
1 23

Biological Cybernetics
Advances in Computational
Neuroscience
 
ISSN 0340-1200
Volume 113
Combined 1-2
 
Biol Cybern (2019) 113:179-190
DOI 10.1007/s00422-018-0769-7

Spiking networks as efficient distributed
controllers

Fuqiang Huang & ShiNung Ching



1 23

Your article is protected by copyright and

all rights are held exclusively by Springer-

Verlag GmbH Germany, part of Springer

Nature. This e-offprint is for personal use only

and shall not be self-archived in electronic

repositories. If you wish to self-archive your

article, please use the accepted manuscript

version for posting on your own website. You

may further deposit the accepted manuscript

version in any repository, provided it is only

made publicly available 12 months after

official publication or later and provided

acknowledgement is given to the original

source of publication and a link is inserted

to the published article on Springer's

website. The link must be accompanied by

the following text: "The final publication is

available at link.springer.com”.



Biological Cybernetics (2019) 113:179–190
https://doi.org/10.1007/s00422-018-0769-7

ORIG INAL ART ICLE

Spiking networks as efficient distributed controllers

Fuqiang Huang1 · ShiNung Ching1

Received: 14 February 2018 / Accepted: 19 June 2018 / Published online: 27 June 2018
© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Abstract
In the brain, networks of neurons produce activity that is decoded into perceptions and actions. How the dynamics of neural
networks support this decoding is a major scientific question. That is, while we understand the basic mechanisms by which
neurons produce activity in the form of spikes, whether these dynamics reflect an overlying functional objective is not
understood. In this paper, we examine neuronal dynamics from a first-principles control-theoretic viewpoint. Specifically,
we postulate an objective wherein neuronal spiking activity is decoded into a control signal that subsequently drives a linear
system. Then, using a recently proposed principle from theoretical neuroscience, we optimize the production of spikes so
that the linear system in question achieves reference tracking. It turns out that such optimization leads to a recurrent network
architecture wherein each neuron possess integrative dynamics. The network amounts to an efficient, distributed event-based
controller where each neuron (node) produces a spike if doing so improves tracking performance. Moreover, the dynamics
provide inherent robustness properties, so that if some neurons fail, others will compensate by increasing their activity so that
the tracking objective is met.

Keywords Spiking networks · Neural networks · Decoding · Event-based control

1 Introduction

It is often argued that brain networks constitute controllers of
unparalleled capability, such as in theways thatwe as humans
are able to manipulate our limbs and execute fine motor
trajectories with ease [1]. Consequently, using brain-like
networks for the purposes of control has been an appeal-
ing approach for several decades [2–4]. Indeed, inspired by
neuroanatomy, artificial neural networks (ANNs) have been
proposed and successfully used to solve a variety of control
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tasks such as system identification and learning problems
[5–8]. Classically, the goal of an ANN is to realize approx-
imate dynamic programming or adaptive control objectives
by learning the weights of connections between neurons in
order to minimize a prescribed error function. The neurons
in an ANN produce graded activity through a static linear or
nonlinear function of their inputs, scaled by these weights.

Despite the success of ANNs in certain contexts, much is
left to be desired in the use of networks for control purposes.
Indeed, we know that actual neurons in the brain possess
often complex dynamics and produce activity primarily in the
form of action potentials, or spikes, as opposed to the graded
(i.e., real-valued) activity of ANNs. Understanding how such
spiking activity is decoded into usable signals is one of the
most prevalent questions in theoretical neuroscience [9,10].

Motivated by this question, our goal in this paper is to
synthesize a spiking neural network whose activity can be
decoded into a useful control signal. To do so, we lever-
age the idea from computational neuroscience of predictive
coding [11,12], which posits that neurons act in a way that
best reduces the future uncertainty of extrinsic inputs and
latent variables.While often carried out in a statistical frame-
work, recent work [13,14] has used predictive coding to build
deterministic spiking networks that approximate dynamical
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systems. Here, we use the ideas in [13,14] to elaborate on
our previous work [15] in considering not system approxi-
mation, but rather system control. The approach is based on
the following theoretical suppositions:

– Neurons fire spikes at certain times ti , i ∈ Z
+ resulting

in a spike train of the form:

o(t) =
∑

i

δ(t − ti ),

where δ(·) is a Dirac delta function.
– Spike trains of the neural network are converted into a
real-valued control signal via

u(t) = h(o(·))

where h(·) is a decoder that may in general depend on
the current and past state of the spike train.

– The goal of the network is to emit spikes with timing ti
such that u(t) produces a desired control objective in a
known plant model.

In other words, we ask: if spikes are converted to a control
signal via h(·), then when and how should those spikes be
produced? Should neurons fire many spikes, densely in time;
or should only a few neurons produce a small number of
spikes, in amore sparse, efficient manner? As intuitionmight
suggest, the answer to these questions will depend on the
specific assumptions regarding the form of h(·), as well as
the system being controlled.

