dynamics in future work.

This begs the question of what is causing this rapid drop
in relative difference as the separation is increased.

To investigate this, we need to consider what kinds of
effects could be at play: this could be a numeric effect (e.g.,
one of the codes is not calculating to the requisite precision,
which is causing a discrepancy at close separations where
time steps are smaller); an eccentricity that is deviating the
orbit from quasicircularity in the EOM code; or an effect of
the adiabatic approximation breaking down.

To test whether or not this is a numeric effect, we
doubled the precision of both codes and reran the test at
20M again, with the same results. Therefore, we conclude
that this is not a numeric issue. This is an eccentric effect;
we ran the EOM code with different levels of the eccen-
tricity remover (which should, in principle, solve the
quasicircularity problem if indeed it is one) and checked
the relative differences. We find preliminarily that the
residual eccentricity does scale the relative difference of
the orbital frequencies, not quite one-to-one, and is
removed by the iterative eccentricity removal procedure.

The final plausible possibility is the adiabatic approxi-
mation breaking down at close separations, which leads to a
high discrepancy between the two methods. This is the
most challenging possibility to eliminate. The best method
for tracing this is to orbit average all of the EOM code,
essentially making it adiabatic. We have done this for the
lowest order Peters-Mathews test (OPN conservative terms,
with a 2.5PN radiation reaction term added), and find that
this does not seem to affect the evolution at lowest order. Of
course, to show that this is indeed unaffected in the general
sense, we need to go beyond the leading order evolutions
and demonstrate this for 3.5PN.

We also compare the GW waveforms of Taylor T4 to the
EOM methods, maximizing over time and phase, to give a
quantification of the overlap. The results that we find are
consistent with the findings of the orbital frequency analysis:
the overlap is a strong function of the orbital separation from
20M to 100M. The overlaps increase strongly as a function
of mass ratio, with the best overlaps of the waveforms we ran
being at a mass ratio ¢ = 100. In addition, we performed
spinning waveform overlaps to test the validity of the spins
in the EOM code. We find that the spins do not modify the
overlap of the waveform when the effective spin of the
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binary remains zero, and drops the overlap by about a
percent when the spins are aligned and low spins
(r1 = x> = 0.3), to about two percent when the spins are
moderately spinning (y; = y, = 0.6). The overlap then gets
better as the spin gets stronger. We also tested the stability of
the code to small perturbations in spin by giving the EOM
code a small nonzero spin unaligned with the orbital angular
momentum and found no effect on the overlap.

Finally, we elucidated a fiducial binary system, with
realistic parameters drawn from galactic binary simula-
tions, to demonstrate the flexibility and power of this direct
integration EOM code. We used initial conditions such that
the binary would be in the very low frequency end of the
LIGO band at periapsis, and let the binary evolve for 200
orbits. We then output the binary orbital trajectories, spins,
and velocities. We recover the orbital plane precession of
the binary due to spin-orbit coupling, the spin-spin pre-
cession of the individual spins and spin totals, the eccen-
tricity reduction in the binary, and calculate the initial and
final eccentricity of the binary using our geometric defi-
nition. We take the orbital quantities and calculate the
waveform, recovering the eccentric signal imprinted on the
outgoing gravitational radiation, estimate the periapsis and
apoapsis frequencies of this radiation, and show the spin
precession modulation that is also imparted on the binary.
We do this for an optimally oriented binary, but leave the
code generic so that any binary orientation can be used,
providing us with a fully generic, precessing, eccentric
binary GW waveform.

We hope to apply this EOM code to parameter estimation
for future gravitational wave detections. We currently have
the code implemented in Mathematica, and the analysis
takes approximately a minute to complete. This is far too
long for parameter estimation purposes currently, and we
are planning on focusing on this in the future.

There are several relevant detectors for this fiducial
source. The periapsis frequency passage is at the threshold
of detectability for LIGO/VIRGO at design sensitivity
[76,83,84]; it will fall into the band for future LIGO
upgrades such as A+; and third generation ground-based
detectors will have both the periapsis and apoapsis frequen-
cies in band.

