
Proceedings of the 12th International Workshop on Semantic Evaluation (SemEval-2018), pages 878–884

New Orleans, Louisiana, June 5–6, 2018. ©2018 Association for Computational Linguistics

UMBC at SemEval-2018 Task 8: Understanding Text about Malware

Ankur Padia1, Arpita Roy1, Taneeya Satyapanich1, Francis Ferraro1, Shimei Pan1,

Youngja Park2, Anupam Joshi1, Tim Finin1

1 University of Maryland, Baltimore County

Baltimore, MD, 21250 USA

{pankur1,arpita2,taneeya1,ferraro,shimei,joshi,finin}@umbc.edu
2 IBM T. J. Watson Research Center

Yorktown Heights, New York, USA

young park@us.ibm.com

Abstract

We describe the systems developed by the

UMBC team for 2018 SemEval Task 8, Se-

cureNLP (Semantic Extraction from Cyberse-

cUrity REports using Natural Language Pro-

cessing). We participated in three of the sub-

tasks: (1) classifying sentences as being rele-

vant or irrelevant to malware, (2) predicting to-

ken labels for sentences, and (4) predicting at-

tribute labels from the Malware Attribute Enu-

meration and Characterization vocabulary for

defining malware characteristics. We achieved

F1 scores of 50.34/18.0 (dev/test), 22.23 (test-

data), and 31.98 (test-data) for Task1, Task2

and Task2 respectively. We also make our cy-

bersecurity embeddings publicly available at

https://bit.ly/cybr2vec.

1 Introduction

Task 8 for SemEval 2018 asked participants to

work on a set of related sub-tasks involving ana-

lyzing information from text about malware drawn

from the Advanced Persistent Threats Notes col-

lection (Blanda and Westcott, 2018) using the se-

mantic framework found in the Malware Attribute

Enumeration and Characterization language (Kir-

illov et al., 2011; Beck et al., 2014). The task

was composed of four related sub-tasks that could

be part of a processing pipeline for an informa-

tion extraction system for cybersecurity related

text (Phandi et al., 2018).

Subtask 1 required classifying a sentence as be-

ing relevant or irrelevant for inferring malware ac-

tions and capabilities. Subtask 2 involved predict-

ing token labels for entities, actions and modifiers

in sentences. Subtask 3, which we did not under-

take, expanded on subtask 2 by asking participants

to label relevant relations between the entities.

Subtask 4 required predicting more detailed at-

tribute labels, including ActionName, Capability,

StrategicObjectives and TacticalObjectives, drawn

from the MAEC vocabulary.

One of our aims is to better understand the dif-

ferences between cybersecurity text and general,

non-cybersecurity text; another is to also better

understand differences and variation within cyber-

security texts. To that end, we focus on learn-

ing and extracting better representations of the in-

put reports. Specifically, for our approaches, we

focus on approaches that incorporate additional,

domain-specific knowledge into our system, and

we use these enhanced representations and fea-

tures in well-studied classification, representation,

and sequence prediction models.

2 Subtask 1

In this section we describe our approaches to

classify a given sentence as relevant or irrele-

vant to malware. We used logistic regression

(LR), multi-layer perceptron (MLP), and Long-

Short Term Memory (Hochreiter and Schmidhu-

ber, 1997, LSTM) as classifiers, and we used mul-

tiple encoding schemes to represent features for

the classification task.

2.1 Models

We experimented with and evaluated three dif-

ferent techniques for implementing the Subtask

1 relevance classifier. Each approach used simi-

lar features; we opted for bag-of-words or bag-of-

embeddings due to their simplicity and competi-

tive performance (Wang and Manning, 2012).

• Logistic Regression: We used logistic re-

gression, as a baseline classifier with an L2

penalty of 10.

