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a b s t r a c t

The evolution of vortex structures over flapping NACA0012 foils in shear flows and the
corresponding aerodynamic performance are numerically studied using a two dimensional
(2D) high-order accurate spectral difference Navier–Stokes flow solver, and further ana-
lyzed using the dynamic mode decomposition (DMD) method and vortex theory. Several
types of vortex structures over pitching or plunging foils are simulated and analyzed
to answer the following questions: (1) how mean flow shear affects the evolution of
vortex structures, including both leading and trailing edge vortices, over flapping foils; and
(2) howmean flow shear affects the aerodynamic performance under different kinematics.
A temporal DMD method is used to analyze vortex structures. It is found that mean
flow shear does not modify the dominant temporal frequencies in flow fields, but strong
mean flow shear can significantly alter the growth rate, amplitude, and spatial patterns of
coherent structures. From simulation results, it is observed that mean flow shear can affect
evolution as well as interaction among leading and trailing edge vortices, thus altering
the direction of wakes behind flapping foils. The mechanism of shear-induced deflective
wakes is explained via qualitative analysis of evolution of simplified vortex street models.
Finally, the effects of mean flow shear on aerodynamic performances of flapping foils with
different kinematics are studied. By comparing the practical aerodynamic performances
with those predicted by the steady aerodynamic theory, it is shown that flapping motion
can significantly promote unsteady lift generation in mean flow shear. Furthermore,
compared with flapping foils with positive mean angles of attack in a uniform incoming
flow, the lift over flapping foils in flowswith negativemean flow shear is enhancedwithout
compromising thrust generation.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Natural flyers or swimmers flap their wings or fins to generate unsteady forces that permit excellent maneuverability
under different flow conditions. The last three decades have witnessed remarkable progress in both experimental and
numerical studies of evolution of vortex structures over flapping wings or fins (see the reviews by Platzer et al., 2008; Shyy
et al., 2010; Triantaflyllou et al., 2004, just to name a few). It is found that most previous researchwas conducted for uniform
incoming flow. The unsteady aero-hydrodynamics over flapping wings/fins in complex flow environments (e.g., shear flow)
are still less understood. Considering natural flyers and swimmers usually maneuver in complex flow environments, it is of
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Nomenclature

A excursion of the foil trailing edge in one oscillating stroke, m
CL lift coefficient
CT thrust coefficient
c chord length, m
f flapping frequency, Hz
h plunge amplitude, m
k 2π fc/U∞, reduced frequency
M∞ Free stream Mach number
Rec U∞c/ν, Reynolds number based on chord
St fA/U∞, Strouhal number
U∞ free stream velocity, m/s
Upert the magnitude of the maximum velocity disturbance in the mean flow shear, m/s
Ushear velocity profile of the mean flow shear, m/s
α, α0 pitch angle of the foil, and pitch amplitude, degree
β, θ control parameters of the shear strength
λi growth rate of the ith temporal DMD mode
ν kinematic viscosity of fluid, m2/s
φ0 initial phase angle, rad
ωi angular frequency of the ith temporal DMD mode, rad/s
ωz spanwise (z-direction) vorticity, rad/s

fundamental importance to further explore unsteady flow physics under non-uniform incoming flow conditions (Ortega-
Jimenez et al., 2014). In this study,we aim to explore the impact ofmean flow shear on the evolution of vortex structures over
flapping foils and the corresponding aerodynamic performance. Among many types of vortex structures over flapping foils,
we will focus on the asymmetric wake structure, with or without interaction with leading edge vortices, occurred behind a
flapping symmetric foil when the dynamic parameters (e.g., Strouhal number, reduced frequency) exceed certain limits. We
will numerically study how mean flow shear affects the deflective direction of the asymmetric wake, how the transition of
symmetric wakes into asymmetric ones is promoted due to shear flow disturbances, and how the aerodynamic performance
of flapping foils will be changed in shear flow.

The asymmetric or deflective wake features dipolar vortex structure in the wake. This phenomenon has been confirmed
experimentally by Jones et al. (1998), Heathcote and Gursul (2007), Godoy-Diana et al. (2008, 2009), von Ellenrieder and
Pothos (2008), Buchholz and Smits (2008), Cleaver et al. (2010), Yu et al. (2012) and Marais et al. (2012), and numerically
by Jones et al. (1998), Lewin and Haj-Hariri (2003), Yu et al. (2010, 2012) and Zheng and Wei (2012). From the perspective
of vortex dynamics, the formation of the asymmetric wake is closely related to the distance between two adjacent vortices
with opposite spin shed in one oscillating cycle and the strength of these two vortices. In the two dimensional (2D) study, it
is found that the interaction of the two vortices near the trailing edge of the foil is crucial for the dipole formation process.
Recent work by Marais et al. (2012) demonstrated that the flexible wing can delay the formation of asymmetric wakes by
increasing the relative distance between two adjacent vortices near the trailing edge of thewing. In this study,we investigate
the effects of the vortical strength, another factor which can affect the formation of asymmetric wakes behind the flapping
foil, on the evolution of vortex structures and the corresponding aerodynamic performance. A shear flow is superposed on
the uniform flow to dynamically couple with the vortex structure in the wake, as illustrated in Fig. 1. This can be treated
as a simple model for natural flyers passing through shear layers in atmospheric flows at urban or suburban environments.
We note that effects of mean flow shear on vortical flow have been studied by Zhu and his co-workers (Zhu, 2012; Cho and
Zhu, 2014) in the context of energy harvesting using flapping foils. In their work, it is found that shear flow can alter the
behaviors of large leading edge vortices, thus affecting the performance of energy harvesters.

As is recognized, the phenomena we proposed to study feature evolving vortices, which are very sensitive to numerical
dissipation. Traditional low-order (≤2) flow solvers can dramatically dissipate the unsteady vortices. In this study, a high-
order accurate spectral difference (SD)method on dynamic unstructured grids developed in Yu et al. (2011) is used to resolve
the unsteady vortex-dominated flows. Other recent numerical simulations of the flapping wing aerodynamics using high-
order methods include the work by Visbal (2009), Persson et al. (2010), Liang et al. (2010), Ou et al. (2011) and Yu et al.
(2013a, 2013b). All these works demonstrate the superior performance of high-order discontinuous numerical methods for
vortex-dominated flow simulations.

