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Lowering the output noise of short-pulse lasers has been a long-standing effort for decades. Modeling the noise
performance plays a crucial role in isolating the noise sources and reducing them. Modeling to date has either used
analytical or semianalytical implementation of dynamical methods or Monte Carlo simulations. The former
approach is too simplified to accurately assess the noise performance in real laser systems, while the latter
approach is too computationally slow to optimize the performance as parameters vary over a wide range.
Here, we describe a computational implementation of dynamical methods that allows us to determine the noise
performance of a passively mode-locked laser within minutes on a desktop computer and is faster than Monte
Carlo methods by a factor on the order of 103. We apply this method to characterize a laser that is locked using a
fast saturable absorber—for example, a fiber-based nonlinear polarization rotation device—and a laser that is
locked using a slow saturable absorber—for example, a semiconductor saturable absorbing mirror. © 2018

Optical Society of America

https://doi.org/10.1364/JOSAB.35.002521

1. INTRODUCTION

The search for robust, low-noise short-pulse laser sources has
attracted significant attention during the last two decades
[1–5]. These sources have applications to basic physics, astro-
physics, environmental science, medicine, metrology, and
many other fields [6–9]. The most challenging design problems
for any resonator—and particularly for short-pulse lasers—
usually include (1) finding a region in the laser’s adjustable
parameter space where the laser operates stably, (2) optimizing
the pulse profile within that region, and (3) lowering the output
noise. Typical design objectives include optimizing the pulse
profiles—such as increasing the pulse energy and decreasing
the pulse duration—and lowering noise sources, which might
include relative intensity noise (RIN), frequency drift, and the
pulse timing and phase jitter [10–12]. Adjustable parameters
will typically include the cavity length, the pump power, and
the amplifier gain, which may be a function of not only the
pump power, but also of the pump wavelength, the material,
and the geometry of the gain media [13].

In this paper, we focus on short-pulse lasers, and more
particularly on passively mode-locked lasers, which are the
short-pulse lasers that produce the shortest pulses. However,
the computational method that we describe here can be applied
to any resonator that can be mathematically modeled at the

lowest order by the nonlinear Schrödinger equation, including
microresonators [14].

The Haus mode locking equation (HME) is the simplest
and most widely used model for passively mode-locked lasers
[1,2,15]. It may be written as
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where u�t ,T � is the complex field envelope, t is the fast
retarded time, T is the slow time of propagation normalized
to the round trip time T R , ϕ is the phase rotation per round
trip, t s is the shift in t of the pulse centroid t c �
R

t 0juj2dt 0∕
R

juj2dt 0 per round trip, l is the linear loss coeffi-
cient, g�juj� is the saturated gain, β 0 0 is the group velocity
dispersion coefficient, γ is the Kerr coefficient, ωg is the gain
bandwidth, f sa�u� is the saturable absorption, and s�t,T � is the
noise source. Here, we are effectively assuming a parabolic gain
model whose peak may have an offset with respect to the central
frequency ωoff and has a gain bandwidth ωg . It is common in
studies of the HME to set ϕ � 0 [1,16–19], in which case
the phase of the pulse solution rotates at a constant rate as a
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function of T . In computational work, it is more useful to
ensure that the solution is stationary, in which case ϕ ≠ 0.

In the HME, it is assumed that the gain response of the
medium is much longer than the round trip time T R , in which
case the saturable gain becomes

g�juj� � g0
1� Pav�juj�∕Psat

, (2)

where g0 is the unsaturated gain, Pav�juj� is the average power,
and Psat is the saturation power. We may write Pav�juj� �
R T R∕2
−T R∕2

ju�t,T �j2dt∕T R . In the HME, the saturable absorption

is fast, i.e., the response to the incoming pulse is instantaneous,
so that

f sa�u� � δjuj2, (3)

where δ is the fast saturable absorption coefficient.
When the noise term s�t ,T � is neglected in Eq. (1), and we

assume that the parameters satisfy the special relations
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then we find that Eq. (1) has the stationary solution [1],
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where A0 > 0 determines both the amplitude and the duration
of the stationary pulse, while t0 and θ0 are the initial pulse cent-
roid in t and the initial optical phase. Given the special choice of
parameters in Eq. (4), soliton perturbation theory [20] can be
applied to the HME to determine the stability of the stationary
solution [10,19,21,22]. In addition, with the same parameter
choice, the HME can be reduced to two pairs of Gordon
processes that describe the propagation dynamics of the pulse
energy, phase, frequency, and central time, fromwhich the phase
jitter, timing jitter, frequency jitter, and energy fluctuation can
be calculated analytically [10,23]. These analytical results have
been widely used to estimate the noise performance of passively
mode-locked laser systems.

There are two difficulties with this approach. The first is
that the expression for f sa�u� in Eq. (3) is too simple to be
realistic, and it predicts that the pulse solution is only stable
in a small region in the parameter space, which is contrary
to experimental results [19,24,25]. More complex models that
predict larger regions of stability and that better match the
experiments have been studied [26–33]. However, with the
exception of the work in [33], all this work relies on solving
Eq. (1) using evolutionary methods, which can be computa-
tionally inefficient and can lead to ambiguous results. Second,
even given the expression for f sa�u�, there is no reason to
expect that the special parameter relation in Eq. (4) is valid.

