A Shared-Memory Algorithm for Updating Single-Source Shortest Paths in Large
Weighted Dynamic Networks

Sriram Srinivasan
University of Nebraska Omaha,
Omaha, NE 68106, USA

Email: sriramsrinivas @unomaha.edu

Sajal K. Das
Missouri University of Science and Technology, Rolla,
Rolla,MO 65409,USA
Email: sdas@mst.edu

Abstract—Computing the single-source shortest path (SSSP)
is one of the fundamental graph algorithms, and is used in
many applications. Here, we focus on computing SSSP on large
dynamic graphs, i.e. graphs whose structure evolves with time.
We posit that instead of recomputing the SSSP for each set of
changes on the dynamic graphs, it is more efficient to update
the results based only on the region of change. To this end, we
present a novel two step shared-memory algorithm for updating
SSSP on weighted large-scale graphs. The key idea of our
algorithm is to identify changes, such as vertex/edge addition
and deletion, that affect the shortest path computations and
update only the parts of the graphs affected by the change.

We provide the proof of correctness of our proposed algo-
rithm. Our experiments on real and synthetic networks demon-
strate that our algorithm is as much as 4X faster compared to
computing SSSP with Galois, a state-of-the-art parallel graph
analysis software for shared memory architectures. We also
demonstrate how increasing the asynchrony can lead to even
faster updates. To the best of our knowledge, this is one of
the first practical parallel algorithms for updating networks on
shared-memory systems, that is also scalable to large networks.

Keywords-dynamic networks, parallel graph algorithms,
single-source shortest path

I. INTRODUCTION

Computing single-source shortest paths (SSSP), that is,
the distance of all vertices from a given source , is one
of the fundamental problems of graph theory. This problem
has applications in many disciplines from Internet routing,
to finding routes in GPS systems, to path planning for robots
and computing centrality values that indicate the importance
of a vertex in social and biological networks.

The structure of graphs that occur in real world systems
often changes with time, and therefore the results of SSSP
also change accordingly. Depending on the type of change,
it is often faster to update the existing results rather than
recompute the entire problem on the changed graph !. Since

UIn this paper we use the terms network and graph synonymously.

University of Oregon, Eugene,

Email: riazi@uoregon.edu

Sara Riazi Boyana Norris
University of Oregon, Eugene,
Eugene,OR 97403

Email: bnorris2@uoregon.edu

OR 97403

Sanjukta Bhowmick
University of North Texas,
Denton, Texas, USA
Email: sanjukta.bhowmick@unt.edu

many big data problems require the analysis of extremely
large graphs, e.g. of over a million vertices, it is imperative
to use parallel algorithms for analyzing these graphs.

While there exists sequential algorithms for updating
SSSP and parallel algorithms for recomputing SSSP from
scratch on the changed graph, there are almost no parallel
algorithms that can also update SSSP without recomputation.
To the best of our knowledge, ours is the first paralllel
algorithm for updating SSSP on shared memory systems.
The few existing SSSP updating algorithms for clusters
based systems and GPUs, do not scale to large graphs or are
very memory intensive (Section VI provides more details).

Key Contributions. Our main contribution is to present
a shared-memory parallel algorithm for updating SSSP on
massive weighted dynamic networks. Our key strategy is to
recognize that a change (addition/deletion of a vertex/edge)
only affects certain parts of the graph. Therefore if we can
limit the new set of computations to only the subgraph
affected by the set of changes, then we can significantly
reduce the updating time.

Our algorithm consists of a novel two step process of first,
identifying the initial set of vertices affected by the changes
and then updating the SSSP tree by setting each of the
affected vertices as the root. These steps are implemented in
parallel, and breaking the operation into two steps, improves
the scalability while reducing redundant computations. Our
main contributions are as follows:

o Present a two-step parallel algorithm for updating SSSP
on large-scale dynamic weighted graphs on shared
memory architectures. (Section III).

o Provide proofs of the correctness of our algorithm.
Discuss how increasing the level of asynchrony can
improve the execution time (Section IV).

o Empirically demonstrate that our algorithm is faster
than recomputing SSSP using Galois, a state-of-the-art
shared memory graph analysis software [1] (Section V).

II. BACKGROUND: UPDATING SSSP SEQUENTIALLY

In this section we present the foundational concepts of
this paper including a brief description of relevant graph
terminology, the Dijkstra’s methods for computing SSSP and
sequential algorithm for updating the SSSP.

A. Graph Terminology

A graph is defined by G = (V, E), where V is the set of
vertices and E is the set of edges. In weighted graphs, each
edge is associated with a real number known as its weight.
The vertices v and v are called the endpoints of an edge
e = (u,v). A path of length [is an alternating sequence
Vo, €1, V1, €2, ..., €1, of vertices and edges, such that for
Jj=1,...,1, the vertices v;_; and v; are the endpoints of
edge e;, with no edges or vertices repeated. A cycle is a
path with the same starting and ending vertices, i.e. vo=v;.
A tree is a connected graph with no cycles. A spanning tree
is a tree that includes all vertices in the graph.

The shortest path between two vertices, v and v, is a
path that starts from u and ends at v such that the sum of
the edges is minimized. The single-source shortest path tree
(SSSP tree), T', is a spanning graph, such that the distance
of any vertex v (referred here as Dist) from the root node r
in T is the shortest path from v to r in the original graph G.
For any two vertices v and u in the SSSP tree, v is marked
as the parent (in this paper referred by the variable Parent)
of u, if (i) the distance of v from the root is less than the
distance of u from the root, and (ii) there exists an edge
(v,u) in T connecting v to . Figure 1 (a) and (b) gives an
example of a graph and its corresponding SSSP tree.

B. Computing the Single-Source Shortest Paths

Dijkstra’s method is most commonly used for computing
the single-source shortest path. When implemented using a
priority queue, the complexity of the algorithm is O(|E| +
[V |log|V']). Algorithm 1 gives the pseudocode of Dijkstra’s
algorithm on a weighted undirected graph. This version uses
priority queue and maintains the structure of the SSSP tree
in the form of a parent-child relation.