• Multi-Layer Perceptron: We used two ar-

chitectures for MLP for two different kinds

of input; one was bag-of-words, the other

878



LR MLP

ACC AUC F1 ACC AUC F1

Avg. Binary BOW 89.78 81.58 47.9 90.85 77.44 46.89

Binary BOW 78.9 79.29 32.98 65.05 77.77 25.61

Avg. Count BOW 89.94 79.31 46.49 91.01 75.76 45.77

Count BOW 78.4 81.38 33.84 83.35 75.2 33.99

Wiki embeddings 93.49 50 0 93.49 50 0

Cyber embeddings 88.38 79.65 43.82 83.51 82.35 39.02

Table 1: Performance on Task 1 (dev-data) for each of the model we implemented. We used the best MLP model

for SemEval submission (test-data) and had F1 score of 18. We found LR and MLP to always label majority class

resulting in zero F1 score using Wiki embeddings.

was dense embeddings. When the input rep-

resentation was bag-of-words, we used one

hidden layer of dimension 32 followed by

a classification layer. When embeddings

were used we used a network of three hid-

den layers followed by a classification layer;

we found adding up to 3 layers to the net-

work helped improving training accuracy.

We used L2 regularization (Tibshirani, 1996)

of 0.1 and dropout (Srivastava et al., 2014)

of 0.1 to avoid overfitting. We fixed the

value of dropout and experimented with mul-

tiple values of L2 and chose one giving the

best performance on the development dataset.

Performance decreased gradually when L2

penalty was either increased to {0.2, 0.25,

0.5} or decreased to {0.01, 0.001, 0.0001}.

We set the size of the hidden layer to 100

when embeddings were used.

• LSTM (for embeddings): We applied an

LSTM network with one hidden layer of size

128. We used dense, pre-trained embeddings

(§2.2) for each word in the input sentence.

2.2 Features for the models

We experimented with the following four feature

sets in order to determine the best performing rep-

resentation for Task 1.

• (Average) Count Bag-Of-Words: We cre-

ated standard bag-of-words features from the

training dataset. We experimented with nor-

malizing each vector via averaging.

• (Average) Binary Bag-Of-Words: We also

considered binary bag-of-words features, by

replacing each term frequency count with bi-

nary value where positive value is set to one

and a negative value to zero. We also experi-

mented with normalizing each feature vector

by averaging.

• Cybersecurity embeddings: The cyber-

security embeddings were generated using

word2vec Skipgram model with negative

samplings of 100 dimension and a window

size of five (Mikolov et al., 2013b) on one

million cybersecurity related documents.1

• Wikipedia embeddings: We generated 400

dimensional word2vec skip-gram embed-

dings from a recent Wikipedia dump. We

used a window size of 5.2

2.3 Datasets, embeddings &

hyperparameters

For Subtask 1, we used all 65 files available as part

of SemEval Task 8. We tuned and tested our model

on development data available as part of SemEval.

For logistic regression we swept the L2 regular-

ization coefficient ({100, 10, 1, 0.1, 0.01, 0.001})

and chose the value that gave best performance on

the development dataset. For neural approaches

we used stochastic gradient descent with momen-

tum of 0.4 for LSTM and 0.9 for MLP. We tried

multiple learning rates and chose one which gave

best performance on the development dataset. We

chose starting learning rate of 0.2 for LSTM and

0.1 for MLP. We also tried using Adam optimizer

(Kingma and Ba, 2014) with the same learning

rate as MLP but found the resulting model labeled

all test instances with the majority class.

For our implementation we used Keras (Chollet,

1We used an embedding model produced by IBM Re-
search trained on a collection of 1 million cybersecurity-
related documents with a vocabulary size of 6.4 millions
words and 100 dimensions.

2Reported models use the 20180220 English Wikipedia
dump; we did not notice large differences in performance
when using this vs. an earlier version for the competition.

879



LSTM

ACC AUC F1

Wiki embeddings 80.21 82.35 35.83

Cyber embeddings 93.98 72.05 50.34

Table 2: LSTM Performance (dev data). We offer these

as supplementary evaluations.