In fact, short-pulse lasers vary widely—using different types
of gain media, saturable absorbers, and cavity designs. There
is a need for computational tools that are sufficiently powerful
to be able to cope with the broad range of short-pulse laser
designs.

Typical theoretical studies solve the evolution equations
starting from computational noise or some other initial condi-
tions and allow the solution to evolve until it either settles down
to a stationary or periodically stationary state or fails to settle
down after a long evolution time [34,35]. This approach can be
ambiguous, since it is often not clear how long it is necessary to
wait for a pulse to settle down, and the computation time re-
quired to evolve to steady state approaches infinity in principle
when the system parameters approach a stability boundary. In
prior work, we developed boundary tracking algorithms that
are based on the dynamical systems theory. These algorithms
are a set of computational methods that allow one to rapidly
obtain the pulse profile and determine the regions of stable
operation in a large parameter space [33,36]. We previously
referred to these methods as “spectral methods” in [37]. Here,
we refer to these methods as “dynamical methods” to avoid pos-
sible confusion when evaluating the Fourier spectrum using
this approach.

Despite the importance of characterizing the noise in short-
pulse lasers, there have been relatively few computational stud-
ies of their noise performance. The computational studies that
have been carried out use Monte Carlo simulations in which
the evolution equations are repeatedly solved with different
noise realizations [23,38–40]. Convergence of this procedure
is slow, and it is too computationally intensive to be used
for systematic optimization.

In this paper, we extend the work in [37] to study the noise
performance of short-pulse lasers using dynamical methods.
Here, for the first time to the best of our knowledge, we de-
scribe in detail the computational procedure and quantitatively
compare the computational performance of our dynamical
method to Monte Carlo simulations.

The remainder of this paper is organized as follows. We
present a general description of the system equations and
the dynamical method in Section 2. We present our computa-
tional efficiency tests in Section 3. We conclude this paper in
Section 4.

2. DYNAMICAL METHOD

In this section, we describe the framework of the dynamical
method.

In the laser systems that we are considering, the evolution of
the pulse envelope can be described by a nonlinear equation
that has the form

∂u�t,T �
∂T

� F̂ �u�t,T �, u��t,T �� � s�t,T �, (6)

where F̂�u, u�� is a nonlinear function of the wave envelope u
and its complex conjugate u�. In nearly all cases, the variable u�

appears with one power less than u in each term of F . That is
the case for Eq. (1) as well as for the models of fast saturable
absorption that were considered in [33]. It is also implicitly
the case for the model of a slow saturable absorber—such as
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a semiconductor saturable absorbing mirror (SESAM)—that
we will consider. In this model, we have

f sa�u� � −

ρ

2
nu (7)

in Eq. (1), where ρ denotes the saturable loss coefficient, and
n�t,T � is the fraction of the population in the lower level of a
two-level system and is given by the solution of the equation
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2
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where T A and wA denote the response time and the saturation
energy of the absorber.

We assume here that a stationary solution to Eq. (6) in the
absence of noise u0�t� has been found. We previously described
computational procedures that allow us to rapidly find station-
ary solutions as system parameters vary and determine their
stability [36]. To determine the stability, it is necessary to
consider an extended system. Writing the complex conjugate
equation of Eq. (6) as ∂u�∕∂T � F�, we may write the linear-
ized equation

∂Δu

∂T
� LΔu� s, (9)
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�
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�
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and where L11 � δF∕δu, L12 � δF∕δu�, L21 � δF�∕δu, and
L22 � δF�∕δu� are functional derivatives.

We next consider the spectrum of the operator L that is
obtained by solving the eigenvalue equation,

LΔu � λΔu: (11)

From Eqs. (9) and (10), we find that if Δū � Δu� at any time
T , then Δū � Δu� at all times T . In general, an eigenmode

�Δuλ,Δūλ�T that corresponds to an eigenvalue λ does not satisfy
Δūλ � Δu�λ unless λ is real. However, nonreal eigenvalues must
come in complex conjugate pairs, so that if λ is an eigenvalue

then so is λ�. If the vector �Δuλ,Δūλ�T is an eigenvector cor-

responding to the eigenvalue λ, then the vector �Δū�λ ,Δu�λ �T is
an eigenvector corresponding to the eigenvalue λ�. If any eigen-
value has a positive real part, then the system is unstable.

In any practical laser system, the noise s�t ,T � is a small per-
turbation. Indeed, it is typically so small that it is necessary to
artificially increase the noise in order to obtain reliable results
fromMonte Carlo simulations [27]. The essence of our method
is that the amplitudes of the spectral components—the solu-
tions to Eq. (11)—obey simple Langevin equations that can
be solved for all times T . The means and variances of these
amplitudes can then easily be found. After expanding the stat-
istical quantities of interest such as the phase jitter, the timing
jitter, and the energy fluctuation as a linear sum of these
amplitudes, we obtain the means and variances of these
statistical quantities.

A. Discretization

When we discretize the time domain t for computation, we use
an evenly spaced grid ofN points in t, whose spacing we denote

as Δt, where Δt � T w∕N and T w is the duration of the
computational time window.

