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Abstract—Many economic activities strongly depend on critical 

infrastructure systems, especially the electric power system. 

Failures in the electric power infrastructure not only cause the 

disruption of power supply but also result in losses in productivity 

across other dependent industries. This work aims to develop a 

framework that uniquely integrates a AC flow-based cascading 

failure analysis for the electric network with a multi-regional, 

multi-industry interdependency model to quantify the short-term 

economic impacts of electric power disruption due to cascading 

failures. A AC power flow-based cascading failure analysis is 

developed to enable the accurate reproduction and consequences 

estimation of a cascading event. We use the economic 

interdependency model to evaluate the economic impact of a 

cascading event taking into account spatial explicitness and cross 

border effects. The economic impacts due to both the direct power 

supply disruption and the workforce unavailability are estimated. 

A case study was conducted on the Swiss electric network, 

accounting for the international impact on other related 

countries. The results provide guidance for ranking the criticality 

of the elements in the electric network and for identifying the 

vulnerable regions and economic sectors that could be 

strengthened through preparedness planning. 

 
Index Terms—Cascading failure analysis; component 

criticality; multi-industry impacts; power systems; risk analysis. 

I. INTRODUCTION 

ascading outages in power systems are defined as one or 

more sequential dependent component outages that 

successively weaken the system [1]. Cascading outages can 

either terminate before interrupting the electricity service or 

continue until a blackout occurs. If the cascade process extends 

to the system level, it can cause massive disruption to electric 

power service. In August 14, 2003, the blackout event in the 

Northeastern U.S. and Southeastern Canada led to a disruption 

in power for 50 million people. The power supply disruption 

(i.e., 63 GW) accounted for approximately 11% of the total load 

demand in the affected area. Despite their infrequency, 

blackout events significantly affect system safety and reduce 

customer perception of power supply reliability [2, 3]. To 

maintain the security of the power supply and limit the potential 
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societal impact of the cascading events, it is important to assess 

system vulnerabilities and identify critical components that 

ensure the reliable operations of the power system. 

Vulnerability analysis is an emerging approach used in the 

risk management of critical infrastructures. It assesses the 

consequence in the system when a set of its elements is 

removed or when the system is operating in extreme conditions 

[4]. System vulnerability can be measured from two 

perspectives: (i) global vulnerability analysis, and (ii) critical 

component analysis [4], which provide different insights for a 

system’s ability in withstanding disturbances and stress. Global 

vulnerability analysis is carried out by removing an increasing 

number of components or changing the loading of the system to 

increase the stress on the system and uses a model of system 

response to estimate the resulting consequences. In critical 

component analysis, a component, or set of components, is 

identified as critical if, when failed, it gives rise to significant 

adverse consequences. Criticality measures serve as useful 

tools to identify weak links that may affect the performance of a 

system and to prioritize reliability improvement activities, 

among other uses [5]. Several analytical and empirical 

component importance measures have been proposed to rank 

the components according to their criticality in the system [6].  

Traditional vulnerability analyses often narrowly focus on 

the direct consequences of each individual infrastructure. 

However, the increasing functional and geographical 

interdependence among critical infrastructures that make them 

more efficient also make them more complex and vulnerable to 

the propagation of malfunctions [7]. As such, vulnerability 

measures should account for larger scale impacts, including 

across infrastructures and across multiple industries that rely 

upon them. Adapted from [8], the term cascading effects used 

here refers to the inoperability that occurs internally to a 

network (e.g., flow redistribution due to capacity exceedances), 

and interdependent effects refers to the inoperability that occurs 

external to the network as a result of its disruption (e.g., often 

experienced in communities and different industries that rely 

on electric power). 

In a power system, DC/AC flow-based cascading failure 

analysis has been proposed to estimate the consequence of a 

cascading event caused by various scenarios, e.g., 

ORNL-PSerc-Alaska (OPA) model [9, 10] or Manchester 

model [11]. These analyses measure the severity of a cascading 

event based on the direct impact in the power sector such as the 

power supply disruption. Due to the strong dependency of 

economic activities on the electric power supply [12], a 
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cascading failure in the electric power sector may propagate its 

impact to interconnected industries. According to [13], the total 

cost to the US caused by the 2003 Northeast Blackout ranges 

between $4 and $10 billion. Over 10 sectors experienced 

economic losses of more than $100 million, with the business 

services, electric power, and depository institutions and 

brokers industries among the most affected in terms of 

three-day economic losses [14]. The extensive societal impact 

of the cascading events on dependent economic sectors stresses 

the necessity of a systematic evaluation of the consequence of 

their disruption. Additionally, the direct infrastructure 

consequences and the societal effects caused by the component 

failure may differ to a large extent, which can lead to a different 

measure of component criticality and incorrect vulnerability 

reduction decisions [15]. Therefore, it is significant to account 

for the societal impact when identifying critical components in 

power systems. 