The precessional frequency will be detectable by
planned space based detectors such as the LISA mission
[85], though the source outlined above will be too weak for
detection; these frequencies are in band if a nearby binary
happens to have these parameters.

We also note that there is a planned Chinese space-born
GW detector in the millihertz frequencies, TianQin [86],
and a planned Japanese space-born detector, DECihertz
laser Interferometer Gravitational wave Observatory
(DECIGO/B-DECIGO) [87,88] in between the frequency
ranges of ground based and LISA detectors. These will
make it possible to detect a binary’s dynamics by multiband
GW astronomy.
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APPENDIX A: ANOTHER EXPRESSION
FOR PN EOM

Equation (3) can be reformulated into the alternate form:

@ M.

a_—p[(l+A)ﬁ+BE+CZ”]. (A1)

We note that while the unit vector # is orthogonal to 7 and

7, the triad {7, 7, zf”} does not form an orthogonal basis,
because 7 and ¥ will, in general, nor be orthogonal to one
another (although they will be approximately orthogonal in
the special case of quasicircular orbits). This equation
resembles Eq. (129) in Ref. [38], except for the additional C
coefficient. It is noted that the term with coefficient C
represents a component of the acceleration directed out of
the instantaneous orbital plane spanned by 7 and 7. It
therefore gives rise to precession of the orbital plane and
correspondingly ought to vanish identically when spins are
aligned or antialigned with the orbital angular momentum.

To obtain Eq. (A1), we may expand each cross-product
in Eq. (3) by using

A xS =iSh—38,5+rQS,2, (A2)
AxE=iEn—E,0+rQ8,2, (A3)

§x B = —128,0 + 18,5+ rQ(S, — 18,)2,  (A4)

T x D= =080+ i5,0 + rQ(E, — 15,7, (A5)

where Q is the instantaneous orbital frequency, I=7xn,
and we have introduced the notation

§ I’l, S/lzg';l,
I’l, lei'i,

-2, S, =
B

Sf:
Zf:

M1 tal
NV
P4l

and
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S, =8:/(rQ),
if =2,/(rQ),

5, =8,/(rQ).
3, =3,/0rQ).

The PN expansion for Q is only calculated in the case of
quasicircular orbits. To avoid assuming quasicircular orbits,
we may replace rQ in the above identities with the (exact)
identity

2 -2, (A6)
After using Egs. (A2)—(AS5) to eliminate the cross-products
in Eq. (3) and recollecting terms, one obtains an accel-
eration equation in the form of Eq. (A1), with

~ -1 - - -
.A = A - <:§> [I"S/Cl + i'Z/Cz - ’02SfC3 - vzszﬂ,

(A7a)
~ _1 ~ ~ ~ ~
B=B- (g) [—1Q35,C, — rQS,Cy + #5,C; + i5,Cl).

(A7b)
~ m\ ! ~ ~ ~
C: —(;) rQ[SACI +Z,1C2—|—(Sn—i’S,1)C3

+ (Zn = 7E)C4. (ATc)

It is noted that this last equation is used in the case of
quasicircular orbits to compute the orbital plane precession
frequency @. Also we note that in the case when spins are
aligned or antialigned, C vanishes identically (since in that

case S, =S, =0and X, =%, = 0).

APPENDIX B: SPIN PRECESSION EQUATIONS

We overview the spin precession equations for two
bodies with spins that are unaligned with the orbital angular
momentum. As mentioned previously, these equations are
needed to complete the EOM.