Issues related to choosing Δt and N as well as discretizing
the operator L to ensure the accuracy of the solution have been
discussed in [36]. Here, in order to ensure reasonable accuracy,
we choose T w so that it is approximately 100 times the dura-
tion of the mode-locked pulse, and we choose N ≥ 1024. We
always choose T w and N sufficiently large so that the visible
impact on any plotted result is negligible.

In analytical studies of the stability and noise performance of
passively mode-locked lasers, it is usual to choose an infinite
domain in the fast time t, in which case the spectrum of L
has both continuous components (essential spectrum) as well
as discrete components (point spectrum) [20,36,41]. In real-
world lasers, the actual domain is periodic in the round trip
time T R , and in computational work, it is usual to study a time
domain T w that is small compared to T R , so that T w ≪ T R .
As a consequence, the computational problem only has a point
spectrum.

Once the system has been discretized, both Δu�t� and
Δū�t� become N -dimensional vectors in which Δul � u�t l �
and Δūl � ū�t l �, l � 1, 2,…,N . The vector Δu in Eq. (9)
becomes a 2N -dimensional vector Δu in which the first N
elements correspond to Δul , l � 1, 2,…,N and the last N
elements correspond to Δūl , l � 1, 2,…,N , i.e., Δu �
�Δu1,Δu2,…,ΔuN ,Δū1,Δū2,…,ΔūN �T , where T denotes
the transpose. The operator L becomes a 2N × 2N matrix [36].

B. Spectral Decomposition

We will denote a set of independent eigenvectors as

ej � �ej, ēj�T , where T denotes the transpose and ejl � ej�t l �
and ējl � ēj�t l �, so that each eigenvector ej is a 2N -

dimensional vector. In all the laser problems that we have con-
sidered, the set of eigenvectors ej is complete, i.e., there are 2N

independent eigenvectors, which span the 2N -dimensional
complex vector space upon which L operates [42], so that
we may decompose any Δu as

Δu �
X

2N

j�1

cjej, (12)

where cj is the complex coefficient of ej . We find that if λj is an

eigenvalue, then so is λ 0j � λ�j and if ej � �ej, ēj�T , then the ei-

genvector corresponding to λ 0j � λ�j is given by e 0j � �ē�j , e�j �T
[37]. In general ēj ≠ e�j . However, when λj is real, then we

find ēj � e�j .

In order to find the cj, given Δu, we must define an
inner product. For any two given vectors p and q in the 2N -
dimensional space, the natural inner product becomes

X

N

j�0

�p�j qj � p̄jq̄
�
j �Δt � pHqΔt , (13)

where pH is a 2N -dimensional row vector whose elements are
complex conjugates of the vector p.

We will denote the dual eigenvectors of the matrix L as êj.
These are equal to the eigenvectors of L†, the complex
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conjugate transpose of L. The dual eigenvectors are normalized
so that

êHj ekΔt � δjk, (14)

where δjk is the Krönecker delta function. We now find
that

cj � êHj Δu: (15)

Since L ≠ L†, so that L is not self-adjoint, it is not generally the
case that êHj êkΔt � δjk.

C. Noise Evolution

In this paper, we will consider white noise sources for which

hs�t,T �s��t 0,T 0�i � Dδ�t − t 0�δ�T − T 0�, (16)

where h·i denotes the ensemble average, and D is the
diffusion coefficient. We also have hs�t,T �s�t 0,T 0�i �
hs��t,T �s��t 0,T 0�i � 0. More complex noise source can be
built up using Eq. (16) as a starting point [43]. After discre-
tization in t, Eq. (16) becomes

hsl �T �s�m�T 0�i � hs�t l ,T �s��tm,T 0�i � D

Δt
δlmδ�T − T 0�,

(17)

where sl � s�t l �, and the 2N -dimensional vector s becomes
s � �s, s̄�T , where s̄l � s�l .

After discretization, we can write the 2N -dimensional
vector s at any slow time T as

s�T � �
X

2N

j�1

sj�T �ej, (18)

so that sj�T � � êHj s�T �. We now define Djk using the
relationship

hsj�T �s�k �T 0�i � �DΔt�êHj êkδ�T − T 0� � Djkδ�T − T 0�,
(19)

where we note Dkj � D�
jk.

In the presence of noise, we find that the amplitudes of the
spectral components of Δu that are defined in Eq. (12) evolve
according to the simple Langevin equation,

dcj

dT
� λjcj � sj, (20)

where we note that Re�λj� ≤ 0 in order for the mode-locked
pulse to be stable. Since we start from a stationary solution,
we have hcj�T � 0�i � 0.

