
Natural Language Generation From Ontologies

Van Nguyen, Son Tran, and Enrico Pontelli

New Mexico State University, Las Cruces, NM 88003, USA
{vnguyen,tson,epontell}@cs.nmsu.edu

Abstract. This paper addresses the problem of automatic generation of
natural language descriptions for ontology-described artifacts. The orig-
inal motivation for the work is the challenge of providing textual nar-
ratives of automatically generated scientific workflows (e.g., paragraphs
that scientists can include in their publications). The paper presents
two systems which generate descriptions of sets of atoms derived from a
collection of ontologies. The first system, called nlgPhylogeny, demon-
strates the feasibility of the task in the Phylotastic project, providing evo-
lutionary biologists with narrative for automatically generated analysis
workflows. nlgPhylogeny utilizes the fact that the Grammatical Frame-
work (GF) is suitable for the natural language generation (NLG) task;
the paper shows how elements of the ontologies in Phylotastic, such as
web services and information artifacts, can be encoded in GF for the
NLG task. The second system, called nlgOntologyA, is a generalization
of nlgPhylogeny. It eliminates the requirement that a GF needs to be
defined and proposes the use of annotated ontologies for NLG. Given
a set of annotated ontologies, nlgOntologyA generates a GF suitable
for the creation of natural language descriptions of sets of atoms derived
from these ontologies. The paper describes the algorithms used in the de-
velopment of nlgPhylogeny and nlgOntologyA and discusses potential
applications of these systems.

Keywords: Natural Language Generation · Ontologies · Web service ·
Grammatical Framework · Attempto Controlled English.

1 Introduction

In many application domains, where users are not proficient in computer pro-
gramming, it is of the utmost importance to be able to communicate the results
of a computation in an easily understandable way, e.g., using text rather than
a complex data structure or mathematic formulae. The problem of generating
natural language explanations has been explored in several research efforts. For
example, the problem has been studied in the context of question-answering sys-
tems,1 recommendation systems,2 etc. With the proliferation of spoken dialogue
systems and conversational agents, verbal interfaces such as Amazon Echo and
Google Home for human-robot-interaction, and the availability of text-to-speech

1 http://coherentknowledge.com
2 http://gem.med.yale.edu/ergo/default.htm



2 Van Nguyen, Son Tran, and Enrico Pontelli

programs, such as the TTSReader Extension,3, the application arena of systems
capable of generating natural language representations will continue growing. In
this paper, we describe two systems for generating natural language descriptions
of collections of atoms derived from a set of ontologies.

The first system, called nlgPhylogeny, is used to generate natural language
descriptions of automatically generated workflows, obtained by composing web
services. This is motivated by the needs of the Phylotastic project [1]; the project
provides tools for the automated construction of workflows that allow evolution-
ary biologists, teachers, and students to extracts phylogenies relevant to given
sets of species. The automated construction of workflows is justified by the exis-
tence of a large number of web services that perform parts of a desired analysis
protocol, and the complexity of effectively interfacing the services (e.g., due to
the lack of data format standardization). A typical Phylotastic workflow is com-
posed of operations to collect list of species names (e.g., from a scientific paper),
“clean” them to ensure that the proper scientific names are used, extract a sub-
tree of a reference phylogeny that covers the desired species and visualize it.
Phylotastic has been implemented using an Answer Set Programming (ASP)
backend for reasoning about ontologies and for web service composition [6]. The
web services are described by an ontology, the Phylotastic ontology (PO). PO
is composed of two parts: an ontology that describes the artifacts manipulated
by the services (e.g., alignments, phylogenetic trees, species names) [7] and an
ontology to describe the operations performed by the services (the WSO).

Figure 2 displays a sample output of nlgPhylogeny given the workflow in
Figure 1. The workflow in this example is a plan generated by the ASP-based
web service composition component of the Phylotastic project [6], and consists
of a sequence of steps (green rectangles). The boxes before and after each green
rectangle represent input(s) and output(s) of the service, respectively. As the
inputs of one service might require some format different from the format of the
previous outputs, data conversions might be necessary (the double arrows). Each
step corresponds to a processing step on data provided by one of the preceding
steps. Specifically, the workflow is composed of three steps:
• Extracting the set of organisms from the input text;

• Resolving the names of the identified organisms (e.g., correct spelling, iden-
tify proper scientific names); and

• Deriving the corresponding phylogenetic tree.
Figure 2 shows the description of the workflow as generated by nlgPhylogeny.
Since the fact that to illustrate a workflow, an graphical version is approximately
good enough, but to put the workflow in a biological paper, sometimes, authors
would need to write some explanations for the workflow. We find that it would
be helpful to generate the textural version as a complement to the graphical
version, and provide them as a package. So, the authors are free to choose which
versions to include in their paper. Moreover, we recognize that our general idea
can be a bridge between ontology developers and ontology users or engineers
who use the ontology in question-answering system. While ontology developers

