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Abstract

Localized roll patterns are structures that exhibit a spatially periodic profile in their center. When

following such patterns in a system parameter in one space dimension, the length of the spatial interval over

which these patterns resemble a periodic profile stays either bounded, in which case branches form closed

bounded curves (“isolas”), or the length increases to infinity so that branches are unbounded in function space

(“snaking”). In two space dimensions, numerical computations show that branches of localized rolls exhibit a

more complicated structure in which both isolas and snaking occur. In this paper, we analyse the structure of

branches of localized radial roll solutions in dimension 1+ε, with 0 < ε� 1, through a perturbation analysis.

Our analysis sheds light on some of the features visible in the planar case.

1 Introduction

Spatially localized patterns can be observed in the natural world in a variety of places, such as vegetation patterns

[16, 19], crime hotspots [10], and ferrofluids [7]. We are particularly interested in localized roll solutions. When

the spatial variable x is in R, these structures are spatially periodic for x in a bounded region, and they decay

exponentially fast to zero as x→ ±∞; see Figure 1(i) for an illustration. In planar systems with x ∈ R2, localized

roll solutions may take the form of radial patterns, which are often referred to as spots and rings depending on

whether the roll structures extend into the center of the pattern (spots) or not (rings); see Figure 1(ii)-(iii). We

refer to the length or radius of the region occupied by the periodic rolls as the plateau length of the underlying

localized roll pattern.

We are interested in understanding how localized roll patterns and their plateau lengths depend on parameters.

To outline the specific questions we wish to address, we focus initially on the Swift–Hohenberg equation

Ut = −(1 + ∆)2U − µU + νU2 − U3, x ∈ Rn, U ∈ R, (1.1)

where ∆ denotes the Laplace operator, ν will be held fixed, and µ is a parameter that we will vary. The Swift–

Hohenberg equation admits stationary localized roll profiles in one and two space dimensions [3, 4, 11, 12, 14,

15, 17, 20]. In particular, it was shown in [11, 15] that (1.1) has two different stationary spot and ring patterns

(referred to as spot A, spot B, ring A, and ring B) near µ = 0. Figure 2 visualizes solution branches associated

with localized roll patterns of the Swift–Hohenberg equation by plotting the parameter µ for which a roll pattern

exists against its plateau length L. As shown there, the bifurcation branches oscillate back and forth between

fold bifurcations, and the plateau length increases as additional rolls are added to the pattern as each branch is

traversed.
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Figure 1: Panel (i) shows the profile of a localized roll pattern with plateau length L as a function of the spatial

variable x ∈ R. Panels (ii) and (iii) contain contour plots of planar radial spots and rings, respectively.
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Figure 2: The two center panels show the bifurcation diagrams of localized roll patterns for n = 1 (left) and n = 2

(right) in (µ,L)-space, where L denotes the plateau length as measured by the squared L2-norm. The left- and

rightmost panels show representative solution profiles as functions of x for n = 1 (left) and the radius r for n = 2

(right). As L increases, more rolls are added to each pattern. The computations are done for (1.1) with ν = 1.6.

A key difference between the one- and two-dimensional cases becomes apparent when the bifurcation branches

are displayed over a larger range of plateau lengths. Figure 3(i) shows the bifurcation diagram of one-dimensional

stationary localized roll patterns: two branches exist that oscillate back and forth between two vertical aymptotes,

and the profiles on these two branches differ by whether they have a minimum or a maximum at their center—

we refer to these branches as snaking branches. In contrast, in the planar case, Figure 3(ii) shows that the

continuation of the spot and ring patterns found near µ = 0 leads to branches that fragment into connected

lower and upper branches, which are separated by finitely many stacked closed loops that we refer to as isolas. In

addition, the fold bifurcations along these branches do not align, and the width of the upper branches decreases

as the plateau length increases [11, 14, 15].

In this paper, we investigate the differences between the bifurcation diagrams in one and two space dimensions.

In particular, we will analyse whether the snaking branches observed in one space dimension persist for all

plateau lengths or whether they terminate at some maximal length, and we will also study whether the branch

width collapses, and if so, at which value of the parameter µ.

Before we outline our results, we focus briefly on the one-dimensional Swift–Hohenberg equation

Ut = −(1 + ∂2
x)2U − µU + νU2 − U3, x ∈ R. (1.2)

For each fixed (µ, ν), this equation admits a one-parameter family of periodic roll patterns that is parametrized

by their period p. Intuitively, the stationary profile shown in Figure 1(i) can be obtained by gluing one of these

periodic profiles and the homogeneous rest state U = 0 together. Since the steady-state equation associated with

(1.2) admits the conserved quantity

H(U, µ) := UxUxxx −
U2
xx

2
+ U2

x +
U2

2
+
µU2

2
− νU3

3
+
U4

4
, (1.3)
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Figure 3: Panels (i) and (ii) show the bifurcation diagrams of stationary localized roll patterns in dimension

n = 1 and n = 2, respectively, of (1.1) with ν = 1.6. For n = 1, there are two solution branches, corresponding

to localized rolls with, respectively, a maximum and minimum at the center, that oscillate back and forth forever.

Panel (ii) shows the solution branches corresponding to planar spot A and ring A patterns, which have a maximum

at the center: the connected lower branch is followed by a stack of closed loops and a connected upper branch

whose width shrinks as the plateau length L increases. Not shown is a second similar set of branches for spot B

and ring B solutions; we refer to [14, Figures 2, 4, and 6] for the full bifurcation diagram.

which is conserved pointwise along each stationary solution U(x) of (1.2), this quantity must vanish when

evaluated along the roll pattern as H(0, µ) = 0. This condition leads to a selection principle for the periodic

profile inside a localized roll structure as there will generally be only one roll pattern Uper(x) in the one-parameter

family for which H(Uper(x), µ) = 0. On the other hand, the Swift–Hohenberg equation is a gradient system with

energy given by

E(U, µ) :=

∫ (
(U + Uxx)2

2
+
µU2

2
− νU3

3
+
U4

4

)
dx,

and we may therefore expect that solutions with lower energy invade those with higher energy. Thus, depending

on whether the energy of the selected roll pattern Uper(x) over one spatial period is larger or smaller than zero

(the energy associated with U = 0 vanishes), the plateau width of localized rolls should either decrease or increase

as time increases. This heuristic argument shows that we may expect to observe localized roll profiles only for

the single parameter value µ at which the energy E(Uper, µ) of the selected periodic profile Uper(x) vanishes. This

parameter value is commonly referred to as the Maxwell point µMax, and its value for ν = 1.6 is µMax = 0.2004,

which lies inside the n = 1 snaking region shown in Figure 3(i). The heuristic reason for why localized rolls exist

in an open interval in parameter space, and not just at a single parameter value, is that the argument given

above does not account for energy stored in the interface between the roll pattern and the homogeneous rest

state. Inspecting Figure 3(ii), it is tempting to conjecture that the branch in the planar case collapses onto the

Maxwell point, and we will return to this conjecture below.

Stationary radial solutions of the Swift–Hohenberg equation posed on Rn can be sought in the form U(|x|) = U(r)
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Figure 4: Panels (i) and (ii) illustrate the geometry behind localized roll profiles for the radial steady-state equation

(1.4) in (i) and the first-order system (1.6) in (ii). Localized roll solutions satisfy Neumann conditions at r = 0

and follow the invariant manifold of periodic profiles parametrized by the conserved quantity H before entering

the stable manifold of the homogeneous rest state.

where the profile U(r) satisfies the fourth-order ordinary differential equation

0 = −
(

1 +
n− 1

r
∂r + ∂2

r

)2

U − µU + νU2 − U3, r > 0. (1.4)

Using the variables

u1 = U, u2 = Ur, u3 =

(
1 +

n− 1

r
∂r + ∂2

r

)
U, u4 = ∂r

(
1 +

n− 1

r
∂r + ∂2

r

)
U (1.5)

and setting ′ = d
dr , we can write (1.4) as the nonautonomous first-order system

u′1 = u2

u′2 = u3 − u1 −
n− 1

r
u2

u′3 = u4

u′4 = −u3 − µu1 + νu2
1 − u3

1 −
n− 1

r
u4.

(1.6)

When n = 1, equation (1.6) is autonomous and reversible under r 7→ −r, and H(U, µ) defined in (1.3) continues

to be a conserved quantity for (1.6) once it is rewritten in the new variables (1.5). The stationary periodic roll

profiles of (1.2) then correspond to periodic orbits of (1.6), which form a normally hyperbolic invariant manifold

P that is parametrized by the value of H; see Figure 4(ii) for an illustration. To construct localized roll patterns,

the approach taken in [2] was to assume the existence of a heteroclinic orbit of (1.6) inside the invariant zero level

set H−1(0) that connects the periodic orbit in H−1(0) to the rest state u = 0. The analysis in [2] then focused

on constructing solutions that satisfy the Neumann boundary conditions u2 = u4 = 0 at r = 0 and follow the

periodic orbit for 0 ≤ r ≤ L with L � 1 before converging to u = 0 as r → ∞: as shown in [2], the resulting

orbits can be parametrized by their plateau length L (see again Figure 4).

For n > 1, the quantity H is no longer conserved for the nonautonomous system (1.6). If the perturbation

terms O(|n − 1|/r) are small, then we expect that the normally hyperbolic invariant manifold P persists as

an integral manifold for (1.6). However, the flow on the integral manifold will no longer be periodic, and

solutions may leave the cylindrical integral manifold after a finite time through its top or bottom. Thus, key to

understanding the existence of localized roll patterns in higher space dimensions is to understand the dynamics

on the integral manifold and to extend the analysis carried out in [2] for the autonomous equation on H−1(0) to

the nonautonomous equation on R4.
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Our analysis will be perturbative in nature, and we therefore need that the perturbation terms O(|n − 1|/r)
appearing in (1.6) are small. Thus, our results focus on the case n = 1 + ε with 0 < ε � 1 (note that we can

consider n as a real parameter in (1.6) though n is then no longer related to the space dimension) and on the

case n = 2, 3 with r � 1 large. We now outline our results:

• For |n− 1| � 1, we show that snaking branches persist for plateau lengths L ≤ exp(b/|n− 1|) where b > 0

is a constant (Theorem 2.1).

• For |n−1| � 1, we will study under which conditions on the perturbation terms localized rolls cannot persist

for large plateau lengths L ≥ Lmax(|n− 1|) and when they will persist for all large L� 1 (Theorem 2.2).

• For n = 2, 3, we will give conditions on the perturbation terms under which localized rolls cannot persist

for large plateau lengths L� 1 (Theorem 2.3).

• For the planar and three-dimensional Swift–Hohenberg equation, we will show using analytical and numer-

ical results that snaking branches need to collapse onto the Maxwell point (§3).

We emphasize that our results will be formulated for a general class of systems that includes (1.6).

The remainder of this paper is organized as follows. We summarize our hypotheses and main results in §2 and

apply these results to the Swift–Hohenberg equation in §3. The remaining sections are dedicated to the proofs

of our main theorems. We will construct boundary-layer solutions near the singularity of (1.6) at r = 0 in §4,

discuss the dynamics near the family of periodic orbits in §5, consider the stable manifold of u = 0 in §6, and

construct radial pulses in §7. In §8, we expand the vector field on the integral manifold and use these results in

§9 to analyse when snaking persists and when collapsed snaking occurs.

2 Main results

Consider the ordinary differential equation

ux = f(u, µ), (2.1)

where u ∈ R4, µ ∈ R, and f : R4 × R→ R4 is smooth. Our first assumption concerns reversibility.

Hypothesis 1. There exists a linear map R : R4 → R4 with R2 = 1 and dim Fix(R) = 2 so that f(Ru, µ) =

−Rf(u, µ) for all (u, µ).

Hypothesis 1 implies that if u(x) is a solution to (2.1), then so is Ru(−x). Furthermore, if u(0) ∈ Fix(R) we

have that u(x) = Ru(−x) for all x ∈ R, and hence we refer to such solutions as symmetric. Finally, we remark

that R4 = Fix(R)⊕ Fix(−R). Next, we assume the existence of a conserved quantity.