High-fidelity numerical simulation can generate a large amount of high-resolution data. This poses difficulty on how
to effectively extract critical flow features from the large data set. Popular data processing techniques that can be used to
analyze big flow data include, but not limited to, proper orthogonal decomposition (POD) (Lumley, 1970; Sirovich, 1987),
and dynamicmode decomposition (DMD) (Schmid, 2010; Rowley et al., 2009). DMD is a recently proposed data-basedmode
decomposition technique. It was first introduced by Schmid and Sesterhenn (2008) and Schmid (2010), and its connection
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Fig. 1. Diagram of an oscillating NACA0012 foil in shear flow generated by superposing the mean flow shear on the uniform freestream.

with the Koopman analysis was reported by Rowley et al. (2009). Different from the POD method which ranks the flow

structures by energy, DMD captures dominant dynamic behaviors encoded in the data sequence by frequency. So far this

method and its variations have been successfully applied to the analysis of a range of fluid flow problems (Schmid et al.,

2011; Schmid, 2011; Tu et al., 2014; Mariappan et al., 2014; Zhang et al., 2014). In this study, the DMD method is adopted

to analyze the flow data generated from high-fidelity simulation.

Based on the above discussions, the present paper is devoted to simulating vortex structures over flapping foils in shear

flows using the high-order SD flow solver, and studying the flow structures and aerodynamic performances using DMD and

vortex analysis. The remainder of the paper is organized as follows. In Section 2, the high-order SDmethod, DMDmethod and

simulation setup are introduced. Numerical results for the vortex structures behind pitching foils with and without mean

flow shear are presented in Section 3. Therein, the flow structures are analyzed with DMD. The mechanism on how mean

flow shear modifies the wake vortex structures is then explained in the same section. In Section 4, the impact of mean flow

shear on the evolution of vortex structures, including both leading and trailing edge vortices, over plunging foils is studied.

The impact of mean flow shear on aerodynamic performances of flapping foils is then discussed in Section 5. Therein, time-

averaged lift and drag with and without mean flow shear under different flapping motions are studied and compared; the

lift enhancement performance is also compared with that of the flapping foils with positive mean angles of attack. Finally,

conclusions are summarized in Section 6.

2. Numerical methods

2.1. Governing equations

The 2D unsteady compressible N–S equations in conservation form read,

∂Q
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= 0. (1)

Herein, Q = (ρ, ρu, ρv, E)T are the conservative variables, F inv and Ginv are the inviscid flux vectors, and F vis and Gvis are

the viscous flux vectors. The fluxes take the following form
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(2)

In Eq. (2), ρ is the fluid density, u and v are velocity components in the x and y directions, p is the pressure, E =
p/(γ − 1) + ρ

(

u2 + v2
)

/2 is the total energy, τxx, τyy and τxy = τyx are viscous stresses, T is the temperature, µ is dynamic

viscosity, Cp is the specific heat at constant pressure, Pr is the Prandtl number, and γ is the heat capacity ratio.

To achieve an efficient implementation, a time-dependent coordinate transformation from the physical domain (t, x, y)

to the computational domain (τ , ξ , η) is applied to Eq. (1). Herein, τ = t , and (ξ , η) ∈ [−1, 1]2, are the local coordinates in
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the computational domain (or standard element). As a result, Eq. (1) can be written in the computational domain as

∂Q̃

∂τ
+

∂ F̃

∂ξ
+

∂G̃

∂η
= 0, (3)

where
⎧

⎨

⎩
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(
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)

G̃ = |J|
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(4)

In the transformation shown above, the Jacobian matrix J takes the following form

J =
∂ (x, y, t)

∂ (ξ, η, τ )
=

(

xξ xη xτ

yξ yη yτ

0 0 1

)

. (5)

Note that in numerical simulations on dynamic grids, the grid velocity v⃗g = (xτ , yτ ) is related with (ξt , ηt) by
{

ξt = −v⃗g · ∇ξ

ηt = −v⃗g · ∇η.
(6)

2.2. Spectral difference method

A 2D SD method on dynamic unstructured grids, which has been developed in Yu et al. (2011), is used to solve the
governing equations. A staggered-grid implementation procedure of the SD method is adopted here. Note that two sets
of points, namely solution points and flux points, are used in the SD method. In the current study, the solution points in the
computational domain are selected as Chebyshev–Gauss points. To ensure the numerical stability (Huynh, 2007; Jameson,
2010; Van den Abeele et al., 2008), the flux points are selected to be the Legendre–Gauss points with end points −1 and 1.
For an Nth order SD formulation, the solution can be approximated with a degree N − 1 Lagrange polynomial, which can
be constructed from the N solutions on the solution points, and the flux can be approximated with a degree N polynomial,
which can be constructed from the N +1 fluxes on the flux points. As a result, the final form of the SD scheme for a standard
quadrilateral element is written as
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∂t
+

N+1
∑

j=1

N
∑

k=1

(

F̃
inv,I
j,k − F̃

vis,I
j,k

)

·
d

dξ
lFPs,j (ξ) · lSPs,k (η)

+

N
∑

j=1

N+1
∑

k=1

(

G̃
inv,I
j,k − G̃

vis,I
j,k

)

· lSPs,j (ξ) ·
d

dη
lFPs,k (η) = 0.

(7)

Herein, lFPs stands for the flux-points-based Lagrange polynomial, lSPs stands for the solution-points-based Lagrange
polynomial, and the superscript ‘I ’ indicates that the flux values are evaluated using a C0 flux polynomial, which accounts
for common fluxes across different elements. Specifically, the common inviscid fluxes are reconstructed with the AUSM
+-up Riemann solver for all speeds (Liou, 2006); and the common viscous fluxes are reconstructed with the ‘BR1’ approach
developed in Bassi and Rebay (1997). More details on the implementation of the SD method on dynamic unstructured grids
can be found in Yu et al. (2011, 2013b).