C. Updating the Single-Source Shortest Paths

The changes in the graph are in the form of addi-
tion/deletion of vertices/edges. The process for updating the
SSSP tree for a single changed edge is as follows. Identify
the endpoint vertex that is affected by the change, treat it
as a root and push it to the priority queue. Then continue
to update the SSSP tree, as per the Dijkstra’s method, until
the priority queue is empty (see Algorithm 2).

The information about the parent-child relation among the
vertices in the SSSP tree is not necessary for updating due
to edge insertion, since all the neighboring vertices of v are
checked to see if their distance decreases. However, when
an edge is deleted, we need to know which are its children
as per the tree, since we have to disconnect the children and

Algorithm 1 Dijkstra’s Algorithm for Finding SSSP
Input: Weighted Graph G(V,E), Source Vertex s.
Weight of edge (v,u) is W (v, u).
Output: Distance from all vertices v to s. The SSSP
Tree is stored in the form of Parent of each vertex
1: procedure DUUKSTRA’S METHOD(G, s)
> Initialize Distance , Dist, Parent Parent and
Priority Queue, PQ.

2 for v €V do
3 Distlv) = INF
4 Parent[v] =v
5: PQ + s
6: Dist[s] < 0
7 while (PQ not empty) do
8 v=PQ.top()
9: PQ.dequeue()
10: for n where n is neighbor of v do
11 if Dist[n] > Dist[v]+W (v, n) then
> Update Dist
12: Dist[n] < Dist[v] + W (v,n)
13: PQ.enqueue(n) > Add n to Priority
Queue
14: Parent[n] < v > Mark v as parent of n

reconnect using neighbors who are not children. In this case,
the structure of the SSSP tree is needed.

Batched Updates: The addition of a vertex is equivalent
to adding a new vertex, and then inserting edges. Similarly
vertex deletion can be accomplished by deleting the edges
connecting it to the graph. Moreover, multiple edges can be
added/deleted. Thus the changes to a graph occur in batches,
i.e., there is a set of changed edges. As per the algorithm
in [2], the distances of the affected endpoints of all the
changed edges are updated, and these vertices are added to
the priority queue. Then their neighbors are processed in
a manner similar to that given in Algorithm 2. This is in
effect processing the changed edges sequentially based on
the position of the affected vertices in the priority queue.

III. OUR CONTRIBUTION: PARALLEL DYNAMIC SSSP

We present our proposed shared memory algorithm for
updating SSSP on a graph. Since change in vertices, in
effect, equals to addition/deletion of edges, we use changed
edges in our examples for simplicity.

A. Challenges to Scalability

There are two ways that a batch of changed edges can
be processed in parallel. The first is to distribute the work
across the graph. Here each thread is assigned a subgraph.
Each subgraph is updated in parallel, as per the set of
changes that affect that subgraph. This approach is prone
to load imbalance, since the set of changed edges may not

Algorithm 2 Updating SSSP for a Single Change
Input: Weighted Graph G(V, E), Dist, Parent, SSSP
Tree T, Changed edge F = (a,b) with weight W (v, u).
Output: Updated Dist,, Parent, and SSSP Tree T,
based on structure of Parent,,

1: procedure UPDATING_PER_CHANGE(F, G, T, Dist,

Parent)
2: > Initialize Updated Distance and Parent
3: for veV do
4; Disty,[v] + Dist[v]
5: Parent,[v] + Parent[v]
> Find the affected vertex, x
6: if Dist,[a] > Dist,[b] then x < a, y < b
7: else z+ b, y<+a
> Initialize Priority Queue P() and update
Dist,[z]
8: PQ + x
9: if F is inserted then Dist,[z] = Disty[y] +
W (a,b)

10: if E is deleted then Dist,[x] = INF

> Update the subgraph affected by «
11: while (PQ not empty) do

12: v=PQ.top()

13: PQ.dequeue()

14: Process_Vertex(v,G, T', Dist,,, Parent,,)

15: procedure PROCESS_VERTEX(v, G, 1T, Dist,,
Parent,)

16: for n where n is neighbor of v in G do

17: if Dist,[v] = INF AND Parent,[n] = v then

18: Disty[n]| =INF

19: PQ.enqueue(n)

20: else

21: if Disty[n] > Dist,[v]+W (v,n) then

22: Disty[n] < Dist,[v] + W(v,n)

23: PQ.enqueue(n)

24: Parenty[n] « v

25: else

26 if Dist,[v] > Dist,[n]+W (v, n) then

27: Disty[v] + Disty[n] + W(v,n)

28: PQ.enqueue(v)

29: Parenty,[v] < n

be equally distributed across the graph. Thus, situations can
occur where one subgraph processes a lot of changed edges,
while another subgraph may not have to process any edges.

The second approach, which we will use, is to distribute
the work across the set of changed edges. That is, for each
changed edge we execute the corresponding Algorithm 2 in
parallel. While this is a more scalable approach, there are
also several challenges with this strategy as follows.
o Load Imbalance: The computation required for a changed

edge is proportional to the size of the subgraph affected
due to the change. The size can range from O(insertions or
deletions do not affect the SSSP tree) to |V|.

Locking to Avoid Race Conditions: The subgraphs affected
by two different changed edges can overlap, i.e., include a
common set of vertices and edges. To avoid race conditions,
updates on overlapping regions have to be executed using
locking, a process that significantly reduces scalability.
Redundant Computations: The occurrence of overlapping
subgraphs can lead to redundant computations, particularly
if the changed edges occur in the same path to the root.
Using priority queues can reduce the redundancy, however,
priority queues are not amenable to parallelization.

B. Two-Step Algorithm for Parallel Edge Updates

To address these issues we propose the following two-step
algorithm for updating the set of changed edges in parallel.
Figure 1 gives an example of how our algorithm works.

Inputs and Outputs. The input to our algorithm is the set
of changed edges and the graph GG, whose edges have been
partitioned into key edges that are in the SSSP and remainder
edges that are not in the tree. Note that we take the SSSP
as an input, because our algorithm focuses on updating an
existing SSSP, not re-computing it. The vertices in the SSSP,
contain information about the their parent node (Parent)
and their distance (D1ist) from the root.

The output is the updated SSSP tree with the changed
edges incorporated as appropriate. The changed edges that
are not in the SSSP tree are added to the remainder edges.