As will be shown, when we assume that the decoder and
plant both have linear dynamics, the answers to the above
questions can be analytically obtained through an optimiza-
tion problem whose solution is realized by endowing each
neuron with drift-diffusion dynamics and a fixed spiking
threshold that is analogous to the classical integrate-and-fire
model neuron [16]. That is, rather than starting a prioriwith a
prespecified neuronal network and learning its connections,
we start with a control objective and synthesize the network
and its dynamics in one step. Indeed, there are several other
comparable ideas in theoretical neuroscience and machine
learning within which our approach should be placed in con-
text. In particular, the concepts of reservoir computing [8]
and the neural engineering framework [17] both highlight the
use of recurrent networks for a variety of objectives includ-
ing control [18]. Such strategies work by training a set of
decoding weights (analogous to learning the function h(·))
that read activity from a fixed network with usually random
architecture. The relationship between h(·) and the ‘best’
such architecture/dynamics is not considered, and this is the
main focus of our work. Further, almost always the dynamics
of such networks are formulated in discrete time, versus the
overt continuous-time formulation we consider herein.

From a purely control-theoretic standpoint, our results can
be interpreted in the context of a type of control problem over
networks. Unique in our problem is that we explicitly deduce
the particular connection motifs and dynamics of each node
for a particular control objective goal. That is, whereas much
effort has been directed at understanding how to elicit pre-
scribed dynamics and patterns of networks (e.g., [19]), our
work takes the direction of examining control by networks,
finding the network dynamics that aremost useful for generic
control tasks. In this regard, our network can be viewed as
an efficient event-based controller [20] where each neuron
(node) remains silent unless producing a spike leads to a
reduction in feedback error (or, more generally, an error-
based cost function). The neurons in the network constitute
a set of ‘event detectors’, whose spikes indicate a deviation
in desired cost. The spikes are decoded into control signals
that compensate for these deviations.

The remainder of this paper is organized as follows: Sect. 2
presents the background and preliminaries related to the opti-
mization problem,which leads to the derivation of the spiking
network in Sect. 3; analysis and performance characteriza-
tion of such spiking network is shown in Sect. 4; conclusions
and discussions are made in Sect. 5.

2 Preliminaries and formulation

The formulation of the problem is similar to that in our prior
work [15], the major details of which are included here.

2.1 Spike train and firing rate

We consider spiking neural networks (SNNs) wherein each
neuron produces activity in the form of instantaneous spikes,
modeled as Dirac delta functions [21]. Thus, the kth neuron
in the network emits a spike train ok(t), where

ok(t) =
∑

i∈{1,2,...}
δ
(
t − t ik

)
,

where t ik denotes time of the i th spike from the kth neuron.
The collection of spike trains over the network of N neurons
is denoted o(t) ∈ R

N , where o(t) = (o1(t), . . . , oN (t)).
It is very important to note that we do not yet assume any
dynamics associated with the generation of spikes, only that
they occur as instantaneous events.

As is conventional in neuroscience [21], we define a firing
rate variable r(t) (spikes per unit time) by low-pass filtering
the spike trains via

ṙ(t) = −λdr(t) + λdo(t), (1)
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Fig. 1 Problem schema. We aim
to study the circumstances in
which a spiking neural network
(SNN) can control a linear
system through its decoded
activity. To do so, we optimize
the timing of the spiking outputs
o(t) in order to minimize a
tracking objective, thereby, in
effect, optimizing the dynamics
of the SNN itself

where λd determines the (receding horizon) kernel over
which rates are computed.

2.2 Linear control assumption

We postulate a putative function for the SNN wherein spikes
are decoded for the purpose of controlling a linear time-
invariant system of the standard form

ẋ(t) = Ax(t) + Bu(t) (2)

with system states x(t) ∈ R
n and external input u(t) ∈ R

m ,
while A ∈ R

n×n is the state matrix and B ∈ R
n×m is the

input matrix.
Weproceed to study the control of such a system, under the

tacit assumption that the pair (A, B) is controllable, which
means that an external input u(t) is able to steer the internal
state between any two pointswithin a finite time interval [22].

2.3 Decoding

As described in the introduction, the control itself hinges on a
dynamical transformation of the spike trains o(t) to the input
signal u(t). This transformation is termed the decoder and is
elaborated on below. Endowed with a decoder, we consider
the schema illustrated in Fig. 1, wherein the SNN takes the
reference command x̂(t) as an input and produces spikes so
that x(t) follows x̂(t).