2.3. Dynamic mode decomposition

The DMD method introduced by Schmid (2010, 2011) is used in the current study to analyze vortex structures. For
completeness, the procedure of DMD is briefly reviewed as follows. Readers are referred to the original DMD papers for
more details.

For a finite time period, the general nonlinear flow dynamics can be simplified with a linear tangent approximation.
Specifically, a constant matrix can be used to propagate the flow field from one time instant to the consecutive time instant
as

v̇ ≈ Av or v (t + ∆t) ≈ Ãv (t) , with Ã = eA∆t . (8)

Consider the data matrix [v1, . . . , vn] in the space-time domain with uniform temporal sampling, i.e., ∆t is a constant, and

use V
j

i to denote the data sequence
[

vi, vi+1, . . . , vj

]

. Based on Eq. (8), the matrices V n−1
1 and V n

2 are related as

ÃV n−1
1 = V n

2 = V n−1
1 S + reTn−1, (9)

where S = [e2, . . . , en−1, s] is a companion matrix, r is the residual vector, and ei is the ith unit vector.
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From Eq. (9), it is clear that the residual vector can be expressed as r = vn − V n−1
1 s. To minimize the L2 norm of the

residual vector, the least square solution for s is written as

s = R−1Q Hvn, (10)

with QR = V n−1
1 as the QR-decomposition of the matrix V n−1

1 . As a result, the companion matrix can be approximated as

S = R−1Q HV n
2 . The eigenvalues of S can approximate some of the eigenvalues of the matrix Ã.

Let µi be the ith eigenvalue of the companion matrix S with the corresponding eigenvector being wi. The ith dynamic
mode φi can be constructed as φi = V n−1

1 wi/


V n−1
1 wi





2
. The modal frequency ωi and growth rate λi are calculated from the

complex eigenvalue µi (also called the Ritz value) as follows

ωi = I

[

ln (µi)

∆t

]

, λi = R

[

ln (µi)

∆t

]

, (11)

where I[·] andR[·] stand for the imaginary and real parts of a complex number, respectively. The flow field v
(

x⃗, t
)

can then
be approximated by a summation of the dynamic modes as follows,

v
(

x⃗, t
)

≈

n
∑

i=0

ciφi

(

x⃗
)

e(ıωi+λi)t , (12)

where ci is the amplitude of the ith mode φi. Note that φ0 is defined as the normalized time-averaged flow field in this study
(Mariappan et al., 2014).

The current implementation of DMD has been verified in a previous work (Wang and Yu, 2016), in which DMD is used
to analyze the wake structures behind an oscillating square cylinder.

2.4. Simulation parameters

Two types of kinematics, namely pitch and plunge, are investigated in this study. The control functions of the twomotions
are specified as follows,

Pitch : α = α0 sin (2π ft + φ0) ,

Plunge : y = h sin (2π ft + φ0) .
(13)

Herein, α is the pitch angle, α0 is the pitch amplitude, f is the oscillation frequency, φ0 is the initial phase angle, y is the
plunge position of the foil, and h is the plunge amplitude.

Computational grids around the NACA0012 foil have been presented in our previous work (Yu et al., 2014). Grid
deformation strategy associated with the kinematics of the foil can be found in Yu et al. (2011). A thorough grid and time
step refinement study, and comparison between numerical and experimental results have been performed. The results have
been reported in previous publications (Yu et al., 2012, 2011, 2013b, 2014), whichwill not be presented here for conciseness.

As stated in Section 1, a hyperbolic tangentmean flow shear profile is superposed onto the uniform freestream to generate
a shear flow. Specifically, the mean flow shear profile function is described by:

ushear = ±upert

eθy/c − 1

eθy/c + 1
. (14)

Herein, upert is the magnitude of the maximum velocity disturbance, and θ controls the shear strength. Note that this
hyperbolic tangent shear profile is used to approximate the linear shear profile ushear = βy/c , where β = upertθ/2,
around y = 0. Note that y = 0 corresponds to the centerline of the pitching or plunging motion. The diagram of an
oscillating NACA0012 foil in shear flow is presented in Fig. 1. In this study, upert is fixed at 0.5U∞, and θ varies from 0.4
to 4. When θ = 0.4, the hyperbolic tangent shear profile can well approximate the linear shear profile ushear = 0.1U∞y/c

for y/c ∈ [−2.5, 2.5]. When θ = 4, the hyperbolic tangent shear profile can well approximate the linear shear profile
ushear = U∞y/c for y/c ∈ [−0.25, 0.25]. In the simulation, in order to keep the oscillation of the foil in the linear range of
the shear flow, the maximum excursion A of the foil trailing edge in one oscillating stroke is limited to 0.4c.

The dynamic parameters are specified as follows. The Reynolds number (Rec = U∞c/ν) based on foil chord length c

and the freestream velocity (without shear) U∞ is selected as 3000, which falls within the insect flight regime. We note
that U∞ always equals to the mean velocity of the shear flow. Based on the definition of the velocity disturbance in the
mean flow shear, the incoming flow velocity varies from 0.5U∞ to 1.5U∞. Therefore, the Reynolds number based on the
local velocity can vary from 1500 to 4500 in the mean flow shear. Similar analysis applies to other dynamic parameters,
such as the Strouhal number and reduced frequency. For example, the Strouhal number based on the mean velocity of the
shear flow can be defined as St = fA/U∞; the local Strouhal number (i.e., that based on the local velocity) falls in the range
[0.67 · St, 2 · St]. These facts indicate that due to the intrinsic velocity variation in the mean flow shear, the flapping foils
actually move in a layer with varying dynamic parameters. In other words, we can deem the effect of the mean flow shear
on flapping foils as the effect of linearly varying dynamic parameters in a confined layer on flapping foils. To simplify the
notation, we will always define the dynamic parameters based on the mean velocity of the shear flow in this study. In this
regard, the Strouhal numbers (St = fA/U∞) are selected in the range [0.2, 0.4]. The reduced frequencies (k = 2π fc/U∞) fall
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Fig. 2. Vorticity fields behind a pitching foil at St = 0.3 and k = 15.0 (a) without shear; (b) with mean flow shear of θ = 0.4; (c) θ = 1.0; (d) θ = 2.0; (e)

θ = 3.0; and (f) θ = 4.0, at phase zero.

in the range [5, 15]. As reported by some researchers (Young and Lai, 2004), the freestreamMach numberM∞ is crucial for
the aerodynamic performance estimation of a flapping wing when a compressible solver is adopted for the simulation. In
the present study,M∞ is set to be 0.05, which is in accordance with the value specified in Young and Lai (2004).