Step 1. Identify Changed Edges that Affect the SSSP.
(Algorithm 3): In this step, we process all the changed
edges in parallel, and identify the ones that affect the SSSP.
Assuming all edge weights are positive, given an edge (u, v),
let the distance of u in the SSSP tree be lower than that of
v. Figure 1 provides an example.

Let the edge (u,v) be marked for insertion. The edge
will affect the SSSP only if by including the edge (u,v),
the distance of v is reduced, e.g. edge (A-F) in Figure 1. If
this happens then v is marked as the parent of v, and the
distance of v is updated. (Algorithm 3 Lines 10-15).

Now consider the edge (u,v) marked to be deleted. If the
edge is part of the key edges in the SSSP tree (e.g. edge
(A-B) in Figure 1), then the distance of v is changed to INF
(a very high value) to mark that the edge connecting v to
the tree is deleted. In both cases, insertion and deletion, the
vertex v is marked as affected. (Algorithm 3 Lines 16-21).

For the edges marked to be inserted, we conduct a further
iteration on them such that if a vertex has multiple changed
edges associated with it, it is updated with the edge with the
lowest weight (Algorithm 3 Lines 22-34).

Step 2. Update The Subgraphs of the Affected Ver-
tices(Algorithm 4): Once the changed edges that affect
the SSSP are identified, we update the subgraphs leading
from the affected vertices. Each vertex is associated with a

boolean variable, af fect, that is set to true if the distance
of that vertex has changed. At each iteration, the function
Process_Vertex_Parallel is applied to all the affected
vertices in parallel.The iterations converge when there are
no vertices to be updated.

In the example in Figure 1 at the first iteration, the affected
nodes are B and F. The distance of B is set to INF, so it also
sets the distance of its neighbors D and C to INF. However,
since C is also a neighbor of F, C becomes the child of F
and thus obtains a lower distance. At iteration 2, C and D
are the affected nodes. D updates the distance of E to INF.
C updates the distance of B, D, and E. Thus E obtains a
lower value than INF. At iteration 3, B, D and E are the
affected nodes. Only E updates the distance of D. At the
final iteration, D is the affected vertex. However no updates
occur, so the iterations converge.

Process_Vertex_Parallel is similar to Algorithm 2.
Here, instead of pushing the vertices to the priority queue,
which requires them to be processed sequentially, we mark
them as affected, so that they can be processed concurrently.

C. Addressing the Scalability Challenges

Our algorithm addresses the challenges to scalability
described in Section III-A as follows.

Load Balancing: For step 1, in Lines 9-21, Algorithm 3,
each changed edge has equal computation load. Their end
points are compared to see whether the edge can be inserted
or deleted. Thus regardless of whether the edge affects the
SSSP tree, the computation load is equal and balanced. Sim-
ilarly, each item in the for loop, Lines 25-34, Algorithm 3,
has equal computation cost. The number of items to process
decreases over each iteration of the while loop.

For step 2, the operations over the parallel for loop Line
4, Algorithm 4 can be slightly more imbalanced. Since we
are synchronizing at each level, the computation load per
affected vertex is proportional to the number of neighbors.
Thus the load balance depends on the skewness of the
degree distribution of the network. In this case, a dynamic
scheduler, such as the one provided by OpenMP can be used
to obtain an equitable load balance.

Locking to Avoid Race Condition: We eliminate the need
for locking by using iterative updates. The distance of ver-
tices in the subgraphs that are affected by multiple changed
edges gets updated over multiple iterations.

If the distance of the vertex is set to a higher value in one
iteration, in a subsequent iteration, the edge that provides the
optimal distance will update it. Note that since the distance
values are updated only if they become lower, after a certain
iteration the vertex will reach the optimal value and its
distance will no longer be updated, (and thus the vertex will
not be marked as affected). This will occur for all vertices,
hence, ultimately no vertex will be marked as affected and
the iterations will converge.

A
1 a 5 ’A
¢ 3 N\ 1/
B)= = /
Y .2 B 3 c
4 2
2
, a F
1 -
D N E 1
D E

(b) SSSP Tree

- 1 Change Set
INF_ * ~ A:F:1 (Ins)
B‘ 3 c \\ C:D:4 (Ins)
. A:C(Del)
4 4. F) A:B (Del)
1
D E

(c) Step 1: Identifying Key Edges

A A
v 1 Ry 1
o .
INFR C INEB G 2
4 F. F
1 1
D E INF D E
Iteration 1 (Affected: B and F) Iteration 2 (Affected: C and D)
A)
A
1 1
3
3 B
B [
c 2 2
4 3 2 F
2 E
1
D E D E

Iteration 3 (Affected: B, D and E) Iteration 4 (Affected : D) Converges
(d) Step 2: Updating the SSSP Tree

Figure 1. Example of Updating SSSP Tree for a Set of Changes (colors
online). Figure (a): The original graph. Figure (b): The SSSP tree from the
original graph. Figure (c): Step 1 of the updating algorithm. Each changed
edge can be processed in parallel. Key Edge (A-F) that affects the SSSP
is given in blue dashed line. Vertex A is now the parent of F instead of C.
Edge C-D that does not affect the SSSP is given in green dotted line. Key
deleted edge A-B is shown in pink dotted line and the distance of B is set
to INF. Figure (d): Iterations in Step 2 that lead to the updated SSSP. The
active edges at each iteration are shaded and processed in parallel. At each
iteration, the solid edges form a tree (or forest).

Redundant Computations: Redundant computations occur
when values associated with the vertices are updated multi-
ple times. As shown in Figure 1, the parent of vertex D is
updated three times.

Synchronization at each level can reduce the number of
redundant computations since, at the end of each synchro-
nization, the affected vertices will have the lowest distance
based on the changes propagated so far. Thus many non-
optimal values are not transmitted to subsequent edges in the
path and the number of redundant computations is reduced.

IV. PROOF OF CORRECTNESS AND ASYNCHRONOUS
UPDATES

We now provide proofs of correctness of our algorithm,
analyze the scalability, and discuss how increasing the level
of asynchrony improves the execution time.