The inoperability input-output model (IIM) is proposed for 

quantifying the interdependent inoperability and economic 

losses experienced across multiple industries. The model takes 

into account both direct and higher-order economic effects 

caused by a disruptive event (e.g., a regional blackout). The 

IIM has wide applications in various vulnerability studies. Pant 

et al. [16, 17] developed an integrated model with the IIM and a 

simulation model of port operations to assess the 

interdependent impact caused by disruptions at an inland port 

terminal and to inland waterways, respectively. In [15], a model 

of the Swedish power transmission system and a regional IIM 

are integrated for measuring the long-term societal effects of a 

power supply reduction.  

The use of the IIM for quantifying the interdependency 

among economic sectors relies on large-scale databases that 

support the model, and such databases has resulted in the 

maturity of the field of input-output analysis. The wide 

application of IIM, especially in the study of the societal 

impacts of disruptive events [18], validates the application of 

IIM here. For instance, Anderson et al. [14] applied an IIM 

analysis to the 2003 US blackout, the results obtained are very 

similar to other estimations of published empirical studies. As 

the base IIM only provides an averaged estimation across 

geography, and model results may be insufficient for 

preparedness decision making within and across regions [19]. 

To address such spatial disruptions, Crowther et al. [19] 

introduced a Multiregional IIM (MRIIM) to extend the IIM for 

modeling the multiregional interdependencies among the 

various regions. The MRIIM captures cross border effects by 

accounting for the spatial explicitness in intraregional and 

multiregional interdependency matrices.  

The contributions of this paper are three-fold. First, a AC 

power flow-based cascading failure analysis is developed for 

estimating the consequence of cascading events caused by a set 

of failure scenarios. Second, the cascading failure analysis is 

validated against historical blackout data to demonstrate the 

model’s capability in capturing important statistical 

characteristics of cascading events. Third, the cascading failure 

analysis for the electric network is uniquely integrated with the 

MRIIM to quantify the short-term societal impacts of power 

supply disruption caused by cascading events. This paper 

extends prior work by the authors [20] by including the 

important step of cascading failure analysis validation and 

taking into account the inter-regional commodity and services 

exchanged to effectively capture the interdependent effects of 

economic consequences across the border. In the proposed 

framework, random failures of physical components are 

introduced in the power system to trigger a cascading event. 

The direct power supply disruption in the electric sector and the 

workforce unavailability in each sector with reliance on power 

supply are structured as inputs to the MRIIM. The analysis of 

interdependencies estimates the propagation of the losses 

among industries at the regional and international level. Both 

global vulnerability with respect to increasing load factors and 

critical component analysis are conducted. The case study on 

the Swiss electric network and affected countries provide an 

estimate of the large-scale economic impacts of disruptions due 

to cascading failures at the local and international level. The 

criticality of system components can be ranked based on the 

severity of these impacts. Furthermore, by aggregating the 

losses caused in each region and in each industry for various 

failure scenarios, it is possible to identify the vulnerable regions 

and economic sectors that should be strengthened for the risk 

management of cascading failures.  

This paper is structured as follows. Section II introduces the 

cascading failure analysis model, the MRIIM used for the 

interdependence study in the integrated model, and the metrics 

used for evaluating the societal impact of the cascading 

failures. The results of the case study on the Swiss electric 

network and the related countries and their implications are 

discussed in Section III. Section IV concludes the work and 

offers thoughts on future work. 

II. METHODOLOGY 

A. AC-PF based Cascading Failure Analysis  

In cascading events, the initial contingency can be 

unexpected outages of generators or transmission lines, a 

sudden unanticipated increase of demand, fluctuations of the 

generator output, or outage of other equipment [21]. The 

outages may be local and terminate before causing power 

supply disruption, or they may propagate to wide areas and lead 

to blackouts. Cascading phenomena are complicated because 

there are many failure mechanisms involved, which include 

cascading overloads, failures of protection equipment, reactive 

power problems, and voltage collapse. Cascading line 

overloads is one of the most common propagation mechanisms 

[3]. When a transmission line is overloaded, it triggers a 

dynamic of automatic disconnection from the network by a 

circuit breaker to prevent system damage. The load that is 

originally carried by the disconnected line is redistributed to 

other lines, which may lead to additional line overloads. 