Hypothesis 2. There exists a smooth function H : R4×R→ R with H(Ru, µ) = H(u, µ) and 〈∇uH(u, µ), f(u, µ)〉 =

0 for all (u, µ). We normalize H so that H(0, µ) = 0 for all µ.

Our next hypothesis states that the origin is a hyperbolic saddle.

Hypothesis 3. We assume that f(0, µ) = 0 for all µ and that fu(0, µ) has exactly two eigenvalues with strictly

negative real part and two eigenvalues with strictly positive real part.

Next, we formalize the existence of hyperbolic periodic orbits that are parametrized by the value of the conserved

quantity H(·, µ). Throughout this paper, we denote the interior of an interval J by J̊ .

Hypothesis 4. There exist compact intervals J,K ⊂ R with J̊ 6= ∅ and 0 ∈ K̊ such that (2.1) has, for each

(µ, h) ∈ J ×K, a periodic orbit γ(x, µ, h) with minimal period p(µ, h) > 0 such that the following holds for each

(µ, h) ∈ J ×K:

(i) γ(x, µ, h) and p(µ, h) depend smoothly on (µ, h).
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Figure 5: Shown are different possible configurations of the set Γ: The two panels on the left show a 0-loop and

the resulting isolas. In contrast, as shown in the two rightmost panels, 1-loops lead to snaking diagrams.

(ii) γ(x, µ, h) is symmetric: γ(0, µ, h) ∈ Fix(R).

(iii) H(γ(x, µ, h), µ) = h and Hu(γ(x, µ, h), µ) 6= 0 for one, and hence all, x.

(iv) Each γ(x, µ, h) has two positive Floquet multipliers e±α(µ,h)p(µ,h) that depend smoothly on (µ, h) and satisfy

min(µ,h)∈J×K α(µ, h) > 0.

Reversibility implies that the set of Floquet exponents of a symmetric periodic orbit is invariant under multipli-

cation by −1. As shown in [1], the case where the two hyperbolic Floquet multipliers are negative may not lead

to snaking. Hypothesis 4 implies that the union P(µ) := {γ(x, µ, h) : x ∈ R, h ∈ K} of the periodic orbits is a

normally hyperbolic invariant manifold parametrized by the value h ∈ K of the conserved quantity.

As in [2], we restrict the system (2.1) to the three-dimensional level set H−1(0) and parametrize a neighborhood

of the periodic orbit γ(·, µ, 0) using the variables (ϕ, vs, vu), where (ϕ, 0, 0) corresponds to γ(ϕp(µ, 0)/2π, µ, 0),

and (ϕ, vs, 0) and (ϕ, 0, vu) parametrize the strong stable and strong unstable fibers W ss(γ(ϕp(µ, 0)/2π, µ, 0), µ)

and Wuu(γ(ϕp(µ, 0)/2π, µ, 0), µ), respectively, of γ(ϕp(µ, 0)/2π, µ, 0). Using the coordinates (ϕ, vs, vu), we then

define the section

Σout := {(ϕ, vs, vu, h) ∈ S1 × [−δ, δ]× [−δ, δ]×K : vu = δ},

where δ > 0 is a small positive constant. We can now formulate our assumptions on the existence of heteroclinic

orbits that connect the periodic orbits γ to the rest state u = 0.

Hypothesis 5. There exists a smooth function G : S1 × I × J → R such that G(ϕ, vs, µ) = 0 if and only if

(ϕ, vs, δ, 0) ∈W s(0, µ) ∩ Σout. In particular,

Γ := {(ϕ, µ) ∈ S1 × J : G(ϕ, 0, µ) = 0} (2.2)

= {(ϕ, µ) ∈ S1 × J : W s(0, µ) ∩Wuu(γ(ϕp(µ, 0)/2π, µ, 0), µ) ∩ Σout 6= ∅},

and we assume that Γ ⊂ S1 × J̊ is nonempty with D(ϕ,µ)G(ϕ, 0, µ) 6= 0 for each (ϕ, µ) ∈ Γ.

As shown in [1, 2], Hypothesis 5 implies that Γ is the union of finitely many disjoint closed loops. Parametrizing

one such loop by a function (ϕ(s), µ(s)) with s ∈ [0, 1] and ϕ(s) in the universal cover R of S1, we have either (i)

ϕ(0) = ϕ(1) or (ii) ϕ(0) 6= ϕ(1). Following [1], we will refer to the case (i) as a 0-loop and case (ii) as a 1-loop.

As proved in [1, 2] and illustrated in Figure 5, 0-loops lead to isolas and 1-loops to snaking branches. We denote

by Γlift ⊂ R× J̊ the preimage of Γ under the natural covering projection from R× J̊ to S1× J̊ so that 0-loops in

Γ are lifted to an infinite number of disjoint copies of the 0-loop, whereas 1-loops lift to an unbounded connected

curve.

Motivated by the structure of (1.6), our goal is to extend the results in [2] to systems of the form

ux = f(u, µ) +
ε

x
g(u, µ, ε), (2.3)

where ε > 0 is not necessarily small.
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Hypothesis 6. The function g : R4 × R × R+ → R4 is smooth in all its arguments, and g(u, µ, ε) = 0 for all

(u, µ, ε) ∈ Fix(R)× J × R+.

Hypothesis 6 implies in particular that u = 0 is a solution of (2.3) for all values of ε. We are interested

in constructing solutions to (2.3) that remain close to the manifold P(µ) of periodic orbits for x ∈ [0, L] for

appropriate large values of L � 1 and converge to u = 0 as x → ∞. To make this more precise, we denote by

Uδ(P(µ)) the δ-neighbourhood of the manifold P(µ) and by W s
L(0, µ, ε) ⊂ R4 the slice of the stable manifold of

the rest state u = 0 of (2.3) for x = L. We then say that u(x) is a radial pulse with plateau length L for some

L� 1 if u(x) is defined for x ≥ 0, is a solution of (2.3) for x > 0 with (µ, ε) fixed, and satisfies the conditions

u(0) ∈ Fix(R), u(x) ∈ Uδ(P(µ)) for x ∈ [0, L], u(L) ∈ ∂Uδ(P(µ)) ∩W s
L(0, µ, ε); (2.4)

see Figure 4 for an illustration. Our first result relates the structure of Γlift to the bifurcation structure of radial

pulses when 0 < ε� 1.

Theorem 2.1. Assume that Hypotheses 1-6 are met, then there are constants b, ε0, η, L∗ > 0, a function Lmax(ε)

such that Lmax(ε) ≥ eb/ε, and sets Γϕ0,ε
pulse ⊂ (L∗, Lmax(ε)) × J defined for ϕ0 ∈ {0, π} and ε ∈ [0, ε0] so that the

following is true:

(i) Equation (2.3) admits a radial pulse if and only if (L, µ) ∈ Γϕ0,ε
pulse for ϕ0 = 0 or ϕ0 = π.

(ii) There exists a smooth function g̃lift(L, µ, ε) = O(ε lnL) such that for each fixed ϕ0 ∈ {0, π} and ε ∈ [0, ε0]

the one-dimensional manifolds

Γ̃ϕ0,ε
lift := {(L− g̃lift(L, µ, ε) + ϕ0, µ) : (L, µ) ∈ Γlift ∩ ((L∗, Lmax(ε))× J)}

and Γϕ0,ε
pulse are O(e−ηL)-close to each other in the C0-sense near each point (L, µ) ∈ Γ̃ϕ0,ε

lift .

We emphasize that Theorem 2.1 captures not only those solutions that stay close to the level set H−1(0) but also

all solutions along which the function H takes values in the interval K. In particular, the size of b is restricted

only by the possibility that a solution leaves a neighborhood of the manifolds P(µ) when the value of the quantity

H reaches the boundary of the interval K.

Our next result gives conditions for collapsed snaking for 0 ≤ ε� 1. To state the theorem, we define the function

S(h, µ) :=
1

p(µ, h)

∫ p(µ,h)

0

〈∇uH(γ(x, µ, h)), g(γ(x, µ, h), µ, 0)〉 dx, (2.5)

which is equal to the average of the perturbation g in the direction of the gradient of H along the periodic orbits.

We will see in §8 that S(h, µ) is the vector field that describes, to leading order, via the differential equation

hx =
ε

x
S(h, µ) (2.6)

how the value h(x) of the conserved quantity H(u, µ) changes along solutions u(x) of (2.3). A necessary condition

for the existence of radial pulses u(x) with plateau length L is that h(x) ∈ K for 0 ≤ x ≤ L and h(L) ≈ 0, as the

latter is necessary for u(x) to satisfy u(L) ∈ W s
L(0, µ). Our next theorem states conditions on the vector field

S(h, µ) that preclude or guarantee that solutions h(x) of (2.6) stay in K for all x ≥ 0.

Theorem 2.2. Assume that Hypotheses 1-6 are met.

(i) If there is a closed interval J̃ ⊂ J such that S(h, µ) < 0 for all h ∈ K ∩ R+ and µ ∈ J̃ (or, alternatively,

S(h, µ) > 0 for all h ∈ K ∩ R− and µ ∈ J̃), then there are a constant ε0 > 0 and a function Lmin(ε) so

that (2.3) with µ ∈ J̃ and 0 < ε < ε0 cannot have any radial pulses with plateau lengths L ≥ Lmin(ε).

(ii) Assume that there are ϕ ∈ S1 and µ∗ ∈ J̊ such that S(0, µ∗) = 0, Sh(0, µ∗) < 0, Sµ(0, µ∗) > 0, (ϕ, µ∗) ∈ Γ,

and Gϕ(ϕ, 0, µ∗) 6= 0, then there exists an ε0 > 0 such that the following is true for each ϕ0 ∈ {0, π} and

each 0 < ε < ε0: there exists a sequence (Lm, µm) with Lm → ∞ monotonically as m → ∞ and µm near

µ∗ for all m so that (2.3) with µ = µm has a radial pulse with plateau length Lm.
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Next, we focus on arbitrary, not necessarily small values of ε > 0. We say that u(x) is an R-asymptotic radial

pulse of plateau length L if u(x) is defined for x ≥ R, is a solution of (2.3) for x > R with (µ, ε) fixed, and

satisfies the conditions

u(x) ∈ Uδ(P(µ)) for x ∈ [R,L], u(L) ∈ ∂Uδ(P(µ)) ∩W s
L(0, µ, ε).

Implicit in our definition is the assumption that L > R. Our next result provides conditions on the existence

and nonexistence of R-asymptotic radial pulses. In contrast to our definition of radial pulses in (2.4), we do not

impose any boundary conditions for R-asymptotic radial pulses at x = 0 or x = R and can therefore guarantee

the existence of these solutions for all sufficiently large L instead of just for a sequence as in Theorem 2.2.

Theorem 2.3. Assume that Hypotheses 1-6 are met.

(i) If there is a closed interval J̃ ⊂ J such that S(h, µ) < 0 for all h ∈ K ∩ R+ and µ ∈ J̃ (or, alternatively,

S(h, µ) > 0 for all h ∈ K ∩ R− and µ ∈ J̃), then for each fixed and not necessarily small ε∗ > 0 there are

constants 1 < R∗ < L∗ <∞ such that (2.3) with µ ∈ J̃ and ε = ε∗ cannot have any R∗-asymptotic radial

pulses with plateau lengths L ≥ L∗.
(ii) If there are constants ϕ ∈ S1 and µ∗ ∈ J̊ such that S(0, µ∗) = 0, Sh(0, µ∗) < 0, Sµ(0, µ∗) > 0, (ϕ, µ∗) ∈ Γ,

and Gϕ(ϕ, 0, µ∗) 6= 0, then for each fixed and not necessarily small ε∗ > 0 and each δ > 0 there are

constants 1 < R∗ < L∗ <∞ and a function µ(L) defined for L ≥ L∗ with |µ(L)− µ∗| < δ such that (2.3)

with ε = ε∗ has an R∗-asymptotic radial pulse with plateau length L at µ = µ(L) for each L ≥ L∗.