Algorithm 3 Stepl: Processing Changed Edges in Parallel
Input: Graph G(V, E), Dist, Parent, SSSP Tree T,
Changed Edges C'E. Weight of edge (v, u) is W (v, u).
QOutput: Updated Dist,, Parent, and SSSP Tree T,
based on structure of Parent,,

1: procedure UPDATING_BATCH_CHANGE(CE, G, T,
Dist, Parent)

2: > Initialize Updated Distance and Parent
3: for v € V do in parallel
4: Dist,[v] + Dist[v]
5: Parent,[v] + Parent[v]
6: Af fectedv] + False
> Find the affected vertex, =
7: if Dist,[a] > Dist,[b] then z < a, y < b
8: else b, y<a
9: for Each edge F(a,b) € CE do in parallel
10: if F to be inserted then
> If E inserted, update Dist and Parent
11: if Dist,[z] > Dist,[y] + W(a,b) then
12: Disty,[x] = Disty[y] + W(a,b)
13: Parent,[x] =y
14: Mark E as inserted to SSSP Tree
15: Af fected[z] + True
16: else > I to be deleted
17: Remove E(a,b) from G
18: > Check if Edge in SSSP tree
19: if Parent[a] = b OR Parent[b] = a then
20: Distylx] =INF
21: Af fected[z] + True
> Lowest Value Edge gets Inserted
22: Change < True
23: while Change do
24: Change < False
25: for Each edge E(a,b) € CE do in parallel
26: if E marked to be inserted to SSSP then
> Find the affected vertex, x
27: if Dist,[a] > Dist,[b] then x < a, y
b
28: else x<+ b y<a
29: > Check replaces higher weighted edge
30: if Dist,[z] > Dist,[y] + W (a,b) then
31 Dist,[x] = Disty[y] + W(a,b)
32: Parent,[x] =b
33: Change < True
34: Af fected|z] < True

A. Correctness of the Algorithm

Consider a graph G, with positive edge weights, that is
modified to graph G, due to changes in its structure. We
will prove that our parallel updating algorithm, as given by
Algorithms 3 and 4, will produce a valid SSSP tree for G,,.

Lemma IV.1. The parent-child relation between vertices as-
signed by our parallel updating algorithm produces tree(s).

Proof: To prove this, we first create a directed graph
where the parent vertices point to their children. Now
consider a path in this graph between any two vertices a
and b. The path goes from vertex a to vertex b. This means
that a is an ancestor of b. As per the algorithm for creating
the original SSSP tree (Algorithm 1), and the algorithms for
parallel update (Algorithms 3 and 4), a vertex v is assigned
as a parent of vertex w only if Dist[v] < Dist[u], therefore
transitively the distance of an ancestor vertex will be less
than its descendants. Thus, Dist[a] < Dist[b].

Since G has non-zero edge weights, it is not possible that
Dist[b] < Dist[a]. Thus, there can be no path from b to a.
Hence, all connected components are DAGs, and thus trees.

|

Lemma IV.2. The tree obtained by our parallel algorithm
will be a valid SSSP tree for G,.

Proof: Let T,, be a known SSSP tree of G, and let T5,;4
be the tree obtained by our algorithm. If 7}, is not a valid
SSSP tree, then there should be at least one vertex a for
which the distance of a from the source in 1,4 is greater
than the distance of a from the source vertex in T,.

Consider a subset of vertices, .S, such that all vertices in
S have the same distance in 7, and 7,;,. This means that
Vv € S, Distr, [v] = Distr,, [v]. Clearly, such a set S can
be trivially constructed by including only the source vertex.

Now consider a vertex a for which Distr, [v] <
Distr,,,[v] and the parent of a is connected to a vertex
in S. Let the parent of a in T, (T,4) be b (c).

Consider the case where b=c. We know that the
Distr, [b] = Distr,,,[b]. Also, per Algorithms 1, 3, 4, the
distance of a child node is the distance of its parent plus the
weight of the connecting edge. Therefore, Distr,,, [a] =
Distr,,, [b] + W (a,b) = Distg, [b] + W(a,b) = Distr,[a).

Now consider when b # c. Since the edge (b,a) exists
in Ty, it also exists in G,. Since Distr, [v] # Distr,,, [v],
the distance of a was updated either in T}, or in T4, or in
both, from the original SSSP tree. Any of these cases imply
that @ was part of an affected subgraph. Therefore, at some
iteration(s) in Step 2, a was marked as an affected vertex.

Because the edge (b,a) exists in G and a is an af-
fected vertex, in Step 2 (Algorithm 4, lines 13:21), the
current distance of a would have been compared with
Distr,,,[b] + W (a,b). Since this is the lowest distance
of a according to the known SSSP tree T, either the
current distance would have been updated to the value of

Distr,,, [b] + W (a,b) or its was already equal to the value.
Therefore, Distr,[a] = Distr,,,[a]. |

Algorithm 4 Step 2: Updating Affected Vertices in Parallel
Input: Weighted Graph G(V,E), Dist, Parent,
Af fected, SSSP Tree T. Weight of edge (u,v) is W (u,v).
Output: Updated Dist,, Parent, and SSSP Tree T,
based on structure of Parent,,
1: procedure PROCESS_VERTEX_PARALLEL(v, G, T,
Dist,, Parent,)

2: Change < True

3: while Change do Change < False

4 for v € V' do in parallel

5: if Affected[v] = False then Skip the
vertex

Af fected|v] + False

for n where n is neighbor of v in G do
: if Dist,[v]=INF & Parenty[n] = u
then Dist,[n] = INF

9: Af fected[n] < True

10: else

11: if Disty[n] > Disty[v]+W (v, n)
then Dist,[n] < Dist,[v] + W (v,n)

12: Af fected[n] < True

13: Parent,[n] < v

14: else

15: if Dist,[v] > Disty,[n]+W (v,n)
then

16: Disty[v] < Disty[n] +
W(v,n)

17: Af fected[v] < True

18: Parenty[v] + n

B. Scalability of the Algorithm

Assume that we have p threads, and m changed edges to
process, out of which there are a insertions and b deletions
that affect the SSSP.

For Step 1, each changed edge can be processed in
parallel, requiring time O(m/p). For the edges that are
marked to be inserted, we perform further iterations such
that, for vertices associated with multiple changed edges,
the edge with the lowest weight is selected. The number of
iterations is generally low (i.e. 1-5), and can be treated as
a constant. Each of these edges can also be processed in
parallel requiring time O(a/p).