3 https://ttsreader.com



Natural Language Generation From Ontologies 3

resource_FreeText

phylotastic_FindScientificNamesFromFreeText_GNRD_GET

resource_SetOfSciName
AND

resource_SetOfNames

resource_SetOfSciName

phylotastic_ResolvedScientificNames_OT_TNRS_GET

resource_SetOfSciName
AND

resource_SetOfTaxon
AND

resource_SetOfResolvedName

resource_SetOfTaxon

phylotastic_GetPhylogeneticTree_OT_GET

resource_speciesTree
AND

resource_Tree

Fig. 1. An automatically gener-
ated workflow

Fig. 2. Description generated for workflow
in Fig. 1 by nlgPhylogeny

just need to add a little more annotations on their work, the benefit for on-
tology users is huge because they will no longer need to develop the answering
module from scratch. The answer generated from our idea will mimic the gram-
mar structure of annotations provided by ontology developers, but different in
content corresponding to the queried data.

As discussed in detail later, nlgPhylogeny exploits the NLG capabilities of the
Grammatical Framework (GF) [8]. This requires the development of a GF for
the entities in the Phylostatic projects (described by the ontology). For small
ontologies, the manual development of the GF for the NLG task is feasible,
but it is an improbable task for large ontologies. Furthermore, nlgPhylogeny

will not be applicable for other ontologies. It is, however, feasible to consider
a situation where an ontology engineer has the necessary domain knowledge to
explicitly add meta-information to the concepts as they are progressively added
to the ontology. The nlgOntologyA system demonstrates that, as long as meta-
information is added in the ontology following proper guidelines, it is possible to
generate the description for the atoms derived from annotated ontologies without
the manual creation of a GF.

The project critically relies on logic programming. ASP is employed by the
composition system and to manage the connection with the ontology. The At-
tempto Parsing Engine is available in GitHub 4 and it is written in SWI-Prolog.

4 https://github.com/Attempto/APE



4 Van Nguyen, Son Tran, and Enrico Pontelli

The program to convert lexicon extracted from annotations in the ontologies to
lexicon to generate the GF concrete syntax is also a Prolog-based program.

The rest of the paper is organized as follows. We begin with a brief review of
the Grammatical Framework and Attempto Controlled English, the two frame-
works used in this paper. The following two sections describe nlgPhylogeny and
nlgOntologyA, respectively. We conclude the paper with a discussion of potential
uses of nlgOntologyA and of the proposed technologies developed in this paper.

2 Background

2.1 Grammatical Framework

The Grammatical Framework (GF) [8] is a system used for working with gram-
mars; it is composed of a programming language used to design grammars along
with a theory about grammars and languages. GF also comes with a GF Re-
source Grammar Library and a GF runtime API for working with GF programs.

A GF program has two main parts. The first part is the Abstract syntax which
defines what meanings can be expressed by a grammar. The abstract syntax
defines categories (i.e., types of meaning) and functions (i.e., meaning-building
components). The following is an example of an abstract syntax component:

abstract Food = {
flags startcat = Phrase ;

cat

Phrase ; Item ; Kind ; Quality ;

fun

Is : Item -> Quality -> Phrase ;

This : Kind -> Item ;

QKind : Quality -> Kind -> Kind ;

Cheese, Fish : Kind ;

Very : Quality -> Quality ;

Warm, Italian, Delicious : Quality ;

}
In this syntax, Phrase, Item, Kind and Quality are types of meanings. The
startcat flag declaration states that Phrase is the default start category for
parsing and generation. Is is a function accepting two parameters, of type Item

and Quality. This function returns a meaning of Phrase category.
The second part is composed of one or more concrete syntax specifications.

Each concrete syntax defines the representation of meanings in each output
language. For example, the corresponding concrete syntax that maps functions
in the abstract Food grammar above to strings in English is:

concrete FoodEng of Food = {

lincat

Phrase, Item, Kind, Quality = {s : Str} ;

lin

Is item quality = {s = item.s ++ "is" ++ quality.s} ;

This kind = {s = "this" ++ kind.s} ;



Natural Language Generation From Ontologies 5

QKind quality kind = {s = quality.s ++ kind.s} ;

Cheese = {s = "cheese"} ;

Fish = {s = "fish"} ;

Very quality = {s = "very" ++ quality.s} ;

Warm = {s = "warm"} ;

Italian = {s = "Italian"} ;

Delicious = {s = "delicious"} ;

}

In this concrete syntax, the linearization type definition (lincat) states that Phrase,
Item, Kind and Quality are strings (s). Linearization definitions (lin) indicate what
strings are assigned to each of the meanings defined in the abstract syntax. Various
types of linearization type definitions are considered in GF (e.g., string, table). Some
functions represent a simple string but some functions (e.g., Is or This) defines a
concatenation of strings.

