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a b s t r a c t

We present a family of novel methods for embedding knowledge graphs into real-valued tensors.
These tensor-based embeddings capture the ordered relations that are typical in the knowledge graphs
represented by semantic web languages like RDF. Unlike many previous models, our methods can easily
use prior background knowledge provided by users or extracted automatically from existing knowledge
graphs. In addition to providing more robust methods for knowledge graph embedding, we provide a
provably-convergent, linear tensor factorization algorithm. We demonstrate the efficacy of our models
for the task of predicting new facts across eight different knowledge graphs, achieving between 5% and
50% relative improvement over existing state-of-the-art knowledge graph embedding techniques. Our
empirical evaluation shows that all of the tensor decomposition models perform well when the average
degree of an entity in a graph is high, with constraint-based models doing better on graphs with a small
number of highly similar relations and regularization-basedmodels dominating for graphs with relations
of varying degrees of similarity.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

Knowledge graphs are gaining popularity due to their effec-
tiveness in supporting a wide range of applications, ranging from
speed-readingmedical articles via entity-relationship synopses [1],
to training classifiers via distant supervision [2], to representing
background knowledge about the world [3,4], to sharing linguis-
tic resources [5]. Large, broad-coverage knowledge graphs like
DBpedia, Freebase, Cyc, and Nell [6] have been constructed from
a combination of human input, structured and semi-structured
datasets, and information extraction from text, and further refined
by a mixture of machine learning and data analysis algorithms.
While they are immensely useful in their current state, muchwork
remains to be done to detect the many errors they contain and
enhance them by adding relations that are missing. As a simple
example, consider instances of the spouse relation in the DBpedia
knowledge graph. This relation holds between two people and
is symmetric, yet the DBpedia version from October 2016 has
3,743 relations where one of the entities is not a type of Person
in DBpedia’s native ontology and more than half of the inverse
relations are missing.1
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E-mail addresses: ankurpadia@umbc.edu (A. Padia), kalpakis@umbc.edu

(K. Kalpakis), ferraro@umbc.edu (F. Ferraro), finin@umbc.edu (T. Finin).
1 These observations were made based on data from SPARQL queries run on the

public endpoint [7] in December 2017.

One approach to improving a large knowledge graph like DB-
pedia is to extend and exploit ontological knowledge, perhaps in
the form of logical or probabilistic rules. However, two factors
make this approach problematic: the presence of noise in the
initial graphs, and the large size of the underlying ontologies. For
example, in DBpedia it is infeasible to do simple reasoning with
property domain and range constraints because the noisy data
produces too many contradictions. The size of DBpedia’s schema,
withmore than 62K properties and 100K types,makes a rule-based
approach difficult, if not impossible.

Representation learning [8] provides a way to augment or even
replace manually constructed ontology axioms and rules. The gen-
eral idea is to use instances in a large knowledge graph to discover
patterns that are common, and then use these patterns to suggest
changes to the graph. The changes are often in the form of adding
missing types and relations, but can also involve changes to the
schema, removing incoherent instances, merging sets of instances
that describe the same real-world entity, or adding or adjusting
probabilities for relations. One popular approach for represen-
tation learning systems is based on learning how to embed the
entities and relations in a graph into a real-valued vector space,
allowing the entities and relations to be represented by dense, real-
valued vectors. The entity and relation embeddings can be learned
either independently or jointly, and then used to predict additional
relations that are missing. Jointly learning the embeddings allows
each to enhance the other.

Current state-of-the-art systems of this type compute embed-
dings to support the task at hand, which might be link ranking
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Table 1

Distinction among various tasks, their definition, alternate terminology, and an example to understand the phrase ’link prediction’ and its usage for a given context. Our
approach focuses on the Fact Prediction task, which is a binary classification task.

Tasks Alternate terminology Definition Example

Link ranking Link prediction Input : Given a relation, r, and an entity ei . (ei ,r, ?) Input : Where is Statue of Liberty located?
(ranking) Link recommendation Output : Rank list of possible entity ej Output : (1) Germany (2) United States (3) New York (city)

OR (4) New York (state) (5) Brazil
Input : Given a pair of entities, ei , and ej . (ei ,?, ej)
Output : Rank list of possible relations, r

Fact prediction Link classification Input : A triple (a.k.a fact), ei , r, and ej . Input : Is the Statue of Liberty located in Germany?
(classification) Fact classification Output : 0 (No) or 1 (Yes) Output : 0 (No)

Fig. 1. Link Ranking vs. Fact Prediction. Consider a toy knowledge graph with four entities and four relations. Link ranking aims to rank relations for a given pair of entities
and is meaningful in the cases where at least one relation holds between a given pair of entities, e.g., (Barack_Obama, ?, United_States) and not (Barack_Obama, ?, Germany).
On the other hand, fact prediction is the task of decidingwhich relations are likely to hold between a pair of entities. Link ranking (or recommendation) is a ranking problem,
while fact prediction is a binary classification problem.

(or link recommendation), or fact prediction (Table 1). Link ranking
tries to populate the knowledge graph by recommending a list of
relations that could hold between a subject–object pair of entities.
It assumes that at least one relation exists between the given
pair of entities, and is a ranking problem. On the other hand, fact
prediction identifies the correct facts from incorrect ones, and is a
binary classification problem. To better understand the difference
between link ranking and fact prediction, consider the example
shown in Fig. 1. Here solid lines indicate the observed (correct)
relations among the entities; dashed lines indicate the relationswe
are interested in making recommendation for or identifying their
correctness. For the pair (Barack Obama, Germany), none of the
recommended relations (in the solid box) can hold. However, due
to the design of the problem, a link prediction system is required to
produce a list of potential relations. On the other hand, for the pair
(Harvard Law School, Germany), one relation, hasFacultyFrom, can
hold while the remaining ones cannot.

In the case of fact prediction, we are interested in making a de-
termination (binary classification) whether or not a relation holds
between a given pair of entities. Fact prediction is an important
task, as models for it can help identify erroneous facts present in
a knowledge graph and also filter facts generated by an inference
system or information extraction system. As shown in Fig. 1 the
circumscribed minus sign (‘‘−’’) indicates that the relation cannot
hold and circumscribed plus sign (‘‘+’’) that it may hold. Fact
prediction can be used as an pre- and post-processing step to link
prediction.

Many previous systems have attacked the link ranking task (see
Section 2), which involves finding, scoring and ranking links that
could hold between a pair of entities. Having such a ranked list is
useful and could support, for example, a system that showed the
list to a person and asked her to check off the ones that hold. The
results of the link ranking task can also be used to predict facts
that do hold between a pair of entities, of course. But it introduces
the need to learn good thresholds for the scores to separate the
possible from the likely. Achieving high accuracy may require that
the thresholds differ from one relation to another. Thus we have
a new problem that we need to train a system to solve—learning
optimal thresholds for the relations. Sincewe are only interested in
extending a knowledge graph with relations that are likely to hold
(what we call facts), our approach is designed to solve it directly.
Thus we have the fact prediction task: given a knowledge graph,
learn a model that can classify relation instances that are very
likely to hold. This task is more specific than link ranking andmore
directly solves an important problem.

Embedding entities and relations into a vector space has been
shown to achieve state-of-the-art results. Such embeddings can
be generated using tensor factorization or neural network based
approaches. Tensor-based approaches like RESCAL [9] jointly learn
the latent representation of entities and relations by factorizing
the tensor representation of the knowledge graph. Such a tensor
factorization could be further improved by imposing constraints,
such as non-negativity on the factors, to achieve better sparsity
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and prediction performance. Moreover, tensor factorization meth-
ods, like Tucker and Canonical Polyadic (CP) decompositions [10],
have also been applied to knowledge graphs to obtain ranking of
facts [11]. RESCAL and its variants [12,13] have achieved state-
of-the-art results in predicting missing relations on real-world
knowledge graphs. However, such extensions require additional
schema information, which may be absent or require significant
effort to provide.

Neural network based approaches, like TransE [14] and Dist-
Mult [15], learn an embedding of a knowledge graph by mini-
mizing the ranking loss. As a result, they learn representations
in which likely links are ranked higher than unlikely ones. These
are evaluated with Mean Reciprocal Rank, which emphasizes the
ordering or ranking of the candidate links rather than their cor-
rectness. DistMult further assumes that each relation is symmetric.
CompleEx [16] relaxes the assumption of symmetric relations by
representing the embedding in a vector space of complex, rather
than real, numbers. DistMult and ComplEx have both been shown
to yield state-of-the-art performance.

However, these models [9,13–16] do not explicitly exploit the
similarity among the relations when computing entity and re-
lation embeddings, nor have they studied the role that relation
similarities have on regularizing and constraining the underlying
relation embeddings and the effect on performance in fact predic-
tion task. Other more distantly related methods [17–19] attempt
to learn entity and relation embeddings using association among
the relations but as described in Section 2, the approaches need
external text sources to determine the association among the rela-
tions/predicates andhence are not standalone like ours. The closest
approach which does not depend on an external source (i.e., is
standalone) is Minervini et al. [20], which uses limited relation
similarity cases (i.e., inverse and equivalence). This can be
easilymodeled by our approach usingweighted regularization and
hence the regularization provided by [20] is a special case of our
regularization approach.