The covariances can be obtained by integrating Eq. (20)
using the method of stochastic differential equations [44].
We find

hcj�T �c�k �T �i � −

Djk

λj � λ�k
�1 − e�λj�λ�

k
�T �, (21)

where we assume that the covariances are zero at T � 0. In the
special case when λj � λk � 0, we obtain

hcj�T �c�k �T �i � DjkT : (22)

In the long-time limit as T → ∞, Eq. (21) becomes

hcj�T �c�k �T �i � −

Djk

λj � λ�k
: (23)

We define the two-time cross correlation functions as

Rjk�T , τ� � hcj�T �c�k �T � τ�i: (24)

The corresponding cross correlation as T → ∞ is given by [44]

Rjk�τ� � −

Djk

λj � λ�k
�eλ�k τΘ�τ� � e−λjτΘ�−τ��, (25)

whereΘ�τ� is the Heaviside step function that equals zero when
τ < 0, 1/2 when τ � 0, and 1 when τ > 0. The corresponding
power spectral density is given by the Fourier transform of
Rjk�τ�,

S jk�f � �
Z

∞

−∞

Rjk�τ�e2πif τdτ �
Djk

�λj − 2iπf ��λ�k � 2iπf � :

(26)

Using Eqs. (21)–(23), it is possible to compute statistical quan-
tities of interest such as the timing jitter and the phase jitter.
Using Eqs. (25) and (26), it is then possible to calculate the
power spectral densities of these quantities.

D. Noise Impact on Statistical Quantities of Interest

Given a statistical of interest, Δx�T �, we begin by writing it as
an inner product of an appropriate vector hx and the pertur-
bation Δu�T �,

Δx�T � � hHx Δu�T �Δt, (27)

Some examples follow:

1. Energy jitter Δw�T �:
The energy jitter is given by

Δw�T � �
Z

T R∕2

−T R∕2

dt�ju�t,T �j2 − ju0�t�j2�

�
Z

T R∕2

−T R∕2

dt�u0�t�Δu��t ,T � � u�0�t�Δu�t,T ��,

which becomes after discretization

Δw�T � �
X

N

l�1

Δt�u0�t l �Δu��t l ,T � � u�0�t l �Δu�t l ,T ��

� hHwΔu�T �Δt , (28)

where hw � �u0, u�0 �T .
2. Frequency jitter Δf c�T � [45]:
We can calculate the change in the central frequency as

Δf c�T � � 1

2iw0

Z

T R∕2

−T R∕2
dt

�

∂u�0
∂t

Δu�t,T � − ∂u0
∂t

Δu��t ,T �
�

,

(29)

which after discretization becomes

Δf c�T � � hHf c
Δu�T �Δt, (30)

where w0 is the energy of the stationary pulse,

w0 �
R T R∕2
−T R∕2

ju0�t�j2dt, and
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hf c
� �i∕w0��Dtu0,Dtu

�
0 �T ,

where Dt is a first-order differentiation matrix [46], which can
be calculated alternatively by using the Fourier transform to
compute u0 in the frequency domain, multiplying by the fre-
quency, and then computing the inverse Fourier transform.

3. Timing and phase jitter:
The central time of a mode-locked pulse is given by

Δt c �
1

w0

Z

T R∕2

−T R∕2
dt t�u�0�t�Δu�t,T � � u0�t�Δu��t ,T ��,

(31)

which after discretization becomes

Δt c � hHt Δu�T �Δt , (32)

where ht � �1∕w0��tu0, tu�0 �T .
From the timing jitter, we can define a phase jitter,

Δψ � 2πΔt c∕T R , (33)

which corresponds to the phase jitter that is observed at radio
frequencies after an optical signal is detected in a photodetector.
In most experimental work, this quantity is simply referred to
as the phase jitter. Paschotta [27] refers to it as the timing phase
jitter to avoid confusion with the optical phase jitter, and we
will do the same.

In general, for any vector hx, we can write

hx �
X

2N

j�1

hxj êj, (34)

and combined with Eq. (27), the corresponding statistical
quantity can be written as

Δx�T � � Δt

 

X

2N

j�1

hxj êj

!

H
X

2N

k�0

ck�T �ek �
X

2N

j�1

h�xjcj�T �,

(35)

where the hxj are defined by the expression

hxj � eHj hxΔt : (36)

Following Eqs. (24), (25), (26), and (35), we can now calculate
the power spectral density of Δx�T �,

Sx�f � �
X

2N

j�1

X

2N

k�1

h�xjhxkS jk�f �

�
X

2N

j�1

X

2N

k�1

h�xjhxkDjk

�λj − 2iπf ��λ�k � 2iπf � , (37)

in which we require hxl � 0 when λl � 0.
Defining δcj � dcj∕dT , we have

dΔx

dT
� δx�T � �

X

2N

j�0

h�xjδcj�T �, (38)

which approximates the change in Δx�T � from one round trip
to the next, since all statistical quantities of interest change
slowly compared to the repetition time. The power spectral
density of δx�T � becomes

Sδx�f � � �2πf �2Sx�f �: (39)

The formalism in Eqs. (37) and (39) includes the contribution
of the eigenvectors that correspond to the radiation spectrum,
whose effects were neglected in [37] and [47].

