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Abstract— Recent advances in the study of artificial and
biological neural networks support the power of dynamic
representations–computing with information stored as nontriv-
ial limit-sets rather than fixed-point attractors. Understanding
and manipulating these computations in nonlinear networks
requires a theory of control for abstract objective functions.
Towards this end, we consider two properties of limit-sets: their
topological dimension and orientation (covariance) in phase
space and combine these abstract properties into a single well-
defined objective: conic control-invariant sets in the derivative
space (i.e., the vector field). Real-world applications, such as
neural-medicine, constrain which control laws are feasible with
less-invasive controllers being preferable. To this end, we derive
a feedback control-law for conic invariance which corresponds
to constrained restructuring of the network connections as
might occur with pharmacological intervention (as opposed to
a physically separate control unit). We demonstrate the ease
and efficacy of the technique in controlling the orientation and
dimension of limit sets in high-dimensional neural networks.

I. INTRODUCTION

The study and control of brain and brain-like networks
is significant for two reasons. First, recurrent neural net-
works enable universal function approximation so that results
gained in terms of neural forms may be employed upon
neural approximations of general systems [1], [2]. For this
reason, a substantial literature now concerns using neural
networks to learn control laws for potentially non-neural
systems [3], [4]. Secondly, the study of neural control is
important in its own right for applications ranging from neu-
ral medicine such as transcranial stimulation to the control
of artificial neuromorphic circuits (e.g. [5]). However, large
scale neural systems also pose major challenges for control
systems analyses as the desired objectives – for example,
modulating the ‘cognitive state’ of an individual – may be
far less concrete than those arising in conventional control
problems.

Large-scale neural computations associated with cognition
are increasingly being identified in two ways: either in terms
of their ‘functional connectivity’ (the correlation pattern
between neural populations [6]–[8]), or in terms of spectral
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coupling patterns which involve periodic behavior in at
least a subset of the population (e.g. [9]). Thus, control
objectives based upon cognition may involve the generation
of periodic orbits with a specific orientation or potentially
chaotic orbits with a desired correlation structure. These aims
stand in contrast with most existing control approaches that
involve stabilization of a fixed point, following extrinsically
specified trajectories, and/or rendering very simple manifolds
in phase space attractive (hyperplanes, facets, and simple
full-synchronization manifolds). The objective of the current
work is to identify closed-loop control strategies for neural
systems to reach limit sets satisfying criteria in terms of
topological dimension (i.e. static, periodic, or chaotic), and
covariance. We will demonstrate that these goals may be
condensed into a single objective of attractivity for certain
geometric cones embedded in the derivative phase space (i.e.,
the vector field). To identify closed-loop control strategies for
this objective (cone invariance) we employ a new technique
involving projective geometry on a system’s set of attainable
Jacobian matrices. This technique reduces an implicit prob-
lem over the set of all possible Jacobians to evaluating an
explicit problem at a finite number of points. In addition, all
results depend only upon the maximal slope of the nonlinear
(transfer) function linking neurons rather than its explicit
form. Thus, results are amenable to uncertainty regarding
the explicit input-output transformation being performed by
network components.

II. PROBLEM STATEMENT
We seek to determine a feedback control strategy for

recurrent neural systems which will satisfy two objectives:
1) an upper bound on the topological dimension of limit
sets (nω) and 2) a specific orientation of limit sets in
phase space as approximated by the covariance matrix of
limiting trajectories. We define a neural control-system as a
dynamical systems of the following form over Rn:

ẋ = Ŵψ(x)−Ax+ c+Bu(x) (1)
The variable of interest, x, is the vector of neural activa-

tion with each element corresponding to one neuron. The
parameters Ŵ and A are square matrices, c is a vector and
ψ is a vector of C1, monotone, univariate functions whose
derivatives span a bounded interval: Imψ′i = [0, limsup(ψ′i)] .
To ensure bounded-input-bounded-output (BIBO) properties
of the system we require that −A is a Hurwitz matrix (i.e.
all eigenvalues of A have strictly positive real part). This
formulation corresponds to a neural system with control input
matrix B and an instantaneous feedback function u(x) :
Rn → Rn. At present, we consider a more restricted form in
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Fig. 1. Schematic of control based upon network reorganization. A) In a
physiological setting, the control corresponds to manipulating the efficacy of
post-synaptic connections. For pharmacological applications the constraints
correspond to common chemical receptors (colors) between synapses as
formalized in the constraint matrix for the pre-synaptic cell Φj . Feedback
is not pictured in this panel. B) A traditional block-diagram of the system
contains both linear and nonlinear feedback to the plant (neuron). Control
is implemented by manipulating the gains for a set of amplifiers (b1 and
b2). In the text the corresponding notation is [bi]1, [bi]2.