Intuitively, each function in the abstract syntax represents a rule in a grammar.
The combination of rules used to construct a meaning type can be seen as a syntax tree.
The visualization of the tree represent-
ing the Phrase “this delicious cheese is
very Italian” is illustrated in Figure 3.
GF has been used in a variety of applica-
tions, such as query-answering systems,
voice communication, language learn-
ing, text analysis and translation, and
natural language generation [9, 3]. GF
has been used extensively in automated
translation and it is the main vehicle be-
hind the MOLTO project, that aims at
developing a set of tools for high-quality

Is: Phrase

This: Item Very: Quality

Qkind: Kind Italian: Quality

Delicious: Quality Cheese: Kind

Fig. 3: Example syntax tree

and real-time translation of text between multiple languages5. To see how it works, let
us augment our program with a concrete syntax for Italian as follows:

concrete FoodIta of Food = {

lincat

Phrase, Item, Kind, Quality = {s : Str} ;

lin

Is item quality = {s = item.s ++ "e’" ++ quality.s} ;

This kind = {s = "questo" ++ kind.s} ;

QKind quality kind = {s = kind.s ++ quality.s} ;

Cheese = {s = "formaggio"} ;

Fish = {s = "pesce"} ;

Very quality = {s = "molto" ++ quality.s} ;

Warm = {s = "caldo"} ;

Italian = {s = "italiano"} ;

Delicious = {s = "delizioso"} ;

}

The translation from English to Italian can be performed as follows in the GF API:

5 http://www.molto-project.eu



6 Van Nguyen, Son Tran, and Enrico Pontelli

> parse -lang=FoodEng "this fish is warm" | linearize -lang=FoodIta

questo pesce e’ caldo

We use a pipe which includes the parse and linearize commands to find the syntax
tree of the sentence “this fish is warm” then turn that tree into a FoodIta sentence.
The last line is the result of the translation process. The translation process is very
similar to currency exchange in the old days, when exchange was done only in gold.
Assume we want to exchange US Dollars for Euros; we first exchange US Dollars for
gold, then, exchange gold for Euros. Correspondingly, in GF the intermediate result in
the translation process is the syntax tree which contains the meaning of the translated
sentence.

2.2 Attempto Controlled English

A GF program produces sentences whose syntax is specified by its abstract syntax; this
structure also determines the quality of its output. Developing a GF syntax (abstract or
concrete) requires understanding functional programming; this is a level of knowledge
that might not be suitable for users who are not familiar with programming—as is the
case of biologists using Phylotastic to create and execute phylogenetic workflows. As
we will see in the next section, our nlgPhylogeny system can utilize GF to generate
descriptions of Phylotastic workflows. It requires, however, a considerable amount of
domain-specific knowledge. To alleviate this problem, we investigate a combination of
annotated ontologies and the Attempto Controlled English (ACE) [4] for the same task,
which results in the system nlgOntologyA.

ACE is a controlled natural language, i.e., a subset of standard English with a
restricted syntax and restricted semantics, described by a small set of construction and
interpretation rules. ACE sentences are normal English sentences and can be read and
understood by any English speaker. However, ACE is a formal language that can be
used for knowledge representation; ACE texts are computer-processable and can be
unambiguously translated into discourse representation structures, a syntactic variant
of first-order logic. An ACE grammar consists of construction rules for both simple
and composite sentences, interrogative and imperative sentences. ACE can be encoded
in GF and used for NLG.

3 Generating Sentences from GF

In this section, we describe the nlgPhylogeny system. Figure 4 shows the overall ar-
chitecture of nlgPhylogeny. The main component of the system is the GF generator
whose inputs are the Phylotastic ontology and the elements necessary for the NLG task
(i.e., the set of linearizations, the set of pre-defined conjunctives, the set of vocabular-
ies, and the set of sentence models). The output of the GF generator is a GF program,
i.e., a pair of GF abstract and concrete syntax. This GF program is used for generating
the descriptions of workflows via the GF runtime API. The adapter provides the GF
generator with the information from the ontology, such as the classes, instances, and
relations. We will describe in more details the elements of nlgPhylogenyin Sect. 3.2.

3.1 Web Service Ontology (WSO)

Phylotastic uses web service composition to generate workflows for the extraction/con-
struction of phylogenetic trees. It makes use of two ontologies: WSO and PO. WSO



Natural Language Generation From Ontologies 7

Ontology Linearization Pre-defined 
Conjunctive

Pre-defined 
Vocabulary

GF GeneratorAdapter

Portable 
grammar 

format

Sentence 
Model

English concrete 
syntax

Abstract 
syntax

Workflow Atoms English 
Description

GF Runtime API

Sentence generator

Fig. 4. Overview of nlgPhylogeny.

encodes information about the registered web services, classified in a taxonomy of
classes of services. In the following discussion, we refer to a simplified version of the
ASP encoding of the ontologies used in [6], to facilitate readability.