3. NOISE LEVEL EVALUATION AND

COMPUTATIONAL EFFICIENCY TESTS

Here, we compare the results of the Haus–Mecozzi method
[10], the Monte Carlo method [23], and the dynamical method
that we have described in Section 2. The statistical quantities
that we will study are the energy jitter Δw�T � � w�T � − w0,
the frequency jitter Δf c�T � � f c�T � − f 0, and the timing
phase jitter Δt c � t c�T � − t c0, where w0, f 0, and t c0 are the
unperturbed energy, central frequency, and the central time
of the mode-locked pulse, respectively. We first give a brief re-
view of the three methods that we will compare. We then apply
all three methods to the widely used HME and an averaged
model of a SESAM fiber laser [48]. We show that the dynami-
cal method provides significantly better agreement with the
Monte Carlo method than does the Haus–Mecozzi method.
We further show that the dynamical method is several orders
of magnitude more computationally efficient than the Monte
Carlo method, where our metrics are the computational time
and the memory (RAM) and storage usage.

A. Calculation Methods

We first review the three methods we use to calculate the noise
impact on the statistical quantities of interest. These are (1) the
Haus–Mecozzi method, which is analytical; (2) the Monte
Carlo simulation method, which repeatedly solves the evolu-
tion equations with different noise realizations; and (3) the
dynamical methods that we described in Section 2.

1. Haus–Mecozzi Method

The HME is the simplest and most widely used model for
mode-locked laser systems. We have presented the HME in
Eqs. (1)–(5). In their analytical method, Haus and Mecozzi
begin by assuming that the mode-locked pulse u0�t� has a
hyperbolic-secant pulse shape and—like the soliton solutions
for the nonlinear Schrödinger equation—is completely charac-
terized by four parameters: the pulse energy and its central
time, central phase, and central frequency. They next apply
the soliton perturbation theory to calculate the phase evolution
in the presence of noise, and they show that the evolution of the
pulse energy fluctuation Δw, the central phase fluctuation Δθ,
the central frequency fluctuation Δf c , and the central time
fluctuation Δt c are governed by four stochastic differential
equations [10,27],

dΔw∕dT � rwΔw� sw,

dΔθ∕dT � rθΔw� sθ,

dΔf c∕dT � rf Δf c � sf ,

dΔt c∕dT � r tΔf c � st , (40)

where the growth/decay coefficients are all real quantities,
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rw � 2δA2
0 − g1w0 � 2g1A

2
0∕�6ω2

g τ0�,
rθ � γA2

0∕w0,

rf � −g sat∕�3ω2
g τ

2
0�,

r t � β 0 0, (41)

and for which g1 � g2sat∕�g0PsatT R�, g sat � g�ju0�t�j�,
and w0 � 2A2

0τ0 is the energy of the mode-locked pulse.
The diffusion coefficients are defined as hsx�T �, s�x �T 0�i �
Dxδ�T − T 0� for x � w, θ, f , t,

Dw � 2w0D,

Dθ � 2D�1� π2∕12�∕�3w0�,
Df � 2D∕�3w0τ

2
0�,

Dt � π2τ20D∕�6w0�, (42)

where D is defined in Eqs. (16) and (17). These four quantities
Δw, Δθ, Δf c , and Δt c correspond to the magnitudes of the
four discrete eigenmodes in the spectrum of the linearized
Haus–Mecozzi model [10]. We note that Δθ corresponds to
the optical phase jitter, which is rarely measured.

The stochastic differential equations in Eq. (40) can be
solved analytically. The variances of Δw�T �, Δf c�T �, and
Δt c�T � become

σ2w�T � � hjΔw�T �j2i

� −Dw�1 − e2rwT �∕�2rw�!
T→∞

−Dw∕�2rw�,
σ2f c

�T � � hjΔf c�T �j2i

� −Df �1 − e2rf T �∕�2rf �!
T→∞

−Df ∕�2rf �,
σ2t c �T � � hjΔt c�T �j2i

� �r2tDf ∕r
2
f �Dt�T � 2r2tDt�1 − erf T �∕r3f

− r2f Dt�1 − e2rf T �∕�2r3f �!
T→∞

DtT ��1∕3�Df r
2
f T

3,

(43)

which indicates that the variances of energy and the frequency
will remain constrained as T → ∞, while the variance of the
central time is unbounded. In experiments, the timing phase
jitter is defined by the central time drift between two consecutive
round trips [27], which we approximate as δt c � dΔt c∕dT .

The Langevin equations that we introduced in Eq. (20) and
the variances of the statistical quantities that we introduced in
Eq. (23) effectively generalize Eqs. (40) and (43) to any mode-
locked pulse waveform and any governing equation that has the
form of Eq. (6). The power spectral densities for Δw, Δf c , and
the phase jitter—which can be derived from the timing phase
jitter δt c—become [10,27]

Sw�f ��
Dw

r2w��2πf �2 ,

Sf c
�f ��

Df

r2f ��2πf �2 ,

Sψ �f ��
Sδtc �f �
�T Rf �2

�
r2tDf

�T Rf �2�r2f ��2πf �2��
Dt

�T Rf �2
: (44)

2. Monte Carlo Simulation Method

For a given set of parameters, we carry out a large number of
Monte Carlo simulation runs with independent noise realiza-
tions. In each simulation run, we solve the laser evolution equa-
tion, Eq. (1), using a variant of the split-step method [49].
We use the local error to adjust the propagation step sizes [50].
We use Nmc to denote the number of simulation runs, and we
use N R to denote the number of round trips in each run. For a
given statistical quantity Δx�T �, we obtain a time series
Δx�k� � Δx�kT R�, k � 1, 2,…,N R .