which the control-rule is a linear operation on each neuron’s

output and parameterized as a set of constant vectors {bi}
transformed by the corresponding {Φi}:

Bu =

n∑
i

Φibiψi(xi) (2)

Here, each Φi is a n×mi matrix with mi ≤ n. This control

scheme corresponds to control by altering the connection

network structure of the existing system (rewiring) rather

than inserting new components into the network (i.e. a new

node to implement feedback, Fig. 1). The constraints Φi

correspond to constraints on which network structures are

allowable. Intuitively, each column of Φi corresponds to a

potential output channel for the ith neuron and the role of

the control vector bi is to distribute weight among potential

output channels in order to achieve the control objective.

Condensing this feedback law with the existing system leads

to:

ẋ = (Ŵ +H)ψ(x)−Ax+ c (3)

H = [Φ1b1 |Φ2b2 | ...Φnbn] (4)

This formulation is particularly relevant for pharmacological

control of brain circuits for which the main method of control

is altering the connection (synaptic) strengths between neu-

rons with constraints based upon the anatomical connectivity

and dependencies due to common chemical compositions

between synapses (Fig. 1 A). Unlike conventional control

problems the main challenge for abstract objectives relates

to how the objective is phrased. In the current case we

consider a desired topological dimension and covariance

structure for limit sets. Neither of these goals are easily

framed in terms of classic control strategies–in particular the

subset of phase space which satisfies these objectives is not

fixed, but rather a function of the vector field, so closed-

loop control in the form of (2) generates a ‘moving-target’

problem: changing the control to stabilize a set also changes

whether that set satisfies the objectives. The main theoretical

innovation of our approach is that we re-frame objectives in

terms of the closed-loop’s system’s derivatives. We associate

our objectives with a fixed set in the derivative space: the

negative quadratic cone generated by nonsingular matrix P :

C−(P ) := {x ∈ R
n |xTPx < 0}. (5)

Without loss of generality we assume that P is symmetric,

C−(P ) = C−(P + PT ). New advances in the theory of

monotone dynamical systems have demonstrated that, under

certain conditions, the topological dimension of all limit sets

contained in P will be less than or equal to the number of

P ’s negative eigenvalues (referred to as the rank of C−(P )).
This condition is referred to as C−(P )-cooperativity:

Definition 1 (C−(P )-cooperativity): We will say that the

system ẋ = f(x) is C−(P )-cooperative if there exists a

scalar-valued function λ : Rn → R such that:

P F ′(x) + (P F ′(x))T + λ(x)P < 0 ∀x ∈ R
n (6)

Throughout we use the notation (<) and (≤) to denote

the matrix ordering (A < B ⇒ (B − A) is pos. def.) and

similarly for ≤ and positive semi-definiteness.
C−(P )-cooperativity was first introduced by Sanchez

[10],[11] to generalize Poincaré-Bendixson properties to

high-dimensional systems. This result was derived from

the theory of monotone systems [12] and has since been

extended by Feng and colleagues [13]. The power of C−(P )-
cooperativity is that it simultaneously limits the manner

in which a system may evolve in terms of state-space

orientation and the dimensionality of limit sets.
Theorem 2.1 ([10],[13]): Suppose that the system ẋ =

f(x) is C−(P )-cooperative for some nonsingular, symmetric

matrix P possessing precisely k negative eigenvalues. Then:

1) ẋ(t) ∈ cl(C−(P )) =⇒ ẋ(T ) ∈ Int(C−(P )) ∀T > t
2) If ẋ(t) ∈ cl(C−(P )) then ω(x) is topologically

conjugate to an invariant set of a Lipschitz
vector field in R

k

The notation ω(x) denotes the ω-limit set for a point

x ∈ R
n with the implied vector field. Previous work has

demonstrated that conic-invariance for the derivative time-

series is a powerful method to discriminate (decode) brain

states [14]. The cones used to classify brain states are based

upon the covariance matrices. Namely, for a set of elliptical

statistical distributions with covariance matrices ({Σi}) and

zero mean, the Bayes-optimal conic classification rule is:

class(x) := argmin
i

xTΣ−1
i x

det|Σ−1
i |1/n (7)

In the two-class case the classification boundary is equiva-

lently describable by the sign of a quadratic form xT P̃ x:

P̃ := Σ−1
1 det|Σ1|1/n − Σ−1

2 det|Σ2|1/n (8)

so brain states defined in terms of covariance (i.e. ‘func-

tional connectivity’ [6]) may be separated based upon conic-

invariance for the derivative time-series (using the derivative

covariances). This ability stems from the ‘balancing’ prop-

erties of derivatives which dictates that the mean derivative

over a suitably long interval is always zero. As such, the

direction of individual derivative vectors indicates which

covariance distribution they were generated from and con-

versely, by controlling the direction of derivative vectors, we

may (heuristically) control the resultant covariance structure.

In the current framework, we only consider deterministic

systems. The notion of covariance is thus in the context of



the steady-state distribution for a given limit-set and thus
describes geometric orientation [14] rather than statistical
dependencies. One limitation of the current work in regards
to covariance is that the objective is based upon a contrast
(i.e. moving between two covariance structures) which is less
parsimonious than being based upon the covariance objective
alone. Likewise, the result concerning topological dimension
of limit sets provides an upper limit equal to the number of
P ’s negative eigenvalues but not an exact number. However,
all theorems and derivations are for a general matrix P with
no consideration for how it was chosen.

III. MAIN RESULTS

Our general aim is to ensure C−(P )-cooperativity for a
target matrix P . In particular, we aim to determine the set
of control vectors which minimize the maximal eigenvalue
of equation (6) and to determine computationally-tractable
necessary and sufficient conditions to determine whether a
closed loop condition satisfies C−(P )-cooperativity. As the
inequality, as stated, involves an infinite set of negative-
definite programming problems (one for each F ′(x)), reduc-
ing the problem without loss of generality is non-trivial. The
main results are Proposition 3.1 which derives the set of
control vectors which optimize an eigenvalue condition for
C−(P )-cooperativity, Proposition 3.2 which gives equivalent
conditions for C−(P )-cooperativity, and Proposition 3.3
which applies this controller and further reduces the com-
plexity of evaluating sufficient conditions. We first present
the propositions and delay their proof until the end.

As the C−(P )-cooperativity conditions must hold over all
Jacobians, the control choice which is most likely to satisfy
inequality (6) is the one which minimizes the maximum
eigenvalue over all Jacobians. However, this highly nonlinear
relationship involves a very large set of matrices and may
prove computationally intractable. Instead, we seek to mini-
mize the maximal eigenvalue of each nonlinear component’s
contribution to the overall equation. Explicitly, we minimize

Q̂({bi}) :=
∑
j

λmax

(
sgn(Σ)LT ([Ŵ ]j+Φjbj)([L

−T ]Tj )+

(
sgn(Σ)LT ([Ŵ ]j + Φjbj)([L

−T ]Tj )
)T)

(9)

with the notation [X]i denoting the ith column of matrix X .
We additionally add a minor condition which ensures that a
minimum exists. In Lemma 1 we consider the alternative case
to this condition (∀j, [Ŵ ]j /∈ Im[Φj ]) in which the maximal
eigenvalue may be made arbitrarily small but not zero.