Our work addresses these deficiencies and make three contri-
butions. First, we develop a framework to learn entity and relation
embeddings that incorporates similarity among the relations as
prior knowledge. This framework allows us to both generalize
existing work [21] and provide three novel embedding methods.
Our models are based on the intuition that the importance of
relations varies in predicting missing relations in a given multi-
relational dataset, e.g., knowing that someone is a country’s Presi-
dent greatly increases the chances of being a citizen of the country.
Formally, each method optimizes an augmented reconstruction
loss objective (Section 3.3) Additionally, we use Alternate Least
Squares instead of gradient descent to solve the resulting optimiza-
tion problems.

Second, we evaluate each model, comparing it to state-of-the-
art tensor decomposition models (RESCAL and its non-negative
variant Non-negative RESCAL) on eight real-world datasets/
knowledge graphs on fact prediction task. These datasets exhibit
varying degrees of similarity among the relations, allowing us to
study our framework’s efficacy in varying settings. We provide
insight into our models and shed light on the effect of similarity
regularization on the quality of learned embedding for the task and
describe how the embedding changedwith varying graph sparsity.
We show that the quadratic model perform well in general and
in most cases, embedding using our quadratic+constraint model
perform the best. We also consider our models as one-best fact
prediction systems, allowing us to compare against TransE, and
popular benchmarks DistMult, and ComplEx. Our methods yield
consistent relative improvements of more than 20% over these
baselines, while having the same asymptotic time complexity.

Finally, wemake a theoretical contribution by providing aprov-
ably convergent factorization algorithm that matches, and often
outperforms, the baselines. We also empirically investigate its
convergence on two standard datasets.

2. Related work

Significant work has been done over the past decades on meth-
ods for improving a given knowledge graph by identifying likely
errors and either correcting or removing them and by predict-
ing additional facts or relations and adding them to the graph.
Paulheim [22] provides an overview of techniques for these tasks,
which he calls knowledge graph refinement. Our interest is in the
subset of this general problem that involves using embeddings to
identify the correct relations between pairs of entities already in
a knowledge graph as opposed to link prediction or recommenda-
tion,

Knowledge graph embeddings can be created using tensor fac-
torization or neural network based approaches. Both aim to learn
a scoring function which assigns a score to a triple, (s, r, o) where
s is the subject, r is the relation and o is the object. They learn an
embedding using a combination of techniques including the use
of regularization, constraints or external information. The choice
of the techniques affects both the embedding and the types of
applications for which they are suited. We describe a few of them
and additional details can be found in [23].

Neural network based approaches. Neural network methods
like TransE [24] and Neural Tensor Network (NTN) [25] embed
the entities and relations present in multi-relational data using
marginal loss. The embeddings are learned in a manner that ranks
correct (i.e., positive) triples higher than incorrect (i.e., negative
triples). For each triple (s, r, o), TransE tries to bring the object o
closer to the sum of subject s and relation r with a linear scoring
function ∥s+ r−o∥. NTN, on the other hand, uses the combination
of a bilinear model (sTWro) and a linear one (Wrss + Wroo + br )
where Wrs,Wro, and Wr are the relation embeddings. NTN has
more parameters than TransE, making it generally more expres-
sive.

TransE’s approachwas extended by TransH [26], which projects
relations in a hyperplane with a translation operation on the hy-
perplane. Subsequently, DistMult [15] and ComplEx [16] have been
shown to learn better embeddings and perform better then TransE,
TransH and NTN, achieving what are currently considered to be
state-of-the-art results. DistMult is a simpler version of RESCAL
where the relation embedding matrix is assumed to be diagonal.
However, since its scoring function is symmetric, it considers each
relation to be symmetric, and consequently cannot distinguish
the difference between the subject and object. This is a serious
drawback in domains with asymmetric relations (e.g., hasParent ,
attacks, worksFor). ComplEx uses the same number of parameters
as DistMult and overcomes this drawback by embedding relations
in the vector space of complex numbers, so that each relation’s
embedding vector has a real and an imaginary part. ComplEx uses
the both the real and imaginary parts of subject, predicate, and
object embeddings to compute the score.

HoLE [27] learns entity and relation embeddings to compute
a triple’s score with fewer parameters than RESCAL. However,
since [28] showed that the holographic embeddings are isomor-
phic to those of ComplEx, we limit our focus on DistMult and
ComplEx. An approach from Guo et al. [29] learns embeddings
using ComplEx’s objective function and iteratively modifies them
using rules learned with AMIE [30]. Such rules can be converted
to corresponding score values as entries for the similarity matrix
used in our approach (Section 3.2), using a function like Equation
6 in Guo et al. [29]. As the number of atoms in a rule can vary,
engineering a function to compute a score for a variable length rule
and understanding its effect on fact prediction task requires explo-
ration;we leave this for futurework.We compare the quality of our
embedding with those of the frequently used baseline approaches
DistMult and ComplEx and achieve significant improvement on the
fact prediction task.
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Tensor factorization based approaches. These approaches
compute embeddings by factorizing a knowledge graph’s tensor
andusing the learned factors to assigns a score to each triple. Scores
can be boolean, reals, or non-negative reals depending on the fac-
torization constraints. Boolean Tensor Factorization (BTF) [31] de-
composes an input tensor into multiple binary-valued factor ten-
sors. The value of the input tensor is reconstructed using boolean
operators on the corresponding individual values of the tensor
factors. BTF was extended in [32] by incorporating a Tucker tensor
decomposition [10] to predicts links. Each factor contains a boolean
value, but since the learned values are boolean, the predicted
values are constrained to be either 0 or 1. In contrast, our model
assigns a real number to each possible link.

Methods like RESCAL [9] and its schema-based extension [12]
decompose a tensor into a shared factor matrix and a shared
compact factor tensor [33]. To better model protein interaction
networks and social network data, Krompass et al. [13] imposed
non-negativity constraints on these factors, but as we show em-
pirically in Section 6, doing so increases the running time of the
factorization and introduces scalability issues. Other examples of
utilizing schema information include Krompass et al. [12], who use
schema information to decompose a tensor using type constraints
and updates the factor values following a relation’s rdfs:domain

and rdfs:range, and Minervini et al. [34], who incorporate schema
information in latent factor models to improve the link prediction
task. All of the proposed extensions seem to work well only when
the average degree of the entities is high or all of the relations are
equally important in predicting the correctness of (possible) facts.
Finally, while these approaches offer empirical evidence for the
convergence of their iterative algorithms, no convergence guaran-
tees or analysis are available.

Work that canbe considered close to ours isMinervini et al. [20],
which requires pre-defined equivalence and inverse properties
on relations. In contrast, we use a data-driven and self-contained
approach an do not rely on or require a schema, pre-trained em-
beddings or external text corpus. Their approach uses two formu-
lations: one in which the equivalences define hard constraints and
another in with soft constraints. While the soft constraints take
the same form as the relation regularization we use (i.e., Frobenius
between relation embeddings). Our approach is supported by the
intuition that not all relations participate equally to identify the
fact, which provides more flexibility by weighting different rela-
tions. Due to this flexibility [20] can be considered as a special case
of our approach to provide regularization described here and in our
preliminary work [21]. Additionally, we do not require inclusion of
a rich semantic schema. In the absence of a schema (i.e., without
using regularization via equivalence or inverse axioms), their ap-
proach reduces to the that of TransE, DistMult, and ComplEx, with
which we compare our approach in Section 5.

More distantly related work. There are approaches that use
external information, either from a text corpus or pre-trained em-
beddings, to regularized knowledge graph embeddings for down-
stream applications. These are somewhat related to our approach,
which is data driven, self contained and does not rely a corpus
or pre-trained embeddings. Our regularization approach could be
added to other regularization methods, enforcing similarity be-
tween predicates in the embeddings space. We leave analysis of
addition of our regularization to distantly related work for future
study.

We mention here a few references for completeness. As men-
tioned before, NTN [25] uses pre-trained word embeddings to
guide the learning of the knowledge graph embeddings with the
intuition that if the words are shared among the entity and rela-
tions they share the statistical strength. Beside the use of a text
corpus, implication rules are also used to guide the embeddings in
some systems [17–19]. Such implication rules can come from a

lexical corpus, such as WordNet or FrameNet, extracted from the
knowledge graph itself [35] or can be manually crafted. However,
this may require considerable amount of human effort, depending
on the availability of the lexical resources.

3. Similarity-driven knowledge graph embedding

In this section we first motivate a general framework for in-
corporating existing relational similarity knowledge. We then de-
scribe how our three models pre-compute a similarity matrix that
measures co-occurrence of pairs of relations and use it to regu-
larize or constrain relation embeddings. Two of the three models
optimize linear factorization objectives while the third is a robust
extension of the quadratic objective described in Padia et al. [21].

3.1. General framework

Our general framework for similarity-driven knowledge graph
embedding relies on minimizing an augmented reconstruction
loss. The reconstruction objective learns entity and relation em-
beddings that,when ‘‘combined’’ (multiplied), closely approximate
the original facts and relation occurrences observed in the knowl-
edge graph. We augment the learning process with a relational

similarity matrix, which provides a holistic judgment of how sim-
ilar pairs of relations are. These similarity scores allow certain
constraints to be placed on the learned embeddings; in this way,
we allow existing knowledge to enrich the entity and relation
embeddings.