FACTS can be applied to nudge power flows in desired 

directions and mitigate the line overloads [22]. The topology 

change can cause island operation in the system, and in the case 

of large power imbalance in the island, frequency instability 

can occur, which can lead to power supply disruption. The 
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system may enter a state of voltage instability after sequential 

line tripping or other changes in system condition that can lead 

to a progressive and uncontrollable drop in voltage. Under 

Frequency Load Shedding (UFLS) or Under Voltage Load 

Shedding (UVLS) can be implemented, respectively, when 

there is a potential of frequency/voltage instability in the 

system. The imbalance of the power generation and load 

consumption in the island is compensated by primary and 

secondary frequency control. If there is not enough generation 

capacity in the island, load shedding has to be conducted to 

restore the power generation/consumption balance and to 

correct the frequency deviation. 

To simulate the evolution of cascading failures and to assess 

potential adverse consequences, the steady-state operations of 

the power system is simulated with an approximate model. The 

model represents the dynamical process of cascading events 

that is consistent with some basic network and operational 

constraints. The cascading failure analysis is based on AC 

power flow. The linear nature of the DC PF method leads to 

efficient computation and applicability to large-scale systems. 

However, the voltage profile of buses and reactive power have 

significant impacts on the system conditions, and by 

disregarding their effects, the underlying assumptions in the 

DC PF method may provide underestimated results. This 

approach can model combinations of several types of failures 

such as cascading line overloads, frequency deviation, reactive 

power problems, and voltage drop. The non-sequential Monte 

Carlo method [23, 24] is applied to power system risk analysis, 

where the states of the components are sampled and a 

non-chronological system state is obtained. The model captures 

following phenomena: (i) it simulates critical scenarios that 

may trigger a cascading event; (ii) the post-contingency power 

flow on the transmission lines is computed with a AC power 

flow algorithm; (iii) primary and secondary frequency control 

of generators are activated in case of power 

generation/consumption imbalance in island operation [1], the 

frequency deviation are computed and the frequency control is 

modeled according to [25]; (iv) the lines are disconnected 

automatically when they reach the failure limit [26] [27]; (v) it 

identifies blackout conditions when there is frequency 

instability due to the large power imbalance in the island [1, 

28], and UFLS is conducted when the frequency exceeds the 

acceptable threshold [28]; (vi) UVLS is performed when the 

voltage magnitude at a bus is under the limit [29]; and (vii) if 

there is not enough generation capacity in the island, load 

shedding is conducted as a last resort. Constant load demand 

from the customer during the cascading event is assumed. In 

addition, the probability of having additional random failures of 

transmission equipment in the evolution of the cascading event 

is very low and is not considered. Demand not served (DNS) is 

used to measure the consequences of the cascading event, 

which is a commonly used reliability measure for power 

systems [30] [1].  

The cascading failure analysis evaluates the steady-state 

post-contingency system conditions [31]. The transient process 

after the failure (e.g., the dynamic frequency characteristics of 

the generator/load) is not involved in the analysis.  

1) Frequency Control 

The steady state frequency deviation after the cascading 

failure is evaluated according to the following equation [32]: 

                

,

1 1

1/ 1/
bus busN N

d h h

h h

P
f

D R
= =

−
 =

+ 
             (1) 

where ∆P is the power imbalance in MW. Dd,h and Rh are the 

frequency characteristics of the demand and generator at bus h, 

respectively. 