We finally evaluate the power spectrum of a given time
series Δx�k� using the discrete-time Fourier transform and
the ensemble average over all the runs,

S̄h�f � �
1

NmcN R

X

Nmc

n�1

jDTFTfΔx�k�gj2, (45)

where in this study we set Nmc � 600, and N R � 12000.

3. Dynamical Method

In Section 2, we have described the derivation and the imple-
mentation of the dynamical method.

B. Application to Mode-Locked Systems

We now compare the three different methods that we summa-
rized in Section 3.A. In Sections 2 and 3.A.1, we formulated the
dynamical method and the Haus–Mecozzi method in terms of
the normalized frequency. In order to plot the noise spectrum
in terms of the physical frequency f phys, we substitute

f � f physT R : (46)

1. Haus Mode Locking Equation

We first perform a comparison of the computational efficiency
of these three methods with the HME [10], given in Eqs. (1)–
(5), and setting

D � g�ju0j�hν0T R , (47)

where h is Planck’s constant and ν0 is the central frequency of
the optical field. The computations are carried out using
MATLAB on a desktop workstation, Dell Precision Tower
7910 which uses an Intel Xeon(R) CPU E5-2630 v4 with
10 cores. The system memory is 16 GB. The operation system
is Ubuntu 16.04 LTS. MATLAB uses about 500 MB when it is
started without running any programs. We use the parameters
from [27] and show them in Table 1.

We propagate the laser system for 15,000 round trips, and
we observe that the statistical properties of the noise-related
quantities—the pulse energy, the central frequency, and the rate

Table 1. Parameters We Use to Evaluate the Noise

Levelsa

Parameter Value Parameter Value Parameter Value

T R 10 ns g0 0.603 ωg 20 T rad/s

γ 1/MW ν0 282 THz l 0.0563

PsatT R 2 nJ β 0 0
−0.003 ps2 δ 0.046/MW

w0 20 nJ A0 182.5
ffiffiffiffiffi

W
p

τ0 0.3 ps

aThese parameters are the same as in [27].
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of change of the round trip time—appear stationary after 3000
round trips. The propagation of the variances of Δw, Δf c , and
Δt c are shown in Fig. 1. The variances of Δw and Δf c even-
tually reach an asymptote, while the variance of Δt c grows
indefinitely, which agrees with Eq. (43).

In Fig. 2 we show the power spectral densities that we
obtain. All spectra are single-sided spectra [27]. In Fig. 2(a)
we plot the energy noise as 10 log10�Sw�f �∕w2

0�, the frequency
noise as 10 log10�Sf c

�f �∕ν20�, and the phase noise as
10 log10�Sψ �f ��, which is consistent with Fig. 1 in [27]. For
all three power spectral densities, the agreement of the three
methods is excellent.

In Fig. 2, we plot the spectrum from 1 Hz to 108 Hz. The
Haus–Mecozzi method produces analytical predictions and
thus can be used at any frequency resolution. The dynamical
method can also be used at any frequency resolution. When
evaluating the noise spectrum in the Monte Carlo method,
we assign Nmc � 600 and N R � 12000, which enables us
to show the frequency range from about 8 kHz to 50 MHz.
Any increase in the frequency resolution greatly increases
the computational load when using the Monte Carlo method,
which imposes a practical limit on the frequency resolution that
can be obtained.

The time andmemory cost performances of theMonte Carlo
method and the dynamical method are summarized in Table 2.
We achieve a good agreement with the Haus–Mecozzi and
the dynamical methods when we use the Monte Carlo method
with 600 simulations. The total CPU time cost is about
(784 × 6 � 4704) s, which is about 1 h and 18 min. The
memory usage per core is (2870∕6 ≈ 478) MB, which is less

than that for a single run (535 MB) because the overhead of
parallel computing is spread when more nodes are used.
More memory might be required if a finer discretization of
u�t,T � in both t and T is needed. The storage usage is low (less
than 1 GB) in the Monte Carlo simulations since we only save
the pulse parameters, f c , w, and t c , instead of saving the pulse
profile for each iteration.

The dynamical method has a far greater computational
efficiency than does the Monte Carlo method. The dynamical
method is able to cover a larger frequency range than does the
Monte Carlo method in less than 3 s of computational time. In
the example shown here, we calculated 80 frequencies from

Fig. 1. Comparison between the Haus–Mecozzi and Monte Carlo
methods, where σ2w�T �, σ2f c

�T �, and σ2tc �T � are propagation-
dependent variances of the pulse energy w, central frequency f c,
and the central time t c , respectively. The results of the Haus–
Mecozzi method are from Eq. (43).

(a)

(b)

(c)

Fig. 2. Noise spectra of (a) the energy jitter, (b) the frequency jitter,
and (c) the timing phase jitter that we obtain from the Monte Carlo,
Haus–Mecozzi, and dynamical methods. The agreement is excellent,
and the results in (c) agree with Fig. 1 in [27].