2015) with a Tensorflow backend to train neural

network based models and Gensim (Řehůřek and

Sojka, 2010) to train word embeddings. We used

Scikit-learn (Pedregosa et al., 2011) for Logistic

Regression. For the LSTM, we let the size of the

input sequence be the maximum length of all sen-

tences in the batch and padded shorter sentences

with zero vectors.

The input was a matrix of dimension l×d where

d is the size of embedding vector and l is the length

of the longest sentence.

2.4 Discussion

As evident from Tables 1 and 2, the neural network

based classifiers perform better compared to other

methods depending on the features.

However, we find a considerable gap between

the score from Table 1 and 2. As explained later,

we believe that the models’ low scores are related

to the scope of the task. Overall, the LSTM per-

forms better compared to the MLP due its ability

to capture subtle nuances.

We note the positive impact that domain-

centered cybersecurity embeddings have. Never-

theless, not all cybersecurity texts may accurately

reflect other cybersecurity texts, especially ones

with the task-specific annotations as considered

here. We posit that the performance of all our

models, in particular the LSTM, may be improved

with embeddings that are learned from documents

more representative of those evaluated.3

Comparing the results of Wikipedia embed-

dings and embeddings trained on cybersecurity

text we found Wikipedia based embeddings to

consistently perform poorly. We believe one of the

reasons Wikipedia embeddings performed poorly

for this task is due to less overlap between the

technicality of the task and content.

Moreover the F1 score is zero sometimes as the

features are rich enough to classify positive in-

stance and predicts only negative (as evident from

3The actual collection of APT notes included about 400
documents, vs. the 1 million documents trained on broader
cybersecurity texts.

False Positive: Attackers always use this mini-

mal effort approach in order to bypass a victim

s defenses.

False Negative: Trojan.Karagany first checks

for a live Internet connection by visiting Mi-

crosoft or Adobe websites.

General Information: The group has used

two main malware tools: Trojan.Karagany and

Backdoor.Oldrea.

Table 3: Task 1 classification examples.

AUC). On the other hand, the cybersecurity em-

beddings performed better when compared with

Wikipedia embeddings, due to the more focused

corpus, but we believe there is scope to improve

the quality of embeddings. Frequency based fea-

tures tend to perform better than binary features;

averaging the features improves the performance

score across all classifiers.

2.5 Error analysis

Among the classifiers, the MLP makes mistakes

by getting caught into to domain specific words

that occur frequently, like attack and attackers,

and skips less frequent but indicative words like

Trojan.Karagany. Additionally we found the MLP

incorrectly classifies general sentences as relevant.

We demonstrate examples in Table 3.

Looking at the example sentences from 3, we

see that whether or not a sentence is “relevant” is

task-dependent. For example, the general infor-

mation sentence above could be useful for iden-

tifying relationships among different malware in-

stances or families. However, the sentence would

be irrelevant in the context of action and capabili-

ties of a particular malware mention.

3 Subtask 2

In this section we describe our approach for Task

2, which required participants to predict token la-

bels for malware-related documents. The Task 2

system served as an automatic labeling tool using

one of four labels:

• Action, referring to an malware-related

event;

• Entities, referring to either Subjects or

Objects in the malware-related sentence; or

• Modifiers, referring to prepositions that link

between action and phrases.

880



Each label is represented by a tag using the in-

side, outside, beginning (IOB) format (Ramshaw

and Marcus, 1999). The performance was mea-

sured using F1 score and the relaxed measurement

by omitting the IOB tags.

3.1 Our Approach

We extended the previous work Lim et al. (2017),

who trained a conditional random field (CRF) on

unigram and bigram features of the surface words,

part-of-speech tags and Brown clustering signa-

tures (Brown et al., 1992). Like Lim et al. (2017),

we also trained a CRF. Our features include:

• unigrams and bigrams of words in the depen-

dency parse tree,

• unigrams and bigrams of the word lemmas,

• wordshape equivalence class analysis

(Christopher, 2016), and

• Brown clustering signatures from a larger

APT collection .

