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Abstract: We describe a procedure to calculate the impulse response and phase noise of

high-current photodetectors using the drift-diffusion equations while avoiding computationally

expensive Monte Carlo simulations. We apply this procedure to a modified uni-traveling-carrier

(MUTC) photodetector. In our approach, we first use the full drift-diffusion equations to calculate

the steady-state photodetector parameters. We then perturb the generation rate as a function of

time to calculate the impulse response. We next calculate the fundamental shot noise limit and

cut-off frequency of the device. We find the contributions of the electron, hole, and displacement

currents. We calculate the phase noise of an MUTC photodetector. We find good agreement with

experimental and Monte Carlo simulation results. We show that phase noise is minimized by

having an impulse response with a tail that is as small as possible. Since, our approach is much

faster computationally than Monte Carlo simulations, we are able to carry out a broad parameter

study to optimize the device performance. We propose a new optimized structure with less phase

noise and reduced nonlinearity.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Phase noise in the photodetectors is a critical limiting factor in many RF-photonic applications

[1, 2], particularly in metrology applications in which excess phase noise inherent in the

photodetection process limits the extent to which the low noise of an optical pulse train from an

optical frequency comb can be transferred to the microwave domain [2]. The standard approach

to calculate white phase noise floor and the cut-off frequency in a photodetector is to find the

impulse response of the individual electrons that are created in response to the Poisson-distributed

incoming light and the efficiency with which they are created [1, 3]. The resulting fluctuations in

the timing of the impulses manifest themselves as phase noise on the microwave harmonics of

the optical pulse repetition frequency [4–6]. This approach must be modified in a high-current

photodetector, in which space charge effects due to the large number of carriers in the device

affect the impulse response and the carrier fluctuations. Quinlan et al . [3] theoretically predicted

that the phase noise from a train of ultrashort optical pulses becomes lower and tends to zero as

the optical pulse duration tends to zero. Later experiments showed that while there is a significant

reduction in the phase noise as the pulse duration decreases, this decrease in the phase noise

ceases once the optical pulse duration becomes small compared to the duration of the electrical

pulse that emerges from the photodetector [7]. Sun et al . [8] were able to reproduce these

experimental results using Monte Carlo simulations that accounted for collisional diffusion of

electrons in the device. However, they did not take advantage of the fact that the distribution of

electrons in any time slot is expected to be Poissonian, which simplifies both the calculations and
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the physical interpretation of the results. More practically, the Monte Carlo simulations are too

computationally slow to be used for performance optimization.

Here, we use the drift-diffusion equations [9, 10], combined with the observation that the

arrival of electrons in any time interval is Poisson-distributed, to calculate the phase noise. This

approach takes minutes on a desktop computer, as opposed to the many hours on a computer

cluster that the Monte Carlo approach requires. We explain analytically that the mean-square

phase noise tends to a constant non-zero value when the optical pulse duration tends to zero.

Finally, we use our approach to study how the device parameters affect the phase noise and

optimize the performance. In our approach, we treat the incoming light as a time-dependent field

with a variation about its mean at any time that is determined by the Poisson distribution of

the photons. We apply this approach to a modified uni-traveling-carrier (MUTC) photodetector,

a device in which photogenerated holes are prevented from moving by potential barriers, so

that electrons dominate the photocurrent [11]. We compare our calculated impulse response

to the response that was obtained earlier using Monte Carlo simulations [8], and we find good

agreement. We next show that the quantum efficiency of the device with an input light pulse is the

same as the steady-state quantum efficiency of the device, and we calculate the shot noise level,

which is also in good agreement with experiments [7]. We also calculate the cut-off frequency of

the device using the 3-dB roll-off in the impulse response. Finally we calculate the phase noise

for the device. In the simulation, we use the device parameters that were used by Sun et al . [8]

We set the output current, Iout, equal to 15 mA, we set the bias voltage, Vbias, equal to 16 V, we set

the external load impedance, Rload, equal to 50 Ω, and we set the MUTC photodetector diameter

equal to 50 µm. Figure 1 shows the structure of the MUTC photodetector [7, 8, 11].