Here we restrict ourselves to a single-area system, where 

the objective of secondary control is power balancing within 

the area and to release the capacity used for primary frequency 

control. The contribution of each generator to secondary 

frequency control is computed from the nodal balance at bus h 

[25] 

          
, , , , ,0 nom primary secondary

h

g h g h g h d h l hk

k n

P P P P P


= + + − −          (2) 

where ,g hPnom

 is the nominal power generation, 

, /primary

g h hP f R= − and , ,
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g h g hP u= are the power delivery 

for primary frequency control and secondary control. Pd,h is the 

power demand at bus h, nh is the set of the buses that are 

connected to bus h and Pl,hk is the flow on line {h,k}, 

respectively. By summing up (2) for all the buses, we obtain 
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where the left-hand side denotes the measurable system 

frequency deviation ∆f, the term Ploss,hk depicts the power loss 

on the transmission line {h,k}, and the term in brackets on the 

right-hand side denotes the total power imbalance. Observe that 

f is zero if and only if the power injections and losses are 

balanced by means of the secondary control input ug.h. The 

secondary control action ug.h is implemented via integral 

control of the frequency error ∆f with integral gain equal to the 

generation participation factor βg,h for each generator, which 

represents the ratio of generator h’s capacity to the total 

capacity, i.e., 
, , ,

1

/
bus

capacity capacity
N

g h g h g h

h

P P
=

=  . Thus, the 

steady-state of the secondary integral control input achieving ∆f 

=0 is given by 
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The simulation algorithm, depicted in Fig. 1, is as follows: 

1. For each failure scenario,  

1.1 Initialize the system (topology, load/generation at each 

bus) with the output from the optimal power flow with the 

objective of generation costs minimization.  

1.2 Run random component failure (for each component, a 

random number is sampled, the component is supposed to be 

failed if the number is smaller than the failure probability of the 

component, Pr).  

1.3 Check for an island in the system based on the new 

topology. 

2. For each island 

2.1. Evaluate the system frequency deviation and the voltage 
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magnitude of each bus. 

2.2. Apply UFLS if the frequency deviation exceeds the 

acceptable threshold [28] (e.g., 2.5Hz). 

2.3. Apply UVLS if the voltage magnitude at a bus is lower 

than 92% of nominal [29]. 

2.4. Restore load/generation balance through primary and 

secondary frequency control. 

2.5. Run the AC power flow model.  

2.6. Remove lines with flow higher than the line tripping 

threshold Tl. If there are new islands, return to step 1.3.  

3. Output total load shed (DNS) and total line outages. 

 

 
Fig. 1. Algorithm applied in the simulation model. 

B. Inoperability Input-Output Model 

The IIM is derived from Leontief’s input-output (I-O) model 

[33], which is used to quantify the interconnectedness within 

sectors of the economy. Extending from the traditional I-O 

model, inoperability is expressed as a proportional lack of 

productivity relative to its “as-planned” production capacity 

[34]. This normalized production loss is calculated in (5). 

Normalized production loss                                            

=
as­planned production − degraded production

          as − planned production                
(5)  

The IIM is constructed based on two assumptions. The first 

is the equilibrium assumption (i.e., all production is consumed). 

The supply inoperability of an industry is equal to the sum of 

the direct perturbation to the industry’s production and 

cascading inoperability from interconnected industries. The 

second is that interdependent industries receive proportional 

impact from disruptive sectors. The basic formulation of IIM is 

found in (6), where 𝐀⋆ is an industry interdependency matrix 

that is modified from the Leontief technical coefficient matrix 

A according to [34] (i.e., 𝐀⋆ = 𝟏/𝐱̂ ∙ 𝐀 ∙ 𝐱̂ . Matrix 𝐱̂  is the 

diagonal matrix derived the production vector x. Each element 

𝑎𝑖𝑗
⋆  describes the amount of inoperability occurred in industry i 

due to the inoperability in industry j. 𝐟∗ is a vector of direct 

perturbation to a industry’s production. The inoperability 

vector q is a real-valued vector of normalized production losses 

for each industry at the national level. qi > 0 and qi < 0 represent 

the ratios of unrealized and excessive production with respect 

to the nominal production level of the sector, respectively. The 

unrealized production represents the proportional extent to 

which industries aren’t producing. Inoperability can also be 

understood as the supply unreliability of a sector [35]: qi = 0 if 

industry i is operating at its nominal level – it experiences no 

inoperability in such a case. qi = 1 if industry i is completely 

inoperable relative to nominal. The element of 𝐟∗ , 𝑓𝑖
∗  is the 

change to the final demand with respect to nominal production 

output for industry i. 

  
* * *

i ij j i

j

q a q f
 

 = + 
 

*q = A q +f      (6) 

Equation (6) estimates supply inoperability from 

intermediate economic exchanges between industries. To 

calculate the inoperability resulting from a given disruption, q 

is represented in (7) as a function of a pre-specified 

perturbation vector 𝐟∗, the interdependency matrix A*, and a 

conformable identity matrix I. 