We assume that the spiking activity of the SNN is decoded
into a signal u(t) ∈ R

m via a rate-instantaneous-type decoder

u(t) = e−λd t u(t0) + Γ

∫ t

0
e−λd (t−τ)o(τ )dτ + Ωo(t)

= 1

λd
Γ r(t) + Ωo(t), (3)

with rate decoding weight Γ ∈ R
m×N and instantaneous

decoding weight Ω ∈ R
m×N , where

Γ = [Γ1 Γ2 · · · ΓN ],
Ω = [Ω1 Ω2 · · · ΩN ],

in which Γk,Ωk ∈ R
m are decoding vectors associated with

each neuron. These weights govern how the spiking activity
of each neuron propagate to the inputs of the system to be
controlled.

In this work, for a given neuron k, the j th elements of
vectors Γk and Ωk will have the same sign, i.e.,

sgn(Γ jk) = sgn(Ω jk), where j = 1, 2, . . . ,m,

so that j th neuron acts on the decoded signal with the same
valence on both instantaneous and rate-based timescales.

The formulation of our decoder (3) and application to a
control problem (2) deviates in a subtle but important way
from the original work of [13,14]. Specifically, our decoder
overtly contains two timescales and the resultant signal is not
simply readout, but used toward a dynamical effector. As we
will see, this shift in formulation allows for a feedback error
signal to be used directly by the derived spike-generating
network. Indeed, the dynamics in (3) encapsulates the two
dominant theories regarding how spiking activity is decoded
in the brain. Specifically, the u(t) has terms that capture: (i)
rate decoding, wherein the decoded signal depends propor-
tionally on the firing rate; and (ii) instantaneous decoding,
wherein the decoded signal depends proportionally on the
exact timing of spikes via direct dependence on o(t). As we
will show herein, it turns out that both decoding principles
confer distinct advantages in terms of u(t) being usable as a
control signal.

2.4 Optimization strategy

We proceed by formulating a control objective that will
reward small errors while penalizing excessive neural acti-
vation:

J (t) =
∫ t

to
‖x̂(τ ) − x(τ )‖22 + ν‖r(τ )‖1 + μ‖r(τ )‖22dτ.

(4)
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Two regularizing terms are present in this function. The
penalty on the �1 norm of the firing rate, ‖r(τ )‖1 =∑

i |ri (τ )| = ∑
i ri (τ ) (for positive firing rates), is intended

to prohibit the network from using too many spikes to exe-
cute the task, while the �2 norm, ‖r(τ )‖22 = rT(τ )r(τ ), is
introduced to distribute spiking throughout the population.

Finally, we introduce the schema based on which we will
optimize the dynamics by which neurons produce spikes.
Specifically, as noted above, we adopt the ‘greedy spiking
premise’ introduced in [14] so that the objective of neurons
is to minimize the cost function J (t). Thus, we enforce the
policy that the neuron k fires a spike at time t ik only if doing
so decreases the value of J (t), i.e., with a slight abuse of
notation,

J ((t ik + ε)|ok(t ik) spikes) < J ((t ik + ε)|ok(t ik) = 0), (5)

where 0 < ε � λd . It is important to emphasize
that the optimization will take place over the spike times
{t ik}k∈{1,...,N },i∈N , and not over the decoding parameters Γ

or Ω , which are assumed known a priori.
The policy in (5) is the central premise from which we

will deduce our ensuing spiking network.

3 Derivation of the spiking network

3.1 The emergent network dynamics are linear with
fixed spiking threshold

The above optimization problem results in a threshold spik-
ing rule, which is our first and key result. Namely, we intro-
duce a latent state variable vk(t), termed ‘voltage,’ for each
neuron. If vk(t) for the kth neuron exceeds a fixed threshold
v̄k at time t , then this neuron fires a spike to decrease the
value of the objective function (4). More formally, we state:

Proposition 1 The spike times that greedily minimize (4)
according to assumption (5) are realized through the thresh-
old criteria

vk(t) > v̄k, (6)

subject to the neuronal voltage relation

vk(t) ≡ ΩT
k B

T (
x̂(t) − x(t)

) − μλd ē
T
k r(t), (7)

v̄k ≡ ΩT
k B

T BΩk + νλd + μλ2d

2
, (8)

where ēk ∈ RN is the standard entry vector with zero ele-
ments except for the kth row.