The word’s context, which are words in the win-

dow of size three, was included. These features

were extracted using Stanford CoreNLP (Manning

et al., 2014). We did not use the surface word as

in development we found it yielded lower perfor-

mance. The dependency function will help to rec-

ognize the similar sentence by comparing similar

sentence’s structure. The wordshape features rep-

resent the classes of upper case, lower case, digits,

and punctuations, and also groups the sequence of

the same class. The wordshape features help to

recognize named entities.4

We trained our own Brown clustering features

(Liang, 2005) with our own APT corpus of 456

APT files from 2008 to 2017. We experimented

with the Brown clustering hyperparameters: the

Brown cluster size (1000,10000) and its prefix

length (6,8,10,12,16). The best result from the ex-

periment is the prefix of size 8 and cluster size

1000. We built our own Brown clustering for

two reasons. First, we will not be able to iden-

tify Brown clustering feature when we encounter

out of vocabulary word; we found the larger cor-

pus to partially alleviate this concern. Second, we

believed that the bigger size of the corpus, with

an appropriate clustering size and prefix length,

would yield better clustering features.

4 We use the ‘dan2’ wordshape classes from CoreNLP
(Manning et al., 2014).

P R F1

Action 24.50 39.20 30.15

Entity 11.26 17.34 13.65

Modifier 29.37 46.84 36.10

Average 18.22 28.54 22.24

Table 4: Official Task 2 scores on Test set

P R F1

Action 25.67 50.00 33.92

Entity 23.71 45.45 31.16

Modifier 29.92 48.10 36.89

Average 24.42 46.31 31.98

Table 5: Official Task 2 relaxed/token-level scores on

Test set

3.2 Experimental Results

We used the CRF++ toolkit (Kudo, 2005) to

develop our conditional random field (CRF)

models. For the official evaluation, we ran our

system on Test set provided by SemEval2018.

The test set contains 13,080 tokens in total. The

official scoring reported our F1 performance

of 22 for strict scoring, and 32 for relaxed

scoring. Our F1-score for subtask 2 are gen-

erally on par with the baselines (23 for the

strict, and 31 for the relaxed, measures). Detailed

performance analyses are shown in Tables 4 and 5.

3.3 Discussion

Table 4 demonstrates that our system performance

of predicting Entity is lower than Action and Mod-

ifier. We believe this is because malware-related

entities are different from other text; in particular,

they can be quite long. For example, the follow-

ing (gold test) entity is a long clause with com-

plex syntactic structure: ‘method of leaving the

encoded file on disk and only decoding it in mem-

ories.’ This entire clause is labeled as an Entity.

Despite the dependency features, our system can-

not identify these long spans as an entity. Another

example of this limitation is shown in Figure 1.

This is a rich area for future improvement.

4 Subtask 4

In this section we describe our approach for task

4. The task is to predict attribute labels (Action-

Name, Capability, StrategicObjectives and Tac-

ticalObjectives) for a given malware-related text

881



Figure 1: An example of wrong prediction of Task 2. Above the line is the gold standard annotation. Under the

line is our predictions.

describing action of a malware.

4.1 Our Approach

For this task we focus on learning better quality

word embedding features for a classifier, as classi-

fier performance depends on the quality of its fea-

tures. In addition to encoding semantics present

in the text via embeddings, we want to encode do-

main specific knowledge in the embeddings. For

this purpose, we developed an Annotation Word

Embedding (AWE) model that is capable of in-

corporating diverse types of domain knowledge,

such as metadata, keyword information, ontology

knowledge, and manual annotation. The AWE

model learns to predict this knowledge from the

text, resulting in better quality embedding since

domain knowledge can be incorporated in the em-

beddings. We then train a classifier with these

high quality word embedding features to classify

attribute labels.

4.1.1 Annotation Word Embedding

The AWE model’s learning task is to predict an-

notations and context words given a target word.

A sliding window on the input text generates the

training samples. In each sliding window the task

is to use target word to predict its own annotation

as well as the context words. Formally, we maxi-

mize the log probability of context words and an-

notations given target word.