In our framework, we represent a multi-relational knowledge
graphofNr binary relations amongNe entities by the order-3 tensor
X of dimension Ne × Ne × Nr . This binary tensor is often very
large and sparse. Our goal is to construct dense, informative p-
dimensional embeddings, where p is much smaller than either the
number of entities or the number of relations. We represent the
collection of p-dimensional entity embeddings byA, the collection
of relation embeddings by R, and the similarity matrix by C . The
entity embeddings collectionA contains matrices Aα of size Ne× p

while the relation embeddings collectionR containsmatricesRk of
size p×p. Recall that the frontal sliceXk of tensorX is the adjacency
matrix of the kth binary relation, as shown in Fig. 2. We use A⊗ B

to denote the Kronecker product of two matrices A and B, vec (B)

to denote the vectorization of a matrix B, and a lower italic letter
like a to denote a scalar.2

Mathematically, our objective is to reconstruct each of the k

relation slices of X , Xk, as the product

Xk ≈ AαRkA
⊺

β . (1)

Recall that both Aα and Aβ are matrices: each row is the embed-
ding of an entity. By changing the exact form of A – that is, the
number of different entity matrices, or the different ways to index
A – we can then arrive at different models. These model variants
encapsulate both mathematical and philosophical differences. In
this paper, we specifically study two cases. First, we examine the
case of having only a single entity embedding matrix, represented
as A—that is, Aα = Aβ = A. This results in a quadratic re-
construction problem, as we approximate Xk ≈ ARkA

⊺. Second,
we examine the case of having two separate entity embedding
matrices, represented as A1 and A2. This results in a reconstruction
problem that is linear in the entity embeddings, aswe approximate
Xk ≈ A1RkA

⊺

2.

2 We use the standard tensor notations and definitions in Kolda and Bader [10].
Recall that the Kronecker productA⊗B of an (m1, n1)matrixA and a (m2, n2)matrix
B returns an (m1m2, n1n2) block matrix, where each element of A scales the entire
matrix B.
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Fig. 2. The similarity matrix C is used to compute the similarity of pairs of relations in the knowledge graph. Its ith frontal slice is the adjacency matrix of the ith relation,
i.e., a two-dimensional matrix with a row and column for each entity whose values are 1 if the relation holds for a pair and 0 otherwise.

We learn Aα,Aβ , and R by minimizing the augmented recon-
struction loss

min
A,R

f (A,R)
  

reconstruction loss

+

numerical regularization of the embeddings
  

g(A,R)+ fs(A,R, C)
  

knowledge-directed enrichment

. (2)

The first term of (2) reflects each of the k relational criteria given
by (1). The second termemploys standardnumerical regularization
of the embeddings, such as Frobenius minimization, that enhances
the algorithm’s numerical stability and supports the interpretabil-
ity of the resulting embeddings. The third term uses our similarity
matrix C to enrich the learning process with our extra knowledge.

We first discuss how we construct the similarity matrix C in
Section 3.2 and then, starting in Section 3.3, describe how the
framework readily yields three novel embedding models, while
also generalizing prior efforts. Throughout, we show how C can be
used as a second type of regularizer on the relation embeddings
(penalizing large differences in similar relations), or as a constraint
that forces embeddings of similar relations to be near one an-
other and dissimilar relations to be further apart. In particular, we
demonstrate that when using

1. a linear objective with C as a regularizer (Section 3.3), we
obtain a competitive, provably convergent algorithm;

2. a quadratic objective with C as a constraint (Section 3.4),
we obtain amethod that relies on the well-known quadratic
form, while resulting in significantly higher performance.

3.2. Slice similarity matrix: C

Each element of the Nr × Nr matrix C represents the similarity
between a pair of relations, i.e., frontal tensor slices Xi and Xj, and
is computed using the following equation:

(Symmetric) Ci,j =
|(S(Xi) ∪ O(Xi)) ∩ (S(Xj) ∪ O(Xj))|

|(S(Xi) ∪ O(Xi)) ∪ (S(Xj) ∪ O(Xj))|

∀1 ≤ i, j ≤ Nr (3)

where S(Xi) is the set of subjects of the matrix X holding the ith
relation, and similarly for the object O(Xi). |S(X)| gives the cardi-
nality of the set. Intuitively, wemeasure similarity of two relations
using the overlap in the entities observed with each relation. Two
relations that operate on more of the same entities are more likely
to have some notion of being similar. The numerator equals the
number of common entity pairs present across the two frontal
slices (relations), while the denominator is used to normalize the
score between zero and one. Beside Eq. (3)we also consider several
other similarity function:

(Agency) C =
|S(Xi) ∩ S(Xj)|

|S(Xi) ∪ S(Xj)|
∀1 ≤ i, j ≤ Nr (4)

(Patient) Ci,j =
|O(Xi) ∩ O(Xj)|

|O(Xi) ∪ O(Xj)|
∀1 ≤ i, j ≤ Nr (5)

(Transitivity) Ci,j =
|S(Xi) ∩ O(Xj)|

|S(Xi) ∪ O(Xj)|
∀1 ≤ i, j ≤ Nr (6)

(Reverse Transitivity) Ci,j =
|O(Xi) ∩ S(Xj)|

|O(Xi) ∪ S(Xj)|
∀1 ≤ i, j ≤ Nr (7)

We can view a knowledge graph’s nodes and edges as repre-
senting a flow of information, with subjects and objects acting as
information producers and consumers, respectively. Tensor factor-
ization captures this interaction [9].

We experimentedwith all of the similarity functions and report
the evaluation result in Section 4. For most of our experiments we
used the similarity obtained from transitivity, as we found it gave
the best overall performance.

Our similarity function in Eq. (3) is symmetric. An asymmetric
similarity function, like the Tversky index [36], could be used,
but we found its performance to be comparable to our simpler
symmetric similarity function on the link rankingtask. Fig. 3 shows
the computed similaritymatrices for two of our datasets,WordNet
and Freebase, with detailed discussion given in Section 4.1).

3.3. Model 1: Linear + Regularized

This section presents a linear objective function that can be
viewed as a longitudinal extension of previous work that focused
on quadratic objectives [21]. We solve the following regularized
minimization problem:

min
A1,A2,Rk

f (A1,A2,Rk)+ g (A1,A2,Rk)+ fs (C,Rk)+ fρ (A1,A2,Rk)

(8)

where we have decomposed the knowledge-directed enrichment
term of (2) into two separate terms, fs and fρ . Specifically, we
minimize

f (A1,A2,Rk) =
1

2

(

∑

k

∥Xk − A1RkA
T
2∥

2
F

)

(9)

g (A1,A,Rk) =
1

2

(

λA∥A1∥
2
F + λA∥A2∥

2
F

)

+
1

2
λe∥A1 − A2∥

2
F +

1

2

(

λr

∑

k

∥Rk∥
2
F

)

(10)

fs (C,Rk) =
1

2
λs

∑

i

Ck,i · ∥Rk − Ri∥
2
F ∀1 ≤ i ≤ Nr , 1 ≤ k ≤ Nr

(11)
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Fig. 3. These heatmaps visualize the similarity among the relations present in the knowledge graph for theWN18RR and FB13 datasets. More darkly colored cells represent
lower similarity and brighter ones indicate higher similarity.

fρ (A1,A2,Rk) =
1

ρ

(

∥A1∥
2
F + ∥A2∥

2
F + ∥Rk∥

2
F

)

(12)

Each row i of the matrices A1 and A2 is a latent representation
of the corresponding ith entity. The frontal slice Rk is a p × p

matrix representing the interaction of all entities with respect to

the kth relationship. The precomputed matrix C is an Nr × Nr

similaritymatrix where each element is a similarity score between

two tensor slices (relations). The model’s objective is to factorize a

given data tensor X into shared matrices A1 and A2, and a tensor
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of relatively low dimension, R, while considering the similarity
values present in the matrix C.

In the objective function above, the first term f (A1,A2,Rk)
forces the reconstruction to be similar to the original tensor X .
The second term, g (A1,A2,Rk), is a regularization term to avoid
overfitting and nudge A1 and A2 to be equal. The Frobenius norm
∥·∥F promotes solutions with a small total magnitude, in the sense
of Euclidean length.

The third term, fs (C,Rk), provides the longitudinal extension to
tensor decomposition. It supports the differential contribution of
tensor slices in the reconstruction of the tensor X . The similarity
values (Ci,j) force slices of the relational tensor to decrease their
differences between one another. To reduce the degree of entity
embeddings from quadratic to linear, we use the split-variable
technique by replacing variable A with two variables, A1 and A2,
that are constrained to be equal. To guarantee convergence,we add
an additional term, fρ (Eq. (12)), to Eq. (8) which has partial Hes-
sians that are positive definite. The use of ρ is motivated at high-
level from proximal algorithms [37] to ensure the strict convexity
of the objective function, as described in Appendix).

3.3.1. Computing factor matrices A1, A2 and Rk

We compute the factor matrices with alternating least squares
(ALS) [38], a non-linear block Gauss–Seidel method in which the
blocks are the unknowns A1, A2 and the frontal slices of R. We
consider the partial objective functions that need to be optimized,
one for each block when the other objective function blocks are
kept fixed. We find that each function is a quadratic form of the
unknown block whose Hessian is always positive semi-definite,
and it is positive definite whenever ρ > 0. In other words,
each partial objective function is a strictly convex quadratic (least
squares) problem with a unique global minimum. In particular,
taking the gradient of Eq. (8) with respect to A1 and setting it equal
to zero, we obtain the update rule for A1.