Proof See “Appendix A”. ��
The above equations, in fact, specify a network of inter-

connected dynamical spiking neurons. To see this, we denote
the membrane voltage vector for all of neurons as

V (t) = (v1(t), . . . , vN (t)), (9)

then we can deduce dynamics for the network of neurons as:

V̇ (t) = ΩTBT Ae(t) + ΩTBT c(t) + Wsr(t) + W f o(t)
(10)

where e(t) = x̂(t)−x(t) is the feedback error, c(t) = ˙̂x(t)−
Ax̂(t) is the feedforward signal and the weight matrix of
connections among neurons are

Ws = − 1

λd
ΩTBT BΓ + μλ2d I , (11)

W f = −ΩTBT BΩ − μλ2d I , (12)

where I is the identity matrix. Several observations regard-
ing the emergent spiking dynamics are notable. The emergent
connectivity dynamics are separated into two parts: a slow,
rate-driven component mediated by Ws (slow connectiv-
ity), and an instantaneous, spike-driven component mediated
by W f (fast connectivity). Note that these terms capture,
in essence, the network connectivity (i.e., how a neuron
is affected by spikes of other neurons). Since the diagonal
elements are nonzero, these terms also capture the internal
dynamics of each neuron.

Both of the regularization parameters ν and μ affect the
threshold of v̄k , making it harder for the kth neuron to fire.
Further, μ appears in W f and, specifically, causes the value
of vk(t) to instantaneously decrease following a firing event
(i.e., in essence, a ‘reset’ in the latent variable vk(t)). This
prevents dense, repetitive spiking.

To enable tracking, the spiking network must be sensitive
to both the desired state trajectory x̂(t) and its derivative ˙̂x(t)
(i.e., to create c(t)). This dependence is consistent with the
notion of an instantaneous spike encoder, which has been
shown to be optimal from the perspective of signal recon-
struction [23].

Finally, there is a duality in the parameters of the system
to be controlled, and their manifestation in the SNN. Specifi-
cally, the state matrix A appears as, effectively, an input gain
on the feedback error e(t) and feedforward signal c(t) on
the SNN, whereas the input matrix B, modifies the internal
connectivity among neurons. However, the number of neu-
rons N depends solely on the dimensions of the decoding
weights Γ and Ω , and not on the dimension of the system to
be controlled.

The use of the feedback error e(t) represents a deviation
from our prior results in [15], as well as the original pre-
dictive coding network of [13,14]. This is because in the
control formulation herein, the signal to be tracked x̂ and
the ‘output’ signal x both evolve under (2), so that the incre-
mental optimization in (5) involves the same set of forward
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dynamics (see also “Appendix A”). In a non-control formu-
lation, the signal x is simply the decoded activity, which
has no dynamical relation to the tracking reference. Conse-
quently, by allowing explicit incorporation of an error signal,
we obviate the need to perform pseudo-inversion of the for-
ward dynamics of the system, a potentially error-inducing
step.

3.2 Output feedback

The above result is readily extended in the case of output
feedback

y = Cx,

where y(t) ∈ Rl is the output signal and C ∈ Rl×n is the
output matrix, based on the revised objective function

J (t) =
∫ T

to
‖ŷ(τ ) − y(τ )‖22 + ν‖r(τ )‖1 + μ‖r(τ )‖22dτ.

(13)

The extended spiking rule becomes

vk(t) > v̄k, (14)

with

vk(t) ≡ ΩT
k B

TCT (
ŷ(t) − y(t)

) − μλd ē
T
k r(t), (15)

v̄k ≡ ΩT
k B

TCTCBΩk + νλd + μλ2d

2
, (16)

while the neural dynamics are

V̇ (t) =ΩTBTCTCAe(t) + ΩTBTCTCc(t)

+ Wsr(t) + W f o(t), (17)

where

Ws = − 1

λd
ΩTBTCTCBΓ + μλ2d I , (18)

W f = −ΩTBTCTCBΩ − μλ2d I . (19)

These equations are derived in a similar way as in “Appendix
A”.

3.3 Adding a self-decay leads to exact
integrate-and-fire dynamics

Note that the emergent dynamics (10) are similar to those
of the classical integrate-and-fire (IF) neuron model [16], a
well-known formal biological neuron model. As in [14], to
allow the neuronal dynamics to match the classical IF model,

one needs to add two additional terms to the dynamics of the
latent variable V (t): (i) a decay/leak action that forces the
voltage to decay to zero in the absence of input; and (ii) a
noise term that promotes stochastic firing, i.e.,

V̇ (t) = −λV V (t) + ΩTBT Ae(t) + ΩTBT c(t)

+ Wsr(t) + W f o(t) + σvw(t) (20)

where, λV is the decay constant and w(t) is a white noise
process.

Note that the self-decay and noise term are introduced to
match the neuron dynamicswith the IFmodel and donot arise
from the direct greedy optimization solution. However, the
noise term is very important to promote realistic stochastic
firing, which we will discuss later.

4 Analysis and performance characterization

We proceed to analyze the key dynamical features of the
spiking network and characterize necessary conditions for
the network to achieve the desired control performance.