Proposition 3.1 (Control Vectors): Suppose that ∀j,
[Ŵ ]j /∈ Im[Φj ] and each ΦTj Φj invertible. Suppose that
J := sgn(Σ)LT is invertible. Then the set of vectors which
uniquely minimize Q̂ (as defined in (9)) are:

bi = −βi
(

‖(I −Θi)J [Ŵ ]i‖√
‖[L−1]i‖2 − ‖Θi[L−1]i‖2

[L−1]i+J [Ŵ ]i

)
,

Θi := JΦiβ βi := ([JΦi]
T [JΦi])

−1[JΦi]
T (10)

This proposition follows immediately from Lemma 6.1,
whose proof is provided in the Appendix. We now provide

the main proposition which reduces the computational load
of inequality (6) in giving necessary and sufficient conditions
for C−(P )-cooperativity in the closed loop system. We
give this Proposition in its most general form (i.e. without
specifying a closed-loop control) as it is equally relevant to
more complex control schemes than we currently consider.

Proposition 3.2: Consider a system of the form ẋ =
Wψ(x) − Ax + c with parameters defined as in (1) and
a non-semi-definite, symmetric matrix P ∈ Sn. Denote the
surface of the k-sphere as ∂Sk. Let ψ′max denote the vector:
(ψ′max)i := max{∂ψi

∂xi
} and let Bn denote the set of n-

dimensional binary vectors: {0, 1}n. Denote the eigenvalue
decomposition of P (ordered greatest to least) as

P = U

[
Σ+ 0
0 −Σ−

]
UH , L := U

[√
Σ+ 0

0
√

Σ−

]
.

(11)
Hence, P = L(sgn(Σ))LT = LJ with Σ being the diagonal
matrix of P ’s eigenvalues. Let r, s denote the number of
positive and negative eigenvalues of P , respectively and
define the matrix function M(x) : Rn → Sn =

J(W (ψ′max ◦x)−A)L−T +(J(W (ψ′max ◦x)−A)L−T )T

= M(x) :=

[
R(x)r×r T (x)r×s
T (x)T K(x)s×s

]
. (12)

We use a1 ◦ a2 to denote the diagonal matrix formed by
element-wise multiplication of a1, a2. Then the system is
C−(P )-cooperative (i.e. satisfies (6)) if and only if the
following implications hold ∀x ∈ Bn, y ∈ ∂Sr, z ∈ ∂Ss:
(Is − yyT )(Tz +Ry) = (Is − zzT )(TT y +Kz) = 0 (13)

=⇒
[
y
z

]T
M(x)

[
y
z

]
< 0. (14)

This proposition reduces the relevant domain for (P F ′)
from all possible Jacobians for the system into the finite set
of binary vectors. Moreover the conditions for each Jacobian
are reduced from a negative-definite feasibility problem into
evaluating a quadratic form over what is almost-surely a fi-
nite number of points. This relation can be equivalently stated
as linearly coupled eigenvalue problems in two variables.

Corollary 2.1: the system is C−(P )-cooperative (i.e. sat-
isfies (6)) if and only if the following implications hold
∀x ∈ Bn, y ∈ ∂Sr, z ∈ ∂Ss with T,K,R as in (12).
Tz+Ry = λ1y, T

T y+Kz = λ2z =⇒ λ1+λ2 < 0 (15)
In the following proposition 3.3 we provide sufficient (but

not necessary) conditions for this inequality to be fulfilled
based upon a computationally-trivial eigenvalue relation in
the current context of control by network restructuring. All
control laws admissable under this framework are equivalent
to changing the network connection weights of the base
system (equation (2)). We now present the main result.

Proposition 3.3: Consider the system described in Propo-
sition 3.2, the closed-loop system as defined in equations (1),
(2) and control vectors {bi} (10). Define the matrix Ω:

χi := J(Ŵi + Φibi), λi := [L−T ]Ti χi + ‖[L−T ]i‖‖χi‖

vi := [L−T ]i‖χi‖+ χi‖[L−T ]i‖,Ω =
∑
i

λiviv
T
i ψ̂
′
i (16)



Fig. 2. Low-dimensional visualization of simulated derivative limit sets.
Trajectories are plotted for the derivative (ẋ(t)) projected down into the
largest positive eigenspace (denoted v+) and the two largest negative
eigenspaces (denoted v−). Left) without control the system generates highly
chaotic limit sets while the control (Right) generates complex periodic orbits
within the desired space (the “outside” of the mesh). Due to the low-
dimensional projection there is minor visual overlap between the projected
cone and the projected trajectories despite invariance in the full-dimensional
space. The cone has been rotated for visualization so that the “orientation”
corresponds to the azimuth

with ψ̂′i = [ψ′max]i. Define the block matrix G:

G = Ω− JAL−T − (JAL−T )T =

[
Rr×r Tr×s
TT Ks×s

]
(17)

If there exists a positive definite matrix Ŝr×r such that
λmax(R+ Ŝ) + λmax(K + TT Ŝ−1T ) < 0 (18)

or a positive definite S̃s×s such that
λmax(R+ T S̃−1TT ) + λmax(K + S̃) < 0 (19)

Then the closed loop system is C−(P )-cooperative.