InP, n+ , Si, 1.0×1019 , 200 nm

InGaAs, n+ , Si, 1.0×1019 , 20 nm

InP, n+ , Si, 1.0×1019 , 900 nm

InP, n+ , Si, 1.0×1018 , 100 nm

InP, Si, 1.0×1016 , 900 nm

InP, Si, 1.4×1017 , 50 nm

InGaAsP, Q1.1, Si, 1.0×1016 , 15 nm

InGaAsP, Q1.4, Si, 1.0×1016 , 15 nm

InGaAs, Si, 1.0×1016 , 150 nm

InGaAs, p, Zn, 5.0×1017, 250 nm

InGaAs, p, Zn, 8.0×1017 , 200 nm

InGaAs, p, Zn, 1.2×1018 , 150 nm

InGaAs, p, Zn, 2.0×1018 , 100 nm

InP, p+ , Zn, 1.5×1018 , 100 nm

InGaAs, p+ , Zn, 2.0×1019 , 50 nm
50 nm

150 nm

165 nm

180 nm

280 nm

430 nm

630 nm

880 nm

1030 nm

1045 nm

1060 nm

1110 nm

2010 nm

2110 nm

3010 nm

3030 nm

3230 nm

p
-r

eg
io

n
i-

re
g
io

n
n

InGaAsP, Q1.1, Zn, 2.0×1018 , 15 nm

InGaAsP, Q1.4, Zn, 2.0×1018 , 15 nm

-r
eg

io
n

InP, semi-insulating substrate

Double side polished

Fig. 1. Structure of the MUTC photodetector. Green indicates the absorption layers, which

include an intrinsic region and a p-doped region. Red indicates highly doped InP layers,

purple indicates highly-doped InGaAs layers, and white indicates other layers.
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2. 1-D computational model

We use a one-dimensional (1-D) model of the MUTC photodetector [9, 10] to calculate the

impulse response of the device. External loading, impact ionization, and the Franz-Keldysh effect

are all considered in the simulations. We review our 1-D computational model in Appendix A.

To calculate the impulse response, we first calculate the steady state output current. We then

perturb the generation rate by ∆Gopt for a small time starting at t = 0 and calculate the impulse

response due to the perturbed ∆Gopt. We use

∆Gopt = rGopt rect
( t

τ

)
, (1)

where Gopt is the optical generation rate, r is the perturbation coefficient, rect(t) is the rectangular

function

rect(t) =




0, t < 0

1, 0 < t < 1

0, 1 < t

and t is time. We set τ = 10 fs, which we verified produces reliable results for the impulse response

for times that are larger than 40 fs. We use r = 10−1, which we have verified is sufficiently small

that no nonlinear effects occur, while it is large enough to avoid roundoff errors. While it is

possible in principle to linearize drift-diffusion equations about the stationary solution and solve

the linearized equations to obtain the impulse response, the equations that we obtain with this

direct linearization are sufficiently complex that there is no advantage in doing so. The normalized

impulse response h(t) is then given by

h(t) =
∆Iout(t)∫ ∞

0
∆Iout(t) dt

, (2)

so that
∫ ∞

0
h(t)dt = 1, where ∆Iout(t) is the change in the output current due to the impulse.

We note that h(t) as defined here includes the combined effect of a finite optical pulse duration

and the electrical response to that pulse. This definition is consistent with the one of Quinlan

et al . [3] and Sun et al . [8] In order to verify that our results are independent of the choice of τ

and r , we ran numerical tests in which we allowed these quantities to vary.

3. Results

In this section, we present the results for the MUTC photodetector. We also compare the impulse

response of the MUTC photodetector to the results of Sun et al . [8] In Fig. 2, we show the electric

field and carrier distributions at steady state inside the MUTC photodetector. Electron-hole

pairs are created inside the region shown as vertical dot-dashed lines. Holes are rapidly absorbed

in the p-contact region, while electrons move to the intrinsic region, where they experience a

strong electric field before moving to the n-region, where they diffuse to the n-contact. Holes

do not contribute significantly to the total current as active carriers due to the position of the

absorption layers. In an MUTC photodetector, the only absorption layers are in the p-region. The

intrinsic region only contains collection layers. Photogenerated majority holes diffuse almost