3. Vortex structure analysis for pitching foils in mean flow shear

In this section, the impact of weak and strong mean flow shear on both asymmetric and symmetric thrust-indicative
wakes behind a pitching foil is studied. First of all, the asymmetric thrust-indicative wakes in mean flow shear of different
strength are visualized. The corresponding aerodynamic features, e.g., thrust and lift generation, are briefly discussed. Further
insight on the shear impact on these asymmetric wakes is then revealed by analyzing coherent structures with the DMD
method. Finally, the mechanism on how mean flow shear modifies the wake vortex structure is explained through the
analysis of the symmetry-breaking process of a thrust-indicative wake induced by mean flow shear of different strength.

3.1. Shear impact on asymmetric thrust-indicative wakes

The numerical simulation is first performed for pitching foils at St = 0.3 and k = 15.0. The vorticity fields without mean
flow shear and those with mean flow shear of different strengths (i.e., θ = 0, 0.4, 1.0, 2.0, 3.0 and 4.0) at phase zero are
presented in Fig. 2. More flow visualization results at other phases can be found in Yu et al. (2014). Note that a mean flow
shear with negative z-vorticity, i.e., aligned with positive lift generation, is superposed on the uniform flow. It is clear from
Fig. 2(a) that under the specified dynamic parameters (i.e., St = 0.3 and k = 15.0), the asymmetric wake occurs without
the mean flow shear, and that it deflects downward (for more discussions on how dynamic/kinematic parameters affect
asymmetric wakes, the readers are referred to Yu et al., 2012). It is observed that weak shear has small effect on the wake
deflection angle, as shown in Fig. 2(b). But when the mean flow shear becomes stronger, the evolution of the asymmetric
wake is affected dramatically. The wake gradually switches from traveling downward to upward, as displayed in Fig. 2(c)–
(f). We have anticipated this effect since a mean flow vorticity with clockwise circulation direction is superposed on the
flow over the oscillating foil. By comparing the vorticity fields with different mean flow shear, it is found that when shear
strength exceeds a certain value (in this study, when θ exceeds 2.0), the wake configuration follows similar development
among different cases.

The time histories of both thrust and lift coefficients for different cases at St = 0.3 and k = 15.0 are presented in Fig. 3.
It is observed that for the studied cases, the mean flow shear has minor influence on thrust generation capability of flapping
foils. However, strong mean flow shear can notably affect the lift generation on the pitching foil. It may be discerned from
the figure that the lift direction of the case without shear is in the downward direction, but that of the case with strongmean
flow shear disturbance of θ = 4.0 is in the upward direction. The effects of mean flow shear on aerodynamic forces will be
further analyzed in Section 5.

3.2. DMD analysis of the wake structures

Coherent vortex structures and their temporal evolution properties in the asymmetric wakes as discussed in Section 3.1
are studied with the DMD method. To conduct the DMD analysis, the z-vorticity field ωz is sampled with a time interval
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Fig. 3. Time histories of (a) the thrust coefficient and (b) the lift coefficient of the pitching foil with different mean flow shear at St = 0.3 and k = 15.0.

∆t = 0.014 s or equivalently a reduced frequency ks = 4488.0. Note that the reduced frequency of the pitching foil is 15.0,
much smaller than the sampling reduced frequency ks. The data are sampled from the numerical simulation results when
they reach a statistically steady state (or the flow field becomes periodic in the current study). A total of 300 frames in one
oscillation cycle are used in the study here. Due to the current sampling strategy, flow instabilities have saturated and stable
structures with large decaying rates have vanished, as discussed by Schmid et al. (2011). Therefore, only neutrally stable
structures will be identified with DMD.

The spectrum (ωi, λi) of different DMDmodes and the corresponding amplitude |ci| for threewakes, namely, the vorticity
field without mean flow shear and those with mean flow shear of θ = 0.4 and 4.0, are displayed in Fig. 4. The time-averaged
vorticity field is shown in Fig. 5. As mentioned previously, the normalized time-averaged vorticity field is the zeroth DMD
mode (also termed as the mode ‘a’ in Fig. 4). A few dynamically important modes of the vorticity field (termed as the mode
‘b’, ‘c’, and ‘d’ in Fig. 4) are presented in Fig. 6. Note that the DMD modes are ranked by the frequency |ωi|, and only the real
parts of the DMD modes are shown. Several observations are concluded as follows:

• The modal growth rate λi for all the three wakes is very small (or the Ritz values µi are distributed very close to the
unit circle in the complex plane). This indicates that all DMD modes captured are almost neutrally stable, although
very weak growing and decaying effects exist.

• The mean flow shear does not modify the dominant temporal frequencies, but can affect the growing or decaying
rates (although very small), and the amplitude of the DMDmodes. As shown in Fig. 4, the dominant angular frequency
from all three spectra is ω1 = 1.50 (see mode ‘b’), equivalent to a Strouhal number of 0.3 and reduced frequency of
15.0. It is also found that mean flow shear, especially the strong one with θ = 4.0, can suppress the growth rate of
low-frequency DMDmodes; and has damping effect on the amplitude of the DMDmode with frequency which is the
same as the forced frequency of the oscillating foil (i.e., mode ‘b’).

• Strong mean flow shear can significantly modify the spatial pattern of coherent structures. As seen from Fig. 6, strong
mean flow shear (i.e., θ = 4.0) can dramatically change the wave numbers and phases of the DMD modes.