For Step 2, the parallelism depends on the number of
affected vertices, and the size of the subgraph that they
alter. At each iteration, an affected vertex goes through its
neighbors, so the work is proportional to its degree.

Assuming that x vertices are affected, x < m, and the
average degree is a vertex is d, then the time per iterations is
O(zd/p). The maximum number of iteration required would

be the diameter of the graph D. Thus an upper bound time
complexity for Step 2 is D x O(zd/p).

Taken together, the complexity of the complete updating
algorithm is O(%“'“HO(%). The term Dzxd represents
the number of edges processed. Let this be equal to E,.
The number of edges processed in the recomputing method
would be F + m. Therefore for the updating method to be
effective, we require E, < (E + m).

C. Reducing Iterations Through Asynchronous Updates

We now consider how we can reduce the value of FE,.
One way to do this is to reduce the number of iterations.
This can be done by increasing the level of asynchrony, i.e.
reducing the frequency of synchronization at the for loop.

To increase the asynchrony, we process for longer paths,
rather than only the neighbors. While synchronizing the up-
dates after each set of neighbors are processed can improve
load balancing and reduce the redundant computations,
increased asynchrony can reduce the number of iterations
and consequently reduce the execution time, by reducing
the number of times the parallel for loop is invoked. In
Section IV-C, we empirically demonstrate how increasing
the rate of synchronization affects the execution time and
redundancy of computations.

V. EXPERIMENTAL RESULTS

A. Datasets and Experimental Environment

In this section we present our experimental results. We
use several synthetic and real world graphs for evaluating
the performance of our algorithms. For experiments we used
a machine with 36-core dual-socket Intel Xeon E5-2699 v3
2.30 GHz (Haswell) CPUs and 256GB DDR4 RAM.

Table 1
REAL-WORLD OF GRAPHS IN OUR TEST SUITE.

Name Num. of Vertices Num. of Edges
com-Live Journal 3,997,962 34,681,189
com-Youtube 1,134,890, 2,987,624
soc-Pokec 1,632,803 30,622,564

Synthetic Graphs: We used the R-MAT model based
on recursive Kronecker matrices to generate the synthetic
graphs. The degree distribution of the graph is defined by
four values (a,b,c,d) whose sum adds up to 1.

We generated two types of RMAT graphs. The first
(@ = .45,b = .15,¢ = .15,d = .25), labeled G, has a
scale-free degree distribution. The second (¢ = b = ¢ =
d = .25), labeled ER, is a random network with normal
degree distribution. Comparing between these graphs help
us to study how degree distribution affects the performance.
Graphs RMAT24 and RMAT?25 have about 16M vertices,
268M edges and 33M vertices, 536M edges respectively.

Real-world Graphs: Our test suite contains three real-
world networks from the Stanford Network Database [3] You
Tube, Pokec, and Live Journal (Table I lists their sizes).

B. Scalability Results

Figures 2 and 3 show the parallel scaling of our algorithm
on two synthetic and three real-world graphs, respectively
(the graphs are described in Table I). We show the time for
updating the shortest path following a 50-million-edge up-
date with different fractions of edge insertions and deletions.
Specifically, 2% insertions mean that the dataset contains
2% edge insertions and (100 — z)% edge deletions. We
compare time instead of TEPS(traversed edges per second)
because (i) time is a more fundamental metric and (ii) TEPS
is not a suitable metric for dynamic networks since our goal
is to process as few edges as possible.

The results show that our algorithm is scalable for all
the graphs, although the scalability decreases as the number
of processors increase (as the amount of work per thread
shrinks). We observe that random(ER) graphs are more
scalable than the scale free(G) graphs.

For the real-world graphs, the time increases for pro-
cessing deletions, whereas there is not a significant change
in time for the synthetic graphs. We presume that this is
because the real-world graphs are smaller, and therefore the
percentage of affected vertices due to deletion is higher.

1) Effect of Choice of Source Vertex: For consistency, we
use vertex 0 as the source vertex in all cases in Figures 2
and 3. On the other hand, Figure 4 explores the effect of
choosing a different source vertex. We selected two other
sources vertices at random from two of the graphs and
computed the time for updating over 100% insertions. As
shown in Figure 4, the timings for the three vertices were
almost identical with very low standard deviation between
them. This result indicates that the selection of source
vertices does not significantly affect the scalability or the
execution time.

2) Addition and Deletion of Vertices: Our algorithm
also supports the addition and deletion of vertices. To
accommodate this, our graph data structure, which is an
adjacency list, maintains a buffer space for possible addition
of new vertices. In effect, this is equivalent to storing several
disconnected vertices. Once a new vertex is added, the edges
are inserted in the corresponding row of the adjacency list as
per our template. To delete a vertex, all its edges are marked
to be deleted. Figure 5 shows the strong scaling results for
adding 100 vertices and deleting 50 vertices from RMAT?24,
ER and G.As in the case of only edge changes, the scalability
is better for the random graphs, than the scale free graphs.

C. Comparison with Galois

We compare the time taken to update the SSSP with the
time taken to recompute the shortest path from scratch by us-
ing the latest stable release, 2.2.1, of the Galois software [4].

Galois identifies fine-grained parallelism in graph algorithms
and has been shown to be very fast compared to other
parallel network packages. Galois computes the solution to
the SSSP problem with non-negative edge weights using
an iterative A-stepping algorithm [5], which is a SSSP
algorithm whose schedule can be adjusted to fall between
Dijkstras and the Chaotic Relaxation algorithms (we used
the default A value).

Figure 6 shows the execution time of the update algo-
rithm compared with the Galois static SSSP implementation
on the RMAT24-G and RMAT24-ER graphs (described in
Sec V-A). Each experiment was repeated four times. The
”SSSP Total” time is the cumulative time for one update
of one million edges, with 100% (left) and 75% (right)
insertions. The Galois time is for computing SSSP on the
full updated graph.

Table II summarizes the improvement over Galois for
different thread counts and two RMAT graphs. The im-
provement was computed by averaging the times from four
experiments for each parameter combination and dividing
the Galois average time by the SSSP Update algorithm
average time. In all cases, the update algorithm is faster
than the recomputation.