We will see in §3 that if µ∗ is the Maxwell point and J̃ is any closed interval in J \{µ∗}, then the Swift–Hohenberg

equation satisfies the conditions stated in Theorem 2.3, and snaking therefore has to collapse onto the Maxwell

point for n = 2, 3. Theorem 2.1 will be proved in §7, while Theorems 2.2 and 2.3 will be proved in §9.

3 Application to the Swift–Hohenberg equation

We now apply the results presented in the preceding section to the Swift–Hohenberg equation

Ut = −(1 + ∆)2U − µU + νU2 − U3, x ∈ Rn. (3.1)

Radial solutions of this equation satisfy the PDE

0 = −
(

1 +
n− 1

r
∂r + ∂2

r

)2

U − µU + νU2 − U3, (3.2)

where r = |x| denotes the radial direction in Rn. Throughout this section, we will keep ν fixed and vary µ: in

particular, we will not explicitly indicate the dependence of any quantities on ν.

Using a combination of analytical and numerical results, we will show that the Swift–Hohenberg equation satisfies

the assumptions stated in §2 and that the snaking branches for n > 1 have to collapse onto a single value µMax

of the parameter µ as L→∞. We also identify µMax with the Maxwell point.

3.1 Verification of Hypotheses 1–6

We define ε := n − 1, u1 = U , u2 = ∂ru1, u3 = (1 + ε
r∂r + ∂2

r )u1, and u4 = ∂ru3, then (3.2) can be written as

the first-order system

u′1 = u2,

u′2 = u3 − u1 −
ε

r
u2,

u′3 = u4,

u′4 = −u3 − µu1 + νu2
1 − u3

1 −
ε

r
u4,

(3.3)
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Figure 6: Shown is the torus of periodic orbits of (3.3) for µ = 0.2004, ν = 1.6, and ε = 0. The solutions on the

inside of the torus are hyperbolic, while those on the outside are elliptic.

where ′ denotes differentiation with respect to r. Setting ε = 0 in (3.3), we find that the resulting system is

reversible with reverser

R =


1 0 0 0

0 −1 0 0

0 0 1 0

0 0 0 −1


and has the conserved quantity

H(u, µ) = u2u4 + u1u3 −
u2

3

2
+
µu2

1

2
− νu3

1

3
+
u4

1

4
. (3.4)

It is now straightforward to verify that Hypotheses 1–3 hold. Figure 6 reflects the numerical evidence for the

existence of a torus of periodic orbits γ(r, µ, h) to (3.3) when ε = 0. Numerically, the periodic orbits in the inside

of the torus shown in Figure 6 are hyperbolic, thus indicating that Hypothesis 4 is indeed met. Furthermore,

Figure 3(i) contains the numerical snaking diagram of localized rolls of (3.3) for ε = 0. As shown in [2], the

structure of the branches visible in this figure is consistent with the assumption that the set Γ consists of a single

1-loop that satisfies Hypothesis 5. Finally, allowing ε 6= 0, we see that

g(u, µ, ε) = −


0

u2

0

u4

 ,

which vanishes precisely when u ∈ Fix(R) as required in Hypothesis 6. With the caveat that Hypotheses 4–5

can be verified only numerically, Theorem 2.1 implies that snaking persists for each fixed 0 < ε � 1 for all L

with L ≤ eb/ε for some constant b > 0.

3.2 Collapsed snaking

Next, we use a combination of analytical and numerical results to show that the snaking branches for the Swift–

Hohenberg equation (3.1) with n > 1 need to collapse onto a single value of µ as L→∞. The one-dimensional

Swift–Hohenberg equation

Ut = −(1 + ∂2
x)2U − µU + νU2 − U3, x ∈ R (3.5)

considered on the space of p-periodic functions admits the PDE energy functional

E(U, µ, p) :=
1

p

∫ p

0

(
(U + Uxx)2

2
+
µU2

2
− νU3

3
+
U4

4

)
dx. (3.6)
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Figure 7: Shown are auto09p computations for the Swift–Hohenberg equation (3.5) with ν = 1.6. Panel (i) shows

a contour plot of the function S(h, µ), with arrows indicating the directions in which solutions h(x) of (3.7) would

move. An enlarged plot of the curve S(h, µ) = 0 is shown in panel (ii), where we also include two schematic

trajectories of solutions h(x) of (3.7) for 0 ≤ x ≤ L that satisfy h(L) = 0 with L � 1. Panel (iii) contains the

graphs of H(U(x), µ) along radial pulses at ε = 0.1 for µ = 0.195, 0.1975, 0.2004, 0.2025, 0.205 (corresponding to

the curves from top to bottom), corroborating the theoretical prediction for solutions h(x) = H(U(x), µ) of (3.7)

depending on whether µ is smaller or larger than the Maxwell point µMax = 0.2004.

Our goal is to relate the function S(h, µ) defined in (2.5) to the energy functional E and the conserved quantity

H. Before stating our result, we introduce additional notation. We denote by U∗(x, µ, h) := γ1(x, µ, h) the

stationary roll solutions of (3.5) with minimal spatial period p(µ, h) > 0 that satisfy H(U∗(x, µ, h), µ) = h for

one, and hence all, x. We say that µ = µMax is a Maxwell point if E(U∗(·, µ, 0), µ, p(µ, 0)) = 0, so that the PDE

energy of the roll solution with H = 0 vanishes. Numerically, (3.5) has a unique Maxwell point µ = µMax for

each value of ν.

We can now calculate the function S(h, µ) defined in (2.5), which, via the differential equation

hx =
ε

x
S(h, µ), (3.7)

describes to leading order how the value h(x) of H(U(x), µ) changes along a radial pulse U(x). As pointed out

in §2, a necessary condition for the existence of radial pulses is that h(x) ∈ K for all 0 ≤ x ≤ L and h(L) ≈ 0.

Using (2.5) and the form of H and g discussed in the last section, we find

S(h, µ) =
1

p(µ, h)

∫ p(µ,h)

0

〈∇uH(γ(x, µ, h)), g(γ(x, µ, h), µ, 0)〉 dx

=
−2

p(µ, h)

∫ p(µ,h)

0

γ2(x, µ, h)γ4(x, µ, h) dx

=
−2

p(µ, h)

∫ p(µ,h)

0

(U∗x(x, µ, h)2 + U∗x(x, µ, h)U∗xxx(x, µ, h)) dx.

Our main result relates the vector field S(h, µ) to the energy E .

Lemma 3.1. We have

S(h, µ) = E(U∗(·, µ, h), µ, p(µ, h))− h, Sh(0, µMax) < 0, Sµ(0, µMax) > 0.

In particular, S(0, µ) = 0 if and only if µ = µMax.

Before proving this result, we discuss its implications for the Swift–Hohenberg equation (3.1) posed on Rn.

First, Lemma 3.1 shows that the Swift–Hohenberg equation satisfies the hypotheses on S needed in Theo-

rem 2.2(ii), while Figure 3(i) indicates that the assumptions on Γ are met. For |n − 1| � 1, we can therefore
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conclude that radial pulses with arbitrarily large plateau lengths exist for parameter values µ near the Maxwell

point.

Next, we can use auto09p to compute the vector field S(h, µ) numerically through continuation of the periodic

solutions of the one-dimensional Swift–Hohenberg equation. The results shown in Figure 7(i) and (ii) indicate

that (3.7) has a unique equilibrium for each value of µ, and that these equilibria are stable—note that Lemma 3.1

provides a proof of these properties, including the location of the equilibria, for µ near the Maxwell point. In

particular, these numerical results obtained for n = 1 show that the hypotheses of Theorem 2.3(i) are met for

each n > 1 (including n = 2, 3), and we conclude that R-asymptotic radial pulses of plateau length L cannot

exist for L� 1 and that the snaking branches therefore have to collapse onto the Maxwell point for each n > 1.

We argued above that the assumptions for Theorem 2.3(ii) are also met, and we can conclude that R∗-asymptotic

radial pulses exist near the Maxwell point for arbitrarily large plateau lengths L. Note that our definition of

R∗-asymptotic radial pulses ignores the spatial interval [0, R∗]: our results therefore apply equally to branches

involving spots and rings, but they cannot make any predictions for actual radial pulses as this would require

that we construct solutions on [0, R∗] and match them with the R∗-asymptotic pulses at x = R∗.

Finally, as illustrated in the schematic in Figure 7(ii), the solutions u(x) that reach the H = 0 level set at x = L

necessarily have H(u(0), µ) > 0 for µ < µMax and H(u(0), µ) < 0 for µ > µMax, provided L is sufficiently large.

Figure 7(iii) confirms this prediction. We now give the proof of Lemma 3.1.

Proof of Lemma 3.1. To prove the characterization of S(h, µ) in terms of the energy E , we use the notation

U(x) := U∗(x, µ, h) and p := p(µ, h). Note that U(x) is then p-periodic. Writing the conserved quantity H
defined in (3.4) in terms of derivatives of U , we find that

H(U, µ) = UxUxxx −
U2
xx

2
+ U2

x +
U2

2
+
µU2

2
− νU3

3
+
U4

4

is conserved pointwise along U(x). Writing the pointwise identity H(U(x), µ) = h as

µU2

2
− νU3

3
+
U4

4
= h− UxUxxx +

U2
xx

2
− U2

x −
U2

2
,

substituting this identity into (3.6), and integrating by parts gives

E(U(·), µ, p) =
1

p

∫ p

0

(
(U + Uxx)2

2
+
µU2

2
− νU3

3
+
U4

4

)
dx

=
1

p

∫ p

0

(
U2

2
+ UUxx +

U2
xx

2
+ h− UxUxxx +

U2
xx

2
− U2

x −
U2

2

)
dx

= h+
1

p

∫ p

0

(
UUxx + U2

xx − UxUxxx − U2
x

)
dx

= h− 2

p

∫ p

0

(
U2
x + UxUxxx

)
dx

= h+ S(h, µ)

as claimed. Next, we prove the claims about the derivatives. First, we consider the expression for the energy

and rescale x = py to get

E(V (·), µ, p) =

∫ 1

0

(
1

2

(
V +

Vyy
p2

)2

+
µV 2

2
− νV 3

3
+
V 4

4

)
dy,

where V (y) = U(py) is 1-periodic in y. Taking the derivative of this expression with respect to h and using that

EV (V (·), µ, p) = 0, we obtain

d

dh
(E(V (·), µ, p)) = EV (V (·), µ, p)Vh(·)− 2ph

p3

∫ 1

0

(
V +

Vyy
p2

)
Vyy dy = −2ph

p2

∫ p

0

(U + Uxx)Uxx dx

=
2ph
p2

∫ p

0

(Ux + Uxxx)Ux dx = −ph
p
S(h, µ)
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and therefore

Sh(0, µMax) =
d

dh
(E(V (·), µ, p))

∣∣∣
(h,µ)=(0,µMax)

− 1 = −ph
p
S(0, µMax)− 1 = −1 < 0.

An analogous computation shows that

Sµ(0, µMax) =
1

p

∫ p

0

U2

2
dx > 0,

which completes the proof of the lemma.

4 Dynamics near the boundary layer

In this section, we will prove the existence of a solution to (2.3) on the interval [0, r0] for small positive r0.

Lemma 4.1. Assume that Hypotheses 1, 3, and 6 are met. For each compact set B in Fix(R), there exist

C,R0, ε0 > 0 such that for all ε ∈ [0, ε0), µ ∈ J , and u0 ∈ B there exists a unique solution u = ubdy(·;u0, µ, ε) ∈
C0([0, 2R0],R4)∩C1((0, 2R0),R4) of (2.3) that satisfies the initial condition u(0) = u0. Furthermore, this solution

is of the form

ubdy(x) = u0(x) + ū(x, u0, µ, ε),

where u0(x) satisfies the unperturbed system (2.1) with u0(0) = u0, and ū depends smoothly on (u0, µ, ε) with

|ū(x, u0, µ, ε)|, |ūu0
(x, u0, µ, ε)|, |ūµ(x, u0, µ, ε)|, |ūε(x, u0, µ, ε)| ≤ Cεx

uniformly in 0 < x ≤ R0.