3.3. Mechanisms of shear-induced asymmetric wakes

To explain howmean flow shear interacts with the wake vortex structures, shear impact on symmetric thrust-indicative
wakes are studied in this section. Simulations of wake evolution behind a pitching NACA0012 foil with different mean flow
shear (i.e., θ = 0, 0.4, 1.0, 2.0, 3.0 and 4.0) at St = 0.2 and k = 5.0 are carried out. The vorticity fields with θ = 0, 0.4 and
4.0 at phase zero are displayed in Fig. 7. From Fig. 7(a), it is observed that without mean flow shear, the wake is symmetric
about the horizontal line. Whenmean flow shear is superposed on the flow, the deflective wake begins to develop as shown
in Fig. 7(b) and (c). As the strength of mean flow shear increases, the dipolar vortex structure which has been reported in
Godoy-Diana et al. (2009) and Yu et al. (2012) will become more pronounced.

Next we discuss the coupling mechanism and reasons why the mean flow shear can destroy the wake symmetry. As a
first step, the vortex street structure comparison between symmetric and asymmetric wakes at St = 0.2 and k = 5.0 is
presented in Fig. 8. The vorticity fields at phase 3π/2 for both the case with θ = 0 (displayed as iso-vorticity lines with solid
lines indicating positive values, and dashed lines indicating negative values) and that with θ = 4.0 (displayed as vorticity
contours) are shown in the same figure. It is evident that for the casewith θ = 4.0, a vortex dipole is formed in one oscillation
cycle as shown in the box in Fig. 8. The solid and dashed arrows in Fig. 8 illustrate the relative position change between the
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Fig. 4. Temporal DMD spectrum (left) and the corresponding amplitude (right) for three wakes (a) without mean flow shear, (b) with mean flow shear of

θ = 0.4, and (c) θ = 4.0, at St = 0.3 and k = 15.0.

Fig. 5. Time-averaged vorticity fields (a) without mean flow shear, (b) with mean flow shear of θ = 0.4, and (c) θ = 4.0, at St = 0.3 and k = 15.0. These

flow structures correspond to mode ‘a’ in Fig. 4.

vortices from this dipole and those from the corresponding symmetric wake structure. It is observed that the mean flow
shear alters the distance between two adjacent vortices in the vortex street, thus triggering the formation of the vortex
dipole.

Now we explain how the mean flow shear promotes the formation of the vortex dipole using two models extracted
from Fig. 8. The signs of vortices in these models follow those in Fig. 8. To facilitate understanding, we analyze the relative
positions of the positive and negative vortices in a vortex street with two different vortex models. Then a synthesis of the
two models is considered to fully explain the vortex interaction in the vortex street with mean flow shear. The first model
as shown in Fig. 9(a) can be used to explain the dynamic behavior of the vortices with positive z-vorticity (i.e., positive
vortices). Recall that mean flow shear with negative z-vorticity is added to the flow field. Therefore, the vorticity strength of
positive vortices is diminished, whereas the vortices with negative values (i.e., negative vortices) are enhanced. Due to the
large induced velocity from the enhanced negative vortex (Vort1 in Fig. 9(a)), the positive vortex (Vort2 in Fig. 9(a)) in the
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Fig. 6. Real parts of the temporal DMD modes for vorticity fields (a) without mean flow shear, (b) with mean flow shear of θ = 0.4, and (c) θ = 4.0, at

St = 0.3 and k = 15.0. Three modes, namely, mode ‘b’, mode ‘c’, and mode ‘d’, as indicated in Fig. 4, are displayed.

Fig. 7. Vorticity fields behind the pitching foil at St = 0.2 and k = 5.0 (a) without mean flow shear; (b) with mean flow shear of θ = 0.4; and (c) θ = 4.0,

at phase zero.

Fig. 8. Comparison of vorticity fields behind the pitching foil at St = 0.2 and k = 5.0withoutmean flow shear (iso-vorticity lines with solid lines indicating

positive values, and dashed lines indicating negative values) and those with mean flow shear of θ = 4.0 (vorticity contours).

dipole will have a clockwise rotation relative to the negative vortex, as illustrated in Fig. 9(a). This explains the position shift
of positive vortices as shown in Fig. 8.

The dynamic behavior of the negative vortices can be explained by using the second model as presented in Fig. 9(b). In
this model, a symmetric wake configuration consisting of Vort1, Vort2 and Vort3_ghost is assumed. The effects of Vort1
and Vort2 on Vort3_ghost are then analyzed. Recall that if no mean flow shear is added, a symmetric wake is formed. This
indicates that Vort3_ghost can resist the disturbances from Vort1 and Vort2. Note that in a symmetric wake with many
vortices, all vortex structures in the vortex street will exert disturbances on Vort3_ghost. But it is reasonable to assume that
the disturbances from Vort1 and Vort2 (i.e., the nearest two neighbors) are dominant. Now consider the asymmetric wake
case, in which Vort3_ghost cannot resist the disturbances from Vort1 and Vort2, but has a displacement in the direction of
the unbalanced induced velocity generated by Vort1 and Vort2. As mentioned previously, the strength of positive vortices is
diminished, but that of negative vortices is enhanced. This infers that Vort3_ghost will have a larger displacement (i.e., the
‘‘lifting’’ effect) in the direction of the induced velocity by Vort2, and a smaller displacement in the direction of the induced
velocity by Vort1 (i.e., the ‘‘lagging’’ effect). As a result, Vort3 as shown in Fig. 9(b) illustrates the trajectory of the negative
vortex in the wake.

By combining the models in Fig. 9(a) and (b), the relative position of three vortices shed in sequence in the near wake
region is illustrated in Fig. 9(c), which schematically reproduces the three near-wake vortices in Fig. 8. Note that to estimate
the relative positions among the three vortices, three major physical processes are considered here. The first process is
the vorticity ‘‘strengthening and weakening’’ effect of the mean flow shear as indicated by the first model (Fig. 9(a)). This
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Fig. 9. Models of shear impact on the symmetric wake. (a)Model for the displacement of the vortices with positive vorticity; (b)model for the displacement

of the vortices with negative vorticity; (c) model for the relative position of three vortices shed in sequence in the near wake region. The dashed line is the

ideal trajectory of the vortex in a horizontal vortex street if no external disturbance is introduced. The signs ‘‘+’’ and ‘‘−’’ indicate the positive vorticity and

negative vorticity, respectively. The solid arrows indicate the relative motion of the vortex from its assumed position (dashed vortex) to the actual position

(solid vortex) due to the induction of other vortices.

will always make the positive vortices moving faster in the free stream direction and upward in the transverse direction
comparing with those in a symmetric vortex street. The second process is the ‘‘lagging and lifting’’ effect as indicated by the
second model (Fig. 9(b)) when Vort1 and Vort3 are initially formed. This effect will always make the negative vortices move
slower in the free stream direction and upward in the transverse direction comparing with those in a symmetric vortex
street. The third process is the induced displacement by the vortex dipole consisting of Vort1 and Vort2. Before Vort3 is
shed from the trailing edge, Vort1 and Vort2 will pair up to form a dipolar structure. The self-induced velocity of this vortex
dipole will drive both vortices tomove in the downstream and upward directions. These three processes explain the relative
position of the three vortices as presented in Fig. 9(c). This further explains how shear-induced asymmetric wakes form in
an evolving vortex street.