A1 ←

[
Nr∑

k=1

XkA2R
T
k + λAA2

]

×

[
Nr∑

k=1

RkA
T
2A2R

T
k +

(

λA + λe +
1

ρ

)

I

]−1

(13)

Similarly, taking the gradient of Eq. (8) with respect to A2 and
setting it equal to zero, we obtain the update rule for A2.

A2 ←

[
Nr∑

k=1

XT
kA1Rk + λAA1

]

×

[
Nr∑

k=1

RT
kA

T
1A1Rk +

(

λA + λe +
1

ρ

)

I

]−1

(14)

The unknown matrix Rk can be found by solving following
variant of Eq. (8), which is a ridge regression problemwith positive
definite Hessian.

min
vec(Rk)

∥vec(Xk)− (A2 ⊗ A1)vec(Rk)∥
2 +

(

λr +
1

ρ

)

∥vec(Rk)∥
2

+ λs

∑

i

∥vec(Rk − Ri)∥
2

Since the problem is strictly convex, the unique minimum is
obtained by setting the gradient to 0, leading to the following
update rule for Rk.

Rk ←

(

(A2 ⊗ A1)
T (A2 ⊗ A1)+

(

λr +
1

ρ

)

I+ (λs

Nr∑

i

C(k, i))I

)−1

× (A2 ⊗ A1) vec(Xk) (15)

3.4. Model 2: Quadratic + Constraint

In the second model, we consider the decomposition of X into
a compact relational tensor R and quadratic entity matrix A. We
solve the following problem

min
A,Rk

f (A,Rk)+ g(A,Rk) (16)

under the constraint that relations with high similarity are near
one another.

∥Ri − Rj∥
2
F = 1− Cij, 1 ≤ i, j ≤ n. (17)

The two terms of our objective are expressed as follows.

f (A,Rk) =
1

2

∑

k

∥Xk − ARkA
T∥2F (18)

g(A,Rk) =
1

2
λa∥A∥

2
F +

1

2
λr

∑

k

∥Rk∥
2
F (19)

Here A is a n × p matrix where each row represents the entity
embeddings and Rk is a p × p matrix representing the embedding
for the kth relation capturing the interaction between the entities.
The first term f forces the reconstruction to be similar to the
original tensor and the second regularizes the unknownA andRk to
avoid overfitting. In order to incorporate similarity constraints, we
modify Eq. (16) to solve the dual objective, via Lagrangemultipliers
λij as below.

min
A,Rk

f (A,Rk)+ g(A,Rk)+ fLag(R, C) (20)

fLag =
∑

i

∑

j

λij(1− ∥Ri − Rj∥
2
F + Cij). (21)

The flag term represents the model’s knowledge-directed enrich-
ment component.

3.4.1. Computing factor matrices, A , Rk and Lagrange multipliers λij

We compute the unknown factor matrices using Adam opti-
mization [39], an extension to stochastic gradient descent. Each
unknown is updated in the alternative fashion, in which each
parameter is updated while treating the others as constants. Each
unknown parameter of the model, A and Rk, is updated with
different learning rate. We empirically found that the error value
of the objective function decreases after few iterations. Taking the
partial derivative of the Eq. (20) with respect to A and equating to
zero we obtain the following update rule for A.

A←
(

XT
kARK + XkAR

T
k

) (

RT
kA

TART
k + λaI

)−1
(22)

Since we are indirectly constraining the embeddings of A

through slices of the compact relation tensor R, we obtain the
same update rule for A as in RESCAL [9]. By equating the partial
derivatives of Eq. (20) with respect to the unknowns Rk and λij to 0,
and solving for those unknowns, we obtain the following updates:

vec(RK )←
((

ATA⊗ ATA
)

+ λr I+ λi=k,jI
)−1

×

⎛

⎝(A⊗ A)T vec(Xk)+
∑

j

λi=k,jvec(Rj)

⎞

⎠ (23)

λij ← ∥Ri − Rj∥
2
F + Cij − 1. (24)

3.5. Model 3: Linear + Constraint

This version combines the previous two models: we examine
the linear reconstruction loss of Section 3.3 with the constraints of
Section 3.4.
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As before, we split the entity embedding of A into A1 and A2.
Additionally, we apply the same constraint as in Eq. (17) and solve
following constrained problem:

min
A1,A2,Rk

f (A1,A2,Rk)+ g (A1,A2,Rk) (25)

such that,

∥Ri − Rj∥
2
F = 1− Cij, 1 ≤ i, j ≤ n (26)

where,

f (A1,A2,Rk) =
1

2

(

∑

k

∥Xk − A1RkA
T
2∥

2
F

)

(27)

g (A1,A,Rk) =
1

2

(

λA∥A1∥
2
F + λA∥A2∥

2
F

)

+
1

2
λe∥A1 − A2∥

2
F +

1

2

(

λr

∑

k

∥Rk∥
2
F

)

(28)

We rewrite the above constrained problem into a unconstrained
one using λij as a Lagrange multiplier as follows.

min
A1,A2,Rk

f (A1,A2,Rk)+ g (A1,A2,Rk)+ fLag (Rk, C) (29)

where f (A1,A2,Rk), and g (A1,A2,Rk) are same as Eq. (27). fLag is
the same as Eq. (21).

3.5.1. Computing the unknowns, A , Rk and λij

As in the previous model, we use an Adam optimizer. Taking
the derivative of Eq. (25) with respect to A1 and A2, respectively
and equating to zero, we obtain the following update rule.

A1 ←
(

λeA2 + XkA2R
T
k

) (

RkA
T
2A2Rk + λa1 I + λeI

)−1
(30)

A2 ←
(

λeA1 + XT
kA1Rk

) (

RT
kA

T
1A1Rk + λa2 I + λeI

)−1
(31)

Similarly, taking derivate with respect to kth slice of relation, Rk

yields the following update rule.

vec(Rk)←

⎛

⎝(A2 ⊗ A1)
T vec(XK )−

∑

i=k,j

λkjvec(Rj)

⎞

⎠

×

⎛

⎝
(

AT
2A2 ⊗ AT

1A1

)

+ λr I−
∑

j

λkj

⎞

⎠

−1

(32)

4. Experimental evaluation

We evaluated the performance of the learned entity and rela-
tion embeddings on the fact prediction task, which identifies cor-
rect triples from incorrect ones, and compared the results against
state-of-the-art tensor decomposition techniques and translation
methods, like TransE. We also demonstrate the convergence of our
linear model on two standard benchmark datasets.

We carried out evaluations on eight real-world datasets. Five
have been extensively used previously as benchmark relational
datasets: Kinship, UMLS, WordNet (WN18), WordNet Reverse Re-
moved (WN18RR) and Freebase (FB13).We created a sixth dataset,
DBpedia-Person (DB10k), to explore howwell our approach works
on datasetswith a larger number of relations.We created a seventh
dataset from FrameNet, an ontological and lexical resource [40]. Fi-
nally, we used the FB15-237 dataset which was based on Freebase
to explore how systems work with a relatively larger number of
relations.

We compare our models with state-of-the-art tensor decom-
position models, RESCAL and its non-negative variant NN-RESCAL,

Table 2

Statistics of the eight datasets used in the evaluation experiments. The number of
facts represents the number of triples.

Name # Entities
(Ne)

# Relations
(Nr)

# Facts Avg. Deg. Graph
Density

Kinship 104 26 10,686 102.75 0.98798
UMLS 135 49 6752 50.01 0.37048
FB15-237 14,541 237 310,116 21.32 0.00147
DB10k 4397 140 10,000 2.27 0.00052
FrameNet 22,298 16 62,344 2.79 0.00013
WN18 40,943 18 151,442 3.70 0.00009
FB13 81,061 13 360,517 4.45 0.00005
WN18RR 40,943 11 93,003 2.27 0.00005

along with two popular benchmarks, DistMult, which consider the
relation embedding matrix to be diagonal, and ComplEx, which
represent entities and relation in complex vector space.3

4.1. Datasets

Table 2 summarizes the key statistics of the datasets: the num-
ber of entities (Ne), relations (Nr ) and facts (non-zero entries in
the tensor), the average degree of entities across all relations (the
ratio of facts to entities) and the graph density (the number of facts
divided by square of the number of entities). Note that a smaller
average degree or graph density indicates that the knowledge
graph is sparser.

Kinship [44] is dataset with information about complex rela-
tional structure among 104 members of a tribe. It has 10,686 facts
with 26 relations and 104 entities. From this, we created a tensor
of size 104× 104× 26.

UMLS [44] has data on biomedical relationships between cat-
egorized concepts of the Unified Medical Language System. It has
6,752 facts with 49 relations and 135 entities. We created a tensor
of size 135× 135× 49.

WN18 [24] contains information from WordNet [5], where en-
tities are words that belong to synsets, which represent sets of
synonymous words. Relations like hypernym, holonym, meronym

and hyponym hold between the synsets. WN18 has 40,943 entities,
18 different relationships andmore than 151,000 facts.We created
a tensor of size 40,943×40, 943× 18.

WN18RR [45] is a dataset derived from WN18 that corrects
some problems inherent in WN18 due to the large number of
symmetric relations. These symmetric relations make it harder to
create good training and testing datasets, a fact noticed by [46]
and [47]. For example, a training set might contain (e1, r1, e2) and
test might contain its inverse (e2, r1, e1), or a fact occurring with
e1ande2 with some relation r2.