      * -1 *q = (I - A ) ×f         (7) 

Note that (7) is linear in nature, therefore an increased 

perturbation results in a proportional increase in inoperability. 

Inoperability can be converted into economic loss by 

multiplying inoperability by the production vector x. 

To reflect the spatially explicit intraregional 

interdependencies, which are likely to differ from those at the 

national level, the IIM is regionalized by adding spatial 

explicitness to the model. Generally, the regional 

interdependency coefficients are estimated through the use of 

regional multipliers, which indicate the regional production 

compared to the national production. In [19], a specific type of 

regional multiplier called a location quotient is used for the 

estimation of regional interdependency coefficients. The 

location quotient represents the proportion of demand for 

industry i in region s that can be satisfied regionally, compared 

to the nation’s ability to satisfy the nation’s internal demand for 

industry i. The location quotient for industry i and region s, 𝑙𝑞𝑖
𝑠, 

is found in (8), where 𝑥𝑖
𝑠 and 𝑥𝑖

𝑁 indicate the overall production 

from industry i in region s and nation N, respectively, and 𝑥𝑠 

and 𝑥𝑁  indicate the overall production from all sectors in 

region s and nation N, respectively. Equation (9) provides the 

calculation for 𝑎𝑖𝑗
⋆𝑠 , the amount of inoperability incurred in 

industry i due to the inoperability in industry j specifically in 

region s. 𝑎𝑖𝑗
⋆  is the amount of inoperability experienced in 

industry i due to total inoperability in industry j in the nation. 

When 𝑙𝑞𝑖
𝑠 is less than 1, it means that the production output of 

industry i is insufficient to satisfy the regional supply demand, 

otherwise there is no adjustment to 𝑎𝑖𝑗
⋆ . 

       
/

,
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To assess the international impact of a disruption that occurs 

in one country, a multiregional IIM was introduced to connect 

all countries based on international trade [36]. The bilateral 

trade data between countries is used to construct an 

interregional matrix, 𝑇𝑖
𝑟𝑡 , which indicates the percentage of 

commodities and services in industry i that are produced in 

country r and consumed by country t, as illustrated in (10).  

    

,  if  

,  if 

rt

i

t t t

i i irt

i t t

i i

t t t

i i i

m
t r

x m e
T

x e
t r

x m e




+ −
= 

− =
 + −

      (10) 

where 𝑚𝑖
𝑟𝑡 is the value of industry i’s commodities and services 

that are imported by country t from country r, 𝑚𝑖
𝑡 and 𝑒𝑖

𝑡 are 

country t’s total imports from and exports to all other countries 

included in the model for industry i. The commodities and 

services that are both produced and consumed in country t are 

represented as 𝑇𝑖
𝑡𝑡. Both exports and imports are included in the 

calculation in order to ensure that 𝑇𝑖
𝑟𝑡  captures all the 

production in industry i and that ∑ 𝑇𝑖
𝑟𝑡 = 1∀𝑟 . The interregional 

matrix T is shown in (11), where each 𝑇𝑖
𝑟𝑡 is of size n and the 

ith element on the diagonal is 𝑇𝑖
𝑟𝑡. Variable b is the number of 

countries that are considered in the model. 

    𝐓 = [

𝐓11 𝐓12 ⋯ 𝐓1𝑏

𝐓21 𝐓22 ⋯ 𝐓2𝑏

⋮ ⋮ ⋱ ⋮
𝐓𝑏1 𝐓𝑏2 ⋯ 𝐓𝑏𝑏

]      (11) 

The IIM is extended to the multiregional IIM by 

incorporating the interregional matrix as shown in (12). For 

notational simplicity, the notation 𝐲𝑎:𝑏 =
[(𝐲𝑎)𝑇 , (𝐲𝑎+1)𝑇 , … , (𝐲𝑏)𝑇]𝑇 is adopted to represent a vector of 

length 𝑛(𝑏 − 𝑎 + 1) for countries 𝑎, 𝑎 + 1, … , 𝑏, where 𝐲𝑐 is a 

vector of interest (e.g., production, final demand, changes in 

production). The square matrix is of order nb, where 𝐓⋆ =
𝟏/𝐱̂ ∙ 𝐓 ∙ 𝐱̂ . The right-hand side of (12) illustrates how the 

demand level in one or more countries can affect the production 

in b countries. 