immediately to the p-contact. There is a diffusion blocking layer on the left side of the absorption

layers that prevents electrons from diffusing to the p-contact [12]. In Fig. 3, we show the

normalized impulse response of the MUTC photodetector as a function of time. In contrast to

a PIN photodetector [13], the displacement current cannot be neglected, and it dominates the

total current for the first 50 fs. Thereafter, the electron current dominates at all times, in sharp

contrast to the PIN photodetector described by Hu et al . [9] for which the hole current dominates

beyond 70 fs. The total current of the MUTC photodetector is sum of the electron, hole, and
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Fig. 2. (a) Electric field distribution at steady state inside the MUTC photodetector and

(b) density of electrons (red) and holes (blue) at steady state inside the MUTC photodetector.

Iout = 15 mA and Vbias = 16 V. The photon absorption region is shown between vertical

dot-dashed lines.

displacement currents. The displacement current dominates the total current for the first 50 fs

and is negative. Beyond 70 fs, electrons dominate the total current, and it becomes positive.

Figure 4 shows the power spectral density |H( f )|2, where H( f ) is the transfer function of the
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Fig. 4. Power spectral density of the MUTC photodetector.

photodetector, defined as

H( f ) =

∫ ∞

−∞

h(t) exp(−2π j f t) dt. (3)

and we used square pulses that are defined in Eq. (1). We compare this result to an average of the

power spectral density that Sun et al . [8] reported from five realizations of their Monte Carlo

simulations. They computed their power spectral density using an impulse with a duration of

15 ps. We computed h(t) and |H( f )|2 using an impulse duration of 15 ps with a peak output

current of 130 mA, which corresponds to the results of Sun et al . [8] We have found that when

the optical pulse duration is less than about 500 fs, the impulse response tends to a finite limit

he(t) that represents the electronic response and has a mean-square pulse duration ∼ 90 ps2 for

the MUTC device that we are considering. We show the results in Fig. 4.
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The calculation of the impulse response using the drift-diffusion equations is far more rapid

computationally than is the calculation of the impulse response using Monte Carlo simulations.

Hence, it is possible to do a broad parameter study. In Fig. 5, we compare the device diameter,

beam diameter, steady state output current, and the voltage bias. We compare these results to the

average of the power spectral density that Sun et al . [8] reported from five realizations of their

Monte Carlo simulations. The bandwidth increases when the device diameter decreases [11],

which we attribute to a decrease in capacitance. However, the difference is less than 2 GHz among

all the cases that we considered.

For the device used by Quinlan et al . [7] and Sun et al . [8], we calculated a quantum efficiency

of η = 56%. We also calculated a 3-dB cut-off frequency of 20 GHz, which is consistent with the

results of Sun et al . [8]

4. Phase noise in the MUTC photodetector

In this section we calculate the phase noise of the MUTC photodetector and compare our

results to the Monte Carlo simulation results of Sun et al . [8] and to the experimental results of

Quinlan et al . [7] We first calculate the timing jitter using the impulse response function, and we

then use the timing jitter to calculate the phase noise.

We define the finite-time Fourier transform,

FT {x(t)} ≡

∫ T/2

−T/2

x(t) exp(− j2π f t) dt . (4)
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We next write

FT {i(t)} =

∫ T/2

−T/2

i(t) exp(− j2π f t) dt

=

1

2K

K−1∑

k=−K

∫ TR

0

i(t + kTR) exp[− j2π f (t + kTR)] dt,

(5)

where i(t) is the output current, TR is the repetition time between optical pulses, and T = KTR.

If we let ik(t) = i(t + kTR), so that ik(t) is the k-th current output pulse, we obtain

FT {i(t)} =
1

2K

K−1∑

k=−K

∫ TR

0

ik(t) exp(− j2π f t) dt . (6)

For the n-th harmonic of the current, we obtain

Rn + jQn =
1

2K

K−1∑

k=−K

∫ TR

0

ik(t) [cos (2πn fr t) − j sin (2πn fr t)] dt, (7)

where Rn and Qn are in-phase and quadrature components of the n-th harmonic. We also define

the ensemble average 〈ck(t)〉 for any quantity ck(t) as

〈ck(t)〉 ≡ lim
K→∞

1

2K

K−1∑

k=−K

ck(t). (8)