In WSO, a service has a name and is associated with a list of inputs and out-
puts. For example, the service named FindScientificNamesFromWeb GET in the on-
tology is an instance of the class names extraction web. The outputs and inputs of
FindScientificNamesFromWeb GET are encoded by the three atoms:

has_input(FindScientificNamesFromWeb_GET,resource_WebURL,url_format).

has_output(FindScientificNamesFromWeb_GET,resource_SetOfSciName,

scientific_names_format).

has_output(FindScientificNamesFromWeb_GET,resource_SetOfNames,

list_of_strings).

In the above atoms, the first argument is the name of the service, the second is the
service input or output, and the last argument is the data type of the second argument.

The web service ontology of the Phylotastic project is exported to an ASP program
(from its original OWL encoding) and enriched with a collection of ASP rules to draw
inferences about classes, inheritance, etc. nlgPhylogeny employs these rules to identify
information related to the set of atoms whose description is requested by a user—e.g.,
What are the inputs of a service? What is the data type of an input x of a service y?

3.2 GF generator

Each Phylotastic workflow is an acyclic directed graph, where the nodes are web ser-
vices, each consumes some resources (inputs) and produces some resources (outputs).
An example of the specification of a workflow is as follows.6

6 For simplicity, we use examples which are linear sequences of services. We also trim
the names of services for readability.



8 Van Nguyen, Son Tran, and Enrico Pontelli

occur concrete(GenerateGeneTree From Genes,0).

occur concrete(ExtractSpeciesNames From Gene Tree GET,1).

occur concrete(GeneTree Scaling,2).

occur concrete(ResolvedScientificNames OT TNRS GET,3).

This set of atoms is a partial description of the result of a web service composition
process, as described in [6]. Intuitively, this set of atoms represents a plan consisting
of 4 steps. At each step, a concrete instance of the service class named by the first
argument of the atom occur concrete/2 is executed.

To generate the description of a workflow, we adapt the general theoretical frame-
work proposed in [10]. This framework consists of three major processing phases: (1)
Document planning (content determination), (2) Microplanning, and (3) Surface real-
ization. The document planning phase is used to determine the structure of the text to
be generated. Based on the structure determined in the document planning phase, the
microplanner makes lexical/syntatic choices to generate the content of the sentences,
and the realization phase generates the actual sentences. In our work, we combine the
microplanning and surface realization phase into a single phase due to the nature of
the grammar definition and the capability of GF in sentence generation.

In the document planning step, we create, for each occurrence atom, a sentence
which specifies the input(s) and output(s) of the service mentioned in the first argument
of the atom. Optionally, users can choose to describe the service in more details, one
or two more sentences about the data type of the service’s inputs or outputs can be
included. As we have mentioned in the previous subsection, the information about the
inputs, outputs, and data types of the inputs and outputs of a service can be obtained
via the ASP reasoning engine of the Phylotastic system. In general, we identify the
document planning structure described in Table 1.

message 1
argument 1: instance or class in ontology
argument 2: list of service inputs
argument 3: list of service outputs

message 2 (optional)
argument 1: name of input or output of service
argument 2: data type of argument 1

message 3 (optional)
argument: actual data involved in the workflow

Table 1. Document Planning Structure

The document planning phase determines three messages for the sentence generation
phase. Each message will be constructed using the arguments as mentioned in Table
1. While the first message is mandatory, the other two messages are optional.

In the microplanning step, we focus on developing a GF generator that can produce
a portable grammar format (pgf) file [2]. This file is able to encode and generate 3
types of sentences as mentioned above. The GF generator (see Fig. 4) accepts two flows
of input data. The first one is the flow of data from the ontology, which is maintained
by an adapter. The adapter is the glue code that connects the ontology to the GF
generator. Its main function is to extract classes and properties from the ontology.

The second flow is the flow of data from predefined resources that cannot be au-
tomatically obtained from the ontology—instead they require manual effort from both
the ontology experts and the linguistic developers.



Natural Language Generation From Ontologies 9

– A list of linearizations: the translations of ontology entities into linguistic terms.
This translation is performed by experts who have knowledge of the ontology do-
main. An important reason for the existence of this component is that some classes
or terms used in the ontology might not be directly understandable by the end user.
This may be the result of very specialized strings used in the encoding of the ontol-
ogy. For example, the class phylotastic ResolvedScientificNames OT TNRS POST
can be meaningfully linearized to Name Resolution service provided by OpenTree
in Phylotastic ontology.

– Some sentence models which are principally Grammatical Framework syntax trees
with meta-information. The meta-information denotes which part of syntax tree
can be replaced by some vocabulary or linearization. As indicated above, we de-
cided that each occurrence atom in a workflow will be described by at most three
sentences. For example, if we consider the first message in the document planning
structure, the generated sentence will have the inputs and the outputs of a service;
the second message indicates a sentence about the data type of its first argument
(input or output); the third message is about the actual data used during the
execution of the workflow. However, the messages do not specify how many in-
puts and outputs should be included in the generated sentence. This means that
sentences have different structures, i.e., the structure of a sentence representing a
service that requires one input and one output is different from the structure of a
sentence representing a service that does not require any inputs. These variations
in sentences are recorded in the model sentence component.