FB13 [24] is a subset of a facts from Freebase [4] that contains
general information like ‘‘JohnnyDeppwonMTVGeneration Award’’.
FB13 has 81,061 entities, 13 relationship and 360,517 facts. We
created a tensor of size 81,061×81, 061× 13.

FrameNet [48] is a lexical database describing how language
can be used to evoke complex representations of Frames describ-
ing events, relations or objects and their participants.

For example, the Commerce_buy frame represents the inter-
related concepts surrounding stereotypical commercial transac-
tions. Frames have roles for expected participants (e.g., Buyer,
Goods, Seller), modifiers (e.g., Imposed_purpose and
Period_of_iterations), and inter-frame relations defining in-

heritance and usage hierarchies (e.g., Commerce_buy inherits from

3 We also experimented with other tensor decomposition models [41] like
PARAFAC [42,43] and TUCKER, but the unfolding of the tensors for the larger
datasets (WN18 and FB13) required more than 32GB RAM of memory, which we
were unable to support on our testbed.
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the more general Getting and is inherited by the more specific
Renting.

We processed FrameNet 1.7 to produce triples representing
these frame-to-frame, frame-to-role, and frame-to-word relation-
ships. FrameNet 1.7 defines roughly 1,000 frames, 10,000 lexical
triggers, and 11,000 (frame-specific) roles. In total, we used 16
relations to describe the relationship among these items.

DB10k is a real-world dataset with about 10,000 facts involving
4397 entities of type Person (e.g., Barack Obama) and 140 relations.
We used a DBpedia public SPARQL endpoint [7] to collect the facts
which were processed in the following manner. When the object
value was a date or number, we replaced the object value with
fixed tag. For example, ‘‘Barack Obama marriedOn 1992-10-03

(xsd:date)’’ is processed to produce ‘‘Barack Obama marriedOn

date". In case object is an entity it is left unchanged. For example
‘‘Barack Obama is-a President’’ as President is an entity. Such
an assumption can strengthen the overall learning process as enti-
ties with similar attribute relations will tend to have similar value
in the tensor. After processing, a tensor of size 4397× 4397× 140
was created.

FB15-237 is a dataset containing subset of the Freebase with
237 relations and nearly 15K entities. It has triples coupled textual
mention obtained fromClubWeb12.More details about the dataset
can be found in [46,49].

4.2. Tensor creation and parameter selection

We created a 0–1 tensor for each dataset as shown in Fig. 2. If
entity s had relation r with entity o, then the value of (s, r, o) entry
in the tensor is set to 1, otherwise it is set to 0. Each of the created
tensors was used to generate a slice-similaritymatrix using Eq. (3).

We fixed theparameters for different datasets using co-ordinate
descent, changing only one hyperparameter at a time and always
making a change from the best configuration of hyperparameters
found so far. The number of latent variables for the compact
relational tensor R was set to number of relations present in the
dataset. In order to capture similarity, we computed the similarity
matrix C using various similarity metric discussed in Section 3.2
and present results produced by Transitivity, as it gave better per-
formance overall. See Table 3 for the values our hyperparameters
could take.

4.3. Evaluation protocol and metrics

We considered fact prediction as a classification task with labels
correct (i.e., value 1) for the positive class, and incorrect (i.e., value
0) for the negative class for a given pair of entities and a relation-
ship. We follow the same evaluation metric used in RESCAL [9],
masking the test instances during training and using area under
the curve as one of the evaluation metrics.

We conducted evaluations in three different categories. The
first used a stratified-uniform sampling for which we created a
stratified sampling links with 60% correct and 40% incorrect. To
create the test dataset we selected ten instances from each slice
for the smaller and fewer entity datasets (Kinship, UMLS, DB10k,
FrameNet, and FB15-237) and 200 instances from each slice for
the larger ones (WN18, FB13, and WN18RR). We masked the test
instances during training. We refer to this category as uniform
since all of the relation participate equally in the generated test
dataset. The results from this dataset are available in Table 4.

The second category used a stratified-weighted sampling with
60% correct and 40% incorrect links, but instead of generating five
test sets we used the test dataset that was publicly available and
tested it on FB13 and WN18RR. The original dataset contained
5000 positive examples. We randomly sampled 60% of these for
positive instances andused the remaining 40% to generate negative

instances by replacing their objects with randomly chosen new
ones. We followed a similar procedure for FB15-237. We evaluate
on the datasets in Table 5.

The third evaluation dataset category is balanced-weighted. This
is the dataset made publicly available by Socher et al. [25] in
his Neural Tensor Network approach. For simplicity we name the
dataset as FB13NTN and WN11NTN. Details of the results are
explained in Section 5.2.

4.4. Results and discussion of tensor based decomposition models

In this section we provide a detailed analysis and the results of
our models, which include a quantitative comparison with other
tensor-based models and the impact of knowledge graph sparsity
on the tensor based models. We compare our models with neural-
based ones in Section 5 and provide insight on how each model
performs with respect to different relations.

4.4.1. Comparison with other tensor based models

Table 4 shows the performance of all our models using three
different metrics. We first focus our discussion on area under the
curve (AUC), wherewe see ourmodels obtain relative performance
gains ranging from5% to 50%.We note that AUCwas the evaluation
metric used by Nickel et al. [9], and we use it as one of our evalua-
tion metrics for consistency. We include an in-depth examination
of the different similarity encodings in Fig. 5, and then examine the
standard information extraction F1 metric in more detail.

The Kinship and UMLS datasets have a significantly higher
graph density compared to our other five datasets, as shown in
Table 2. Combining this observation with the results in Table 4, we
notice that graphs with lower density result in larger performance
variability across both the baseline systems and our models. This
suggests that when learning knowledge graph embeddings on
dense graphs, basic tensor methods with non-knowledge-graph
specific regularization or constraints, such as RESCAL, could be
used to give acceptable performance. On the other hand, this also
suggests that for lower density graphs, different mechanisms for
learning embeddings perform differently.

Focusing on the datasets with lower density graphs, we see that
while the Linear+Constraint and Linear+Regularized models often
matched or surpassed RESCAL, they achieved comparable or lower
performance compared to their corresponding quadratic models.
This is due to the fact that the distinction of the subject and object
made by A1 and A2 embeddings tends not to hold in many of the
standard datasets. That is, objects can behave as subjects (and vice
versa), as is the case in WN18. Hence the distinction between the
subject and the object may not always be needed.

The performance difference between the quadratic and linear
versions is high for WN18 and FB13, though the difference is rela-
tively small for DB10k. This is largely because the DBpedia dataset
includes many datatype properties, i.e., properties whose values
are strings rather than entities. In most cases the non-negative
RESCAL variant outperforms the linear models.

The Quad+Constraint model significantly outperforms RESCAL
andperforms relatively better compared to our other threemodels.
This emphasizes the importance of the flexible penalization that
the Lagrange multipliers provides. Compared to RESCAL, regular-
ization using similarity provides additional gain through the better
quality of entity and relational embeddings. However, when com-
pared to non-negative RESCAL, the regularized model performs
relatively similar. We believe that for fact prediction, regularizing
the embeddings results a similar effect as introducing high sparsity
in the embeddings through non-negativity constraint. Compared
to all others, the Quad+Constraint model performs better in most
of the cases, since the Lagrange multiplier introduces flexibility
in penalizing the latent relational embeddings while learning. We
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Table 3

The possible values our hyperparameters could take.

Hyperparameter Meaning Possible Values

λA Coefficient of the entity embedding regularizers {0.0001, 0.01, 0.1, 0, 1, 10, 100, 1000}
λr Coefficient of the relation embedding regularizers {0.002, 0.2, 0.01, 0.1, 0, 1, 10, 100, 1000}
λE Coefficient of the entity embedding dissimilarity penalty {1, 2, 5, 10}
λsim Coefficient of the relation similarity C regularizer {0.00002, 0.02, 0.2, 0.1, 0, 1}

Table 4

Fact prediction performance for all models using different metrics: AUC, micro-averaged F1, and macro-averaged F1. Linear + Reg is the linear tensor decomposition with
regularization on R. Quad + Reg, our previous work [21], is the quadratic tensor decomposition with regularization on R. Linear + Constraint and Quad + Constraint are the
linear and quadratic tensor decomposition with constraints on R incorporated as a Lagrange model multiplier. Transitivity similarity measure is used as prior. The ⋆ next
to an algorithm means it performed best overall measured with statistically significant using Wilcoxon paired rank sum test at significance level of 1% (0.01) .