It is useful to shift the time to remove the quadrature component to good approximation. To do

that, we write

Rn + jQn =
1

2K

K−1∑

k=−K

∫ TR

0

ik(t)

{
cos

[
2πn

TR

(t − tc)

]
− j sin

[
2πn

TR

(t − tc)

]}
dt, (9)

where tc is central time of the output current, which is implicitly defined by the relation

Qn =

∫ TR

0

〈ik(t)〉 sin

[
2πn

TR

(t − tc)

]
dt = 0. (10)

We next define

Φn =

− j
∑K−1

k=−K

∫ TR

0
ik(t) sin

[
2πn
TR

(t − tc)
]

dt

∑K−1
k=−K

∫ TR

0
ik(t) cos

[
2πn
TR

(t − tc)
]

dt
= 0. (11)

Although we have Φn = 0, the separate phase contributions of each comb pulse to Φn will be

non-zero. We have Φn =
∑

k Φkn and Qn =
∑

k Qkn, where
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Φkn =
Qkn

Rn

=

− j
∫ TR

0
ik(t) sin

[
2πn
TR

(t − tc)
]

dt

∫ TR

0
ik(t) cos

[
2πn
TR

(t − tc)
]

dt
. (12)

We next find

Φ
2
kn =

∫ TR

0

∫ TR

0
ik(t)ik(u) sin

[
2πn
TR

(t − tc)
]

sin
[

2πn
TR

(u − tc)
]

dtdu

{∫ TR

0
ik(t) cos

[
2πn
TR

(t − tc)
]

dt
}2

. (13)

We may assume that the electrons in each current pulse are Poisson-distributed. This assumption

may seem surprising at first since the photodetectors of interest to us operate in a nonlinear

regime. However, the electrons only interact through the electric field that they collectively create.

Due to the large number of electrons that create this field, a mean-field approximation is valid,

and the arrival time of the electrons is nearly independent. Given the assumption that the current

pulses are Poisson-distributed, we find

〈ik(t)ik(u)〉 − 〈ik(t)〉 〈ik(u)〉 = h(t)e2Ntotδ(t − u). (14)

Taking the ensemble average of Eq. (13), substituting Eq. (15) into this ensemble-averaged

equation, and using Eq. (10), we find

〈
Φ

2
n

〉
=

1

Ntot

∫ TR

0
h(t) sin2 [2πn(t − tc)/TR] dt

{∫ TR

0
h(t) cos [2πn(t − tc)/TR] dt

}2
, (15)

where
〈
Φ

2
n

〉
is the mean-square phase fluctuation and Ntot is the total number of electrons in

the photocurrent. Increasing the photocurrent for a given impulse response h(t) decreases the

phase noise. In the limit of short optical pulse durations (. 500 fs), we find that 〈Φ2
n〉 tends to a

non-zero constant, which is given by

〈
Φ

2
n

〉
=

1

Ntot

∫ TR

0
he(t) sin2 [2πn(t − tc)/TR] dt

{∫ TR

0
he(t) cos [2πn(t − tc)/TR] dt

}2
, (16)

where he(t) is the electronic impulse response of the device. From Eq. (16), we infer that pulse

noise is reduced for a fixed pulse energy by designing the photodetector so that its impulse

response is as close to square as possible. We stress that this analysis applies to any photodetector,

not only MUTC photodetectors.

Using Eq. (16), we calculate the phase noise of the MUTC photodetector. Figure 6 shows the

phase noise of the MUTC photodetector as a function of offset frequency from the fifth harmonic

at 10 GHz for three different optical pulse widths. We show the phase noise deviation from the

long pulse limit as a function of the optical pulse width in Fig. 7.
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As shown in Figs. 6 and 7, we obtain good agreement with both experimental and Monte Carlo

simulation results. Here, we considered a range of average currents between 14 mA and 18 mA

and bias voltages between 15 V and 21 V, which correspond to the ranges in the experiments

of Quinlan et al . [7] In Fig. 7, we show how the phase noise deviation from the long-pulse

limit depends on the bias voltage and output current for the MUTC device considered earlier

by Quinlan et al . [7] and Sun et al . [8] The computational rapidity of our approach makes it

possible to carry out a detailed device optimization in which all the layer elements in the MUTC

device are varied in order to minimize the phase noise while maintaining low nonlinearity, as

described in the next section.
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Fig. 9. Fundamental and IMD2 powers as a function of reverse bias for input frequencies

F1 = 4.9 GHz, F2 = 5.0 GHz, and F3 = 5.15 GHz for the Li et al . [11] structure and the

modified structure.