4.1 Fast versus slow network interactions and
ensuing control performance

The network exhibits coupling on two timescales: fast cou-
pling mediated by W f and slow coupling mediated by Ws .
These timescales are related to the two timescales of decod-
ingpresented in (3).Wenowhighlight the different functional
roles of these timescales.

4.1.1 Fast interactions for immediate error reduction and
feasibility

Our derivation highlights an important insight regarding the
putative decoder (3) for the purpose of control, namely that
the instantaneous term is necessary in order to ensure that
command tracking is possible. Indeed, without instantaneous
decoding, the spiking condition in (6) becomes

−μλd ē
T
k r(t) >

νλd + μλ2d

2
. (21)

Twoobservations can be immediatelymade: (i) the control
error x(t) − x̂(t) no longer appears in this condition, and,
(ii) more bluntly, this condition can never be satisfied, since
r(t) is always nonnegative and the right hand side is positive.
Thus, under the greedy policy (5), a spike can never decrease
the cost in this decoding scenario (i.e., with rate decoding
only).

This result can be interpreted, since the decoder and the
system to be controlled both involve integration of their
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afferent inputs. Without instantaneous decoding, if a neu-
ron spikes, a delta function will be added to the spike trains
o(t) and the decoded signal u(t)will exhibit a jump disconti-
nuity. Consequently, x(t) can produce, at most, a trapezoidal
change over the ‘greedy’ horizon ε.

4.1.2 Slow interactions for efficient tracking

Unlike fast interactions, which are pertinent to the feasibility
of the control problem, slow interactions can improve per-
formance through more efficient use of spikes, since each
spike is able to have a lasting effect on other neurons.

To illustrate this effect, we consider a simple example
of tracking in a linear system with A = −10, B = 1
and compare the ensuing network performance achieved
by a network of 100 neurons for |Γk | = 0 (Fig. 2a) and
|Γk | = 200 (Fig. 2b). The parameters for the spiking
network are chosen as λV = 0Hz, σv = 50 μ = 0.03,

(a)

(b)

Fig. 2 Performance of the proposed spiking network a without and b
with rate decoding. The first panels of a and b demonstrate the tracking
performance; the spiking events, i.e., the spiking activity across the
population are shown in the second panels while the membrane voltage
for the first neuron and its threshold are plotted in the third panels. a
|Γk | = 0, b |Γk | = 200

ν = 0.3, λd = 10Hz,Ωk = 0.5 for k = 1 . . . 50,Ωk = −0.5
for k = 51 . . . 100, while Γk has the same sign as Ωk .

By comparing Fig. 2a, b, we note substantially sparser
and more random spiking outputs are observed when rate
decoding is used. In addition to the sparser firing, we also
note that the use of rate decoding also leads to generally
better tracking performance. This increase in performance
can be qualitatively understood since each neuron is able
to have a longer lasting effect on the control signal. In
fact, lower firing rates r(t) are inextricably associated with
low errors via (7). This rationale for this stems from the
fact that the threshold v̄k in (8) is independent of the rate
decoding weight Γ . Thus, if the dynamics of the network
produce a decrease in r(t) (as is the case when Γ is utilized),
then the resultant error must also decrease, else the mem-
brane potentials vk(t) incur a contradictory increase above
threshold.

4.2 Network size and robustness to neuronal failure

Todemonstrate the effect of network size N ,wefix theweight
of rate decoding |Γk | = 200, change the number of neurons
and generate corresponding step responses.

As shown in Fig. 3, with a greater number of neurons,
the control performance appears to increase in terms of both
the bandwidth and damping associated with a nominal step
response. This is perhaps expected, since more neurons are
able to contribute to the decoded signal. The drawback here
is, of course, that greater ‘effort’ is used from the standpoint
of computational burden.

A more important property of the spiking network is
its robustness to neuron failure, i.e., its performance when
subsets of neurons randomly cease spiking. Indeed, the con-
nectivitywithin the network serves as a feedbackmechanism,
wherein neurons compensate for each other by up- or down-
regulating their firing.

We show this robustness by disabling some neurons dur-
ing certain time intervals (300–1200 and 1800–2700ms). As
shown in Fig. 4a, when only instantaneous decoding is used
and some neurons are disabled, the tracking performance
deteriorates because of insufficient neurons for spiking,while
in Fig. 4b, the rate-instantaneous decoding is implemented,
the system is still able to track the desired trajectory well,
showing robustness to disabled neurons. This result is not dif-
ficult to understand, as mentioned above, with rate decoding,
the spiking distribution is sparse, hence only a few neurons
are needed to ensure good tracking.