Table 2. Comparison of the Computational Efficiency of

the Monte Carlo and Dynamical Methods for Evaluating

the Noise Performance of the Haus Mode Locking

Equationa

Method

# of

Cores

Time Cost

(s)

Memory

Usage

Storage Usage

(MB)

A single run 1 7.8 535 MB 1.1
600 runs 6 784 2.87 GB 245.8
Dynamical 1 <3 967 MB 141.5

aWe integrate the system for 15000 round trips on each simulation run of the

Monte Carlo method. The tests are coded in Matlab, which has a memory

overhead of 500 MB that is included in the memory usage.

Research Article Vol. 35, No. 10 / October 2018 / Journal of the Optical Society of America B 2527



1 Hz to 80MHz. The dynamical method uses more memory in
a single core than does the Monte Carlo method, but the total
memory use is still less than 1 GB.

2. SESAM Laser

Next, we consider a case when there is no known analytical
solution. Here, we model a laser with a semiconductor satu-
rable absorption mirror (SESAM), in which the saturable
absorber responds slowly compared to the time duration of
the mode-locked pulse [22]. Typical time scales are picoseconds
for the response time of the SESAM and 100–200 femtosec-
onds for the pulse duration, as we show in Table 3 [51,52]. The
central wavelength of the output pulse is 1564 nm. The system
can be described using Eqs. (1), (2), (7), (8), and (47).

In Fig. 3, we show the evolution of the variances of
Δw, Δf c , and Δt c . To compute the variances using the

Haus–Mecozzi method, we use the stationary pulse parameters
that we obtained computationally by propagating the evolution
equations. We see that the Haus–Mecozzi method provides a
good prediction for the variances of the energy Δw and the
frequency Δf c. However, the Haus–Mecozzi model underes-
timates the variance of the central time Δt c by a factor of
300, as shown in Fig. 3.

In Fig. 4, we show the power spectral densities of Δw, Δf c ,
and Δt c that we derived using these three methods. Both the
Haus–Mecozzi method and the dynamical method yield good
agreement for the background noise level with the Monte Carlo
simulations. However, the Haus–Mecozzi method completely
misses the sideband that is present in each of the power spectral
densities. We have shown in prior work [51,52] that the output
power spectrum of the SESAM fiber laser features a sideband
that is located between 15 MHz and 20 MHz as the pump
power changes. In the Monte Carlo simulations, the sideband
appears in all three power spectral densities, as shown in Fig. 4.
The dynamical method is able to predict the height of the side-
bands successfully. Hence, the dynamical method provides an
accurate calculation of the noise levels for a wider group of
mode-locked lasers than does the Haus–Mecozzi method.

We observe that the Monte Carlo method consistently over-
estimates the noise level at higher frequencies, which is due to
aliasing. The aliasing is most visible in Fig. 4(c). We have
defined the output signals of the laser cavity as a continuous-
time random process. However, in order to calculate the

Fig. 3. Comparison between the Haus–Mecozzi and Monte Carlo
methods for the SESAM fiber laser, where σ2w�T �, σ2f c

�T �, and σ2tc �T �
are propagation-dependent variances of the pulse energy fluctuation
Δw, central frequency Δf c, and the central time Δt c , respectively.
We obtain the Haus–Mecozzi method results by substituting the com-
putational stationary pulse solution parameters from Table 3 into
Eq. (43).

Table 3. Values of Parameters We Use in Eqs. (1), (2), (7),

and (8)a

Parameter Value Parameter Value Parameter Value

T R 3.33 ns wA 157 pJ Psat 9.01 mW

g0 7.74 ρ 0.0726 β 0 0
−0.0144 ps2

ωg 30 ps−1 T A 2.00 ps γ 0.00111 W−1

l 1.05

A0 25.2
ffiffiffiffiffi

W
p

τ0 143 fs w0 0.182 nJ

aThe stationary pulse parameters A0, τ0, and w0 are obtained

computationally and thus are separated from the rest.

(a)

(b)

(c)

Fig. 4. Power spectral density of (a) the energy jitter, (b) the fre-
quency jitter, and (c) the timing phase jitter that we obtain from
the Monte Carlo method, the Haus–Mecozzi method, and the
dynamical method.
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discrete-time Fourier transform, as in Eq. (45), the output
signal of the laser is recorded once per round trip, which sets
an upper limit equal to the Nyquist frequency, which equals
1∕�2T R� � 150 MHz. However, our noise source is wide-
band. As a result, noise with frequencies higher than 150 MHz
will leak into our evaluation band and cause the evaluated noise
level to rise. The Monte Carlo results will converge to the noise
level that is obtained using the dynamical method when we
record more times during one round trip, which increases
the memory and postprocessing load.

We again carry out a computational efficiency test, and we
show the results in Table 4. Here, the Monte Carlo experi-
ments are carried out using MATLAB and 512 cores on a clus-
ter [53]. The CPUs are all quad-core Intel Nehalem X5560
processors (2.8 GHz, 8 MB cache) with 3 GB per core on aver-
age. All nodes are running Red Hat Enterprise Linux 6.4. We
propagate the pulse for 15,000 round trips, and we only save
the data for the pulse parameters instead of the entire pulse.
The entire computation requires about 20 min and uses 256
computing cores. Each simulation takes more than 300 MB on
each computing core, and we saved 1.7 MB of data on the
hard drive.