IV. SIMULATIONS

To illustrate the power of the approach we simulated a
recurrent neural network with 100 neurons and a rank 25
control-input matrix common to all cells (i.e. Φ1 = Φ2...).
Elements of Φ were drawn from a standard normal distri-
bution. Connection weights were drawn from the truncated
distribution: Wi,j ∼ 10 tanh(N (0, 1)3). We set the linear
(A) term equal to a random positive diagonal matrix with
elements drawn from: Ai,i ∼ 10 + 10|N (0, 1)|. Values for
c were drawn from c ∼ N (0, 1/3). The nonlinear functions
ψi were all tanh functions. The P matrix was randomly
generated as well. We first generated a matrix P̂i,j ∼ N (0, 1)
and made it positive definite through P̃ = P̂ P̂T . The
final matrix (P ) was generated by negating the second and
third largest eigenvalues of P̃ . We simulated identical initial
conditions for both the base and closed-loop network using
Euler’s method (dt=.002, 50,000 steps) and the controller as
derived in Proposition 3.1. Since P was designed to have
precisely two negative eigenvalues, a successful controller
would generate either fixed points or periodic-orbits for any
initial conditions entering the cone. Results demonstrate that
this is what happened (Fig. 2,3).

V. CONCLUSION

We have introduced an approach for formulating and
solving closed-loop control problems with abstract objectives
such as the topological dimension and orientation of limit
sets. We have shown that such problems may be associated
with invariant cones in the derivative space. At present,

Fig. 3. Time series of the original simulated time series (x(t)) corre-
sponding to Figure 2. Top) With the identified control law, neural activity
converges to a complex periodic orbit. Bottom) In the absence of control,
the dynamics are far less ordered. Colors correspond to each eigenspace
(blue and red are negative, yellow is positive).

we emphasize neuromorphic models and implement control
by (constrained) restructuring of the network connection
matrix. Our control objectives are particularly relevent for
neural medicine as the covariance/orientation of brain activ-
ity differentiates among cognitive states as well as neural
pathologies (e.g. [7],[9],[14]). Pharmacological interventions
generally involve modifying specific sets of synaptic connec-
tions such as those utilizing a common neurotransmitter. By
equating the control matrices Φi with binding efficacy, and
the elements of each bi with a drug’s dosage, drug effects
can be modeled as restructuring control. In non-biological
contexts, this control problem corresponds to deciding fixed
gains for subcircuits connecting neuromorphic units (Fig.
1). Future applications may benefit from also penalizing
magnitudes of control solutions (‘control vectors’) so as to
minimize side-effects in the pharmaceutical case, or power
consumption in the case of neuromorphic networks.

VI. PROOFS

A. Proof of Proposition 3.1

Proposition 3.1 follows immediately from applying the
control conditions to the following Lemma (6.1).

Lemma 6.1: Consider a vector c ∈ Rn, c 6= 0 a matrix
Φ ∈ Mn,m≤n with ΦTΦ invertible and a nonzero vector
q ∈ Rn. Consider the maximal eigenvalue (λmax) of

Q(µ) := λmax
(
(c+ Φµ)q + ((c+ Φµ)q)T

)
. (20)

If ∃v with Φv = q then µ may be chosen so that λmax
is arbitrarily close to zero (∀ε > 0, ∃ε > 0|µ = −εv =⇒
λmax < ε). Otherwise (20) has a global minimum at

µ = −β
(
‖(I − Φβ)c‖√
‖q‖2 − ‖Φβq‖2

q + c

)
. (21)