4.3 Homogeneous versus heterogeneous decoding
weights

In the above cases, we considered single-input scenarios
wherein we used instantaneous decoding weightsΩk that are
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(a)

(b)

Fig. 3 Performance of the proposed spiking network for different num-
bers of neurons. a N = 50, b N = 500

homogeneous over k. However, in a multi-input system, het-
erogeneousweights are necessary. The reason lies inEqs. (3),
(6)–(8). Specifically, if all |Ωk |’s are the same, each neuron
responds in the same way to the error, so that there is no way
to disassociate error in different states. However, if these
weights are heterogeneous, neurons will have a sensitivity to
error in different states. Thus, as a whole, the network will
act to reduce error across all controlled states. This argument
is conceptually similar to that of observability of the error
with respect to Ω .

To illustrate this notion, we compare step responses of a
dual-input–dual-output system,

[
v̇1
v̇2

]
=

[−1 0
0 −20

] [
v1
v2

]
+

[
1 0
0 1

] [
u1
u2

]
,

controlled by homogeneous and heterogeneous decoding,
respectively. The parameters for the spiking network are cho-

(a)

(b)

Fig. 4 Robustness of the proposed network to neuronal failure. Spikes
in the red shaded regions are manually suppressed. The internal dynam-
ics of the network result in other neurons producing compensatory
spikes, mitigating the effect on tracking. a |Γk | = 0, b |Γk | = 200

sen as N = 100, λV = 0Hz, σv = 50, μ = 0.03, ν = 0.3,
λd = 10Hz, |Γk | = 200.

In Fig. 5a, we set Ωk = [0.5 0.5]T for k = 1 . . . 50,
Ωk = [−0.5 −0.5]T for k = 51 . . . 100 and we see that both
states cannot stay in the static states while the control signals
in the second chart seems exactly the same. In contrast, when
Ω ∼ N (0, 0.52)—the normal distribution with 0 mean and
0.5 standard deviation, both states are able to track respective
set points (Fig. 5b).

5 Discussion and conclusions

In this work, we have proposed a dynamical, recurrently
connected spiking network whose activity can be decoded
for the purposes of controlling a linear system in terms of a
tracking objective. The network amounts to an event-based,
distributed control strategy that enjoys robustness to failures
of particular nodes (neurons). However, the design does rely
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(a)

(b)

Fig. 5 In a multiple-input setting, the decoding weights must be het-
erogeneous. Here, performance is shown for a homogeneous versus b
heterogeneous decoding

on knowledge of the system matrices A and B, which are
embedded in the emergent network dynamics.

5.1 Limitations of the greedy spiking assumption:
feasibility

As shown in Sect. 4.1, the greedy optimization premise
underlying our network necessitates the use of instantaneous
decoding. This assumption plays out in terms of another,
more direct limitation: that the proposed network can only be
used to control state variables that are directly actuated. Intu-
itively, this is because for the greedy assumption to work, a
spikemust be able to produce a nonzero instantaneous deriva-
tive in the error variable. In terms of the derived network, this
manifests in the term BT(x̂ − x) in (7). Thus, the kth neuron
will only produce a spike in response to error that can prop-
agate through BT (i.e., variables that are directly actuated).

One way to formalize this notion is to restrict ourselves
to the output feedback situation, wherein the objective func-
tion is specified in terms of y (13). In this case, a necessary
condition for feasibility is simply:

BTCT 	= 0. (22)

In fact, the greedy cost reduction policymeans that even if the
system is fully controllable and observable, we still cannot
steer all of the states if BTCT = 0.

5.2 The role of noise

Another key issue in the proposed network is the role of
noise, which we have modeled as additive white noise in
(20). Such noise is not only needed to promote more realistic
stochastic firing, but is also needed for the network to attain
the desired performance. Indeed, the magnitude of the noise,
parameterized by σV can have a substantial effect on this
performance.

Note specifically that without noise, as shown in Fig. 6a all
of the neurons with the same kernel will fire spikes together,
since they will meet the same threshold at the same time
according to (7) (assuming uniform initial conditions). This
results in larger tracking error, non-random spiking distribu-
tion and larger firing rate, compared with Fig. 6b wherein a
small amount of noise is added. However, if the noise mag-
nitude is too large, as seen in Fig. 6c, the firing rate becomes
aberrantly high and the tracking performance is also deteri-
orated. Hence, in this sense, there appears to be an ‘optimal’
σV , though ascertaining this value analytically is difficult.
Thus, some amount of tuning is needed.

5.3 The effect of the leak term

We note that the leak term λV V (t) is not an output of the
optimization scheme, but rather a phenomenological addi-
tion that allows the neuronal dynamics match the classical
IF model. The incorporation of the leak term deteriorates the
control performance as shown in Fig. 7a, b.