By comparison, the dynamical method is carried out on the
same desk workstation as in Section 3.B.1: a Dell Precision
Tower 7910 that uses an Intel Xeon(R) CPU E5-2630 v4,
which includes 10 cores. From solving for the stationary
solution to obtaining the power spectral density, the computa-
tional cost is less than 4 min and uses very reasonable memory
and storage. Again, the improvement in the computing effi-
ciency is large. Compared to the Monte Carlo simulation
method, the dynamical method requires only 1/1280 of the
CPU time, 1/90 of the memory, and 1/3 of the storage space.

4. CONCLUSION

Over the last three decades, short-pulse lasers—and more par-
ticularly passively mode-locked lasers—have been the subject of
continued experimental interest. Robust and low-noise pas-
sively mode-locked lasers are the key component in frequency
combs. As passively mode-locked lasers have become more
complex, the Haus–Mecozzi method has become increasingly
inadequate to analyze the noise performance of these lasers. As
one example, we studied a SESAM fiber laser and showed that
this method greatly underestimates the noise level. By contrast,
Monte Carlo simulations can yield accurate results, and this
method is intuitive and easy to implement. However, it requires

large computing resources, which makes its use for parameter
optimization difficult.

Based on dynamical systems theory, we have developed a
dynamical method that makes it possible to calculate the noise
levels accurately and rapidly. As we have shown in our exam-
ples, it is as accurate as Monte Carlo simulations, and is about 3
orders of magnitude faster computationally in our examples,
while requiring less memory and storage. Therefore, this
dynamical method is a powerful tool that can play a useful role
in optimizing the design of short-pulse lasers.

In this paper, we used a parabolic gain profile for the am-
plifier, which is far simpler than the profile in actual amplifiers.
It is possible to improve the laser model and the noise analysis
by using a more sophisticated and accurate amplifier gain pro-
file [13,54]. We did not do that here in order to focus on the
advantages of the dynamical method.

The laser models that we used in this paper are soliton laser
models. In these lasers, the intracavity pulse remains almost
constant during one round trip. Therefore, we can use an aver-
aged model to describe the pulse evolution, and the results of
the dynamical method and Monte Carlo method agree well.
However, the pulses in fiber lasers that operate in the normal
dispersion regime, such as stretched pulse lasers [55], vary
greatly during a single round trip. In this case, the pulses
are periodically stationary rather than stationary [56,57], and
the dynamical method described in this paper will lead to in-
accurate results. Extending the dynamical method to handle
periodically stationary systems is an important topic for future
research.

APPENDIX A: NUMERICAL IMPLEMENTATION

When using modern-day scripting languages such as MATLAB
and Python, it is more computationally efficient to carry out
calculations using matrix operations. Here, we describe how
to construct Eq. (37) using matrix operations.

We have discussed the computational discretization in
Section 4 in [36]. We use N to denote the number of points
in the computational time window T w; we use j to denote the
row indices; and we use k to denote the column indices.

We begin by introducing the eigenvalue matrices E and Ê,

E �

2

4

j j 	 	 	 j
e1 e2 	 	 	 e2N
j j 	 	 	 j

3

5, Ê �

2

4

j j 	 	 	 j
ê1 ê2 	 	 	 ê2N
j j 	 	 	 j

3

5,

(A1)

normalized so that ÊH
EΔt � I2N , where I2N is the identity

matrix. We now define the matrix

D � �DΔt�ÊH
Ê, (A2)

where D is defined in Eqs. (16) and (47). We next define the
matrix

H � h�e h
T
e , (A3)

where h�e is the element-wise complex conjugate of he, and he is
defined in Eq. (36),

he � EHhxΔt : (A4)

Table 4. Comparison of the Computational Efficiency of

the Monte Carlo and Dynamical Methods for Evaluating

the Noise Performance of the SESAM Mode Locking

Modela

Method

# of

Cores

Time

Cost (min)

Memory

Usage

Storage

Usage

Runs 256 20 314 MB/process 1.7 MB/process
Dynamical 1 <4 900 MB 144 MB

aWe integrate the system for 2 × 105 round trips in each simulation run of

the Monte Carlo method.

Research Article Vol. 35, No. 10 / October 2018 / Journal of the Optical Society of America B 2529



Finally, we define the matrix

Ω�f � �

2

6

6

6

4

μ1 μ1 	 	 	 μ1
μ2 μ2 	 	 	 μ2

..

. ..
. ..

. ..
.

μ2N μ2N 	 	 	 μ2N

3

7

7

7

5

, (A5)

where μj � λj − 2iπf .
We can now express Eq. (37) in matrix form as

Sx�f � �
X

2N

j�1

X

2N

k�1

Ajk�f �, (A6)

in which the matrix A�f � is given by

A�f � � D ⊙ H ⊘ �Ω�f � ⊙ Ω
H �f ��, (A7)

where ⊙ and ⊘ represent element-wise matrix multiplication
and division, respectively, and all matrices are 2N × 2N square
matrices.

As an example, the MATLAB code that calculates the power
spectral density of the timing phase jitter, shown in Fig. 4(c), is
available at [58].
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