Table 11
IMPROVEMENT OF OUR UPDATE ALGORITHM OVER GALOIS’S STATIC
ALGORITHM FOR A 1,000,000-EDGE UPDATE WITH 100% AND 75%
INSERTIONS ON THE RMAT24-ER AND RMAT24-G GRAPHS.

Experiment Threads Galois SSSP Update Improv.
RMAT24_ER_100i 1 53.5 25.5 2.1
RMAT24_ER_100i 2 27.2 16.5 1.6
RMAT24_ER_100i 4 144 8.8 1.6
RMAT24_ER_100i 8 7.8 49 1.6
RMAT24_ER_100i 16 4.6 3.1 1.5
RMAT24_ER_100i 32 3.0 2.5 1.2
RMAT24_ER_100i 48 3.0 2.4 1.2
RMAT24_ER_100i 64 2.8 2.4 1.2
RMAT24_ER_100i 72 29 2.5 1.1
" RMAT24_G_100i ~ I 694 175"~ 40
RMAT24_G_100i 2 36.5 10.6 34
RMAT24_G_100i 4 17.9 5.7 3.1
RMAT24_G_100i 8 10.1 33 3.1
RMAT24_G_100i 16 5.8 2.1 2.8
RMAT24_G_100i 32 3.7 2.0 1.9
RMAT24_G_100i 48 35 1.8 1.9
RMAT24_G_100i 64 34 2.0 1.7
RMAT24_G_100i 72 33 2.0 1.6

D. Effect of Increasing Asynchrony

We now explore how increasing the level of asynchrony
effects the execution time. We define the level of asynchrony
as the one minus the length of the path to be traversed before
synchronization at the for loop. Level 0 means that only
the neighbors are processed, Level 1 means that distance-2
neighbors are processed and so on. We updated RMAT24
G and ER graphs with 10M edges with 100% and 75%

350 300 350
9 i o, ; o .
200 100% Insertions Graph 250 75% Insertions Graph 200 50% Insertions Graph
250) a RMAT24-G ’ a RMAT24-G 250 a4 RMAT24-G
n + RMAT24-ER G 200 : + RMAT24-ER n + RMAT24-ER
g 200 * RMAT25-G ﬁ 150 * RMAT25-G §200 + RMAT25-G
GEJ 150 0 o RMAT25-ER g e RMAT25-ER g 150 o RMAT25-ER
F 100 ’ i= 100 F 100
50 50 50 0 N g T
0 0 0
1 2 4 8 16 32 64 1 2 4 8 16 32 64 1 2 4 8 16 32 64
Threads Threads Threads

Figure 2. Scalability of shared-memory parallel SSSP computation with two RMAT (synthetic) graphs (described in Table I) for 50 million edge changes

consisting of 100%, 75%, and 50% insertions (left, center, right).

80 160 300
0, 1 0, i 0, 1
70 100% Insertions Graph 140 75% Insertions Graph 250 ?0 % Insertions Graph
60 a Live Journal 120 =% a Live Journal . a Live Journal
/o\' 50 + Youtube 1-; 100 + Youtube ’J 200) + Youtube
o) o} o) .
£ 40 = Pokec L g #= Pokec 2 450 . * Pokec
) ©)
g0 E 60 € 100
= 20 h = 40 =
10 "= T 0 > 50
0 B e L 0 0
1 2 4 8 16 32 64 1 2 4 8 16 32 64 1 2 4 8 16 32 64
Threads Threads Threads
Figure 3. Scalability of shared-memory parallel SSSP computation for three real-world graphs (described in Table I), for 50 Million edge changes

consisting of 100%, 75%, and 50% insertions (left, center, right).

350
300 Graph
—~ 250 A RMAT24e
S)
\%200 ¥ Live Journal
© 150
= 100
50
0
Threads
Figure 4. Comparison of the execution time and scalability for updating

SSSP based on different source vertices with 100% insertion (0% deletion).
For both the graphs, the choice of the source vertex has very little effect
on the time and scalability.

insertions. For each of these four cases, we varied the level
of asynchrony by 0, 50, 100, 500 1K and 5K.

Figure 7 gives the execution time with increasing asyn-
chrony for 8 threads. There is a sharp decrease in time as the
level of asynchrony increases from 0 to 50. The execution
time decreases with further increase in asynchrony, although
the slope is not as steep.

We now study the effect of asynchrony on vertex up-

Scalability Results for Vertex Insertion-Deletion

550
. 100 1 \\
=
£ AY
¢ 801 N\
] A Y
£ §r.74
v o ~ =8= RMATZ4-G
E N =8- RMAT24E
S ~
8 ™ @266
E Y an T et
] <2 =~ @8.98
] —~g2d.20 o
20 1 -~ 131
~ga— =B __01p 815
1 2 4 8 16 E7)
Number of Threads

Figure 5. Scalability of adding and deleting vertices. RMAT24-ER,G
networks with 10 million edges changed, 100 vertices inserted and 50
vertices deleted.

dates. If a vertex is updated multiple times then each
update is counted. Thus the updates include both the
necessary as well as redundant computations. Figure 8
compares how the percentage of updates, computed as

updates_at_level_r—updates_at_level 0 . : .
epdaics ai level 0 , change with increasing

Graph RMAT24-ER 100% Insertions
4 Galois

+ SSSP Initial Update 40
* SSSP Complete Update

Graph RMAT24-ER 75% Insertions

A Galois
+ SSSP Initial Update

50

@ g 30 * SSSP Complete Update
£30 ® SSSP Total Ko ® SSSP Total
o
£ 20 220
10 =10
0 T LTI 0 Tt T T TSI
12 4 8 16 32 48 64 T2 1.2 4 8 16 32 48 64 72

Threads Threads

Figure 6.