4. Shear impact on plunging foils with leading edge separation

So far shear impact on the wake vortex structure behind a pitching foil has been studied. We note that no leading edge
separation shows up in flow fields around the pitching foil. Nonetheless, for the plunging foil, it is observed that flow
separation occurs near the leading edge. In this section, shear impact on the vortical flow with leading edge separation
around a plunging foil is investigated.

4.1. Shear impact on flow with moderate leading edge separation

First, vortical flows behind a plunging NACA0012 foil at St = 0.2 and k = 5.0 with different mean flow shear
(i.e., θ = 0, 0.4, 1.0, 2.0, 3.0 and 4.0) are simulated and analyzed. The vorticity fields with θ = 0 and 4.0 at four different
phases, namely 0, π/2, π and 3π/2, are displayed in Fig. 10. It is found that moderate leading edge separation shows up in
the flow field, and mean flow shear affects both the evolution of leading edge vortices and the wake vortices, as expected.
Similar to the pitching case, the negative mean flow shear can induce deflective wakes in the upward, or uplift, direction.

The time histories of both thrust and lift coefficients for flows with different mean flow shear are presented in Fig. 11.
Different from the results of the pitching cases as shown in Fig. 3, the evolution of leading edge vortices significantly changes
the time histories of thrust generation. But as will be shown in Section 5, the time-averaged thrust coefficient is almost not
affected. Although there exists unsteady leading edge separation, the flow still exhibits strong periodic features. Similar to
the pitching foil case, the upward wake results in net lift in the positive y direction.

The flow fields are analyzed using the DMDmethod. The amplitude |ci| for the DMDmodes and the corresponding spatial
patterns (real parts) for a few dynamically important modes with low temporal frequencies are presented in Fig. 12. Similar
to the pitching foil case as discussed in Section 3.2, DMD can capture coherent structures with the same frequency as the
forced one of the oscillating foil, i.e., ω1 = 0.50 (see mode ‘b’). The mean flow shear does not modify the dominant temporal
frequencies, but can affect the amplitude, wave numbers and phases of the DMD modes.

4.2. Shear impact on flow with large leading edge separation

Simulations of wake evolution behind a plunging NACA0012 foil at St = 0.3 and k = 5.0 with different mean flow shear
(i.e., θ = 0, 0.4, 1.0, 2.0, 3.0 and 4.0) are performed in this section. The vorticity fields with θ = 0, 3.0 and 4.0 are displayed
in Fig. 13. Note that for the cases θ = 0 and 3.0, the vorticity fields at four different phases, namely 0, π/2, π and 3π/2, are
presented. As will be seen shortly, the flow field with θ = 4.0 shows aperiodic features. For this case, the vorticity fields at
15T , 15.25T , 15.5T , and 15.75T , where T is the time period calculated from the flapping frequency, are shown in Fig. 13(c).
From Fig. 13, it is observed that large leading edge vortices are generated over the plunging foil at St = 0.3 and k = 5.0. These
leading edge vortices interact with trailing edge vortices, and dramatically affect the wake structures. The mean flow shear
can affect the evolution of both leading and trailing edge vortices, thus their interaction. By comparing the vorticity fields
with θ = 0 and 3.0, we observe that the negative mean flow shear promotes upward deflective wake, as has already been
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Fig. 10. Vorticity fields behind a plunging foil at St = 0.2 and k = 5.0 (a) without mean flow shear; and (b) with mean flow shear of θ = 4.0 at phases

0, π/2, π and 3π/2.

reported in Sections 3 and 4.1. For the vorticity field with stronger mean flow shear (i.e., θ = 4.0), it is hard to determine
the dominant wake direction due to the intricate vortex and vortex dipole interaction.

The time histories of both thrust and lift coefficients for flows at St = 0.3 and k = 5.0 with different mean flow shear
are presented in Fig. 14. It is observed that although large leading edge vortices propagate over the foil and interact with
trailing edge vortices, both the thrust and lift generation are periodic for the flowwith θ = 0, 0.4, 1.0, 2.0 and 3.0. Aperiodic
features show up for the flow with θ = 4.0.

The flow field without mean flow shear and that with mean flow shear of θ = 4.0 are then analyzed with the DMD
method. Note that the flow field without mean flow shear is periodic. Therefore, only one oscillation cycle, which contains
complete flow information, is needed to perform the DMD analysis. To demonstrate this statement, DMD is conducted using
information from one oscillation cycle as well as that from two consecutive cycles. The amplitudes |ci| of different DMD
modes and the corresponding spatial patterns (real parts) from the two analyses are presented in Fig. 15. It is found that
the DMD modes extracted from the one-cycle information have almost the same amplitudes and spatial patterns as those
with the same temporal frequencies from the two-cycle information. The new DMD modes (e.g., modes ‘e’ and ‘f’ in Fig.
15(b)) extracted from the two-cycle information have very small amplitudes. One possible reason that may explain the
generation of these modes is closely related to the flow itself: the flow is not perfectly periodic due to intricate interaction
among different leading and trailing edge vortices. Therefore, these new DMDmodes with small amplitudes are deemed as
dynamically unimportant modes.
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Fig. 11. Time histories of (a) the thrust coefficient and (b) the lift coefficient of the plunging foil with different mean flow shear at St = 0.2 and k = 5.0.