– A list of pre-defined vocabularies which are domain-specific components for the
ontology. A pre-defined vocabulary is different from linearizations, in the sense
that some lexicon may not be present in the ontology but might be needed in the
sentence construction. The predefined vocabulary is also useful to bring variety in
word choices when parts of a model sentence are replaced by the GF generator. For
example, we would not want the system to keep generating a sentence of the form
“The service A has input X” given an atom of the form occur concrete(A, T ), but
sometimes “The service A requires input X”, or “The service A needs input X”,
etc. To achieve this, we keep “have”, “require” and “need” in the set of pre-defined
vocabularies and randomly select a verb to replace the verb in model sentence.

– A configuration of pre-defined conjunctives, which depend on the document plan-
ning result. Basically, this configuration defines which sentences accept a conjunc-
tive adverb in order to provide generated text transition and smoothness.

To encode sentences, the GF generator defines 3 categories: Input, Output and Format
in the abstract syntax. The corresponding English concrete syntax is as follows:

concrete PhyloEng of Phylo = open SyntaxEng, ParadigmsEng, ConstructorsEng

in {

lincat

Message = S; Input = NP; Output = NP; Format = NP;

... }

SyntaxEng, ParadigmsEng, ConstructorsEng are GF Resources Grammar libraries7

providing constructors for sentence components like Verb, Noun Phrase, etc. in English.
The GF generator obtains information about the services (e.g., how many input-

s/outputs has the service? what are the data types of the inputs/ouputs? etc.) by query-

7 http://www.grammaticalframework.org/lib/doc/synopsis.html



10 Van Nguyen, Son Tran, and Enrico Pontelli

ing the ontology (via the adapter). Based on the number of inputs and outputs of a ser-
vice, the GF generator determines how many parameters will be included in the GF ab-
straction function corresponding to the service. Furthermore, for each input or output of
a service, the GF generator includes an Input or Output in the GF abstract function. For
example, the encoding of occur concrete(FindScientificNamesFromWeb GET, 1) in
the GF abstract syntax is

f_FindScientificNamesFromWeb_GET: Input -> Output -> Message;

i_resource_WebURL: Input;

o_resource_SetOfNames: Output;

Next, the GF generator looks up in the sentence models a model syntax tree whose
structure is suitable for the number of inputs and outputs of the service. If such syntax
tree exists, the GF generator will replace parts of the syntax tree with the GF service
input and output functions, to create a new GF syntax tree which can be appended
to the GF concrete function. The functions in the abstract syntax correspond to the
following functions in the GF concrete syntax:

f_phylotastic_FindScientificNamesFromWeb_GET i_resource_WebURL

o_resource_SetOfNames = mkS and_Conj

(mkS (mkCl phylotastic_FindScienticNamesFromWeb_GET_in

(mkV2 "require") i_resource_WebURL))

(mkS (mkCl phylotastic_FindScienticNamesFromWeb_GET_out

(mkV2 "return" ) o_resource_SetOfSciName ));

i_resource_WebURL = mkNP(mkCN (mkN "webURL"));

i_resource_SetOfNames = mkNP(mkCN (mkN "asetof names"));

The above functions consist of several syntactic construction functions which are im-
plemented in the GF Resources Grammar:

• mkN which creates a noun from a string;

• mkCN which creates a common noun from a noun;

• mkNP which creates a noun phrase from a common noun;

• mkV2 which creates a verb from a string;

• mkCl which creates a clause. A clause can be constructed from sequence of a noun
phrase, a verb and another noun phrase (NP V2 NP);

• mkS which creates a sentence. A sentence can be constructed from a clause (Cl) or
from 2 other sentences and a conjunction word (and Conj S S).

From the abstract and concrete syntax specifications built by the GF generator, the
atom

occur concrete(phylotastic FindScientificNamesFromWeb GET,1)

is translated into the sentence

The input of phylotastic FindScientificNamesFromWeb GET is a web link, and
its outputs are a set of species names and a set of scientific names.

We use the same technique to encode the other types of sentences indicated by the
document planning structure. This is how the GF generator has been implemented.
Figure 1 is an example output of the current version of nlgPhylogeny.



Natural Language Generation From Ontologies 11

4 Automatic Natural Language Generation From
Annotated Ontology: nlgOntologyA

The previous section shows that, with
sufficient knowledge about the ontology
and pre-defined descriptions about ele-
ments in the ontology, we can utilize the
current technology in NLG to generate
a description of a set of atoms derived
from the ontology. It also highlights that
the process requires manual labor and do-
main expertise. Such approach is feasible
only in small ontologies related to uncom-
plicated grammars and elementary lexi-
cons. The application of the same process
to medium or large ontologies is likely to
be too costly or time consuming. On the
other hand, we can observe that ontolo-
gies often include meta-data encoding of
their elements. Furthermore, information
extracted from the meta-data of an ontol-

Annotated 
Ontology

Parser for 
Attempto 

Controlled English 
(APE)

Attempto Controlled 
English in Grammatical 

Framework
(ACE-in-GF)

GF 
Generator

Adapter

Vocabulary 
extractor

English 
concrete syntax

Abstract 
syntaxMappings

Portable 
grammar format

Workflow
Atoms

English 
DescriptionGF Runtime API

Sentence generator

Fig. 5: Overview of nlgOntologyA

ogy is often sufficient for a basic understanding of the concepts that can be derived
from the ontology. Motivated by this observation, we develop an automatic natural
language generation method for ontologies whose meta-data can be understood by an
ACE parser. We will refer to ontologies satisfying this assumption simply as annotated
ontology. A simple annotated ontology is as following.