Proof: To begin, we consider the eigenvalue decom-
position of matrices formed by the symmetrized sum. For
brevity we exclude the derivation. Let p, q ∈ Rn be nonzero
vectors. Then pqT + qpT has eigenvalues and corresponding
eigenvectors (up to scaling):

λ = {< p, q > +‖p‖‖q‖, < p, q > −‖p‖‖q‖}
v = {‖q‖p+ ‖p‖q, ‖q‖p− ‖p‖q} (22)

All other eigenvalues are equal to zero. By this decompo-
sition the maximal eigenvalue is therefore < c + Φµ, q >



+‖c + Φµ‖‖q‖ which is always nonnegative. For the first
case (∃v|Φv = q) we choose µ = −εv (Φµ = −εq) and
consider the limit as ε approaches infinity:

lim
ε→∞

< c− εq, q > +||c− εq||||q||

= cT q +
(√

ε2‖q‖2 − 2εcT q + ‖c‖2 − ε‖q‖
)
‖q‖ (23)

We then factor ε‖q‖ from the square root so that the
remaining ‖c‖2 term inside of the square root vanishes.

lim
ε→∞

(
− 1 +

√
1− 2

< c, q >

ε‖q‖2
+
‖c‖2
ε2‖q‖2

)
ε‖q‖2

= ε‖q‖2
(
− 1 +

√(
1− < c, q >

ε‖q‖2

)2)
(24)

Re-substituting into the original eigenvalue definition pro-
duces a limiting eigenvalue of zero which satisfies the first
conclusion. Otherwise, we have that q /∈ Im(Φ) which
enables us to show the existence of global minima.

1) Existence of a Global Minimum (Sketch): We consider
two cases. First, suppose that there is a κ ≥ 0|(c + κq) ∈
span{Φ}. Then we may choose µ so that c+ Φµ = −κqqT
for which λmax = 0 is the global minimum. Therefore,
suppose the opposite, that no such κ exists. In this case,
there is no µ such that λmax = Q(µ)= 0 (Cauchy-Schwartz
inequality), so a global minimum exists iff. there is no
sequence {µj , ..} ⊆ span{Φ} for which Q(µj) approaches
zero. Suppose such a sequence does exist. We know that
Q(µ) = 0 iff.∃ε ≤ 0|c+Φµ = εq (Cauchy-Schwartz inequal-
ity) so the sequence must limit onto the negative span of q.
To complete the proof, show that this sequence approaches
zero iff. q ∈ span{Φ} which violates the hypothesis.

2) Minimizing the Maximum Eigenvalue: Since Q is
smooth and we have proved the existence of a global
minimum, we can simply find that value using the gradient:

∇µλmax = ΦT q + ‖q‖ΦTΦµ+ ΦT c

‖Φµ+ c‖
= 0. (25)

We define α := ‖Φµ+c‖ and β := (ΦTΦ)−1ΦT for brevity.
Solving for µ produces the relation µ = −β((αq)/‖q‖+ c).
We then resubstitute µ to solve for α:

α2 =

∥∥∥∥− α

‖q‖
Φβq + (I − Φβ)c

∥∥∥∥2. (26)

Since Φβ is idempotent and symmetric, (Φβ)T (I−Φβ) = 0,
leaving a simple quadratic equation:

α2 =
α2

‖q‖2
‖Φβq‖2 + ‖(I − Φβ)c‖2 (27)

Solving for α and substituting in µ completes the proof.

B. Proof of Proposition 3.2

Proof: The proof consists of three main parts: 1)
showing it is necessary and sufficient to evaluate equation
(6) at the boundary points of each transfer function (0 and
lim sup(ψ′i)), 2) showing that equation (6) holds if and only
if wTPw = 0 =⇒ wTΓ(x)w < 0 and 3) reducing the
latter condition’s domain in w to only the critical points.