(a) Fact prediction performance using Area Under the Curve (AUC) as the metric
Area Under the Curve

Model Name Kinship UMLS WN18 FB13 DB10 Framenet WN18RR FB15-237

Previous tensor factorization models

RESCAL 93.24 88.53 62.13 65.37 61.27 82.54 66.63 92.56
Non Neg RESCAL 92.19 88.37 83.93 79.13 81.72 82.6 68.49 93.03

Regularized/Constrained tensor factorization models

Linear + Reg 93.99 88.22 81.86 80.07 80.79 78.11 69.15 90.00
Quad + Reg 93.89 88.11 84.41 79.12 80.47 82.34 66.73 93.07

Linear + Constraint 92.87 84.71 80.18 75.79 80.67 73.64 66.46 81.88
⋆ Quad + Constraint 93.84 86.17 91.07 85.15 81.69 86.24 72.62 86.47

(b) Fact prediction performance using F1 Micro as the metric
F1 Micro

Model Name Kinship UMLS WN18 FB13 DB10 Framenet WN18RR FB15-237

Previous tensor factorization models

RESCAL 81.31 67.71 40.01 47.04 40.00 60.75 56.57 78.84
Non Negative RESCAL 77.23 69.43 63.69 58.28 47.73 60.75 52.35 79.45

Regularized/Constrained tensor factorization models

Linear + Reg 81.54 68.04 60.31 57.96 47.39 54.75 47.58 70.80
Quad + Reg 81.38 67.35 64.09 57.22 47.39 60.62 44.92 79.70

Linear + Constraint 78.46 58.73 57.04 49.15 46.13 47 46.05 13.70
⋆ Quad + Constraint 81.23 62.00 79.62 67.88 44.12 66.5 68.01 59.59

(c) Fact prediction performance using F1 Macro as the metric
F1 Macro

Model Name Kinship UMLS WN18 FB13 DB10 Framenet WN18RR FB15-237

Previous tensor factorization models

RESCAL 74.54 51.85 3.01 18.53 0.41 41.23 40.45 69.71
Non Negative RESCAL 71.29 55.87 51.67 40.13 15.06 42.08 32.49 70.60

Regularized/Constrained tensor factorization models

Linear + Reg 74.77 53.55 46.44 38.43 14.9 30.65 24.01 55.38
Quad + Reg 74.6 52.09 52.26 37.79 14.9 41.64 20.53 71.19

Linear + Constraint 71.5 37.55 42.62 27.9 10.86 23.07 26.82 46.80
⋆ Quad + Constraint 74.37 42.15 78.21 62.41 13.53 58.23 63.5 36.63

also conducted statistical significance using Wilcoxon rank sum
paired test across all the algorithms and all datasets at significance
level of 1% (0.01) and found the Quad+Constraintmodel to perform
better compared to the other algorithms.

We observe similar trends with other standard classification
metrics, such as micro- or macro-averaged F1. These can be seen
in Table 4b and c, respectively. We see that, as with AUC, the
Quad+Constraint model performs well overall. Meanwhile, the
Linear+Regmodel performswell on Kinship and comparably to the
top performing system on UMLS; this reflects the prior observed
connection between higher graph density and overall competitive-
ness of all models involved. While there can be large variability
both within and across micro- and macro-F1 in the knowledge-
endowed, tensor factorizationmodels, the Quad+Constraintmodel
yields a high performing classifier that may not be as sensitive to
less-frequently occurring relations as other factorization methods.
This further highlights the knowledge encoding’s positive impact.

In summary, both the Quadratic and Linear models are im-
portant depending on the data, with the Quad+Constrain model

performing the best overall and the Linear models performing
comparably, depending on the data.

4.4.2. Behavior of tensor-based models and knowledge graph density
In order to understand the behavior of different tensor based

models to handle knowledge graph of different density we con-
ducted experiments in which we reduced the number of subjects
present in the graph and kept the objects constant. Reducing the
number of subject with constant number of objects simulates the
effect of the graph getting denser. For our experiment we used
FB13 which has nearly 16K objects and 76K subjects, indicating
that on an average each object entity connected to nearly five
subjects.

Fig. 4 shows the behavior of different tensor based models
when 2% to 100% of the subjects are used, where 100% repre-
sents the original dataset. Each of the tensor based models ben-
efits when fewer subjects are considered, increasing the knowl-
edge graph’s density. Among all the models, Linear+Constraint
model improves significantly faster when the number of sub-
jects is reduced irrespective of the similarity metric, eventually
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achieving comparable performance with other tensor based mod-
els. The Quad+Constraint model performs the best irrespective of
the graph’s density.

4.4.3. Effect of different similarity encoding

Fig. 5 describes the relative changes in performance of each of
the similarity metrics introduced in Section 3.2. Here we examine
the performance of these instances of our framework vs. the well
studied RESCAL model. The figure shows the percent change of
the methods against RESCAL (grouped by how we encode the
knowledge). The gray boxes show the percent change of Non-
Negative RESCAL vs. RESCAL. This showshowour approach is doing
against both baselines.

Most of the similarity encoding approaches perform equally
well. However, the encoding can yield a significant performance
gain, especially for certain datasets. Consider the dataset db10
(top left) using Linear+Regularized. Here the agency and symmetric

similarity encodings give poor performance. However, when the
encoding is changed to transitivity or reverse_transitivity there
is a large gain in performance. On the other hand if WN18RR
is considered, transitivity and reverse_transitivity with the Lin-
ear+Regularizedmodel bothperformpoorly. The Linear+Constraint
model performs similarly for all kinds of encoding. Moreover,
Quad+Constraint performs consistently well compared to all the
baselines without being affected by the similarity encoding.

In general, while we find that different kinds of similarity
encoding methods can, and do, influence performance, on the
datasets examined here we can see the effect of how that knowl-
edge is encoded. For example, whether a similarity encoding uses
a symmetric or transitive approach may be less important than
whether or not accurate knowledge is encoded at all. That is, the
knowledge enrichment that the encoding provides can result in
effective model generalization beyond what simple, knowledge-
poor regularizations, such as a simple Frobenius norm regulariza-
tion, provides.

5. Comparison with TransE, DistMult and ComplEx

This section gives a detailed comparison of our models with
TransE, DistMult, and ComplEx, each of which uses a different
approach to learn embeddings of entities and relationships, as
described in Section 2. We demonstrate that our tensor based
method perform significantly better on the fact prediction task for
the datasets FB13 andWN18RR and is a close second for the FB15-
237 dataset, as shown in Table 5. We also show that including
prior information using relation similarity results in a significant
performance gain for the fact prediction task.

5.1. Evaluation protocol and datasets

Link ranking tasks are useful for recommendation systems and
have been used in previous work to determine performance of a
system to predict missing links in a multi-relational data. Each fact
in the data is a triple (s, r, o)where s and r are given and each entity
is treated as a potential object o to predict its score and sorted rank.
If the object has rank above a given threshold, it is considered a
hit and is used to measure the performance of a recommendation
system.

While calculating the performance of the system, TransE con-
siders translation from source to object for a given relation and
vice-versa to calculate the mean rank. Such evaluation protocol
may hold true when recommending the top-n links and may not
generally hold for relations like ‘‘hasParent’’ or ‘‘bornIn’. For ex-
ample, [Albert_Einstein · bornIn · Germany] is a valid fact, but
[Germany · bornIn · Albert_Einstein] is not. Hence we considered
translation from source to object only and compare our approach

with TransE accordingly. Similarly for the DistMult and ComplEx.
Moreover, as the fact prediction task is one of binary classification,
we consider a fixed threshold for all relation such that if the
score exceeds it, the relation is considered positive/correct else
negative/incorrect.

We follow what we believe to be an advisable practice having a
single threshold for all relations, rather than using hyperparame-
ters for relation-specific thresholds that mist be tuned or learned.
Part of ourmotivation is knowing that the relation thresholds used
in [25] are not publicly available.

As TransE, DistMult, and ComplEx have been evaluated on the
link ranking task, it considers only correct links and no incorrect

links. Hence the available dataset contains only positive examples.
We consider both positive and negative links while comparing
performance. We evaluated the performance using the standard
AUC metric. We used the TransE implementation made available
by the authors4 and set the hyperparameters as mentioned in the
paper. For DistMult and ComplEx we used the code available from
the author5 and set the hyperparameters to find the learning rate
and epoch that gave best performance.

We used the FB13,WN18RR and FB15-237 datasets and created
a training, test and validation file for each. In order to generate
incorrect links, we considered a stratified testing dataset with 60%
positive instances and randomly generated 40% negative instances
to keep testing consistent with other datasets. Negative instances
were created by keeping the subject and relation fixed and ran-
domly sampling from the pool of objects such that the result did
not overlap with positive test instances. We maintained the same
distribution of train, test and validation as mentioned in [14]. As
mentioned before, beside stratified-weighted samplingwe consid-
ered balanced and challenged datasets available from [25], which
we call WN11NTN and FB13NTN, that contain equal number of
positive and negative examples. We evaluated them for the sake
of completeness and briefly discuss the results in the next section.

5.2. Analysis and discussion

Table 5 shows the performance of previous tensor based mod-
els, with TransE, DistMult, ComplEx and our models. Our Quad+
Constraint model provides significant improvement over TransE,
DistMult, and ComplEx.

One reason our models outperform TransE and DistMult is that
the embeddings learned by these system is task-specific and are
more suitable for a link ranking task than for a fact prediction
one. The results for ComplEx suggest that the embedding learning
method in complex space is work better for link ranking than
fact prediction. When comparing the baseline methods DistMult
and ComplEx on balanced WN11NTN and FB13NTN datasets, our
approach performed better with a 4%–5% absolute improvement,
indicating that the current embedding based method are better
suited for link rankingthan fact prediction.

For the FB15-237 dataset with 237 relations, the quadratic
based tensor models, i.e., Rescal, Non-Negative Rescal, Quad+Reg,
and Quad+Constraint, give comparable or best AUC scores com-
pared to TransE, DistMult, and ComplEx. Moreover, considering
other metrics, the quadratic models, either regularized or con-
strained, perform better overall (as seen in the F1-Macro perfor-
mance) and also at individual level (as seen in F1-Micro). On the
other hand, the lower score of the Linear+Constraint model is due
to it frequently predicting a given fact to be incorrect. Comparing
the performance of linear models, we note that regularizing em-
bedding model performs better than the constraint one and that
the quadratic versions dominate their linear counterparts.