Proof. Let u0(x) be the solution of ux = f(u, µ) with u0(0) = u0 ∈ Fix(R). Writing u(x) = u0(x) + v(x), we see

that u(x) is a solution to (2.3) of the form stated in the lemma if and only if v(x) satisfies the nonautonomous

initial-value problem

vx = f(u0(x) + v, µ)− f(u0(x), µ) +
ε

x
g(u0(x) + v, µ, ε), v(0) = 0. (4.1)

We write f(u0(x) + v, µ) − f(u0(x), µ) =: f̃(x, v, µ)v. Denoting the projection onto Fix(−R) along Fix(R) by

PR, Hypothesis 6 implies that we have

1

x
g(u, µ, ε) =:

1

x
g̃(u, µ, ε)PRu.

Writing u0(x) = u0 + xũ(x) and using that PRu0 = 0, equation (4.1) becomes

vx = f̃(x, v, µ)v +
1

x
g̃(u0(x) + v, µ, ε)PR(xũ(x) + v).

For x ∈ X, where X is the Banach space defined by

X :=

{
v ∈ C0([0, 2R0],R4) : v(0) = 0 and ‖v‖ := sup

x∈[0,R0]

|v(x)|
x

<∞

}
,

we then define a new function Tv by

[Tv](x) :=

∫ x

0

[
f̃(s, v(s), µ)v(s) +

ε

s
g̃(u0(s) + v(s), µ, ε)PR(sũ(s) + v(s))

]
ds

=:

∫ x

0

[
f̃(s, v(s), µ)v(s) + εg̃1(s, v(s), µ, ε) +

ε

s
g̃2(s, v(s), µ, ε)v(s)

]
ds.

Since fixed points of T are in one-to-one correspondence with solutions of (4.1), it suffices to show that, for

sufficiently small R0, δ > 0, T maps the ball of radius δ centered at the origin in X into itself and is a uniform

contraction on this ball: these properties are straightforward to verify using the uniform bounds on the smooth

functions f̃ and g̃1,2 and their Lipschitz constants in v. We omit the details.
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5 Dynamics near the family of periodic orbits

The results of the preceding section allow us to restrict the analysis of (2.3) to the region x ≥ r0 for each fixed,

but arbitrary, positive value of r0. For each such fixed r0 > 0, we will construct a local coordinate system akin

to Shilnikov variables for the nonautonomous system (2.3) near the manifold P(µ) of periodic orbits that allows

us to track solutions as they pass near P(µ).

First, note that there exists a closed interval Ke with K ⊂ K̊e so that Hypothesis 4 holds for all k ∈ Ke. Our

goal is to parametrize the periodic solutions γ(vc, µ, vh) by their phase vc ∈ R and the value vh of the conserved

quantity H. We will also use the variables vs and vu to parametrize their strong stable and unstable fibers, so

that a full neighborhood of the manifold

Pe(µ) := {γ(vc, µ, vh) : (vc, vh) ∈ R×Ke}

of periodic orbits is parametrized by v = (vc, vh, vs, vu). For each δ > 0, we define I := [−δ, δ] and allow

(vc, vh, vs, vu) to vary in the sets

Ve := R×Ke × I × I, V := R×K × I × I.

Next, we write (2.3) as the autonomous system

ux = f(u, µ) + ερg(u, µ, ε), ρx = −ρ2, (5.1)

where ρ = 1/x.

Lemma 5.1. Assume that Hypotheses 1, 2, 4, and 6 are met and recall the constant R0 from Lemma 4.1,

then there are constants δ, ε1 > 0 so that the following is true for each fixed r0 ∈ (0, R0]. There exist smooth

real-valued functions

hc1,2,3, h
e
1,2,3, h

s, hu : Ve × J × [0, ε1) −→ R, (v, µ, ε) 7−→ hc1,2,3, h
e
1,2,3, h

s, hu(v, µ, ε),

the associated differential equation

vcx = 1 + ερhc1(vc, vh, µ, ε) + ε2ρ2hc2(ρ, vc, vh, µ, ε) + hc3(ρ, v, µ, ε)vsvu

vhx = ερhe1(vc, vh, µ, ε) + ε2ρ2he2(ρ, vc, vh, µ, ε) + ερhe3(ρ, v, µ, ε)vsvu

vsx = −[α(µ, vh) + hs(ρ, v, µ, ε)]vs

vux = [α(µ, vh) + hu(ρ, v, µ, ε)]vu

ρx = −ρ2,

(5.2)

where x ≥ r0 and v ∈ Ve, and a diffeomorphism from Ve× J × [0, ε1) into a neighborhood of the manifolds Pe(µ)

that conjugates (2.3) and (5.2) restricted to V for all µ ∈ J and 0 ≤ ε < ε1. The functions hc1,2,3, h
e
1,2,3, h

s, hu

are p(µ, vh)-periodic in vc, uniformly bounded in ρ ≤ 1/r0, and globally Lipschitz in v ∈ Ve, the functions he1,2
vanish identically for vh ∈ ∂Ke, the functions hs and hu vanish identically when (vs, vu, ε) = 0, and the reverser

R acts on the new coordinates v via R(vc, vh, vs, vu) = (−vc, vh, vu, vs).

Proof. First, we define vh := H(u, µ) and let u(x) be any solution of (5.1). Using Hypothesis 2, we find that

vhx = ∇uH(u, µ) · ux = ∇uH(u, µ) · (f(u, µ) + ερg(u, µ, ε)) = ερ∇uH(u, µ) · g(u, µ, ε). (5.3)

Next, we set ε = 0 and, using Hypothesis 4(iv), proceed as in [2, 6] or [9, Theorem 4.1.2] to introduce an invertible

coordinate transformation u = Q(v, µ) defined for v = (vc, vh, vs, vu) ∈ Ve so that Q(vc, vh, 0, 0, µ) = γ(vc, µ, vh)

parametrizes the periodic orbits, the sets {vu = 0} and {vs = 0} parametrize, for each fixed (vc, vh), the strong
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stable and strong unstable fibers of γ(vc, µ, vh), respectively, and the set {vh = h} is equal to H−1(h). Referring

again to [2, 6], the vector field in the new coordinates (v, ρ) with 0 ≤ ρ ≤ 1/r0 is then given by

vcx = 1 + f c(v, µ)vsvu + ερf̃ c(ρ, v, µ, ε)

vhx = ερf̃h(ρ, v, µ, ε)

vsx = −[α(µ, vh) + fs(v, µ)]vs + ερf̃s(ρ, v, µ, ε)

vux = [α(µ, vh) + fu(v, µ)]vu + ερf̃u(ρ, v, µ, ε)

ρx = −ρ2

(5.4)

for each µ ∈ J and ε ≥ 0, where fs,u(v, µ) = 0 when (vs, vu) = 0, and the functions f̃ j with j = c, s, u, h

represent the terms coming from the perturbation g(Q(v), µ, ε) with f̃h given by (5.3).

When ε = 0, the set {vs = vu = 0} is an invariant, normally hyperbolic manifold of (5.4). It follows from

[5, 6] or [9, Theorem 3.1.4] that this manifold persists as an invariant, normally hyperbolic manifold of (5.4)

for all ε near zero. Since this manifold is given by (vs, vu) = ερh(vc, vh, ρ, µ, ε) for some smooth function h, we

can change the (vs, vu) coordinates as functions of (v, ρ) so that this three-dimensional manifold is, in the new

variables, still given by the set {vs = vu = 0} for all ε near zero. Similarly, we can straighten out the associated

four-dimensional stable and unstable manifolds so that the sets {vu = 0}, {vs = 0}, and {vs = vu = 0} are each

invariant. The resulting system is of the form (5.4) with (f̃s, f̃u) = 0 and (fs, fu) now depending also on (ρ, ε).

Since (5.4) is autonomous, we know again from [5, 6] or [9, Theorem 3.1.4] that the four-dimensional invariant

stable and unstable manifolds {vu = 0} and {vs = 0} are each foliated by smooth one-dimensional strong

stable and unstable fibers, respectively, that depend smoothly on their base points (vc, vh, 0, 0, ρ). Since these

fibers are characterized by exponential decay in forward or backward time towards the solution on the manifold

{vs = vu = 0} that passes through the base point, and since we can choose cutoff functions so that the ρ

component decays algebraically in both time directions, each fixed fiber must be contained in an appropriate

{ρ = constant} section. Hence, straightening out these fibers as in [9, Theorem 4.1.2], so that they are given by

line segments that do not depend on the base points (vc, vh, 0, 0, ρ), will change only the equations for (vc, vh)

but not the equation for ρ: this change of coordinates then brings (5.4) into the normal form (5.2).

Next, we consider the reverser. The identity H(Ru, µ) = H(u, µ) implies that vh remains unchanged under

the action of R. It follows from Hypothesis 4(ii) that the action of the reverser on the remaining variables is

initially as stated in the lemma, and it is not difficult to check that the action does not change throughout

the transformations carried out above. This proves the statements (i) and (ii). To establish (iii), we multiply

the functions he1,2 by appropriate cutoff functions so that the products coincide with the original functions for

vh ∈ K and vanish identically when vh ∈ ∂Ke.

The autonomous vector field (5.2) for (v, ρ) can be written equivalently as a nonautonomous system for v, since

we can solve the equation for ρ explicitly to get ρ(x) = 1/x, which we can then substitute into the remaining

equations for v. In the remainder of this paper, we will use these two equivalent formulations interchangeably.

We define the sets

Pe(µ, ε) := {v = (vc, vh, 0, 0); (vc, vh) ∈ R×Ke}, P(µ, ε) := {v = (vc, vh, 0, 0); (vc, vh) ∈ R×K}

and note that P(µ, ε) ⊂ Pe(µ, ε). Lemma 5.1 implies that Pe(µ, ε) is invariant under the nonautonomous

formulation of (5.2) and that the restriction of this system to Pe(µ, ε) is given by(
vc

vh

)
x

=

(
1

0

)
+
ε

x
h1(vc, vh, µ, ε) +

ε2

x2
h2

(
1

x
, vc, vh, µ, ε

)
=:

(
1

0

)
+
ε

x
F c(x, vc, vh, µ, ε). (5.5)

We first provide expansions of solutions of (5.5) on Pe(µ, ε) and show for how long they stay on the smaller

manifold P(µ, ε) when they start or end at vh = 0.
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Lemma 5.2. Assume that Hypotheses 1, 2, 4, and 6 are met. For each fixed r0 ∈ (0, 1] and each sufficiently

small δ > 0, there are constants b, C, ε1 > 0 and a smooth function gc(L,ϕ, h, µ, ε) so that the following is true

for each (µ, ε) ∈ J × [0, ε1).

(i) For each (ϕ, h) ∈ R×Ke, and L > r0, there exists a unique solution Φ(x; r0, L, ϕ, h, µ, ε) of (5.5) in R×Ke

that satisfies the boundary conditions

vc(L) = ϕ, vh(L) = h (5.6)

and lies in I ×Ke for x ∈ [r0, L]. This solution is smooth in (x, r0, L, ϕ, h, µ, ε) and we have

vc(r0) = ϕ− L+ r0 + gc(L,ϕ, h, µ, ε)

with |gc(L,ϕ, h, µ, ε)|+ |D(ϕ,h1,µ)v
h(r0)| ≤ Cε lnL.

(ii) For each (ϕ, h) ∈ R×Uδ(0) and r0 < L ≤ eb/ε, the solution (vc(x), vh(x)) of (5.5)–(5.6) satisfies vh(x) ∈ K
for all x ∈ [r0, L].

Proof. To prove (i), we note that existence, uniqueness, and smoothness of the solution follows since I ×Ke is

invariant under (5.5). It therefore remains to estimate vc(r0). We write vc(x) = ϕ − L + x + ṽc(x) so that the

boundary condition vc(L) = ϕ becomes ṽc(L) = 0, and ṽc(r0) = gc(L, ε, h, µ, ε) is then given implicitly by

ṽc(r0) = ε

∫ r0

L

hc1(vc(s), vh(s), µ, ε)

s
ds+ ε2

∫ r0

L

hc2(1/s, vc(s), vh(s), µ, ε)

s2
ds.