Fig. 12. DMD analysis of two wakes behind plunging foils at St = 0.2 and k = 5.0. The wake on the left has no mean flow shear, and the wake on the right

has mean flow shear of θ = 4.0. The amplitude of DMDmodes for the two wakes are presented in (a) and (b), and the corresponding spatial patterns (real

parts) for mode ‘a’-‘d’ are displayed in (c) and (d), respectively.
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Fig. 13. Vorticity fields behind the plunging foil at St = 0.3 and k = 5.0 (a) without mean flow shear; and (b) with mean flow shear of θ = 3.0 at phases

0, π/2, π and 3π/2. In (c), the flow fields with mean flow shear of θ = 4.0 show aperiodic features. The vorticity fields at 15T , 15.25T , 15.5T , and 15.75T ,

where T is the time period calculated from the flapping frequency, are shown from top to bottom.

Fig. 14. Time histories of (a) the thrust coefficient and (b) the lift coefficient of the plunging foil with different mean flow shear at St = 0.3 and k = 5.0.
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Fig. 15. DMD analysis of the wake behind a plunging foil at St = 0.3 and k = 5.0 without mean flow shear. (a) and (c) are results obtained from one-cycle

flow information; (b) and (d) are results obtained from two-cycle flow information. The DMD mode amplitudes are presented in (a) and (b), and the

corresponding spatial patterns (real parts) for mode ‘a’-‘d’ are displayed in (c) and (d), respectively.

The flow field with mean flow shear of θ = 4.0 is aperiodic as observed from the force histories in Fig. 14. For this case,
DMD is conducted using information from one oscillation cycle (starting from 16T ) as well as that from three consecutive
cycles (also starting from 16T ). The amplitudes |ci| of different DMD modes and the corresponding spatial patterns (real
parts) from the two analyses are presented in Figs. 16 and 17. It is clear from Fig. 16 that the amplitudes and spatial patterns
of the DMD modes extracted from the one-cycle information show large differences from those with the same temporal
frequencies from the two-cycle information. This is due to that the flow is aperiodic, resulting in incomplete flow information
(e.g., low frequency flow fluctuation) from one oscillation cycle. More dynamically important DMDmodes can be extracted
from the three-cycle flow information. The spatial patterns (real parts) of modes ‘e’ and ‘f’ in Fig. 16(b) are visualized in Fig.
17. We expect more energetic DMD modes with even lower frequencies can be extracted when more flow information is
available. These DMDmodes indicate long-term (i.e., much longer than one oscillation cycle) vortex-vortex or vortex-shear
interaction in the aperiodic wake. This is beyond the current scope of discussion.

5. Shear impact on aerodynamic forces of flapping foils

5.1. Lift and thrust generation in mean flow shear

The impact ofweak and strongmean flow shear on unsteady aerodynamic force generation is discussed in this subsection.
Lift and thrust generation mechanism in unsteady flapping wing aerodynamics can be very different from those in steady
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Fig. 16. DMD analysis of the wake behind a plunging foil at St = 0.3 and k = 5.0 with mean flow shear of θ = 4.0. (a) and (c) are results obtained from

one-cycle flow information; (b) and (d) are results obtained from three-cycle flow information. The DMD mode amplitudes are presented in (a) and (b),

and the corresponding spatial patterns (real parts) for mode ‘a’-‘d’ are displayed in (c) and (d), respectively.

Fig. 17. Two low frequency DMDmodes of the wake behind a plunging foil at St = 0.3 and k = 5.0 with mean flow shear of θ = 4.0. (a) Mode ‘e’; and (b)

Mode ‘f’ in Fig. 16.

aerodynamics. Note that the mean angle of attack (AoA) of the flapping foils throughout this study is zero. From the steady

aerodynamic analysis, the net time-averaged lift is zero (this has also been confirmed if symmetric wakes are developed

behind the flapping foils). According to the Kutta–Joukowski theorem, a negative mean flow shear can add lift to the foil in
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Fig. 18. Time-averaged (a) lift coefficients and (b) thrust coefficients of the pitching foil at several combinations of Strouhal numbers and reduced

frequencies with different mean flow shear.

the positive y direction. In this section, lift generation by oscillating foils with different mean flow shear is compared with
that predicted by the strict application of the Kutta–Joukowski theorem.

For completeness, the Kutta–Joukowski theorem is stated as follows. For 2D inviscid steady flow of an incompressible
fluid, the lift per unit span L on the foil can be calculated as

L = −ρ∞U∞Γ , (15)

where Γ is the circulation (counter-clockwise positive), which is defined as

Γ =

∮

∂S

V⃗ · d⃗l =
{

S

(

∇ × V⃗

)

· dS⃗. (16)

For 2D foils with almost constant mean flow shear strength as given by Eq. (14) and zero AoA, Eq. (16) is approximated as

Γ =
{

S
ωzdS ≈ −Sfoilupert

θ

2c
, (17)

where Sfoil is the area of the NACA0012 foil. According to the definition, the lift coefficient CL evaluated by the Kutta–
Joukowski theorem is given as

CL =
Sfoilupertθ

U∞c2
. (18)

The time-averaged lift and thrust coefficients for pitching foils at several combinations of Strouhal numbers and reduced
frequencies with different mean flow shear are displayed in Fig. 18. The lift coefficients are compared with those predicted
by the strict Kutta–Joukowski theorem. It is observed that higher averaged lift than that predicted by the steady-inviscid
aerodynamic theorem is generated. The higher levels in averaged lift are attributable to the vortical wake structure that is
present in the realmodel and absent in Kutta–Joukowski’s theorem.We further note that lift generation à la Kutta–Joukowski
is linear with shear strength, i.e., circulation, whereas the averaged lift generation in viscous unsteady flow is nonlinear
(see Fig. 18(a)). It is also found that as the Strouhal numbers and reduced frequencies increase, higher averaged lift can be
generated on the pitching foil. From Fig. 18(b), it is observed that for all cases studied, mean flow shear has negligible effect
on the thrust/drag production.