1) Reduction from Jacobians to Vertices: : For the first
part we note that both the set of Jacobians F ′ and P F ′ form

polytopes in matrix space: affine transformations of hyper-
cubes with the edge orientations described by the columns
P [Wi] and translated by the constant PA. The same poly-
tope geometry holds for the symmetrization P F ′+(P F ′)T

within the symmetrized matrix space. Define the set:
ΛP := {N ∈Mnxn|∃λ ∈ R (N +NT + λP ) ≤ 0} (28)

We use Mnxn to denote the set of nxn matrices. Clearly
ΛP is a convex cone and inequality (6) is satisfied iff.
Im(PF ′) ⊆ ΛP . Since Rn is a complete metric space and
ΛP is closed we have Im(P F ′) ⊆ ΛP iff. cl(Im(P F ′)) ⊆
ΛP with cl denoting the closure. We now use the Lemma:

Lemma 6.2: Consider a compact, convex set S ⊆ Rn and
a polytope P ⊂ Rn with vertices V . Then P ⊆ S iff. V ⊆ S.

Proof: Since S is a compact set in Rn and P is closed,
P ⊆ S iff. ∂P ⊆ S. The boundary of P consists of its faces
{F} and each face is equivalent to the convex hull of the
vertices it contains. By the definition of the convex hull Fi
is contained in a convex set S iff the associated vertices are
in S. We conclude that P ⊆ S iff. V ⊆ S.

By applying Lemma 6.2 to the containment of Γ(x) within
ΛP we thereby reduce this problem to the containment of the
vertices VF . By factoring out the maximal slope in equation
(12), the vertices correspond to the binary sets of length n.
We now reduce containment within ΛP into an explicit form.

2) Definite-Programming Feasability: : Using the projec-
tion orthogonal to P in matrix space (ΠP ) we determine
that for a symmetric matrix (M ∈ Sn), M ∈ ΛP iff.
ΠPM ∈ ΠPS−n with S− denoting the set of symmetric
negative semidefinite matrices which forms a closed, convex,
full, and self-dual cone. We now use a second lemma:

Lemma 6.3: Consider a closed, convex, full and self-dual
cone C in a real-valued Hilbert space V of dimension n ∈ N.
Denote the associated extremal rays of C as Ext(C) with
the convex hull conv(Ext(C)) = C. Consider a vector u ∈
V and denote the projection orthogonal to u as Πu. Then
(ΠuC)∗∩ΠuV = ΠuC. Moreover for any vector v ∈ ΠuV ,
v ∈ ΠuC iff. 〈v,Πub〉 ≥ 0 ∀b ∈ Ext(C).

Proof: Part(1): Since Πu is an orthogonal projection,
Πuv = v−〈v, u〉u/‖u‖∀v ∈ V . Thus the dual cone (ΠuC)∗

is the set {x ∈ V |〈x, b − 〈u, b〉u/‖u‖〉 ≥ 0 ∀b ∈ C}
and the intersection (ΠuC)∗ ∩ ΠuV = ΠuC is the set
{x ∈ ΠuV |〈x, b〉 ≥ 0 ∀b ∈ C}. As C is self-dual 〈x, b〉 ≥
0,∀b ∈ C iff. x ∈ C. Thus x ∈ (ΠuC)∗ ∩ΠuV iff. (x ∈
ΠuV ) ∩ C= ΠuC. We conclude (ΠuC)∗ ∩ΠuV = ΠuC.
Part(2): As C is equal to the convex hull of its extremal rays
b ∈ C∗ implies that b may be decomposed into a positive
linear combination of extremal rays. Since the extremal rays
are contained in C = C∗ it is necessary that 〈x, b〉 ≥
0 ∀b ∈ Ext(C) for x ∈ C∗ = C. As the outer product
of x with any element b ∈ C may be written as a positive
linear combination of outer-products with extremal rays we
have that it is also sufficient. Thus, x ∈ C iff. 〈x, b〉 ≥ 0
∀b ∈ Ext(C). Moreover the fact that C is self-dual implies
x ∈ ΠuV ∩C iff. x ∈ ΠuV ∩C∗. We combine this result with
the previous statement regarding extremal rays to rewrite
the second (right) condition as x ∈ ΠuV and 〈x, b〉 ≥ 0



∀b ∈ Ext(C). As the projection is orthogonal we may also
apply it to the second term in the inner product. Hence, for
x ∈ ΠuV , x ∈ ΠuC iff. 〈x,Πub〉 ≥ 0 ∀b ∈ Ext(C).