Bounding |hc1,2| by a uniform constant C0 > 0, we obtain

|ṽc(r0)| = |gc(L, µ, ε)| ≤ εC0(| lnL|+ | ln r0|) ≤ εC lnL.

The bounds on |vh(r0)| and its derivatives are handled in an identical manner. For (ii), it suffices to find

conditions that guarantee that vh(x) ∈ Ke for all x ∈ [r0, L] whenever vh(L) = h ∈ Uδ(0). Since vh(x) satisfies

vh(x) = h+ ε

∫ x

L

he1(vc(s), vh(s), µ, ε)

s
ds+ ε2

∫ x

L

he2(1/s, vc(s), vh(s), µ, ε)

s2
ds,

and we can bound |he1,2| by a uniform constant C0, we find that

|vh(x)| ≤ |h|+ εC0(| lnL|+ | ln r0|)

for r0 ≤ x ≤ L. If K = [−k, k], then setting ε1 = k−δ
2C0| ln r0| and b := k−δ

2C0
guarantees that |vh(x)| ≤ k for

r0 ≤ x ≤ L for L ≤ eb/ε as claimed.

Next, we use the full equation (5.2) to track solutions as they evolve in Ve near Pe(µ, ε).

Proposition 5.3. Assume that Hypotheses 1, 2, 4, and 6 are met. There exist constants η, L0,M > 0 such

that, for each fixed 0 < r0 ≤ 1, there exists an ε2 > 0 such that the following holds: pick 0 ≤ ε ≤ ε2 and

L ≥ L0, and let Φ(x; r0, L, ϕ, h, µ, ε) be as in Lemma 5.2, then, for each as ∈ I, there exists a unique solution

v(x) = v(x; r0, L, a
s, ϕ, h, µ, ε) ∈ Ve to (5.2) defined for x ∈ [r0, L] so that

vc(L) = ϕ, vh(L) = h, vs(r0) = as, vu(L) = δ.

Furthermore, this solution satisfies

|(vc(x), vh(x))T − Φ(x; r0, L, ϕ, h, µ, ε)| ≤Me−ηL, |vs(x)| ≤Me−ηx, |vu(x)| ≤Meη(x−L) (5.7)

for all x ∈ [r0, L], the solution v(x) is smooth in (x, r0, L, a
s, ϕ, h, µ, ε), and the bounds (5.7) also hold for these

derivatives.
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Proof. We will show that the assumptions of [18, Theorem 2.2] are satisfied: our statements then follow directly

from this theorem. Note that restricting to x ≥ r0 and choosing 0 ≤ ε2 ≤ r2
0 guarantees that the right-hand

side of (5.2) is bounded uniformly in x. It remains to establish appropriate exponential bounds for solutions of

the linearized dynamics of (5.2). Linearizing (5.2) along the solution (vc, vh, vs, vu) = (Φc(x),Φh(x), 0, 0), where

(Φc(x),Φh(x))T = Φ(x; r0, L, µ, ε) satisfies (5.5)–(5.6) on [r0, L], we arrive at the linear system

wx =
ε

x
D(vc,vh)F

c(x,Φc(x),Φh(x), ε)c, (5.8a)

vsx = −[α(Φh(x)) + hs(x,Φc(x), 0, 0,Φh(x), ε)]vs (5.8b)

vux = [α(Φh(x)) + hu(x,Φc(x), 0, 0,Φh(x), ε)]vu (5.8c)

where w = (vc, vh)T ; note that we have suppressed the dependence on µ ∈ J for notational convenience.

Lemma 5.1 implies that (hs, hu) vanish uniformly when ε = 0, and Hypothesis 4 implies that α(µ, vh) is bounded

away from zero uniformly in (µ, vh) ∈ J ×K. Hence, for ε > 0 taken sufficiently small, the right-hand sides of

(5.8b) and (5.8c) are uniformly bounded away from zero, and we conclude that there are constants ηs, ηu > 0

and M0 > 0 such that the solution operators Ψs(x, s),Ψu(x, s) of (5.8b) and (5.8c), respectively, satisfy

|Ψs(x, y)| ≤M0e−η
s(x−y) and |Ψu(y, x)| ≤M0eη

u(y−x)

for r0 ≤ y ≤ x ≤ L and ε > 0 sufficiently small. Furthermore, we may take ηu > 0 so that −ηs + ηu < 0.

We now turn to (5.8a). Lemma 5.1 shows that there is a constant C > 0 with |D(vc,vh)F
c(x,Φc(x),Φh(x), ε)| ≤ C

uniformly in all arguments, and we conclude that

|wx| ≤
εC

x
|w| ≤ ε 1

2C|w|

provided we pick 0 ≤ ε2 ≤ r2
0. Denoting the solution operator to (5.8a) by Ψc(x, y), we have

|Ψc(x, y)| ≤ e
√
εC(x−y)

for all x, y ∈ [r0, L], independently of r0 and L, which verifies [18, Hypothesis (E1) in Theorem 2.2]. Finally,

taking ε > 0 and sufficiently small, we can guarantee that

ηs + ηu +
√
εK2 < 0 < ηu −

√
εC,

which verifies [18, Hypothesis (D2) in Theorem 2.2]. We have now verified all hypotheses required to apply [18,

Theorem 2.2], which proves the statement of Proposition 5.3.

6 Dynamics near the stable manifold of the homogeneous state

Hypothesis 6 implies that u(x) = 0 satisfies (2.3) for all ε ≥ 0, and we now describe the set of solutions of (2.3)

that converge to zero as x→∞ for ε ≥ 0. For each L ≥ 1, we define

W s
L(0, µ, ε) := {u0 ∈ R4 : u(x) satisfies (2.3) with u(L) = u0, and u(x)→ 0 as x→∞}

as the section of the stable manifold of the trivial solution at x = L. First, we show that W s
L(0, µ, ε) is a regular

perturbation of W s(0, µ) in ε.

Lemma 6.1. Assume that Hypotheses 3 and 6 are met, then for each L ≥ 1 the set W s
L(0, µ, ε) is a two-

dimensional manifold that is locally O(ε/L) C1-close to W s(0, µ) uniformly in µ.

Lemma 6.1 follows directly from the uniform contraction mapping principle, and we omit the details. Next, we

use this lemma to provide a parametrization of the stable manifold in the Shilnikov variables that were introduced

in the preceding section.
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Lemma 6.2. Assume that Hypotheses 1-6 are met and define

Σout = R×Ke × I × {vu = δ}.

There exist ε0 > 0 and smooth real-valued functions zΓ, zh so that the following is true for each ε ∈ [0, ε0] and

L ≥ 1: A point (vc, vh, vs, δ) with |vs|, |vh| < ε0 lies in W s
L(0, µ, ε) ∩ Σout if and only if there exists (ϕ∗, µ∗) ∈ Γ

such that

vc = ϕ∗ + zΓ(L,ϕ∗, vs, µ∗, ε)Gϕ(ϕ∗, 0, µ∗)

µ = µ∗ + zΓ(L,ϕ∗, vs, µ∗, ε)Gµ(ϕ∗, 0, µ∗)

vh = zh(L,ϕ∗, vs, µ∗, ε),

where the function G was defined in Hypothesis 5. Furthermore, the functions zΓ and zh are bounded uniformly

in L ≥ 1, independent of L when ε = 0, and satisfy

zΓ(·, ϕ∗, 0, µ∗, 0) = 0, zh(·, ϕ∗, vs, µ∗, 0) = 0.

Proof. Define the subset of Σout × J ∼= R×Ke × I × J given by

W̃ s
L(0, ε) :=

⋃
µ∈J

(W s
L(0, µ, ε) ∩ {vu = δ})× {µ}.

Note that W̃ s
L(0, 0) is independent of L since (2.3) is autonomous when ε = 0. Hypothesis 5 implies that

Γ = W̃ s
L(0, 0) ∩ (R× {0} × {0} × J),

that the function G : R×Ke × I × J → R2 given by

G(vc, vh, vs, µ) = (G(vc, vs, µ), vh)

satisfies G−1(0) = W̃ s
L(0, 0), and that D(vc,vh,µ)G(vc, 0, 0, µ) ∈ R2×3 has full rank for all (vc, µ) ∈ Γ. Therefore,

we may use the columns of D(vc,vh,µ)G(vc, 0, 0, µ) to define normal vectors to Γ as a subset of W̃ s
L(0, ε) in the

space Σout × J to construct the functions zΓ and zh that represent the displacement from Γ along these normal

vectors with respect to small perturbations in vs and ε. Smoothness and boundedness with respect to L ≥ 1

follow from Lemma 6.1. The property that zh(ϕ∗, vs, µ∗, 0) = 0 follows from the fact that W s(0, µ) ⊂ H−1(0)

for all µ ∈ J . This completes the proof.

7 Construction of radial pulses

To construct radial pulses, we need to match the solution segments we obtained in the preceding sections on the

spatial intervals [0, r0], [r0, L], and [L,∞). Recall that u(x) is a radial pulse of (2.3) if

u(0) ∈ Fix(R), u(x) ∈ V for 0 ≤ x ≤ L, u(L) ∈W s
L(0, µ, ε) ∩ Σout.

In this section, we will construct radial pseudo-pulses which, by definition, satisfy

u(0) ∈ Fix(R), u(x) ∈ Ve for 0 ≤ x ≤ L, u(L) ∈W s
L(0, µ, ε) ∩ Σout.

Note that radial pseudo-pulses correspond to radial pulses of (2.3) only when the values of vh for 0 ≤ x ≤ L lie

in K rather than in the larger set Ke. Before stating our result, we recall that Γlift ⊂ R× J̊ is the preimage of

the set Γ defined in (2.2) under the natural covering map from R× J̊ to S1 × J̊ .
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Theorem 7.1. Assume that Hypotheses 1-6 are met. There exist constants ε0, η, L∗ > 0 and sets Γϕ0,ε
pulse ⊂

(L∗,∞)× J defined for ϕ0 ∈ {0, π} and ε ∈ [0, ε0] so that the following is true:

(i) A radial pseudo-pulse with plateau length L exists if and only if (L, µ) ∈ Γϕ0,ε
pulse for ϕ0 = 0 or ϕ0 = π.

(ii) There exists a smooth function g̃lift(L, µ, ε) = O(ε lnL) such that for each fixed ϕ0 ∈ {0, π} and ε ∈ [0, ε0]

the one-dimensional manifolds

Γ̃ϕ0,ε
lift := {(L− g̃lift(L, µ, ε) + ϕ0, µ) : (L, µ) ∈ Γlift ∩ ((L∗∞)× J)}

and Γϕ0,ε
pulse are O(e−ηL)-close to each other in the C0-sense near any point (L, µ) ∈ Γ̃ϕ0,ε

lift .

Before we give the proof of this theorem, we show how Theorem 2.1 follows from it.

Proof of Theorem 2.1. We need to verify that the radial pseudo-pulses constructed in Theorem 7.1 are radial

pulses (meaning that their vh components stay in K for all 0 ≤ x ≤ L) under the restrictions on L assumed in

Theorem 2.1. This follows from the estimates given in Lemma 5.2(ii) and Proposition 5.3 on the evolution of

(5.2) on Pe(µ, ε).

Next, we give the proof of Theorem 7.1.

Proof of Theorem 7.1. We need to match (i) the boundary-layer solution ub(x) from Lemma 4.1 and the plateau

solution from Proposition 5.3 at x = r0 and (ii) the plateau solution and the stable manifold W s
L(0, µ, ε) from

Lemma 6.2 at x = L in Σout. We will accomplish this in several steps.