There is no unique definition of center of mass in a
relativistic theory. The notion of spin inherits this ambi-
guity, which gives rise to nonphysical degrees of freedom
that need to be controlled. This is done by imposing a “spin
supplementary condition” (or SSC) that eliminates the
nonphysical degrees of freedom. The SSC is imposed on
the spin tensor, out of which are constructed a spin 4-vector
and eventually a spin 3-vector, with just three physical
degrees of freedom. Following Refs. [33,34,36,37], we use
the Tulczyjew SSC [89]:

S p, = 0. (BI1)

We define spin 3-vectors with conserved norm by §a,
where a = 1, 2 is the label of the particles. In terms of these
conserved norm spin vectors, the precession equations are
written as

-

s, = =
L=0Q, xS,
d[ a S a

(B2)

where ﬁa with a = 1, 2 are the precession vectors for mass
1 and 2, respectively. Each precession vector can be
decomposed as

éa = éa.NS + éa.SO + ﬁa.ss + O(SSS). (B3)

The precession vectors are only expanded to quadratic-in-
spin order, O(SS), because they get multiplied by a spin
vector in the precession equation. Terms in the precession
vectors at O(SSS) would contribute at O(SSSS) in the
precession equations, which is beyond the scope of this
work. Each contribution to the precession vector is then
decomposed into a PN expansion of the form,

= I =apny . 1 zoeny 1 z3pn
QN = ? QS.NS) + g QELNS) + C—GQEI,NS)
1 = 1
+=00N + 0 (—8> : (B4a)
¢ ¢
- I zasen) 1 zsen) - 1 235PN 1
Quso = 3950 + 5850 + 7% +0( ).
(B4b)
3o — L3 oL B4
ass = 5 s +0(— (B4c)

Explicit expressions for ﬁl and ﬁz are given in Ref. [37].

APPENDIX C: THE TAYLOR T4 METHOD

Taylor T4 is an adiabatic approximation4 that evolves
the phase and frequency of the BBH. There are two parts to
this method. The first is the phase evolution of the binary,
which we will detail here, and the second is the calculation
of the gravitational radiation from the orbital phasing of the
binary.

All of the formulas of energy and flux can be written in
terms of the frequency variable v = (Md¢g/dr)!/3, and we
start with the basic definition of energy conservation,
namely:

dE(v)
dr

+ F(v) +M(v) =0, (C1)

where the time rate of change of the energy is equal to the
flux leaving the system plus the mass rate of change due to

GW absorption. In practice, since this BH absorption is a
relatively tiny contribution [90] (although 2.5PN order

*An adiabatic approximation means that we do not consider
the change in any quantity that is smaller than one orbit, i.e., the
inspiral of the BHs will not affect the orbit. As such, since we
consider spin precession on a different timescale than the orbital
timescale, these approximations do not have spin precession built
into them, and are only for aligned spins.
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relative to the leading flux), we neglect it for the rest of this
analysis, bringing our conservation statement to
dE(v)
dt

= —F(v). (C2)

We start with the energy balance equation (C2), integrate
it to find v(¢), and therefore Q(¢), since d¢p/dr = Q. Taylor
T4 explicitly takes the rational fraction,

dv_ F

. C3
dt ~ dE/dv’ (C3)

along with

dp »°

dt M’ (C4)
reexpands the fraction as a consistent PN series, then
numerically integrates to obtain v(¢) and ¢(¢).

Full expressions of E(v), F(v), and dE/dv that we use
are given in Ref. [69]. These equations assume a quasi-
circular orbit for the trajectory. Taylor T4 approximants
integrate the energy balance equations and have been
thoroughly explored and developed. Further approxima-
tions can be constructed in the frequency domain (the
Taylor F-approximants). These methods have been com-
pared, see Ref. [74].

APPENDIX D: TABULATED RESULTS ON OVERLAP CALCULATIONS

TABLE L.

The overlaps between Taylor T4 and EOM methods, documented for different separations, mass ratios (g), and aligned

dimensionless spin values (y; and y,), at both the consistent T4 flux order and the highest T4 fluxes available. There are several
interesting lines to pay attention to: as the spins increase in alignment, there is an inflection point around y; = y, = 0.9, where the
overlap drops then increases again. In addition, at 50M separation, we increase the resolution of the timestep to probe the effects of
numerical resolution on the overlap calculations. We find no effect on the overlap of the waveforms due to the timestep resolution.