𝐪1:𝑏 = 𝐓⋆𝐀⋆𝐪1:𝑏 + 𝐓⋆𝐟⋆1:𝑏 = (𝐈 − 𝐓⋆𝐀⋆)−1𝐓⋆𝐟⋆1:𝑏 (12) 

The IIM enterprise has successfully deployed to provide an 

account of how a disruption that adversely impacts a particular 

industry can lead to inoperable conditions in other industries in 

several domains, including waterways [16, 17, 37], inventory 

[38, 39], and electric power outages [14, 40]. The IIM 

enterprise, and more broadly interdependency models of 

multi-industry impact, were among the 10 Most Important 

Accomplishments in Risk Analysis: 1980-2010 [41]. The 

assumption of model linearity is overshadowed by the amount 

of real data describing interdependencies ( 𝐀⋆ ) and total 

production from the US Bureau of Economic Analysis (BEA), 

the Organization of Economic Cooperation and Development 

(OECD), and dozens of other countries worldwide. 

C. Integrating Cascading Failures with Interdependent 

Impacts 

As introduced in [14], in a blackout event, the initial sector 

perturbation 𝐟⋆ can be decomposed into: (i) the direct impact of 

a power supply disruption in electric power sector, and (ii) the 

direct impact of reduced workforce productivity in each sector 

with reliance on power supply. The former is only applied to 

electric power sector directly, while the latter can have impacts 

practically on all the sectors and is the largest source of the 

overall economic losses [42]. For example, Anderson et al. [14] 

concluded that the Northeast Blackout 2003 caused an 

approximately $6.5 billion reduction of earnings, of which $4.2 

billion could be attributed to the income losses suffered by the 

workers and investors. It is difficult to capture the perturbation 

effects of an electric power disruption in a macro-level analysis 

(i.e., without looking at industry-specific operations in each 

disrupted region). The workforce perturbation is meant to work 

as a proxy for the lack of productivity in industries that rely on 

electric power, particularly in workforce-intensive industries. 

1) Losses Resulting from Unfulfilled Electric Power Demand 

To evaluate the direct effect on the electric sector and the 

higher order effect on other dependent sectors, the percentage 

of demand not served at the national and regional level are 

translated in (13) and (14) as an electricity sector perturbation 

in the national and regional IIM, where 𝑓electricity
∗𝑁  and 

𝑓electricity
∗𝑠  are used as a perturbation to the electricity sector in 

the national and regional IIM, respectively. DNS𝑁  and DNS𝑠 

are the demand not served values in nation N and in region s, 

respectively. 𝑃load
𝑁  and 𝑃load

𝑠  denote the national total load 

demand and load demand in region s, respectively. 

        *

electricity

load

N
N

N

DNS
f

P
=        (13) 

        *

electricity

load

s
s

s

DNS
f

P
=         (14) 

2) Losses Resulting from Workforce Impacts 

Inoperability due to unfulfilled electric power demand does 

not provide the complete picture of how industries require and 

use electric power. Another perspective accounts for a lack of 

productivity due to facilities being inoperable. A proxy for 

measuring the effects of this disruption is to estimate the extent 

to which productivity requires labor, suggesting that workforce 

unavailability resulting from a power supply disruption leads to 

reduced productivity [42]. For instance, in the manufacturing 

industry, a proxy for measuring the production that is 

interrupted in a blackout could be a function of labor 

requirements. An electric power blackout may affect the 

mobility of the workforce in terms of unavailable 

power-dependent transportation modes [42]. There are two 

layers of interdependencies: the workforce’s dependence on the 

electric power and the industry’s dependence on the workforce. 

First, by examining each industry’s contribution to the 

workforce, the effect on the workforce due to a perturbation 

originating from the electric power sector is estimated. To 

quantify an industry’s dependence on the workforce, the 

amount spent on labor costs is estimated. To do so, the local 

area personal income (LAPI), which reflects the amount of an 

industry’s economic production spent on workforce, is used. 

Therefore, it is assumed that the effect on industry i of a 

disruption in the workforce is proportional to LAPI. The direct 
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workforce effects can cause other higher-order effects on the 

productivity of interdependent sectors. 

The procedure to construct the perturbation vector 

considering the effect of workforce unavailability is: 

1. For each industry i, evaluate LAPI𝑖, which is the product 

of personal income in industry i and the number of people 

employed in industry i. 