Boundary-layer solution. We first transform the boundary-layer solution ub(x) obtained in Lemma 4.1 into

the Fenichel coordinates derived in Lemma 5.1. Doing so, we see that for each 0 < r0 � 1, u0 ∈ Fix(R),

ϕ0 ∈ {0, π}, a0 ∈ I, and h0 ∈ K we can set u0 = (ϕ0, h0, a0, a0) ∈ Fix(R) and write the corresponding

boundary-layer solution ub(x) as

vb(r0, u0, µ, ε) = (ϕ0, h0, a0, a0) + (vcb, v
h
b , v

s
b, v

u
b )(r0, u0, µ, ε),

where vjb(0, u0, µ, ε) = 0 for all j = c, h, s, u and vb(0, u0, µ, ε) = u0 ∈ Fix(R). Setting ε = 0, we obtain

vb(r0, u0, µ, 0) = (ϕ0 + r0, h0, a0, a0) +O(r0a0),

where the O(r0a0) term is independent of h0: indeed, vb depends smoothly on x, and a0 = 0 restricts the solution

to the cylinder of periodic orbits whose vh-component does not change. Smoothness in ε then shows that

vb(r0, u0, µ, ε) = (ϕ0 + r0, h0, a0, a0) +O(r0a0) +O(ε). (7.1)

Plateau solution. Lemma 5.2(i) shows that for each ϕ1 ∈ R and h1 ∈ K there is a unique solution

(Φc,Φh)(x) = (Φc,Φh)(x; r0, L, ϕ1, h1, µ, ε)

with

Φc(L; r0, L, ϕ1, h1, µ, ε) = ϕ1, Φh(L; r0, L, ϕ1, h1, µ, ε) = h1

on the invariant manifold Pe(µ, ε). For each b0, Proposition 5.3 then yields a plateau solution vf(x; r0, L, b0, ϕ1, h1, µ, ε),

which is smooth in its arguments and satisfies

vf(r0; r0, L, b0, ϕ1, h1, µ, ε) = (Φc(r0) +O(e−ηL),Φh(r0) +O(e−ηL), b0,O(e−ηL)),

vf(L; r0, L, b0, ϕ1, h1, µ, ε) = (ϕ1, h1,O(e−ηL), δ).
(7.2)

Note that the error estimates in (7.2) can be differentiated and hold for all derivatives with respect to the

arguments of vf .
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Matching solutions at x = r0. Using the solutions introduced above, condition (i) becomes vb(r0) = vf(r0),

which we write in coordinates as

ϕ0 + r0 +O(r0a0 + ε) = Φc(r0; r0, L, ϕ1, h1, µ, ε) +O(e−ηL) (7.3a)

a0 +O(r0a0 + ε) = b0 +O(e−ηL) (7.3b)

a0 +O(r0a0 + ε) = O(e−ηL) (7.3c)

h0 +O(r0a0 + ε) = Φh(r0; r0, L, ϕ1, h1, µ, ε) +O(e−ηL) (7.3d)

using the expansion for vb(r0) stated in (7.1). We focus first on (7.3b)-(7.3d) and will return to (7.3a) at the end

of the proof. Define a smooth function F0 : R3 → R3 that depends on the variables (a0, b0, h0) and parameters

(r0, L, ϕ0, ϕ1, h1, µ, ε) so that its roots correspond to solutions of (7.3b)-(7.3d). Note that F0 has the expansion

F0(a0, b0, h0) =

 a0 − b0
a0

h0 − Φh(r0; r0, L, ϕ1, h1, µ, ε)

+O(r0a0 + e−ηL + ε).

To find its roots, we will use the following result that we state without proof.

Lemma 7.2. If F : Rn → Rn is smooth and there are constants 0 < κ < 1 and ρ > 0, a vector w0 ∈ Rn, and an

invertible matrix A ∈ Rn×n so that

(i) ‖1−A−1DF (w)‖ ≤ κ for all w ∈ Bρ(w0), and

(ii) ‖A−1F (w0)‖ ≤ (1− κ)ρ,

then F has a unique root w∗ in Bρ(w0), and this root satisfies |w∗ − w0| ≤ 1
1−κ‖A

−1F (w0)‖.

Using the notation of Lemma 7.2, let w0 = (0, 0,Φh(r0; r0, L, b0, ϕ1, h1, µ, ε)) and define A0 to be the invertible

matrix

A0 =

1 −1 0

0 1 0

0 0 1

 .
We then have F0(w0) = O(e−ηL + ε) and therefore ‖A−1

0 F0(w0)‖ = O(e−ηL + ε). Note furthermore that

‖1−A−1
0 DF0(w)‖ = O(r0 + e−ηL + ε)

for all w since Φh(r0; r0, L, ϕ1, h1, µ, ε) is independent of (a0, b0, h0). Hence, choosing κ = 1
2 , ρ = 1, and

0 < r0 � 1 sufficiently small, Lemma 7.2 shows that there is a unique function (a∗0, b
∗
0, h
∗
0)(L,ϕ0, ϕ1, h1, µ, ε)

that is defined for all 0 < ε � 1, L � 1, ϕ0 ∈ {0, π}, and arbitrary (ϕ1, h1, µ), corresponds to roots of F0, is

smooth in the arguments (L,ϕ1, h1, µ, ε), and has the expansion

(a∗0, b
∗
0, h
∗
0)(L,ϕ0, ϕ1, h1, µ, ε) = (0, 0,Φh(r0; r0, L, ϕ1, h1, µ, ε)) +O(e−ηL + ε).

Moreover, recalling from Lemma 5.2(i) that

D(ϕ1,µ,h1)Φ
h(r0; r0, L, ϕ1, h1, µ, ε) = O(ε lnL),

we find that

D(ϕ1,µ,h1)(a
∗
0, b
∗
0, h
∗
0)(L,ϕ0, ϕ1, h1, µ, ε) = O(e−ηL + ε+ ε lnL). (7.4)

Matching solutions at x = L. Next, we consider condition (ii), which requires that vf(L) ∈W s
L(0, µ, ε)∩Σout.

Since we will rely on the characterization of W s
L(0, µ, ε) given in Lemma 6.2, we need to parametrize the set Γ: we
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shall follow the construction introduced in [1]. If Γ consists of 0-loops, we parametrize each loop by 2π-periodic

functions (ϕ̃(s), µ̃(s)) with 0 ≤ s ≤ 2π so that

Γlift = {(ϕ̃(s) + 2πj, µ̃(s)) : 0 ≤ s ≤ 2π, j ∈ N}.

If Γ is a 1-loop, we parametrize Γlift by a curve (ϕ̃(s), µ̃(s)) with s ≥ 0, where (ϕ̃(s + 2π), µ̃(s + 2π)) =

(ϕ̃(s) + 2π, µ̃(s)).

Using Lemma 6.2 and the fact that (vcf , v
h
f )(L; r0, L, ϕ1, h1, µ, ε) = (ϕ1, h1), we see that the condition vf(L) ∈

W s
L(0, µ, ε) ∩ Σout is equivalent to the system

ϕ1 = ϕ̃(s) + zΓ(L, ϕ̃(s), vsf (L; r0, L, b
∗
0, ϕ1, h1, µ, ε), µ̃(s), ε)Gϕ(ϕ̃(s), 0, µ̃(s)),

µ = µ̃(s) + zΓ(L, ϕ̃(s), vsf (L; r0, L, b
∗
0, ϕ1, h1, µ, ε), µ̃(s), ε)Gµ(ϕ̃(s), 0, µ̃(s)),

h1 = zh(L, ϕ̃(s), vsf (L; r0, L, b
∗
0, ϕ1, h1, µ, ε), µ̃(s), ε),

(7.5)

where b∗0 = b∗0(L,ϕ0, ϕ1, h1, µ, ε). Using that (zΓ, zh) vanish when (vsf , ε) = 0 and that

|vsf (L; r0, L, b
∗
0, ϕ1, h1, µ, ε)| ≤Me−ηL

by Proposition 5.3, we conclude that (7.5) can be written

ϕ1 − ϕ̃(s) +O(e−ηL + ε) = 0

µ− µ̃(s) +O(e−ηL + ε) = 0

h1 +O(e−ηL + ε) = 0.

(7.6)

Using Proposition 5.3 and the estimate (7.4), we see that the estimates for the remainder terms in (7.6) hold

also for their derivatives with respect to (ϕ1, µ, h1). Thus, (7.6) is of the form

F1(ϕ1, µ, h1) =

ϕ1 − ϕ̃(s)

µ− µ̃(s)

h1

+O(e−ηL + ε) = 0,

where we consider (L,ϕ0, ε) as parameters. As before, we will use Lemma 7.2 to find solutions to (7.6) by

characterizing roots of F1. We take w1 = (ϕ̃(s), µ̃(s), 0) and let A1 be the 3×3 identity matrix, which immediately

gives ‖A−1
1 F1(w1)‖ = O(e−ηL + ε) and ‖1−A−1

1 DF1(w)‖ = O(e−ηL + ε). Applying Lemma 7.2 with κ = 1
2 and

ρ = 1 shows that roots of F1 are given by a unique function (ϕ∗1, µ
∗, h∗1)(L,ϕ0, ε, s), which is defined for all s,

0 < ε� 1, L� 1, and ϕ0 ∈ {0, π}, depends smoothly on its arguments (L, ε, s), and has the expansion

(ϕ∗1, µ
∗, h∗1)(L,ϕ0, ε, s) = (ϕ̃(s), µ̃(s), 0) +O(e−ηL + ε).

In summary, upon evaluating (a∗0, b
∗
0, h
∗
0) at (ϕ∗1, µ

∗, h∗1)(L,ϕ0, ε, s), we see that the solutions to (7.3b)–(7.3d)

and (7.5) are of the form

a∗0(L,ϕ0, ε, s) = O(e−ηL + ε),

b∗0(L,ϕ0, ε, s) = O(e−ηL + ε),

h∗0(L,ϕ0, ε, s) = Φh(r0; r0, L, ϕ1(s), 0, µ(s), ε) +O(e−ηL + ε+ ε2 lnL),

ϕ∗1(L,ϕ0, ε, s) = ϕ̃(s) +O(e−ηL + ε),

µ∗(L,ϕ0, ε, s) = µ̃(s) +O(e−ηL + ε),

h∗1(L,ϕ0, ε, s) = O(e−ηL + ε).

(7.7)

In particular, the only remaining free variables are (L,ϕ0, ε, s). We now return to the remaining equation (7.3a).
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Matching the phase at x = r0. It remains to solve (7.3a), which, upon substituting the expressions (7.7),

becomes

ϕ0 + r0 +O(r0a
∗
0(L,ϕ0, ε, s) + ε) = Φc(r0; r0, L, (ϕ

∗
1, h
∗
1, µ
∗)(L,ϕ0, ε, s), ε) +O(e−ηL). (7.8)

Using (7.7) and Lemma 5.2(i), we see that

Φc(r0; r0, L, (ϕ
∗
1, h
∗
1, µ
∗)(L,ϕ0, ε, s), ε) = Φc(r0; r0, L, ϕ̃(s), 0, µ̃(s), ε) +O((e−ηL + ε)ε lnL)

= ϕ̃(s) + r0 − L+ gc(L, ϕ̃(s), 0, µ̃(s), ε) +O(ε+ ε2 lnL).

Substituting this expression into (7.8) and using (7.7) to estimate a∗0, we see that (7.8) can be written as

ϕ0 + r0 +O(e−ηL + ε) = ϕ̃(s) + r0 − L+ gc(L, ϕ̃(s), 0, µ̃(s), ε) +O(ε+ ε2 lnL)

or as

ϕ̃(s) = ϕ0 + L− gc(L, ϕ̃(s), 0, µ̃(s), ε) +O(ε+ ε2 lnL+ e−ηL). (7.9)

Rearranging this equation, we obtain

ϕ̃(s) = ϕ0 + L

(
1− gc(L, ϕ̃(s), 0, µ̃(s), ε)

L
+O

(
ε

L
+
ε2 lnL

L
+ e−ηL

))
.

Since gc(L,ϕ, 0, µ, ε) = O(ε lnL) uniformly in ϕ, the right-hand side converges to∞ as L→∞. Since ϕ̃(s)→∞
as s → ∞, we can use the intermediate value theorem to conclude that for each sufficiently large s there

is an L = L∗(ϕ0, ε, s) that satisfies (7.9), and we have L∗(ϕ0, ε, s) → ∞ as s → ∞. Hence, the functions

(a∗0, b
∗
0, h
∗
0, ϕ
∗
1, µ
∗, h∗1)(L,ϕ0, ε, s) evaluated at L = L∗(ϕ0, ε, s) satisfy (7.3a)–(7.3d) and (7.6). To prove the claim

about g̃lift(L, µ, ε), we solve (7.9) for ϕ̃(s) as a function of L (which can be done as above by reversing the role of

ϕ̃ and L) and substitute the result into the right-hand side of (7.9). The claims of the theorem now follow.