80 Graph RMAT24-G 100% Insertions 80 Graph RMAT24-G 75% Insertions

70 4 Galois 70 4 Galois
__60 + SSSP Initial Update __60 + SSSP Initial Update
350 * SSSP Complete Update S 50 « SSSP Complete Update

¢ SSSP Total £ 40 @ SSSP Total

8 16 32 48 64 72 1 2 4 8
Threads

Threads

Comparison of our algorithm with Galois for two different RMAT graphs of degree 24 with 1,000,000 edge changes consisting of 100%

insertions and 0% deletions (first and third plots), and 75% insertions and 25% deletions (second and fourth plots). The update phases of our algorithm,
Initial Update (Step 1) and Complete Update (Step 2) are shown individually, and their sum is reflected in the SSSP Total value reflecting the total update
cost. The Galois measurement is for applying the A-stepping algorithm over the modified graph with the default A value.

w
=]
c
2 o7
(7] &
v =0= RMAT24-E-75%
é 20 @13\\ =e= RMAT24-G-75%
E N2 391
= "\iwg S~ 54——‘4“?-8-_,,12.43
%lﬂf gl - 9——4&‘3__ &-4p7
| !]]] 7
M 0 50 100 500 1000 5000
&
% Lo
§ 254 ‘\ =8= RMAT24-E-100%
2 ~ —e= RMAT24-G-100%
Y 20+ -~
= ~
2 15 | 000 — @505 | gamra . A543 gabis
=
T o) e065
o ~
E S
g 54 R -~ V-V Y-1. B
x T T T T T T
“ 0 50 100 500 1000 5000
Number of Asynchrenous Steps
Figure 7. Change in execution time with increased levels of asynchrony

on 8 threads. X-axis: level of asynchrony. Y-axis: time to update SSSP.
Higher asynchronous levels lead to lower time.

"
8
2 Asynchronous Results on 8 threads o
=2
= 0% g B W = =T
2 27 PRI < <
2 ’ =9= RMATZ4-E-100%
€1 s —8- RMAT24-G-100%
=2
= of_ﬁﬂlﬂ%— e 1T L% o 2% —) 20%) 2P%
g T T T T T
e 0 50 100 500 1000 5000
g
£
4
2
L oo { IE = R - S = SR = SR = %
E e gl 38% 60%
5 _as o -
o 7237 ~ 1 \
2 —8- RMAT24-E-75% \
E 504 —8= RMAT24-G-75% \
=
< S
v 7.5 \
2
© %0.48%
= T T T T T T
2 0 50 100 500 1000 5000

Asynchronous Runs

Figure 8. Percentage change in number of updates of vertex values with
respect to updates for the synchronous case (set at 0) on 8 threads. X-axis:
level of asynchrony. Y-axis: percentage change in updates.Asynchrony, in
general, leads to more updates of the vertices.

level of asynchrony, with respect to the updates for the
synchronous (level 0) method on 8 threads. Except for
RMAT24E 75% update, for all other cases, the number of
updates increase, indicating increase of redundant computa-
tions. Conversely the time is lower. We hypothesize that this
is due to the reduced calls for synchronization.

Figure 9 compares the scalability of the synchronous
update to asynchrony of 50k. Asynchrony at level 50K
requires less time, but is as scalable as the synchronous
update. These results demonstrate that correctly tuning the
level asynchrony can lead to faster and scalable update of
the SSSP tree.

VI. RELATED WORK

We discuss related work on static computation and dy-
namic updates for SSSP and centrality computations.

1) Algorithms for Computing SSSP: Many parallel im-
plementations of Dijkstra’s algorithm exist, for example
Galois [1], which we use for our comparison. A distributed
memory framework, Havoqgt [6], also supports parallel
SSSP. Maleki et. al. [7] proposed Dijskstra Strip Mined
Relaxation algorithm (DSMR) for shared and distributed
memory systems. Dijkstra’s algorithm has been parallelized
using transactional memory and helper threads [8].

2) Algorithms for Dynamic Updates: Ramalingam et. al.
[2], presented an SSSP algorithm for a dynamic network.
Narvez et. al. [9] proposed algorithms to dynamically update
shortest path trees. Bauer et al. [10] proposed a batch-
dynamic SSSP algorithm. They also conducted an empirical
study of different dynamic shortest path algorithms for batch
updates. All these algorithms are sequential. Vora et. al. [11]
have proposed approximations for streaming graphs.

We know of only one parallel dynamic algorithm for
updating SSSP [12]. This algorithm is implemented on
GPUs using JavaScript. However, the dataset did not contain
very large graphs and no scalability results were provided.

3) Computing and Updating Centrality Metrics: SSSP
is the base algorithm for computing vertex centralities for
which many approximate algorithms have been developed,
including parallel implementations on different platforms
[13]-[15], algorithms for dynamic networks [16]-[19]. How-
ever, the dynamic algorithms use approximate computations.

@
8
2
S
3 L
Lg 100 ~ == RMAT24-E-75%
o E,Bﬁ \i&.z} =@= RMAT24-E-75% 5K Asynchronous
~ <
E 5 ~ 390 = wLT3
I oL T~ 9
5 ~oL_ R S gea g
g 4 ch =g
3 1 2 4 8 16 32 64
I}
] 166
H *\ —e- RMAT24-E-100%
& 100 ~ —e- RMAT24-E-100% 5K Asynchronous
£ &-77 N
2 Ve
F so ~ o
= Ng.45 ~ w189
=] -~ S~
2 ~ @38 sﬁ.ﬁ
5 - 3T = 0% — gl2.58
i = T §H T g —gin
5 © - - - } ?

1 2 4 8) 3 64
Number of Threads

Figure 9.

VII. CONCLUSIONS AND FUTURE WORK

In this paper we presented a shared-memory algorithm
for updating the SSSP on dynamic graphs. We also demon-
strated that increasing the level of asynchrony can further
reduce the execution time. To the best of our knowledge,
this is the first practical and scalable parallel algorithms for
updating SSSP for shared memory systems 2. In future work,
we aim to extend our algorithm to provide exact updates of
centralities on weighted graphs. We also plan to extend this
idea on other parallel platforms, such as distributed clusters
and GPUs.

ACKNOWLEDGMENT

Sanjukta Bhowmick and Sriram Srinivasan are supported by the
NSF CCF Award #1533881 and #1725566. Sajal Das is supported
by the NSF CCF Awards #1533918 and #1725755. Boyana Norris
and Sara Riazi are supported by the NSF CCF Award #1725585.