5. Device optimization

Here, we use our approach to design an MUTC structure, based on the structure of Fig. 1, but with

lower phase noise and nonlinearity. A long tail in the impulse response translates to higher phase

noise. We performed a local optimization in which we modified the absorption layers to decrease

the length of the tail in the impulse response and to lower the phase noise. In our optimization,

we first altered the thickness of each of the absorption layers by up to 10%. However, we did

not find a significant change in the impulse response. Next, we altered the doping density in
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Table 1. Phase Noise 1 = phase noise of the Li et al . [11] structure; Phase Noise 2 = phase

noise of the modified structure; Difference = (Phase Noise 1) − (Phase Noise 2).

Pulse Duration Original structure Modified structure Difference

1 ps −178.6 dBc/Hz −180.0 dBc/Hz 1.4 dBc/Hz

12 ps −174.0 dBc/Hz −175.5 dBc/Hz 1.5 dBc/Hz

22 ps −169.7 dBc/Hz −172.8 dBc/Hz 3.1 dBc/Hz

each of the absorption layers. The total impulse response h(t) is given by the sum of the impulse

responses of each of the absorption layers separately, so that

he(t) =

N∑

j=1

hj(t), (17)

where hj(t) denotes the individual contribution of each layer. For the structure in Fig. 1, we

have N = 7, and we show hj(t) in Fig. 8, along with the location of each layer. From Eq. (7) we

conclude that it is desirable to reduce the variance of he(t) as much as possible. We obtained

our best results when we increased the doping density in layer j = 4 (280 nm–430 nm) from

1.2 × 1018 cm−3 to 1.5 × 1018 cm−3, we decreased the density in layer j = 5 (430 nm–630 nm)

from 8.0 × 1017 cm−3 to 6.0 × 1017 cm−3, and we decreased the doping density in layer j = 6

(630 nm–880 nm) from 5.0 × 1017 cm−3 to 1.5 × 1017 cm−3. These changes have the effect of

reducing the size of the tail of he(t). In Table 1, we compare the phase noise that we calculated

for the structure of Li et al . [11] (structure 1) and our modified structure (structure 2) for three

different pulse durations at which the phase noise is experimentally measured. In all cases, the

phase noise is reduced by at least 1.4 dB.

We also calculated the harmonic powers in the modified structure and compared them to the

harmonic powers in the Li et al . [11] structure as shown in Fig. 9. We find that there is no tradeoff

with nonlinearity. The modified structure has a lower second-order intermodulation distortion

(IMD2). It is not obvious that both phase noise and nonlinearity will improve simultaneously.

To minimize phase noise, it is desirable to have an impulse response with a tail that is as small

as possible. To minimize nonlinearity, it is desirable to minimize the variation of the efficiency

and mean-square impulse response as a function of the input pulse energy. These criteria are not

equivalent.

6. Conclusion

We have demonstrated that it is possible to accurately calculate the impulse response and the

shot noise for high current photodetectors using the drift-diffusion equations. We then used

the impulse response of the device to calculate the phase noise in an MUTC photodetector.

Agreement with prior experiments and Monte Carlo simulations is excellent. Our approach is

computationally faster than Monte Carlo simulations by many orders of magnitude. Hence, this

approach makes it possible to optimize the device parameters in order to reduce the phase noise.

Using our method, we modified the design of Li et al . [11] to obtain a structure with at least 1.4

dBc/Hz lower phase noise and reduced nonlinearity.