5.4 Units and scaling of parameters

The parameters in (6)–(12) can be expressed in biologically
meaningful units. For example, λd can be specified in Hz
while the decoding weights |Γ | and |Ω|, determining the
membrane voltage and the threshold, can be expressed as
postsynaptic potential size in mV. It is important to note,
however, that there is a tradeoff in the scale of these param-
eters in terms of the input gain matrix B and the size N of
the network. In particular, with more neurons, the decoding
weights can become smaller since more neurons are con-
tributing to the control signal.
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(a)

(b)

(c)

Fig. 6 The magnitude of the extrinsic noise σV is a key parameter.
In this example, too little or too much noise leads to degradation in
performance. a σV = 0, b σV = 50, c σV = 200

5.5 Synaptic dynamics allow for spike transmission
only

Note that in (10)–(11), interactions among neurons are medi-
ated not only by the spike train o(t), but also through
the firing rate r(t). However, the requirement that neu-
rons transmit firing rates can be eliminated by endow-

(a)

(b)

Fig. 7 Excessive leak λV deteriorates performance. a λV = 0, b λV =
20

ing neurons with a synaptic state S(t), which has the
dynamics

Ṡ(t) = −λd S(t) + λdW
so(t), (23)

With the dynamics (23), S(t) is equivalent toWsr(t). In this
way, the original dynamics can be rewritten as

V̇ (t) = ΩTBT Ae(t) + ΩTBT c(t) + S(t) + W f o(t).

5.6 Relationship to predictive coding

The control problem we consider is based on the notion of
predictive neural coding [14], wherein the goal of the SNN
is to mimic the input–output response of a linear system. Our
formulation can be viewed as a generalization of this schema
in three main ways: (i) we consider the possibility of spik-
ing information being used instantaneously and in terms of
rate; (ii) we consider the derived signal (i.e., u(t)) to be itself
controlling a separate dynamical system. There is a potential
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semantic nuance here, since the system to be controlled could
also be formulated as part of the ‘decoder.’ In fact, this nuance
is what ultimately enables us to (iii) introduce explicit feed-
back error to the dynamics of neurons, which avoids the use
of pseudo-inversion in obtaining the spiking dynamics [14].
It is worth noting that several features of our derived network
do differ in interpretation from [14]. Indeed, the fast and slow
interactions in our model arise directly from the formulation
of our decoder, which has two timescales. As we showed in
our results, when the goal of the network is system control
(or, more specifically, error reduction), these two timescales
are necessary to achieve performance. This is in contrast to
the goal of emulating a system, wherein the timescales arise
from forward integration of the system dynamics, coupled
with the aforementioned pseudo-inversion. It is also impor-
tant to note that our scheme cannot be reduced to emulating
a previously designed dynamical controller (e.g., a classical
PID-type scheme). Rather, our network works on the prim-
itive goal of error reduction, with no prior assumption or
specification on controller dynamics.

ADerivation of the spiking rule (6)–(12)

The methodology to derive the dynamics of the spiking net-
work is based on the schema originally developed in [14].
Our derivation deviates insofar as we utilize the feedback
error directly, consistent with our considering of a control
rather than prediction objective.

We begin by quantifying the effect of any added spike on
the overall cost. Assume that the kth neuron is silent at time
ts and there are no spikes since time ts , then we can get the
expression

r̃(t) = e−λd (t−ts )r(ts),

where r̃(t) denotes the firing rate at time t assuming no
spikes fired since time ts .

If the kth neuron spikes at time ts , then a delta function
δ(t − ts) is added to ok(t) resulting in

r(t) = e−λd (t−ts )r(ts) +
∫ t

ts
e−λd (t−τ)λdo(τ )dτ

= r̃(t) +
∫ t

ts
e−λd (t−τ)λd ēkδ(τ − ts)dτ

= r̃(t) + e−λd (t−ts )λd ēk .

Define ũ(t) and x̃(t) = eA(t−ts )x(ts) + ∫ t
ts
eA(t−τ)Bũ(τ )dτ

as the decoded output and the system states when there is no
spike since time ts , then according to the relationship between
u(t) and r(t), o(t), i.e., Eq. (3), we have

u(t) = ũ(t) + 1

λd
Γ e−λd (t−ts )λd ēk + Ωkok(t)

= ũ(t) + e−λd (t−ts )Γk + Ωkok(t),

where Γk is the kth column of Γ while Ωk is the kth column
of Ω . Similarly, by Eq. (2), we obtain

x(t) = x̃(t) +
∫ t

ts
eA(t−τ)Be−λd (t−ts )Γk + BΩkok(τ )dτ

= x̃(t) + e−λd (t−ts )
(∫ t

ts
eλd (t−τ)eA(t−τ)dτ

)
BΓk

+
∫ t

ts
eA(t−τ)BΩkok(τ )dτ

= x̃(t) + e−λd (t−ts )
(∫ t−ts

0
e(A+λd I )ζdζ

)
BΓk

+ eA(t−ts )BΩk .