Given a sequence of T training words

(W1,W2...Wt−1, Wt,Wt+1...WT ) and their an-

notations ((A1,1, A1,2...A1,M1
), (A2,1...A2,M2

) ...

(AT,1,...AT,MT
)), our objective is to maximize the

average log probability shown in Equation 1:

1

T

T
∑

t=1





∑

−C≤j≤C,j 6=0

logP (Wt+j |Wt)+

∑

0≤k≤Mt

logP (At,k|Wt)



 (1)

where C is the size of the context window, Wt is

the target word, Wt+j is a context word, At,k is

the kth annotation of target word Wt. In addition

to using the target word to predict context words,

like Mikolov et al. (2013a)’s skipgram model, the

AWE embedding model predicts annotations of

target word using target word itself.

4.2 Experiments

To train the AWE model we used all 456 APT re-

ports as text corpus. In addition we used keywords

for each attribute label described in MAEC vocab-

ulary (Kirillov et al., 2011) and gold annotation

given for 65 APT reports available as part of the

SemEval task to create text annotation.

To create text annotation we collected keywords

from attribute label descriptions and extracted the

token groups from the gold annotations. Token

groups consist of the subject, action and object

linked to each other via relation labels. We used

these token words and keywords to create text an-

notation; we deleted stop words.

For example, one token group extracted from

gold annotation is “these configuration issued

commands to attack following domain and IPs.”

After deleting stop words this token group we get

“configuration,” “issued,” “commands,” “attack,”

“domain,” and “IPs.” In the gold annotation, this

token group has label Capability12 in attribute cat-

egory of Capability. In MAEC vocabulary (Kir-

illov et al., 2011) keywords given for this capa-

bility label are “machine access,” “control,” “exe-

cute,” “terminate,” and “create.” All these token

words and keywords will have an annotation of

Capability12 in our AWE model.

After creating the text annotation we train an

AWE model with 100 dimension feature vectors,

window size 5 and negative sampling. After train-

ing embeddings we use these embeddings to create

features for classifier. We use average embeddings

of all the words in each token group to create clas-

sifier instance. We use SVM as classifier. On the

test dataset we get F-score of 0.19.

882



4.3 Discussion

This task is one of the most challenging tasks be-

cause of data sparsity and large number of at-

tribute labels. In fact, out of the 444 attribute

labels, 185 labels do not appear in dataset. For

the remaining 259 attribute labels 169 labels oc-

cur less than five times. In addition, among 3348

instances there are 2298 instances without any Ac-

tionName attribute, 642 instances without a Capa-

bility attribute, 1244 instances without a Strategic-

Objective attribute and 1675 instances without a

TacticalObjective attribute.

To improve classifier performance future work

can try training a classifier that focuses on the

common classes, with non frequent classes labeled

as “other.” Applying other techniques like similar-

ity score to classify infrequent classes may also

be beneficial. Additionally, we noticed that in the

gold annotation there are often missing relation

labels. This missing relation labels result in in-

complete token group as token groups are tokens

linked by relation labels.

5 Conclusion

We described the systems developed by the

UMBC team for 2018 SemEval Task 8, Se-

cureNLP (Semantic Extraction from CybersecU-

rity REports using Natural Language Processing).

We participated in three of the subtasks: (1) clas-

sifying sentences as relevant or irrelevant for fur-

ther malware analysis, (2) predicting token la-

bels for sentences about malware, and (4) adding

detained attribute labels to sentences from the

MAEC vocabulary for defining malware charac-

teristics. Our cybersecurity embeddings are avail-

able at https://bit.ly/cybr2vec.

We plan to continue development our systems

by getting additional annotations for training, ex-

ploring the application of different machine learn-

ing algorithms, making use of the knowledge in

our Unified Cybersecurity Ontology (Syed et al.,

2016) and associated data, and through our ongo-

ing collaboration with colleagues at IBM as part

of the AI Horizons Network.