Since we solved equation (7.3a) using the intermediate value theorem, it is not clear whether Γϕ0,ε
pulse is a smooth

manifold. We note, however, that the bifurcation curves Γϕ0,ε
pulse are indeed smooth and unique whenever ε lnL is

sufficiently small, as we can then differentiate the left-hand side of (7.8) with respect to L and obtain a bound

for the derivative.

8 Vector field on the invariant manifold

In this section, we revisit the vector field on the two-dimensional invariant manifold Pe(µ, ε). Using the coordi-

nates (vc, vh) that parametrize Pe(µ, ε), we recall that the vector field on Pe(µ, ε) is given by

vcx = 1 +
ε

x
hc1(vc, vh, µ, ε) +

ε2

x2
hc2(x, vc, vh, µ, ε) (8.1)

vhx =
ε

x
he1(vc, vh, µ, ε) +

ε2

x2
he2(x, vc, vh, µ, ε).

Our goal is to prove the following theorem which shows that this vector field can be transformed into a simpler

form using averaging.

Theorem 8.1. For each fixed r0 > 0, the transformation

vc = x+ wc + εW c(x,wc, wh, µ), vh = wh + εWh(x,wc, wh, µ),

where W c and Wh are defined in (8.5) below, transforms (8.1) into the system

wcx =
ε

x

[
Sc(wh, µ) + εF c(x,wc, wh, µ, ε)

]
,

whx =
ε

x

[
Sh(wh, µ) + εFh(x,wc, wh, µ, ε)

]
,

(8.2)
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where

Sh(h, µ) =
1

p(µ, h)

∫ p(µ,h)

0

〈∇uH(γ(x, µ, h)), g(γ(x, µ, h), µ, 0)〉 dx.

The functions F c,h are smooth, p(µ,wh)-periodic with respect to wc, and uniformly bounded in (x,wh, µ, ε) ∈
[r0,∞)×Ke × J × [0, ε0).

In the remainder of this section, we will prove this theorem. Let vc(x) = x+ ṽc(x) so that vcx = 1 + ṽcx, and (8.1)

becomes

ṽcx =
ε

x
hc1(x+ ṽc, vh, µ, ε) +

ε2

x2
hc2(x, x+ ṽc, vh, µ, ε),

vhx =
ε

x
he1(x+ ṽc, vh, µ, ε) +

ε2

x2
he2(x, x+ ṽc, vh, µ, ε).

(8.3)

Lemma 5.1 implies that the nonlinearities appearing in (8.3) are p(µ, vh)-periodic in ṽc and therefore also in x.

Lemma 8.2. We have

Sh(vh, µ) =
1

p(µ, vh)

∫ p(µ,vh)

0

he1(x+ ṽc, vh, µ, 0) dx.

Proof. Inspecting the coordinate transformations of Lemma 5.1, we see that

he1(x+ ṽc, vh, µ, 0) = 〈∇uH(γ(x+ ṽc, µ, vh)), g(γ(x+ ṽc, µ, h), µ, 0)〉,

and we conclude that∫ p(µ,vh)

0

he1(x+ ṽc, vh, µ, 0) dx =

∫ p(µ,vh)

0

〈∇uH(γ(x+ ṽc, µ, vh)), g(γ(x+ ṽc, µ, vh), µ, 0)〉 dx.

Since the integrand on the right-hand side is p(µ, vh)-periodic in ṽc, the integral does not depend on ṽc, and it

follows that the right-hand side is equal to p(µ, vh)Sh(vh, µ).

Define

Sc(vh, µ) =
1

p(µ, vh)

∫ p(µ,vh)

0

hc1(x+ ṽc, vh, µ, 0) dx.

The functions

F̃ j(x, ṽc, vh, µ) := hj1(x+ ṽc, vh, µ, 0)− Sj(vh, µ), j = c, h (8.4)

are then p(µ, vh)-periodic in x, and their average over x vanishes. The next result establishes that the coordinate

transformations we will employ to derive the averaged vector field and their derivatives are bounded.

Lemma 8.3. There exists a C > 0 such that for every r0 > 0 the functions

W j(x, ṽc, vh, µ) :=

∫ x

r0

F̃ j(s, ṽc, vh, µ)

s
ds, j = c, h (8.5)

and their derivatives with respect to ṽc and vh are bounded by C/r0 for (x, ṽc, vh, µ) ∈ [r0,∞)× R×Ke × J .

Proof. Integrating (8.5) by parts gives

W j(x, ṽc, vh, µ) =
1

x

∫ x

r0

F̃ j(s, ṽc, vh, µ) ds+

∫ x

r0

1

s2

∫ s

r0

F̃ j(t, ṽc, vh, µ) dt ds, j = c, h.

Since the average over x of the functions F̃ j(x, ṽc, vh, µ) defined in (8.4) vanishes for each (ṽc, vh, µ), there exists

a constant CW > 0 such that the functions

s 7−→
∫ s

r0

F̃ j(t, ṽc, vh, µ) dt, j = c, h
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are bounded by CW for s ≥ r0, ṽc ∈ R, vh ∈ K and µ ∈ J . For each x ≥ r0, we therefore have

|W j(x, ṽc, vh, µ)| ≤ CW
r0

+ CW

∫ x

r0

1

s2
ds =

CW
r0

+
CW
r0
− CW

x
≤ 2CW

r0
.

We can estimate the derivatives of W j with respect to (ṽc, vh) in the same way as the derivatives are again

periodic in x for each fixed (ṽc, vh).

We can now complete the proof of Theorem 8.1.

Proof of Theorem 8.1. We define

W (x,wc, wh, µ) :=

(
W c(x,wc, wh, µ)

Wh(x,wc, wh, µ)

)
and change coordinates according to (

ṽc

vh

)
=

(
wc

wh

)
+ εW (x,wc, wh, µ)

so that (
ṽcx
vhx

)
=
(
I + εD(wc,wh)W (x,wc, wh, µ)

)(wcx
whx

)
+ εWx(x,wc, wh, µ), (8.6)

where I denotes the 2× 2 identity matrix. Differentiating (8.4) in x shows that

W c,h
x (x, ṽc, vh, µ) =

F̃ c,h(x, ṽc, vh, µ)

x
=

1

x
(hc,e1 (x+ ṽc, vh, µ, 0)− Sc,h(vh, µ)).

Using this identity and (8.3), we can rewrite (8.6) to obtain

(I + εD(wc,wh)W (x,wc, wh, µ))

(
wcx
whx

)
=

(
ṽcx
vhx

)
− εWx(x,wc, wh, µ)

=
ε

x

(
hc1(x+ wc + εW c(x,wc, wh, µ), wh + εWh(x,wc, wh, µ), µ, ε)

he1(x+ wc + εW c(x,wc, wh, µ), wh + εWh(x,wc, wh, µ), µ, ε)

)

+
ε2

x2

(
hc2(x, x+ wc + εW c(x,wc, wh, µ), wh + εWh(x,wc, wh, µ), µ, ε)

he2(x, x+ wc + εW c(x,wc, wh, µ), wh + εWh(x,wc, wh, µ), µ, ε)

)

− ε

x

(
hc1(x+ wc, wh, µ, 0)

he1(x+ wc, wh, µ, 0)

)
+
ε

x

(
Sc(wh, µ)

Sh(wh, µ)

)

=:
ε

x

(
Sc(wh, µ) + εF̃ c1 (x,wc, wh, µ, ε)

Sh(wh, µ) + εF̃h1 (x,wc, wh, µ, ε)

)
.

(8.7)

Lemma 8.3 implies that D(wc,wh)W (x,wc, wh, µ) is bounded for x ≥ r0, and I + εD(wc,wh)W (x,wc, wh, µ) is

therefore invertible for all (x,wc, wh, µ) and all sufficiently small ε ≥ 0. Thus, (8.7) is equivalent to(
wcx
whx

)
=
ε

x

(
I + εD(wc,wh)W (x,wc, wh, µ)

)−1

(
Sc(wh, µ) + εF̃ c1 (x,wc, wh, µ, ε)

Sh(wh, µ) + εF̃h1 (x,wc, wh, µ, ε)

)

=
ε

x

(
Sc(wh, µ)

Sh(wh, µ)

)
+
ε

x

[
(I + εD(wc,wh)W (x,wc, wh, µ))−1 − I

](Sc(wh, µ)

Sh(wh, µ)

)

+
ε2

x

(
I + εD(wc,wh)W (x,wc, wh, µ)

)−1

(
F̃ c1 (x,wc, wh, µ, ε)

F̃h1 (x,wc, wh, µ, ε)

)
.

Observing that (I + εD(wc,wh)W (x,wc, wh, µ))−1 − I = O(ε) shows that this system is of the form (8.2).
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9 Persistent versus collapsed snaking

In this section, we investigate when radial pulses with plateau length L exist uniformly in L � 1 and 0 ≤
ε � 1 and when radial pulses fail to exist for all sufficiently large values L for all but a few distinct values of

the parameter µ. In particular, we will complete the proofs of Theorem 2.2 and Theorem 2.3. As shown in

Theorem 7.1, snaking will persist uniformly in L � 1 for all µ provided that all solutions v(x) of (8.1) with

|vh(L)| � 1 stay in K for r0 ≤ x ≤ L regardless of the values of L � 1 and 0 ≤ ε � 1. Using Theorem 8.1 to

write v = w + εW (x,w, µ), it suffices to show that solutions w(x) of

wcx =
ε

x

[
Sc(wh, µ) + O(ε)

]
whx =

ε

x

[
Sh(wh, µ) + O(ε)

] (9.1)

with wh(L) = 0 satisfy wh(x) ∈ K for r0 ≤ x ≤ L. Hence, we will analyse (9.1) to identify conditions that

guarantee this property as well as conditions that guarantee that such solutions will leave the set K in finite

time.

9.1 Persistent versus non-persistent snaking

First, we give conditions so that radial pulses with plateau length L cannot exist for L > Lmin(ε). We refer to

Figure 8(i) for an illustration of the hypothesis on Sh made in the following lemma.

Lemma 9.1. Assume that there is a closed interval J̃ ⊂ J so that Sh|(K∩R+)×J̃ < 0 or Sh|(K∩R+)×J̃ > 0, then

for each 0 < r0 � 1 there are constants δ, ε0 > 0 and a function Lmin(ε) so that for each function w(x) that

satisfies (9.1) for (µ, ε) ∈ J̃×(0, ε0) and L ≥ Lmin(ε) with |wh(L)| < δ there is a y ∈ [r0, L] with wh(y) ∈ Ke \K.

Note that Theorem 2.2(i) follows from Theorem 7.1 and Lemma 9.1.

Proof. We focus on the case that Sh|(K∩R+)×J̃ < 0 as the other case is analogous. In particular, there is a

constant b > 0 so that the right-hand side of the differential equation (9.1) for wh satifies

Sh(wh, µ) +O(ε) ≤ −b, ∀(wh, µ, ε) ∈ (K ∩ R+)× J̃ × [0, ε0].

It follows from Hypothesis 4 that we can write K = [k−, k+] for some k− < 0 < k+. We argue by contradiction

and assume that for all L� 1 and 0 < ε < ε0, we have wh(x) ≤ k+ for all x ∈ [r0, L]. In particular,

k+ ≥ wh(r0) = wh(L)−
∫ L

r0

ε

y
[Sh(wh(z), µ) +O(ε)] dz ≥ −δ + ε

∫ L

r0

b

y
dz ≥ εb ln

L

r0
− δ.

Since the right-hand side becomes arbitrarily large as L→∞ for each fixed ε > 0, we reach a contradiction. In

particular, we conclude that radial pulses with plateau length L cannot exist when

L ≥ Lmin(ε) := r0 exp

(
k+ + δ

εb

)
,

completing the proof of the lemma.