4 https://github.com/glorotxa/SME.
5 https://github.com/ttrouill/complex.

https://github.com/glorotxa/SME
https://github.com/ttrouill/complex
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Fig. 4. Increasing performance of tensor based model when reducing % of subjects in a knowledge graph. Here 100% represent the original dataset.

Table 5

Fact prediction evaluation of FB13, WN18RR and FB15-237 by all systems and models.

Dataset FB13 WN18RR FB15-237

Metric AUC F1 ACC AUC F1 ACC AUC F1 ACC

Macro Micro Macro Micro Macro Micro

Rescal 80 4.08 40.00 40.00 69.63 38.18 49.8 49.8 97.61 94.03 73.41 94.03
Non Neg Rescal 77.76 40.95 51.38 51.38 67.41 67.41 45.52 45.52 97.81 94.48 73.59 94.48

TransE 52.3 16.497 40.72 42.76 68.39 46.91 62.1 62.08 50.84 41.11 4.21 41.12
DistMult 54.36 29.2 53.76 61.97 67.39 37.76 61 60.88 70.28 64.65 45.33 64.65
ComplEx 61.09 28.86 54.06 53.32 67.61 34.235 60.88 61.14 67.64 61.59 35.12 61.59
Linear+Reg 76.51 35.44 50.6 55.08 68.69 28.95 48.9 48.9 96.49 91.08 59.59 91.08
Quad+Reg 75.15 34.85 50.52 54.62 68.46 17.96 48.5 48.5 97.2 92.91 73.8 92.91
Linear+Constraint 73.23 27.82 44.72 47.04 66.66 26.99 44.72 44.72 80.00 43.53 1.06 43.53
Quad+Constraint 82.49 56.48 59.04 66.48 81.86 59.09 62.54 65.49 94.59 84.34 53.56 84.34

A review of the results in Table 4 and 5 show that our Quad+

Constraint model is better overall, and there is significance im-

provement when graph density is very low. We believe that the

lack of information inherent in a relatively sparse graph is bet-
ter captured by the constraint introduced by the similarity term.
Moreover, Table 5 suggests that the embedding learned using
DistMult, ComplEx and TransEworkwell for a link ranking task and
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Fig. 5. The percent change in AUC that our four models, each with the five different similarity encoding C methods, achieve over RESCAL. The percent change that non-
negative RESCAL has over RESCAL is show via the gray boxes.

less so for a fact prediction one. In contrast the tensor basedmodel
perform better at fact prediction task. Moreover, RESCAL and Non-
Negative RESCAL perform poorly compared to our models when
the graph density is low, which again demonstrate the effect of
constraining the embedding using similarity for a fact prediction
task.

5.3. Per relation analysis with F1-macro and F1-micro

Figs. 6 and 7 show the models’ performance broken down by
relation. For simplicity of analysis, we selected the WN18RR and
FB13 datasets. We first consider FB13. To better understand these
results we argue we can group the FB13 relations in to three
categories: (i) logically symmetric relations, (ii) knowledge-graph
transitive relations, and (iii) what we refer to as hub relations.

Logically symmetric relations, like people/marriage/spouse, sat-
isfy the normal definition of a symmetric relation: for a rela-
tion r and entities x and y, if r(x, y) is true, then r(y, x) is also
true. We identified only one FB13 logically symmetric relation.
This contrasts with KG transitive relations that, while not neces-
sarily representing logically transitive relations, can be produc-
tively combined with other relations to form meaningful relation
chains. FB13 KG transitive relations are people/person/children,

people/place_lived/location, people/person/parents. Finally, we
identify the remaining FB13 relations as hub relations that do
not readily yield logically symmetric nor knowledge graph transi-
tive relations. For example, subjects of hub relations like people/
deceased_person/cause_of_death and person/person/nationality
cannot be easily used, under the FB13 schema, as objects of other
hub relations.6

Both ComplEx and DistMult generally have high precision but
suffer from low recall resulting in poor F1 scores. On the other
hand, TransE gives high precision for hub relations. For logically
symmetric relations like spouse, Quad+Regularized does well,
which makes sense as the relationship is two-way and is captured
by the quadratic objective function. Moreover, Linear+Constraint
performs poorly as it tries to model the behavior in opposition
to the reality that either of the relation’s arguments could be
used as the subject or the object. Quad+Constraint performs bet-
ter compared to other models across all relation except spouse,

6 We identify the following FB13 relations as hub relations:
people/deceased_person/cause_of_death, person/person/nationality, peo-
ple/person/place_of_birth, education/education/institution, people/person/gender,
people/person/place_of_death, people/person/religion, people/person/ethnicity,
and people/person/profession.
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Fig. 6. Precision, recall, and F1 per relation for the FB13 dataset.

indicating that such symmetric relations are better modeled with
regularization than a Lagrangian constraint.

Second, we examine the relation-level F1 performance on
WN18RR. As seen in Fig. 7, the Quad+Constraint model performs
consistently well across all of the relations—especially when com-
pared to the other methods. We believe that this stems from
the way similarity is incorporated and the embeddings learned.
For example, consider a relation _synset_domain_topic_of and
the heatmap shown in Fig. 3(a). We believe the better perfor-
mance stems from the level of similarity shared between the four

relations—_synset_domain_topic_of, _instance_hypernym,
_derivationally_relation_form, and _has_part.

6. Time complexity

The asymptotic time and space complexity of our models are
the same as RESCAL’s. Table 6 shows the run times per iteration
taken by each approach to update the unknown variables. We ran
all for amaximumof 100 iterations and report the average running
time per iteration. In the case of TransE, we considered an epoch as
an iteration, since each iteration sees all the data values.
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Fig. 7. Precision, recall, and F1 per relation for the WN18RR dataset.

As expected, the running time increases with the number of re-
lations, with the FB15-237 dataset, which has 237 relations, taking
the longest and DB10K with 140 relation in second place. The non-
negative constraint on non-negative RESCAL increases the running
time of that model. Regularized models require more time when
compared to other models due to presence of additional terms to
bring A1 and A2 closer, which introduces additional computation
during the update rules.

TransE hasmuch longer running time per iteration since it com-
putes pairwise distances among positive and negative instances, so
its time increases with the number of entities. Similarly, DistMult

and ComplEx consume considerable amount of time as we believe
it is due to running on CPU. We also saw that running on a GPU,
DistMult executed faster than TransE (3.73 s for WN18, 10.33 s
for FB13, and 2.75 s for WN18RR) and ComplEx took longer than
TransE (9.77 s for WN18, 21.2 s for FB13, and 8.75 s for WN18RR).

7. Effect of ρ on convergence

To illustrate convergence of the Linear+Regularized model,
Fig. 8 shows the effect of ρ on the maximum component-wise
relative change in consecutive iterations for the variables during
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Table 6

Running times (in seconds) per iteration for each of the algorithms on the eight evaluation datasets;—means not available.

Kinship UMLS WN18 FB13 DB10k FrameNet WN18RR FB15-237
Relations 26 49 18 13 140 16 11 237

Entities 104 135 40,943 81,061 4,397 62,344 40,943 14,541

RESCAL 0.01 0.07 0.26 0.29 1.7 0.1 0.11 21.96
NN-R 0.01 0.08 0.38 0.41 8.72 0.22 0.12 46.31
TransE – – 8.26 19.37 – – 4.45 –
DistMult – – 20.27 56.7 – – 14.4 48.93
ComplEx – – 71.86 156.24 – – 41.3 157.53
Linear+Regularized 0.02 0.04 0.85 1.02 4.86 0.39 0.43 23.38
Quad+Regularized 0.03 0.11 0.52 0.62 4.78 0.24 0.25 52.96
Linear+Constrained 0.02 0.1 0.33 0.39 3.13 0.15 0.15 43.68
Quad+Constrained 0.03 0.09 0.69 0.71 3.26 0.12 0.12 54.28

optimization. If zt is the vector of all of the unknowns at iteration
t , i.e. A1, A2, R, we use the following equation to measure the
maximum relative change on the unknowns at each iteration.

δ(zt , zt+1) = max
i

⏐
⏐
⏐
⏐

zt (i)− zt+1(i)

zt (i)+ zt+1(i)/2

⏐
⏐
⏐
⏐

(33)

For each value of ρ we follow a cold-start procedure, i.e., for
each new value of ρ we randomly initialize all the variables. The
termination condition is that we reached the maximum iteration
number (chosen as 100) or that the maximum change δ in the
unknown is below a threshold (chosen as 10−6). Here, the blue
dots with dashed lines indicate the maximum relative change δ vs.
iterations when ρ = ∞.

8. Conclusions and future work

We proposed a framework for learning knowledge-endowed
entity and relation embeddings. The framework includes four read-
ily obtainable novel models that generalize existing efforts. Two
of the models optimize a linear factorization objective and two
a quadratic one. We evaluated the quality of embeddings on the
task of fact predictionand demonstrated significant improvements
ranging from 5% to 50% over state-of-the-art tensor decomposition
models and translation based models on a number of real-world
datasets. We motivated and empirically explored different meth-
ods for encoding prior knowledge into the tensor factorization
algorithm, finding that using transitive relationship chains resulted
in the highest overall performance among our models.