Acknowledgments

The research described in this paper was partially

supported by gifts from IBM and Northrop Grum-

man. We thank Agniva Banerjee, Sudip Mittal,

Sandeep Narayanan, Maithilee Prabodh, Vishal

Rathod, and Arya Renjan for helping with anno-

tations.

References

Desiree Beck, Ivan Kirillov, and Penny Chase. 2014.
The MAEC language. Technical report, MITRE.

Kiran Blanda and David Westcott. 2018. APTnotes.

Peter F. Brown, Peter V. deSouza, Robert L. Mer-
cer, Vincent J. Della Pietra, and Jenifer C. Lai.
1992. Class-based n-gram models of natural lan-
guage. Comput. Linguist., 18(4):467–479.

Franois Chollet. 2015. keras. https://github.

com/fchollet/keras.

M Bishop Christopher. 2016. PATTERN RECOG-
NITION AND MACHINE LEARNING. Springer-
Verlag New York.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735–1780.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Ivan Kirillov, Desiree Beck, Penny Chase, and Robert
Martin. 2011. Malware attribute enumeration and
characterization. Technical report, MITRE.

Taku Kudo. 2005. CRF++: Yet another CRF toolkit.
https://taku910.github.io/crfpp/.

Percy Liang. 2005. Semi-supervised learning for nat-
ural language. Ph.D. thesis, Massachusetts Institute
of Technology.

Swee Kiat Lim, Aldrian Obaja Muis, Wei Lu, and
Chen Hui Ong. 2017. Malwaretextdb: A database
for annotated malware articles. In Proceedings of
the 55th Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers),
pages 1557–1567. Association for Computational
Linguistics.

Christopher D. Manning, Mihai Surdeanu, John Bauer,
Jenny Finkel, Steven J. Bethard, and David Mc-
Closky. 2014. The Stanford CoreNLP natural lan-
guage processing toolkit. In Association for Compu-
tational Linguistics (ACL) System Demonstrations,
pages 55–60.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jef-
frey Dean. 2013a. Efficient estimation of word
representations in vector space. arXiv preprint
arXiv:1301.3781.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013b. Distributed representa-
tions of words and phrases and their compositional-
ity. In Advances in neural information processing
systems, pages 3111–3119.

883



F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Pretten-
hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Pas-
sos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay. 2011. Scikit-learn: Machine learning
in Python. Journal of Machine Learning Research,
12:2825–2830.

Peter Phandi, Amila Silva, and Wei Lu. 2018.
Semeval-2018 Task 8: Semantic Extraction from
CybersecUrity REports using Natural Language
Processing (SecureNLP). In Proceedings of
International Workshop on Semantic Evaluation
(SemEval-2018), New Orleans, LA, USA.

Lance A Ramshaw and Mitchell P Marcus. 1999. Text
chunking using transformation-based learning. In
Natural language processing using very large cor-
pora, pages 157–176. Springer.

Radim Řehůřek and Petr Sojka. 2010. Software Frame-
work for Topic Modelling with Large Corpora. In
Proceedings of the LREC 2010 Workshop on New
Challenges for NLP Frameworks, pages 45–50, Val-
letta, Malta. ELRA. http://is.muni.cz/

publication/884893/en.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: A simple way to prevent neural networks
from overfitting. The Journal of Machine Learning
Research, 15(1):1929–1958.

Zareen Syed, Ankur Padia, Tim Finin, M Lisa Math-
ews, and Anupam Joshi. 2016. Uco: A unified cy-
bersecurity ontology. In AAAI Workshop: Artificial
Intelligence for Cyber Security.

Robert Tibshirani. 1996. Regression shrinkage and se-
lection via the lasso. Journal of the Royal Statistical
Society. Series B (Methodological), pages 267–288.

Sida Wang and Christopher D Manning. 2012. Base-
lines and bigrams: Simple, good sentiment and topic
classification. In Proceedings of the 50th Annual
Meeting of the Association for Computational Lin-
guistics: Short Papers-Volume 2, pages 90–94. As-
sociation for Computational Linguistics.

884