Next, we will give conditions under which radial pulses with plateau length L exist for all µ ∈ J , 0 ≤ ε� 1, and

L� 1.

Lemma 9.2. Assume that there is a wh0 ∈ K so that one of the following cases is true for all µ ∈ J :

(i) Sh(0, µ) < 0, Sh(wh0 , µ) > 0, and wh0 > 0,

(ii) Sh(0, µ) > 0, Sh(wh0 , µ) < 0, and wh0 < 0,
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(i)

J̃
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µ0
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µ*

Figure 8: Panel (i) illustrates the hypothesis made in Lemma 9.1 about the existence of an interval J̃ ⊂ J so that

the vector field Sh(wh, µ) restricted to (K ∩R+)× J̃ is strictly negative: solutions wh(x) of (9.1) with wh(L) = 0

cannot remain in K for r0 ≤ x ≤ L for L � 1. Panel (ii) illustrates the hypothesis made in Proposition 9.3

about the function Sh(wh, µ) near the parameter value µ∗.

then for each 0 < r0 � 1 there are constants δ, ε0, L0 > 0 so that solutions w(x) of (9.1) with 0 ≤ ε < ε0 and

|wh(L)| < δ for L ≥ L0 satisfy wh(x) ∈ K for all r0 ≤ x ≤ L.

Proof. The claims follow immediately from continuity of Sh(wh, µ) and smallness of ε.

9.2 Collapsed snaking

In this section, we will prove Theorem 2.2(ii), which we restate in the following proposition.

Proposition 9.3. Assume that Hypotheses 1-6 are met and that there is a (ϕ∗, µ∗) ∈ Γ such that Sh(0, µ∗) = 0,

Shh(0, µ∗) < 0, Shµ(0, µ∗) > 0, and Gϕ(ϕ∗, 0, µ∗) 6= 0, then there exists an ε0 > 0 such that the following is true

for each 0 < ε < ε0: there exists a sequence (Lm, µm) with Lm → ∞ as m → ∞ and µm near µ∗ for all m so

that (2.3) with µ = µm has a radial pulse with plateau length Lm.

The hypothesis on Sh(wh, µ) made in the proposition, which we illustrate in Figure 8(ii), implies that there is

a smooth function wh∗ (µ) defined for µ ∈ Uδ(µ∗) so that Sh(wh, µ) = 0 for (wh, µ) near (0, µ∗) if and only if

wh = wh∗ (µ). Note that we have Dµw
h
∗ (µ∗) > 0. Next, we show that these roots persist as invariant manifolds

for the nonautonomous equation (9.1) for 0 < ε� 1.

Lemma 9.4. Under the hypotheses of Proposition 9.3, there exists a function Wh
∗ (x,wc, µ, ε) which is smooth

in (wc, µ), continuous in (x, ε) for 0 ≤ ε� 1, and uniformly bounded in all its arguments such that

{(w, x) = (wc, wh∗ (µ) + εWh
∗ (ε lnx,wc, µ, ε), x) : (x,wc) ∈ [r0,∞)× R}

is an invariant manifold of (9.1) for each µ ∈ Uδ(µ∗).

Proof. Introducing the coordinates w̃h := wh − wh∗ (µ) and y = ε lnx so that x = ey/ε, equation (9.1) becomes

wcx = Sc(wh∗ (µ) + w̃h, µ) +O(ε), w̃hx = Shµ(wh∗ (µ), µ)w̃h +O(|w̃h|2 + ε).

Since Shµ(wh∗ (µ), µ) < 0 is bounded away from zero uniformly in µ ∈ Uδ(µ∗), we can apply [8, Theorem VII.2.2] to

conclude that there exists a uniformly bounded function Wh
∗ (y, wc, µ, ε) that is smooth in (wc, µ) and continuous

in (y, ε) such that {(w, x) = (wc, wh∗ (µ) + εWh
∗ (ε lnx,wc, µ, ε), x)} is an invariant manifold of (9.1).

Corollary 9.5. Under the hypotheses of Proposition 9.3, there exists ε0 > 0 such that for each (L,ϕ, µ, ε) ∈
[1,∞)× R× Uδ(0)× [0, ε0) the solution (vc∗, v

h
∗ )(x) ∈ R×Ke of (8.1) with

vc∗(L) = ϕ, vh∗ (L) = wh∗ (µ) + εWh
∗ (L,ϕ, µ, ε) + εWh(L,ϕ,wh∗ (µ) + εWh

∗ (L,ϕ, µ, ε), µ)

satisfies vh∗ (x) ∈ K for all x ∈ [r0, L].
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Proof. Restricting (8.2) to the integral manifold wh = wh∗ (µ) + εWh
∗ (x,wc, µ, ε), equation (8.2) is reduced to

wcx =
ε

x

[
Sc(wh∗ (µ) + εWh

∗ (x,wc, µ, ε), µ) + F c(x,wc, wh∗ (µ) + εWh
∗ (x,wc, µ, ε), µ, ε)

]
.

For each ϕ̃ ∈ R and L � 1, this equation has a unique solution wc(x, ϕ̃) on [0, r0] that satisfies wc(L, ϕ̃) = ϕ̃.

Transforming this solution back to the vc-variable using Theorem 8.1, we find that the corresponding solution

vc(x, ϕ̃) satisfies

vc(L, ϕ̃) = L+ ϕ̃+ εW c(L, ϕ̃, wh∗ (µ) + εWh
∗ (L, ϕ̃, µ, ε), µ).

Using smoothness in ϕ̃, there exists a unique ϕ̃ so that vc(L, ϕ̃) = ϕ. Since wh(x) stays close to zero for all x by

construction, so does vh(x), and we therefore have vh(x) ∈ K for all x, which completes the proof.

Proof of Proposition 9.3. We will proceed as in the proof of Theorem 7.1 and therefore focus only on the necessary

adjustments. First, it follows from our assumptions that there is a function (ϕ̃, µ̃)(s) ∈ Γ with µ̃s(0) 6= 0 so

that (ϕ̃, µ̃)(0) = (ϕ∗, µ∗). Next, for each ϕ1 ∈ R, we denote by (Φc,Φh)(x; r0, L, ϕ1, µ, ε) the solution (vc∗, v
h
∗ )(x)

constructed in Corollary 9.5 so that

Φc(L; r0, L, ϕ1, µ, ε) = ϕ1, Φh(L; r0, L, ϕ1, µ, ε) = wh∗ (µ) +O(ε).

Matching solutions at x = r0 proceeds then as in the proof of Theorem 7.1, and it remains to solve for the phase

and match at x = L. Similar to (7.6), matching at x = L leads to the system

ϕ1 − ϕ̃(s)− 2πm+O(e−ηL + ε) = 0

µ− µ̃(s) +O(e−ηL + ε) = 0 (9.2)

wh∗ (µ) +O(e−ηL + ε) = 0,

where (ϕ̃(s) + 2πm, µ̃(s)) ∈ Γlift for each m ∈ N. The main difference to the proof of Theorem 7.1 is that the

additional free variable h1 that we used to solve (7.6) is no longer available. Instead we solve (9.2) for (ϕ1, µ, s)

near (ϕ∗+2πm, µ∗, 0) , which is possible since the Jacobian of the left-hand side of (9.2) with respect to (ϕ1, µ, s),

which is given by 1 0 −ϕ̃s(0)

0 1 −µ̃s(0)

0 Dµw
h
∗ (µ∗) 0

+O(e−ηL + ε),

is invertible as Dµw
h
∗ (µ∗) 6= 0 and µ̃s(0) 6= 0. Hence, for each m ∈ N, L � 1, and 0 ≤ ε � 1, we obtain a

solution of (9.2) in the form

(ϕ∗1, µ
∗, s∗)(L, ε,m) = (ϕ∗ + 2πm, µ∗, 0) +O(e−ηL + ε). (9.3)

It remains to match the phase at x = r0, which as in the proof of Theorem 7.1 leads to the equation

ϕ∗ + 2πm− L+O(ε lnL+ e−ηL) = 0,

which we can solve for L = Lm for each sufficiently large integer m using again the intermediate-value theorem.

In particular, Lm →∞ as m→∞, and µm := µ∗(Lm, ε,m) is O(e−ηLm + ε)-close to µ∗.

9.3 Extensions to asymptotic radial pulses

In this section, we prove Theorem 2.3. Thus, we fix n := 1 + ε > 1 not necessarily close to one and, omitting

the dependence of g on n, write the differential equation (2.3) as

ux = f(u, µ) +
n− 1

x
g(u, µ). (9.4)
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We focus on the case that x is large. For each R� 1, we therefore set x = R + y with y ≥ 0 and introduce the

new small parameter ε via ε := 1/R� 1. Equation (9.4) then becomes

uy = f(u, µ) +
ε(n− 1)

1 + εy
g(u, µ), y ≥ 0, (9.5)

which is of a form similar to (2.3) except that the denominator x is now replaced by 1 + εy. It is straightforward

to check that the results for (2.3) with x ≥ r0 stated in §5, §6, and §8 remain valid for (9.5) with y ≥ 0. In

particular, 1/ε-asymptotic radial pulses with plateau length L can exist only if the solutions on the invariant

manifold P(µ, ε) belonging to (9.5) are contained in K for 0 ≤ y ≤ L.

Under the hypotheses of Theorem 2.3(i), Lemma 9.1 shows that there are constants L0, ε0 > 0 so that for each

solution w(x) on the invariant manifold P(µ, ε0) with |wh(L)| ≤ δ and L ≥ L0 there is a y0 ∈ [0, L] so that

wh(y0) /∈ K. Setting R0 = 1/ε0, this shows that R0-asymptotic radial pulses with plateau length L cannot exist

for L ≥ L0, completing the proof of Theorem 2.3(i).

Next, we consider Theorem 2.3(ii). Note that we did not impose any conditions on the asymptotic radial pulses

at x = R∗ (corresponding to y = 0). Hence, the only requirements are that the underlying solution (vc, vh)(y)

stays in K for 0 ≤ y ≤ L and that the solution v(y) satisfies v(L) ∈ W s
L(0, µ). We can therefore proceed as in

the proof of Proposition 9.3 to solve the matching condition v(L) ∈ W s
L(0, µ) at y = L in the form (9.3). In

contrast to the situation in Proposition 9.3, we do not need to match the phase at y = 0, and asymptotic radial

pulses therefore exist for all sufficiently large values of L. This completes the proof of Theorem 2.3(ii).

10 Discussion

Though our theoretical results apply to a broad class of systems, we focus our discussion on the radial Swift–

Hohenberg equation posed on Rn. Amongst our theoretical findings is the proof that the flow on the integral

manifold that continues the manifold of roll patterns Uper to n > 1 is, to leading order, determined by the vector

field S(h, µ) that is explicitly related to the PDE energy E and value h of the Hamiltonian H via

S(h, µ) = E(Uper(·, µ, h), µ)− h.

In particular, we showed that S(0, µ) vanishes precisely at the Maxwell point µ = µMax. Combining the numerical

computation of S together with our theoretical results on the persistence of snaking branches allowed us to

conclude that snaking branches for the planar and three-dimensional Swift–Hohenberg equation have to collapse

onto the Maxwell point. Our theoretical results also showed that snaking branches persist for all plateau lengths

L ≤ exp(b/|n− 1|) for |n− 1| � 1.

Our analysis does not explain the precise structure of the branches shown in Figure 3 for the planar Swift–

Hohenberg equation. In particular, we cannot explain the intermediate stack of isolas nor the fact that the upper

snaking branch forms a connected curve. We believe that the specific shape of the snaking diagram is determined

by the behavior of solutions away from the invariant manifold of periodic orbits and will therefore likely depend

on the global dynamics rather than local properties near the manifold of rolls and the stable manifold of the

origin. Investigating the global dynamics away from this manifold would be an interesting project.

We did not investigate the stability of the localized roll solutions for n > 1. For the Swift–Hohenberg equation

in one space dimension, recent work [13] elucidated some of the expected stability properties of localized roll

patterns. We expect that the stability results in [13] can be extended to the radial case for |n− 1| � 1.
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