A comparison of time-averaged lift and thrust coefficients for both pitching and plunging foils at St = 0.2 and k = 5.0,
and St = 0.3 and k = 5.0 with different mean flow shear is shown in Fig. 19. It is observed that under the same dynamic
parameters, the time-averaged lift from the plunging motion is much higher than that from the pitching motion due to the
strong nonlinear interaction between the foil and the vortical flow. As noted earlier, mean flow shear has negligible effect
on the time-averaged thrust production.

5.2. Comparison with the flapping foils with positive mean angles of attack

From Section 5.1, we find that themean flow shear can enhance lift generationwhen themean AoA is zero. As is known, a
positive mean AoA is usually used in the flapping wing aerodynamics to maintain lift (Platzer et al., 2008; Shyy et al., 2010).
In this subsection, a comparison of the lift enhancement due to mean flow shear, and that due to positive mean AoAs is
performed. The Strouhal number and reduced frequency are set as 0.3 and 5.0, respectively. Both pitch and plunge motions
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Fig. 19. Comparison of time-averaged (a) lift coefficients and (b) thrust coefficients of the pitching and plunging foils at St = 0.2 and k = 5.0, and St = 0.3

and k = 5.0 with different mean flow shear.

Fig. 20. The time-averaged thrust and lift coefficients versus themean AoAs of the flapping foils in a uniform incoming flow. (a) Pitchmotion with St = 0.3

and k = 5.0; (b) plunge motion with St = 0.3 and k = 5.0.

are tested here. The time-averaged lift and thrust coefficients for five cases with different mean AoAs, namely, 0◦ (no mean
AoA), 2◦, 5◦, 9◦ and 15◦ are presented in Fig. 20. Several observations are concluded as follows:

• When the AoA increases, the time-averaged lift coefficient increases, and the time-averaged thrust coefficient
decreases, for both the pitch and plunge motions.

• Although the positive mean AoAs can enhance the lift generation, they pose penalty on the thrust generation. For the
pitch case, the foil begins to generate drag when the AoA reaches 2◦; for the plunge case, the foil can generate thrust
until the AoA increases to about 10◦.

The thrust-lift polar of the flapping foils with different mean AoAs in a uniform incoming flow is then compared with
that of the flapping foils in flows with different mean flow shear. The results are reported in Fig. 21. It is clear that when the
same amount of lift is generated, flapping foils in flowswith differentmean flow shear generate larger thrust than thosewith
differentmean AoAs.When the lift increases, there is almost no penalty on thrust generation over flapping foils in flowswith
different mean flow shear; for the pitch case, the thrust even increases when the lift increases. As is recognized, propulsive
efficiency of flapping foils varies directly with thrust, and inversely with lift (Lewin and Haj-Hariri, 2003; Yu et al., 2010).
This indicates that when generating the same amount of lift, the flapping foils in flows with negative mean flow shear can
be more energetically efficient than those with positive mean AoAs in a uniform incoming flow. Take the plunge motion at
St = 0.3 and k = 5.0 as an example. When the lift coefficient is about 0.7, the propulsive efficiency of the plunging foil in
flows with negative mean flow shear is approximately 16%; but the propulsive efficiency of the plunging foil with positive
mean AoAs in a uniform incoming flow is only about 9%.
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Fig. 21. Comparison of the thrust-lift polar of the flapping foils in flows with different mean flow shear, and that of the flapping foils with different mean

AoAs in a uniform incoming flow. (a) Pitch motion with St = 0.3 and k = 5.0; (b) plunge motion with St = 0.3 and k = 5.0.

6. Conclusions

The impact of mean flow shear on vortex structures over flapping NACA0012 foils is numerically studied using a 2D high-
order SD Navier–Stokes flow solver, and further analyzed with the DMD method and vortex theory. A hyperbolic tangent
mean flow shear profile is superposed on the uniform incoming flow. This shear profile can well approximate linear shear
distribution around y = 0, and provide a smooth transition from shear layer near the centerline (i.e., y = 0) to the outer
uniform flow. Wake evolution processes in the mean flow shear behind pitching and plunging foils are then studied under
different flow conditions, i.e., different Strouhal numbers and reduced frequencies.

From the pitching foil cases, it is discovered that mean flow shear couples with the vortex structures in the wake to
create asymmetry and thus alter the deflective direction of the asymmetric wake (e.g., when Strouhal numbers and reduced
frequencies are relatively large), or promote the transition from symmetric to asymmetric wakes (e.g., when Strouhal
numbers and reduced frequencies are relatively small). The mechanism on how mean flow shear interacts with the wake
vortex structures has been explained qualitatively using several simplified vortex street models. From the plunging foil
cases, it is observed that mean flow shear can dramatically affect the evolution and interaction of leading and trailing edge
vortices. For flow with large leading edge separation, strong mean flow shear can induce aperiodic vortex shedding. For
both cases, DMD has been used to analyze flow structures. In general, it is found that mean flow shear does not affect the
temporal frequency of coherent structures, but can alter the growth rate, amplitude, and spatial pattern of these structures.
Wedemonstrate that for periodic flow, flowdata fromone oscillation cycle is enough to carry out DMDanalysis; for aperiodic
flow, dynamically important DMD modes with low temporal frequencies (i.e., smaller than the forced frequency of the
oscillating foil) can be identified.

From the simulation results, it is also found that themean flow shear promotes the formation of vortex dipole in thewake,
which can significantly contribute to the unsteady lift production. The unsteady lift is much larger than that predicted by
the steady aerodynamic theory. Energetic flow conditions, e.g., large Strouhal number or reduced frequency, and plunging
motion, can amplify the effects of mean flow shear, generating larger unsteady lift. In contrast, the mean flow shear almost
does not affect the time-averaged thrust generation; but it can alter the thrust generation histories by modifying the vortex
propagation process over the foil, especially when the foil undergoes the plunging motion.

The lift enhancement performance of flapping foils due to mean flow shear is further compared with that achieved by
increasing the mean AoA of the foils in a uniform incoming flow. It is found that when generating the same amount of lift,
the flapping foils in flows with negative mean flow shear can generate larger thrust than those with positive mean AoAs in
a uniform incoming flow. This indicates that the flapping wing design can potentially take advantage of negative mean flow
shear in atmospheric flows by enhancing lift without compromising thrust generation.
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