Appendix A

Here, we provide details of our 1-D model of the MUTC photodetector [9,14]. Our starting point

is the electron and hole continuity equations and the Poisson equation,
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∂(p − N−
A
)

∂t
= −

1

q
∇ · Jp + Gii + Gopt − R(n, p),

∂(n − N+
D
)

∂t
= +

1

q
∇ · Jn + Gii + Gopt − R(n, p),

∇ · E =
q

ǫ

(
n − p + N−

A − N+D
)
,

(18)

where n is the electron density, p is the hole density, t is time, q is the unit of charge, Jn is the

electron current density, Jp is the hole current density, R is the recombination rate, Gii and Gopt

are the impact ionization and optical generation rates, E is the electric field, ǫ is the permittivity

of the semiconductor material, N−
A

is the ionized acceptor concentration, and N+
D

is the ionized

donor concentration. The electron and hole current densities are governed by the equations

Jp = qpvp(E) − qDp∇p,

Jn = qnvn(E) + qDn∇n,
(19)

where vn(E) and vp(E) are the electric-field-dependent electron and hole drift velocities,

respectively, Dn is the electron diffusion coefficient, and Dp is the hole diffusion coefficient. The

optical generation rate in Eq. (18) is

Gopt = Gc exp [−α(L − x)] , (20)

where Gc and α are the generation rate coefficient and absorption coefficient, respectively, x is

distance across the device, and L is the device length.

The impact ionization generation rate in Eq. (18) is

Gii = αn
|Jn |

q
+ αp

|Jp |

q
, (21)

where αn and αp are the impact ionization coefficients of electrons and holes, respectively, which

are given by

αn = An · exp

[
−

(
Bn

|E|

)m]
, (22)

and

αp = Ap · exp

[
−

(
Bp

|E|

)m]
, (23)

where An, Bn, Ap , and Bp are parameters of impact ionization [9]. We set m = 1.03.

The recombination rate in Eq. (18) is

R =
np − n2

i

τp(n + ni) + τn(p + ni)
, (24)

where τn, τp , and ni are the electron and hole lifetimes and intrinsic carrier density respectively.

In steady state, Eq. (18) becomes

0 = −
1

q
∇ · Jp + Gii + Gopt − R(n, p),

0 = +
1

q
∇ · Jn + Gii + Gopt − R(n, p),

∇ · E =
q

ǫ

(
n − p + N−

A − N+D
)
.

(25)
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Fig. 10. Numerical mesh used for the finite difference spatial discretization of the 1-D

drift-diffusion equation.

Figure 10 shows the numerical mesh that we used for the finite difference spatial discretization of

the 1-D drift-diffusion equation.

We approximate the electric field at the half-integer points in the mesh as

Ei+1/2 = −

(
ψi+1 − ψi

hi

)
, (26)

where ψi is the potential at mesh-point i, and we approximate ∂p/∂x and ∂n/∂x at the half-integer

points as

∂p

∂x

����
i+1/2

=

(
pi+1 − pi

hi

)
,

∂n

∂x

����
i+1/2

=

(
ni+1 − ni

hi

)
,

(27)

where hi is distance between the points i − 1/2 and i + 1/2. We calculate the currents at the

half-integer points by discretizing Eq. (19) to obtain

Jp,i+1/2 = qpi+1/2vp,i+1/2(E) − qDp,i+1/2

(
pi+1 − pi

hi

)
,

Jn,i+1/2 = qni+1/2vn,i+1/2(E) + qDn,i+1/2

(
ni+1 − ni

hi

)
,

(28)

where pi+1/2 = (pi+1 + pi)/2, ni+1/2 = (ni+1 + ni)/2, Dn,i+1/2 and Dp,i+1/2 are the electron and

hole diffusion coefficients at the point i + 1/2, and vn,i+1/2 and vp,i+1/2 are the electron and hole

drift velocities at the point i + 1/2. Finally, we approximate

∂Jp,i

∂x
=

Jp,i+1/2 − Jp,i−1/2

[(hi + hi−1)/2]
,

∂Jn,i

∂x
=

Jn,i+1/2 − Jn,i−1/2

[(hi + hi−1)/2]
.

(29)

The total output current is the sum of the electron, hole, and displacement currents and is given

by

Jtotal = Jn + Jp + ǫ
∂E

∂t
. (30)

We use the same model parameters as Hu et al . [9]
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