We observed that for the task of fact prediction, better em-
beddings are obtained by the Quadratic+Constrainedmodel. Linear
models are better suited when there is a one way interaction from
subject to the object in which the object cannot also serve as
a subject. We find the quadratic models perform better in gen-
eral, irrespective of the position of the entity as subject or object.
Constraint-based models perform better compared to regularized
models and constraint-based models with a quadratic objective
are better suited for the task—irrespective of the sparsity of the
knowledge graph. We showed detailed experimental analyses of
the model’s strengths and weaknesses in predicting facts with
particular relations, and we provided complementary qualitative
analysis of commonalities among those relations. On the theoret-
ical side, we proved that the Linear+Regularized model has the
desirable property of convergence and illustrated its convergence
on two standard benchmark datasets.

Our future work will explore the use of our models in several
application contexts that use natural language understanding sys-
tems to extract entities, relations and events from text documents.
Such systems can benefit from a fact prediction module that can
help eliminate facts extracted in error. Our experience in the NIST
Knowledge Base Population (KBP) tasks [50] showed the need to
independently assess the quality of extracted relations. The KBP
tasks are well suited for an approach like our trained on general-
purpose knowledge graphs like DBpedia, Freebase and Wikidata.

A second application is a system we are developing to identify
possible cybersecurity attacks from data collected from host com-
puters and networks represented in an RDF knowledge graph using
theUnified Cybersecurity Ontology [51]. This system [52] draws on
background knowledge encoded in graphs populated with infor-
mation extracted from cybersecurity-related documents and from
semi-structured data from cybersecurity threat intelligence data
sources.

A third application is as one component of a general-purpose
system under development for cleaning noisy knowledge graphs
[53]. Its current architecture consists of an ensemble of modules
that try to identify, characterize and explain different types of
errors that many current text information extraction systems can
make. Using a version of our approach to see of an extracted fact is
predicted or not will be a useful feature.
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Appendix. Proof of convergence

A.1. Propositions and lemma

We assume that order-3 tensors X ∈ R
N×N×K , and R ∈

R
N ′×N ′×K ′ , matrix A ∈ R

N×N ′ , and symmetric matrix C = (cij) ∈
R

K×K .

Proposition 1. For any matrices A,B, C,D we use the following

properties of Kronecker products:

(A⊗ B)(C⊗ D) = (AC)⊗ (BD) (A.1)

(A⊗ B)T = AT ⊗ BT (A.2)

(A⊗ B)1/2 = A1/2 ⊗ B1/2 (A.3)

(A⊗ B)+ = A+ ⊗ B+ (A.4)

(A⊗ In + αIm)
−1 = (A+ αIm−n)

−1 ⊗ In (A.5)

A⊗ (B⊗ C) = (A⊗ B)⊗ C (A.6)

vec (ABC) = (CT ⊗ A)vec (B) (A.7)

Proposition 2 ([10]). For order-N tensors X ,Y and sequence of

matrices A(i), i = 1, 2, . . . ,N,

Y = X ×1 A(1) ×2 A(2) . . .×N A(N) (A.8)

if and only if, for all n

Y(n) = A(n)X(n)

(

A(N) ⊗ · · · ⊗ A(n+1) ⊗ A(n−1) . . .⊗ A(1)
)T

(A.9)
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Fig. 8. Change in the unknowns/variables at each iteration for three different values of ρ = 0.1, 1,∞. Here rho_inv equals of 1/ρ.

Further,

Y = X ×n A iff Y(n) = AX(n) (A.10)

∥X∥2F =
∑

i

∥Xi∥
2
F =

∑

i

∥vec (Xi) ∥
2
2 = ∥vec (X ) ∥22 (A.11)

Proposition 3. For any order-3 tensors X and Y = X ×1 A1 ×2 A2,

we have the following. Bothmode-1 andmode-2 unfoldings of order-3

tensors are block matrices with the same number of blocks, and

X(2) = [X
′
1 . . .X′k . . .], (A.12)

Y(1) = A1X(1)(I⊗ A2)
T = [. . .A1XkA

T
2 . . .] (A.13)

Y(2) = A2X(2)(I⊗ A1)
T = [. . .A2X

′
kA

T
1 . . .] (A.14)
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Proposition 4.

argminX∥B−AXC∥
2
F = argminX∥vec (B)−(CT⊗A)vec (X) ∥2 (A.15)

and the solution of a least squares problem

x ← argminx∥Ax− b∥2 (A.16)

= argminx(x
T (ATA)x− 2(ATb)Tx+ bTb) = (A.17)

= (ATA)−1ATb = A+b (A.18)

whereA+ theMoore–Penrosematrix pseudo-inverse (providedATA is
full-rank and hence invertible), which is a left-inverse of A with least
Frobenius norm among all left-inverses of A. Furthermore, its gradient
and Hessian are 2ATAx− 2ATb and 2ATA respectively.

Lemma 1. For any order-3 tensor X and symmetric matrix C, we
have that

∥X ×3 (diag(C · 1n2 )− C)1/2∥2F =
∑

ij

cij∥Xi − Xj∥
2
F (A.19)

Proof. Suppose that X ∈ R
n1×n2×n3 . Consider the tensor’s mode-1

unfolding X(1) = [X1X2 . . .XK ]. Clearly, vec
(

X(1)

)

=
vec ([vec (X1) . . . vec (XK )]). If L = deg(C) − C, where deg(C) is
a diagonal matrix with the row sums of C, then recall (L is the
Laplacian matrix of an undirected graph with weighted adjacency
matrix C) that

xTLx =
∑

ij

cij(xi − xj)
2. (A.20)

Consequently, we have
∑

ij

cij∥Xi − Xj∥
2
F = vec

(

X(1)

)T
(L⊗ In1n2 )vec

(

X(1)

)

= ∥(L1/2 ⊗ In1n2 )vec
(

X(1)

)

∥2F (A.21)

since I1/2 = I. Using the properties of Kronecker products above,
we have

(L1/2 ⊗ In1n2 )vec
(

X(1)

)

= ((L1/2 ⊗ In2 )⊗ In1 )vec
(

X(1)

)

= In1X(1)(L
1/2 ⊗ In2 )

= X ×1 I×2 I×3 L1/2 (A.22)

Therefore,
∑

ij

cij∥Xi − Xj∥
2
F = ∥X ×1 I×2 I×3 L1/2∥2F ■ (A.23)

A.2. Proof

Recall that ourmodel considers the similarity among the frontal
slices of the tensorR. Using Lemma 1, the objective function of our
model is

f (R,A) = ∥X −R×1 A×2 A∥2F + λa∥A∥
2
F + λg∥R∥

2
F +

λs∥R×3 S∥2F (A.24)

where S = (deg(C)− C)1/2 and – ≥ 0. Since f is of degree 4 in A, it
will difficult to optimize it efficiently.We employ the split-variable
trick [37,54], by splitting the variable matrix A into a tensor A

with exactly two frontal square slices A1 and A2 and enforce the
constraint ∥A1 − A2∥

2
F = 0, to obtain the objective function

f ′(R,A1,A2) = ∥X −R×1 A1 ×2 A2∥
2
F + λa∥A1∥

2
F + λa∥A2∥

2
F

+ λg∥R∥
2
F + λs∥R×3 S∥2F + λe∥A1 − A2∥

2
F

(A.25)

Upon finding a minimizer (R,A1,A2) of f ′, we use the point
(R, (A1 + A2)/2) for our original objective function f .

Because the Frobenius norm is convex, convexity is preserved
under affine transformation, and the sum of convex functions is
convex, it follows that our function f ′(R,A1,A2) is only separately
convex with respect toR, A1, and A2 (i.e block separately convex).
Unfortunately, f ′ is not strictly convex with respect to these three
block arguments, and is neither separately convex in just two
blocks, which may lead to ALS not converging when trying to
optimize f ′. Notice that ALS is essentially block-basedGauss–Seidel
with 3 blocks of unknowns/variables, the blocks R, A1, and A2,
since optimizing for one block while keeping the other two blocks
fixed is a least-squares problem.

We seek to avoid non-convergence by constructing a modified
objective function f̂ρ(R,A1,A2) such that limρ→∞ f̂ρ(R,A1,A2) =
f ′(R,A1,A2), and for which block-based Gauss–Seidel is guaran-
teed to converge to minimizer of f̂ρ for each ρ. To this end, we
modify f ′ to make it strictly convex with respect to each of three
blocks of unknownsR,A1,A2. In particular, we employ a trick used
in proximal algorithms [37] (utilizing the fact that strict convexity
is retained upon additionwith a convex function), and add for each
block a strictly convex term for that block that goes to 0 as ρ →∞.

f̂ρ(R,A1,A2) = f ′(R,A1,A2)+
1

ρ
(∥R∥2F + ∥A1∥

2
F + ∥A2∥

2
F )

(A.26)

Note that the block-partial Hessians of the added term is I/ρ which
is positive definite and hence strictly convex. The block-Gauss
Seidel (which coincides with ALS in this case) for proxf converges
to a critical point [55] (Th. 6.1.6.2,6.3). At the same time, for each f̂ ,
ρ →∞, a critical point in f̂ converges to a critical point in f as f̂ is
continuous in ρ. Hence, we have an algorithm for finding a critical
point of f . The complexity of finding a critical point of f̂ is same as
the ALASLAN for REGAL.
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