In summary,when there is a new spike from the kth neuron
at time ts , the firing rate, decoded output and system states
have sudden changes as

r(t) → r(t) + h(t − ts)λd ēk

u(t) → u(t) + h(t − ts)Γk + Ωkok(t)

x(t) → x(t) + h(t − ts)H(t − ts)BΓk + eA(t−ts )BΩk,

(24)

where

h(t) = e−λd t1(t)

H(t) =
∫ t

0
e(A+λd I )ζdζ,

where 1(t) denotes the unit Heaviside function. For conve-
nience, from this point afterward, we will use h and H to
denote h(t − ts) and H(t − ts), respectively.

With the above equations, the spiking assumption (5) can
be translated into

∫ ts+ε

to
‖x̂ − x − hH BΓk − eA(τ−ts )BΩk‖22
+ ν‖r + hλd ēk‖1 + μ‖r + hλd ēk‖22dτ

<

∫ ts+ε

to
‖x̂ − x‖22 + ν‖r(τ )‖1 + μ‖r(τ )‖22dτ.

With the definitions of �1 and �2 norms , we get

∫ ts+ε

to
− 2hΓ T

k BTHT (
x̂ − x

) + h2Γ T
k BTHTHBΓk

− 2ΩT
k B

TeA
T(τ−ts )

(
x̂ − x

)

+ 2hΓ T
k BTHTeA(t−ts )BΩk
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+ ΩT
k B

TeA
T(τ−ts )eA(τ−ts )BΩk

+ νhλd + 2μhλd ē
T
k r + μh2λ2ddτ < 0.

Note that h(τ − ts) = e−λd (τ−ts ) = 0 and eA(τ−ts ) = 0 for
τ < ts , and rearrange the inequality to obtain

∫ ts+ε

ts
2hΓ T

k BTHT (
x̂ − x

) + 2ΩT
k B

TeA
T(τ−ts )

(
x̂ − x

)

− 2μhλd ē
T
k rdτ

>

∫ ts+ε

ts
h2Γ T

k BTHTHBΓk + 2hΓ T
k BTHTeA(t−ts )BΩk

+ ΩT
k B

TeA
T(τ−ts )eA(τ−ts )BΩk

+ νhλd + μh2λ2ddτ.

By examining ε � λd into the future, we can then approxi-
mate the integrands as constants so that (using h(τ − ts) ≈ 1,
H(τ − ts) ≈ 0 and eA(τ−ts ) ≈ I for τ − ts ∼ ε)

ΩT
k B

T (
x̂ − x

) − μλd ē
T
k r >

ΩT
k B

TBΩk + νλd + μλ2d

2
.

Defining

vk(t) ≡ ΩT
k B

T (
x̂ − x

) − μλd ē
T
k r

v̄k ≡ ΩT
k B

TBΩk + νλd + μλ2d

2
,

the spiking rule becomes

vk > v̄k .

This implies that when vk(t) is larger than v̄k , the kth neuron
fires a spike, thus decreasing the value of the cost function.

It now remains to deduce the differential form of the
dynamics on the latent variablevk(t).WithV =(v1, . . . , vN ),
we can write

V (t) = ΩTBT (
x̂(t) − x(t)

) − μλdr(t). (25)

Let e(t) = x̂(t) − x(t) and take derivatives of Eq. (25), we
could get that

V̇ (t) = ΩTBT
( ˙̂x(t) − ẋ(t)

)
− μλdṙ(t).

Note that u(t) = 1
λd

Γ r(t) + Ωo(t), and

˙̂x(t) = Ax̂(t) + c(t)

ẋ(t) = Ax(t) + Bu(t) = Ax(t) + 1

λd
BΓ r(t) + BΩo(t)

ṙ(t) = −λdr(t) + λdo(t),

then,

V̇ (t) = ΩTBT
( ˙̂x(t) − ẋ(t)

)
− μλdṙ(t)

= ΩTBT (
Ax̂(t) + c(t)

)

− ΩTBT
(
Ax(t) + 1

λd
BΓ r(t) + BΩo(t)

)

− μλd (−λdr(t) + λdo(t))

= ΩTBTAe(t) + ΩTBTc(t)

+
(

− 1

λd
ΩTBTBΓ + μλ2d I

)
r(t)

−
(
ΩTBTBΩ + μλ2d I

)
o(t).

This last step highlights the core difference in the network
dynamics under the control objective versus the original pre-
dictive coding framework. Because ˙̂x and ẋ are both subject
to the same (linear) dynamics in our case, the feedback error
(x̂ − x) can be retained explicitly here.

With the definition in (11) and (12), the voltage differential
equation can be finally written as

V̇ (t) = ΩTBTAe(t) + ΩTBTc(t) + Ws
1r(t) + W f

1 o(t).
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