Separation Duration Overlaps Ots_goMm
Tinit [M] Tfin [M] q X1 X2 1 [M] orbits dr [S] T4c0nsistem T4hjgh
100 99 1 0 0 318429.8 ~50 1.09061 x 1073 0.99999065 0.999990644
100 99 1 0.3 0.3 318429.8 ~50 1.04527 x 1073 0.99993352 0.999933512
100 99 1 0.6 0.6 318429.8 ~50 1.04527 x 1073 0.99983625 0.999836244
100 99 1 0.9 0.9 318429.8 ~50 1.04527 x 1073 0.99971069 0.999710688
100 99 1 0.3 -0.3 318429.8 ~50 1.04527 x 1073 0.99998949 0.999989489
100 99 1 0.6 —0.6 318429.8 ~50 1.04527 x 1073 0.9999856287 0.9999856265
100 99 1 0.9 -0.9 318429.8 ~50 1.04527 x 1073 0.99997797 0.9999778678
100 99 1 0.9 -0.5 318429.8 ~50 1.04527 x 1073 0.9999415165 0.9999415133
100 99.1 2 0 0 318480.2 ~50 1.045439 x 1073 0.99999283 0.999992828
100 99.7 10 0 0 318701.62 ~50 1.04617 x 1073 0.9999991669 0.9999991668
100 99.95 100 0 0 318833.8 ~50 1.0466 x 103 0.9999999893 0.9999999893
50 47.2 1 0 0 114043.4 ~50 3.90593 x 104 0.994904572 0.994898471
50 47.2 1 0 0 114049.1 ~50 2.246257 x 10~ 0.994797482 0.994791317
50 47.3 1 0.3 0.3 114043.4 ~50 3.74357 x 1074 0.983693663 0.983675238
50 47.3 1 0.6 0.6 114043.4 ~50 3.74357 x 1074 0.969583498 0.969553474
50 47.4 1 0.7 0.7 114043.4 ~50 3.74357 x 1074 0.981885223 0.981867878
50 47.4 1 0.8 0.8 114043.4 ~50 3.74357 x 1074 0.991724021 0.991717488
50 47.4 1 0.85 0.85 114043.4 ~50 3.74357 x 1074 0.992601112 0.992597499
50 47.4 1 0.9 0.9 114043.4 ~50 3.74357 x 10~ 0.990197785 0.990190154
50 47.4 1 0.95 0.95 114043.4 ~50 3.74357 x 1074 0.984804119 0.984791162
50 47.2 1 0.3 -0.3 114043.4 ~50 3.74357 x 1074 0.995280388 0.995274373
50 47.2 1 0.6 -0.6 114043.4 ~50 3.74357 x 104 0.9971254502 0.997121275
50 47.2 1 0.9 -0.9 114043.4 ~50 3.74357 x 104 0.9988241423 0.998822279
50 47.3 1 0.9 -0.5 114043.4 ~50 3.74357 x 1074 0.985182006 0.985164755
50 47.5 2 0 0 114095.5 ~50 3.74528 x 1074 0.99467073 0.994667208
50 49.1 10 0 0 114299.9 ~50 3.75199 x 1074 0.999489566 0.999489472
50 49.9 100 0 0 114395.1 ~50 3.75512 x 104 0.999994205 0.999994204
20 16 1 0 0 11965 ~20 3.92762 x 1073 0.782932526 0.775227367
20 18.2 1 0 0 5982.5 ~10 1.963812 x 1073 0.917453743 0.916892613
20 16.5 2 0 0 11979.2 ~20 3.93229 x 1073 0.827044247 0.821830277
20 18.8 10 0 0 12050.8 ~20 3.95579 x 1073 0.972718171 0.97255266
20 19.9 100 0 0 12087.1 ~20 3.96769 x 1073 0.99919055 0.999190336
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