%% @n: Company

class(Com)

%% @pn: Apple_Inc

instanceOf(Com, Apple)

%% @pn: Beats

instanceOf(Com, Beats)

%% @lin: Beats is a company of Apple_Inc

own(Apple, Beats)

%% @pn: Silicon_Grail_Corp_Chalice

instanceOf(Com, Sgcc)

%% @pn: Silicon_Grail

instanceOf(Com, Sg)

%% @lin: Apple_Inc acquires Beats

acquire(Apple, Beats)

In the above ontology, Com is a class, Apple, Beats, Sgcc and Sg are instances of the
class Com, and acquire and own are two properties. The tags
• %% @n marks a noun
• %% @pn denotes a proper noun
• %% @lin signals a translation of an atom to an Attempto English sentence

Ontologies annotated in this way can be understood by nlgOntologyA. We now describe
the nlgOntologyA system.

4.1 Overall Architecture

Figure 5 shows the overall structure of nlgOntologyA. The GF generator described in
Figure 5 uses data and functions from three main components:



12 Van Nguyen, Son Tran, and Enrico Pontelli

• A vocabulary extractor, which is responsible for collecting nouns, proper nouns,
adjectives and verbs from the ontology. The vocabulary extractor also creates a
mapping of classes or instances in the ontology to their linearizations. Moreover,
in the case of adjectives and verbs, the vocabulary extractor will query some vocab-
ulary dictionaries to collect information like type of verbs (transitive, intransitive)
and verbs in different forms (finite singular, infinite, etc.).

• The Attempto Controlled English Parser (APE), which analyzes sentences ex-
tracted from the ontology. The parser translates ACE text into discourse rep-
resentation structures (DRS) [5].

• Attempto Controlled English in Grammatical Framework (ACE-in-GF), which is an
implementation of the Attempto Controlled English grammar in the Grammatical
Framework syntax.

The outputs of the generator are a portable grammar format (pgf) file, a mapping
of annotated atoms in the ontology into GF syntax trees, and a mapping of concepts
used in the ontology into GF functions. These data will be used in the re-construction
sentence progress which is described next.

Algorithm 1 Generation of portable grammar format

Require: annotated ontology, some annotations are ACE parable sentences
1: n←extract nouns and proper nouns from ontology
2: s←extract sentences from ontology
3: a← empty, v ← empty
4: add n to APE lexicon
5: for i in n do
6: n′, a′, v′ ←parse i using APE
7: n := n ∪ n′, a := a ∪ a′, v := v ∪ v′

8: end for
9: for i in n do

10: find singular and plural form of i
11: end for
12: for i in a do
13: find comparative and supercomparative form of i
14: end for
15: for i in v do
16: find transitive and intransitive form of i
17: end for
18: generate vocabulary, generate mappings
19: convert vocabulary to GF syntax
20: compile grammar in ACE-in-GF and generated syntax

4.2 Generation of Portable Grammar Format

To generate the pgf file, the GF generator performs the procedure shown in Procedure
1. Lines 1-2 extract annotations from the ontology. Lines 3 initialize variables holding
adjectives and verbs. Line 4 enriches the APE lexicon with the nouns and proper
nouns. This allows the APE to recognize proper nouns that are possibly present in the
sentences extract in s. Furthermore, it helps increase the accuracy when a sentence is
parsed by APE. Next, the for-loop in lines 5-8 iterates through all sentences to collect



Natural Language Generation From Ontologies 13

new lexicon. Lines 9-17 find all possible forms of words. Line 18 creates the vocabulary
file and mapping file from information obtained from previous steps. The vocabulary
file is written in Prolog. For example, a portion of the vocabulary file extracted from
the annotations from the ontology in the beginning of this section looks as follows:

noun_pl(’companies’, company, neutr).

noun_sg(’company’, company, neutr).

pn_sg(’Apple_Inc’, ’Apple_Inc’, neutr).

pn_sg(’Beats’, ’Beats’, neutr).

pn_sg(’Silicon_Grail_Corp_Chalice’, ’Silicon_Grail_Corp_Chalice’, neutr).

pn_sg(’Silicon_Grail’, ’Silicon_Grail’, neutr).

tv_finsg(acquires, acquire).

iv_finsg(is, be).