REFERENCES

[1] K. Pingali, D. Nguyen, M. Kulkarni, M. Burtscher, M. A.
Hassaan, R. Kaleem, T.-H. Lee, A. Lenharth, R. Manevich,
M. Méndez-Lojo, D. Prountzos, and X. Sui, “The Tao of
parallelism in algorithms,” SIGPLAN Not., vol. 46, pp. 12-25,
June 2011.

[2] G. Ramalingam and T. Reps, “On the computational com-
plexity of dynamic graph problems,” Theoretical Computer
Science, vol. 158, no. 1-2, pp. 233-277, 1996.

[3] J. Leskovec, “Stanford Large Network Dataset Collection.”

http://snap.stanford.edu/data/.
[4] “Galois system.” http://iss.ices.utexas.edu/?p=projects/galois,

2018. Accessed on 2018-03-37.
[5S1 U. Meyer and P. Sanders, “A-stepping: A parallelizable

shortest path algorithm,” J. Algorithms, vol. 49, pp. 114-152,

Oct. 2003.
[6] R. Pearce, M. Gokhale, and N. M. Amato, “Faster Parallel

Traversal of Scale Free Graphs at Extreme Scale with Vertex
Delegates,” pp. 549-559, IEEE, Nov. 2014.

[7]1 S. Maleki, D. Nguyen, A. Lenharth, M. Garzarn, D. Padua,
and K. Pingali, “DSMR: A parallel algorithm for single-
source shortest path problem,” pp. 1-14, ACM Press.

2Source code and instructions to reproduce our scalability results are
available on https://github.com/DynamicSSSP/HIPC18/

50 4 = -49.96
&9.687 So
"~.;&471‘ s
~ ~g3319 w225 w37 J2409 _J1.b2
~ oL g gt %
1 2 4 8 16 32 64

== RMAT24-G-75%
=9= RMAT24-G-75% 5K Asynchronous

@

Execution Time in Seconds

T
~ —e- RMAT24-G-100%
~ —o- RMAT24-G-100% 5K Asynchronous

20 ™ &9.026

~
5.216 S~

« S -B'0'6~ 0423

10 N2 W23 _a857

—A9 e g 7]
Teeun —cka03

Execution Time in Seconds

— G g BB gl 6
1 2 4 8 15 32 64
Number of Threads

Comparison of scalability of synchronous and asynchronous (level 5000) updates. Asynchronous updates are faster and equally scalable.

[8] K. Nikas, N. Anastopoulos, G. Goumas, and N. Koziris, “Em-
ploying transactional memory and helper threads to speedup
Dijkstra’s algorithm,” in 2009 International Conference on
Parallel Processing, pp. 388-395.

[9] P. Narvaez, Kai-Yeung Siu, and Hong-Yi Tzeng, “New dy-
namic algorithms for shortest path tree computation,” vol. 8,
no. 6, pp. 734-746.

[10] R. Bauer and D. Wagner, “Batch dynamic single-source
shortest-path algorithms: An experimental study,” in Experi-
mental Algorithms (J. Vahrenhold, ed.), pp. 51-62, Springer
Berlin Heidelberg.

[11] K. Vora, R. Gupta, and G. Xu, “KickStarter: Fast and
Accurate Computations on Streaming Graphs via Trimmed

Approximations,” pp. 237-251, ACM Press, 2017.
[12] A. Ingole and R. Nasre, “Dynamic shortest paths using

javascript on gpus,” 2015.

[13] K. Madduri and D. A. Bader, “Compact graph representations
and parallel connectivity algorithms for massive dynamic
network analysis,” in /PDPS, pp. 1-11, 2009.

[14] K. Madduri, D. Ediger, K. Jiang, D. A. Bader, and D. G.
Chavarria-Miranda, “A faster parallel algorithm and efficient
multithreaded implementations for evaluating betweenness
centrality on massive datasets,” in /PDPS, pp. 1-8, 2009.

[15] A. E. Sariyiice, K. Kaya, E. Saule, and U. V. Catalyiirek,
“Betweenness centrality on GPUs and heterogeneous archi-
tectures,” in Proceedings of the 6th Workshop on General Pur-
pose Processor Using Graphics Processing Units, GPGPU-6,
(New York, NY, USA), pp. 76-85, ACM, 2013.

[16] K. Lerman, R. Ghosh, and J. H. Kang, “Centrality metric for
dynamic networks,” in Proceedings of the Eighth Workshop
on Mining and Learning with Graphs, MLG ’10, (New York,
NY, USA), pp. 70-77, ACM, 2010. .

[17] A. E. Sariyiice, E. Saule, K. Kaya, and U. V. Catalyiirek,
“Streamer: A distributed framework for incremental closeness
centrality computation,” in CLUSTER, pp. 1-8, 2013.

[18] E. J. Riedy and D. A. Bader, “Massive streaming data ana-
Iytics: A graph-based approach,” ACM Crossroads, vol. 19,

no. 3, pp. 3743, 2013.
[19] A. McLaughlin and D. A. Bader, “Scalable and high perfor-

mance betweenness centrality on the gpu,” in Proceedings of
the International Conference for High Performance Comput-
ing, Networking, Storage and Analysis, SC *14, (Piscataway,
NJ, USA), pp. 572-583, 1IEEE Press, 2014.

http://snap.stanford.edu/data/
http://iss.ices.utexas.edu/?p=projects/galois

	Introduction
	Background: Updating SSSP Sequentially
	Graph Terminology
	Computing the Single-Source Shortest Paths
	Updating the Single-Source Shortest Paths

	Our Contribution: Parallel Dynamic SSSP
	Challenges to Scalability
	Two-Step Algorithm for Parallel Edge Updates
	Addressing the Scalability Challenges

	Proof of Correctness and Asynchronous Updates
	Correctness of the Algorithm
	Scalability of the Algorithm
	Reducing Iterations Through Asynchronous Updates

	Experimental Results
	Datasets and Experimental Environment
	Scalability Results
	Effect of Choice of Source Vertex
	Addition and Deletion of Vertices

	Comparison with Galois
	Effect of Increasing Asynchrony

	Related Work
	Algorithms for Computing SSSP
	Algorithms for Dynamic Updates
	Computing and Updating Centrality Metrics

	Conclusions and Future Work
	References