By applying Lemma 6.3 we determine that M ∈ Sn
is contained in ΛP iff. 〈ΠPM,ΠPu〉 ≥ 0∀u ∈ Ext(S−n ).
The extremal rays of S− consist of the sets of negative
dyadic/outer products: Ext(S−n ) ={−yyT |y ∈ Rn} with
the “dimensions” of S−n implied to be nxn throughout (by
“dimension” of a matrix space we mean the row/column
numbers of matrices for which it is composed, not the
rank of the actual vector space). Substituting we have
〈ΠPM,ΠP yy

T 〉 = 〈PM,ΠP yy
T 〉 ≤ 0 ∀y ∈ Rn.

As ΠP yy
T = {yyT |〈P, yyT 〉 = yTPy = 0} and

〈ΠPA,ΠPB〉 = 〈A,ΠPB〉 the previous condition is sat-
isfied iff. yTPy = 0 implies 〈M,yyT 〉 = yTMy ≤ 0. Thus
the following equivalency holds for ΛP :

ΛP ≡ {N ∈Mn×n|∀w ∈ Rn\{0},
wTPw = 0⇒ wTNw ≤ 0} (29)

Shedding the closure of ΛP by making the inequality strict
(wTNw < 0) ensures definiteness.

Part 3: Reduction to Extrema: For this section we
demonstrate that the condition wTPw = 0 is equivalent to
the conditions in equation (13). Consider the previously de-
scribed eigenvalue decomposition P = L(sgn(Σ))LT = LJ
with the eigenvalues ordered from greatest to least. Clearly,
wTP F ′ w < 0 iff. (LTw)T (JF ′L−T (LTw) < 0. Denote
the indices corresponding to P ’s positive eigenvalues as {r}
and those for the negative eigenvalues as {s}. We use r as
shorthand for the number of elements in {r} and similarly
for s and {s}. Consider a vector (w) and its transformation
[yz]T = LTw with y = [LTw]{r} and z = [LTw]{s}. Then
the statement yTPy = 0 is equivalent to ‖y‖ = ‖z‖. The
statement yTPy = 0 =⇒ yTP F ′(x)y = 0 is therefore
equivalent to Vx(y, z) < 0,∀y, x 6= 0) with

Vx(y, z) :=

[
y/‖y‖
z/‖z‖

]T
J F ′(x)L−T

[
y/‖y‖
z/‖z‖

]
(30)

The notation Vx here is meant to denote that V is considered
for a fixed value of x as opposed to denoting a partial
derivative. Without loss of generality, we suppose that both
y and z have unit length, hence they both inhabit closed sets,
namely the surface of the r-sphere (∂Sr) and the s-sphere
(∂Ss), respectively. We denote the matrix function M(x) =
(JF ′(x)L−T +(J F ′(x)L−T )T . We denote the block matrix
form, for a fixed value of x as M(x) as defined in Equation
(12). Clearly V (y, z) is smooth for each choice of x and
obeys 4λmin(M) ≤ V ≤ 4λmax(M). Since this mapping
is C1 for the entire domain and maps a compact (Heine-
Borel Theorem), connected set onto a bounded domain, it
possesses a global maximum which is attained at some point
with ∇V = 0 within respect to the restricted domain. Thus
inequality (30) is satisfied over the entire domain for y, z
if and only if it is satisfied for all points with ∇V = 0.

Therefore, we evaluate the gradient of V with respect to y:

∂V

∂y
=

2

‖y‖2

[
‖y‖2Ry − (yTRy)y

‖y‖
+
‖y‖2Tz − (yTTz)y

‖z‖

]
= 2(I − yyT )(Tz +Ry) (31)

and similarly for z. We then set ∇V = 0.

C. Proposition 3.3

Proof: (Sketch) This corollary follows from Proposition
3.2. Weyl’s inequality [15] ensures that the nonlinear term’s
spectrum is less than that of Ω. Case 1: split G as below.
Case 2) add S̃ to block [2,2] instead of Ŝ to [1,1].

G =

[
R+ Ŝ 0

0 K + TT Ŝ−1T

]
−
[
Ŝ T

TT TT Ŝ−1T

]
(32)

The right matrix is positive semidefinite by Haynsworth
inertia additivity ([16]), and the hypothesis ensure the left’s
quadratic term is negative as ‖y‖ = ‖z‖.
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