Line 19 converts the vocabulary file to GF syntax. As an example, the conversion
produces the GF concrete syntax file:

lin

company_N = aceN "company" ;

Apple_Inc_PN = acePN "Apple_Inc" ;

Beats_PN = acePN "Beats" ;

Silicon_Grail_Corp_Chalice_PN = acePN "Silicon_Grail_Corp_Chalice" ;

Silicon_Grail_PN = acePN "Silicon_Grail" ;

acquire_V2 = aceV2 "acquire" "acquires" "acquire";

Finally, line 20 uses ACE-in-GF to compile the Attempto grammar and the vocabulary
extracted from the ontology into a portable grammar format.

4.3 Sentence Construction

Given an input atom, the generated pgf file and a mapping file, the sentence generator
implements the algorithm presented in Procedure 2. Lines 1-3 initialize variables as
well as load the information in the pgf and mapping files. Line 4 finds the atom in the
mapping file that has the same name as the input atom. We call it model atom. Line
5 finds the syntax tree of the model atom. The for-loop in lines 6-12 replaces parts of
the syntax tree with the mapping of arguments of atom. This process creates a new
syntax tree which keeps the same structure as the model atom’s syntax tree. Finally,
line 13 converts the new syntax tree back to a sentence.
As an example, given an annotated ontology describing Apple Inc. and its acquired
companies as mentioned in Section 4, from the set of atoms:

acquire(Apple,Sg). own(Sg,Sgcc). acquire(Apple,Sgcc).

we are able to generate the following sentences:

Apple_Inc acquires Silicon_Grail .

Silicon_Grail_Corp_Chalice is a company of Silicon_Grail .

Apple_Inc acquires Silicon_Grail_Corp_Chalice .

The above example illustrates the feature of nlgOntologyA; it emulates the anno-
tations in the ontology to generate sentences. From the annotations provided for the
specific case “Apple acquires Beats”, nlgOntologyA can generate sentences for other
cases that have similar meaninng but with different objects. The repetition of narration



14 Van Nguyen, Son Tran, and Enrico Pontelli

Algorithm 2 Sentence re-construction

Require: an atom
Require: portable grammar format file, mapping file
1: a←atom
2: pgf ←load pgf
3: map←mapping
4: model atom← map.keys.find(name(a))
5: syntax tree← map(model atom)
6: for part is a part of syntax tree do
7: for arg, arg index in arguments(model atom) do
8: if part == map(arg) then
9: syntax tree[part] = map(arguments(a)[arg index])

10: end if
11: end for
12: end for
13: sentence = pgf(syntax tree)

can be seen in many question-answering systems. In particular, nlgOntologyA uses the
annotation of acquire(Apple, Beats) to generate the sentences for acquire(Apple,

Sg) and acquire(Apple, Sgcc). The sentence generation for own(Sg,Sgcc) provides
the annotation for own(Apple, Beats).

5 Related Work and Analysis

The closest effort to what proposed here is the work in [3], which reports on generating
natural language text from class diagrams. In [3], the author developed a system to
generate specifications for UML class design while the present work focuses on natural
language text generation for a given ontology and a Grammatical Framework, which
is manually encoded or automatically generated from the annotations of the ontology.

The work in [11] targets generating an ASP program from controlled natural lan-
guage, and vice versa. The author uses a bi-directional grammar as the intermediate
conversion in combination with reordering atoms for aggregation. There is a correla-
tion between our work and the work in [11] in terms of processing the controlled input
format and generating the natural language text. The key difference between our work
and that work in [11] is that our system only relies on the structure of the annotated
sentences (for nlgOntologyA) in the text generation and thus could potentially be more
flexible.

In order to assess the feasibility of our approach to automatically generate text
based on an ontology, we performed an experiment using the Software ontology,8 which
is apart of The Open Biological and Biomedical Ontology (OBO) Foundry.9 We anno-
tated some concepts in the ontology using the tag oboInOwl:comment as in the following
example:

<!-- http://edamontology.org/operation_0244 -->

<owl:Class rdf:about="http://edamontology.org/operation_0244">

<rdfs:subClassOf rdf:resource="http://edamontology.org/operation_0243

"/>

8 http://theswo.sourceforge.net
9 http://www.obofoundry.org



Natural Language Generation From Ontologies 15

...

<rdfs:label>

Protein flexibility and motion analysis

</rdfs:label>

<oboInOwl:comment rdf:datatype="http://www.w3.org/2001/XMLSchemastring

">

%% @n: protein_flexibility_and_motion_analysis

</oboInOwl:comment>

<oboInOwl:comment rdf:datatype="http://www.w3.org/2001/XMLSchemastring

">

%% @lin: a protein_flexibility_and_motion_analysis is a

molecular_dynamics_simulation .

</oboInOwl:comment>

</owl:Class>

We implicitly bind the annotations with the relation subclassOf due to the simplicity
of the Software ontology. Given the annotated Software ontology, nlgOntologyA is able
to generate some sentences like

A DNA_substitution_modelling is a Modelling_and_simulation_operation .

A Molecular_dynamics_simulation is a Modelling_and_simulation_operation .

A Protein_flexibility_and_motion_analysis is a Modelling_and_simulation .

6 Conclusions, Discussions, and Future Work

In this paper, we presented two NLG systems, nlgPhylogeny and nlgOntologyA, for
automatic generation of English descriptions for a set of atoms derived from ontologies.
Both achieve the goal by creating a GF program and relying on the ability to generate
sentences of the Grammatical Framework. nlgPhylogeny uses pre-defined resources
(e.g., linearizations, vocabularies, etc.) to build the sentence generator (GF program),
while nlgOntologyA extracts and manipulates information directly from an annotated
ontology. Observe that the structure of the generated text in nlgPhylogeny is richer
than that in the current nlgOntologyA due to the fact that the pre-defined resources
are hand-crafted and nlgOntologyA employs a very simple grammar for its sentence
structure. For this reason, nlgPhylogeny can generate sentences that are more complex
than the sentences generated by nlgOntologyA. On the other hand, nlgOntologyA

relies on meta-information in the ontologies and can be used in any ontology that
is annotated and can be parsed by an Attempto Controlled English parser. As such,
nlgOntologyA can save significant efforts before it can be deployed in an application.

We conclude the paper with a short discussion about the applications and possible
extensions of nlgOntologyA. It is easy to see that the current system can be very
useful in applications that require shallow explanations. We envision the possibility
of using nlgOntologyA for query-answering or information retrieval systems that, at
the end of their complex computations, need to present the result—a set of atoms—
to their users and do not need to explain the computation process. In such systems,
the answers are often crafted manually or using some templates. This is certainly
achievable with nlgOntologyA as such templates can be provided as annotations for
instances in the ontologies. nlgOntologyA can add some flexibility to such system if
multiple linearizations for an instance are provided in the ontologies, since they are
translated to potentially different syntax trees. This will result in different sentences



16 Van Nguyen, Son Tran, and Enrico Pontelli

during the generation phase. The current system is, on the other hand, not as good,
compared to nlgPhylogeny, in dealing with ordered sets of atoms, i.e., the explanation
needs to be presented in a certain order. For example, nlgPhylogeny needs to present
a plan which is a set of atoms with an ordering in the second parameter of the atoms
occur concrete/2 to the users. The implementation of this feature in nlgOntologyA will
be our main immediate future work. This will allow nlgOntologyA to provide natural
language explanation detailing the steps involved in the computation of a result (e.g.,
the steps of a procedure or workflow).

To improve the usability of nlgOntologyA, we intend to extend the system to
consider the problem when the ontology comes with annotations in natural language,
i.e., to remove the restrictions that the ontology is annotated using controlled natural
language. Interestingly, this idea is closely related to the idea proposed in a Blue Sky
Ideas of the 17th International Semantic Web Conference [12].

Acknowledgement

We thank the reviewers for the comments and the references, especially [12]. We would
like to acknowledge the partial support of the NSF grants 1458595, 1401639, and
1345232.

References

1. A. Stoltzfus et al.: Phylotastic! Making tree-of-life knowledge accessible, reusable
and convenient. BMC Bioinformatics 14 (2013)

2. Angelov, K., Bringert, B., Ranta, A.: Pgf: A portable run-time format for type-
theoretical grammars. Journal of Logic, Language and Information 19, 201–228
(2010)

3. Burden, H., Heldal, R.: Natural language generation from class diagrams. In: Pro-
ceedings of the 8th International Workshop on Model-Driven Engineering, Verifi-
cation and Validation (MoDeVVa 2011), Wellington, New Zealand, ACM (2011)

4. Fuchs, N.E., Schwitter, R.: Attempto controlled english (ace). CoRR cmp-
lg/9603003 (1996)

5. Kamp, H., Reyle, U.: From discourse to logic. Springer (1993)
6. Nguyen, T.H., Son, T.C., Pontelli, E.: Automatic web services composition for

phylotastic. In: Practical Aspects of Declarative Languages - 20th International
Symposium. pp. 186–202 (2018)

7. Prosdocimi, F., Chisham, B., Thompson, J., Pontelli, E., Stoltzfus, A.: Initial im-
plementation of a comparative data analysis ontology. Evolutionary Bioinformatics
5, 47–66 (2009)

8. Ranta, A.: Grammatical framework. Journal of Functional Programming 14(2),
145–189 (2004)

9. Ranta, A.: Grammatical framework: Programming with multilingual grammars.
CSLI Publications, Center for the Study of Language and Information (2011)

10. Reiter, E., Dale, R.: Building natural language generation systems. Cambridge
university press (2000)

11. Schwitter, R.: Specifying and verbalising answer set programs in controlled natural
language. arXiv preprint arXiv:1804.10765 (2018)

12. Vrandečić, D.: Capturing meaning: Toward an abstract wikipedia, http://ceur-
ws.org/Vol-2180/