2. Calculate the ratio of LAPI𝑖 to total production in industry 

i by dividing LAPI𝑖 by the industry’s output xi to estimate the 

proportional contribution of workforce to the total output of 

industry i. 

3. Estimate the direct workforce perturbation to sector i at 

region s with (15). 

   
* *

,workforce ,electricity

LAPIs s i i

i i

i i

c
f f

x x
=      (15) 

This equation is based on two assumptions: (i) the direct 

impact of workforce unavailability on the productivity of each 

sector is estimated by converting the supply constraints into 

equivalent demand reduction (i.e., 𝑓𝑖,electricity
∗𝑠 × 𝑐𝑖/𝑥𝑖 where 𝑐𝑖  

is the final demand in industry i) and (ii) workforce intensity is 

proportional to the percentage of an industry’s total economic 

output that is spent on salaries (i.e., LAPIi /xi). 

Repeat steps 1-3 for all industries and regions to find the 

vector of the direct workforce perturbation at each region 

s,  𝑓𝑖,workforce
∗𝑠 . The national direct workforce perturbation 

 𝑓𝑖,workforce
∗𝑁  is calculated as ∑  𝑓𝑖,workforce

∗𝑠
𝑠 . 

3) Integrating the Failure and Impact Models 

The cascading failure analysis is integrated with the regional 

IIM (RIIM) and the multiregional IIM to capture the direct and 

higher-order effects of the consequence of a cascading event, 

illustrated in Fig. 2.  

 
Fig. 2. The integration of cascading failure and interdependent impact models. 

 

The cascading failure analysis evaluates the DNS for a 

cascading event in a country N. The DNS at each substation is 

mapped into the DNS at each region of the country. To evaluate 

the economic losses in each region, the DNS is used to 

construct the direct perturbation 𝑓electricity
∗𝑠  and   𝑓𝑖,workforce

∗𝑠 , 

which are the inputs for each regional IIM. The disruption of 

the power exchange between the neighboring countries M is 

modeled as the direct perturbation on the electricity sector of 

country M (i.e., 𝑓electricity
∗𝑀 ). The international economic impact 

can be estimated by introducing the inputs of direct 

perturbation on country N (i.e., 𝑓electricity
∗𝑁  and   𝑓𝑖,workforce

∗𝑁 ), 

and the direct perturbation on the dependent countries M (i.e., 

𝑓electricity
∗𝑀  in the multiregional IIM). 

The severity of the consequence of a cascading event in the 

electric transmission system is measured as the DNS to 

customers and the economic losses at the regional and 

international levels. The risk of a cascading event is evaluated 

by incorporating the probability of the initial contingency (i.e., 

∏ Pr𝑖
𝑘
𝑖=1  for k initial line failures) and the severity of the 

consequence. 

III. CASE STUDIES 

We deploy the framework to estimate national and 

international impacts following a cascading disruption in the 

Swiss electric system. 

A. Validation of the Cascading Failure Analysis 

The validation of the cascading failure analysis is essential, 

because it is inherently infeasible to include all the cascading 

failure mechanisms, and assumptions have to be made in 

choosing the mechanisms to be modeled in particular 

applications [43]. In this paper, the cascading failure analysis 

model is validated on a reduced Western Electricity 

Coordinating Council (WECC) network system [44] by 

comparing the simulation results with real blackout data. In the 

WECC network, the main source of blackouts data is the 

frequency of blackouts from 1984 to 2006 [45], which is 

provided by the North American Electrical Reliability Council 

(NERC). Another available failure data set is the TADS 

transmission line outage data for 8864 outages, which was 

recorded by a utility company in WECC for a period of 10 years 

[46].  

The parameters of the cascading failure analysis model (i.e., 

the probability of random line failure, Pr and the tripping 

threshold of overloaded lines, Tl) are calibrated to reproduce 

historical WECC blackout statistics. When Pr = 0.001 and TI = 

110% of the line capacity, the distribution of the load shedding 

after the simulated cascade event captures the distribution of 

the historical blackout size as shown in Fig. 3. Furthermore, the 

probability distribution for the total line outages is consistent 

between the model results and the historical data for cascading 

events involving up to six line outages as shown in Fig. 4. This 

effort is important as it represents one of the first attempts to 

validate cascading failure models against real power outage 

statistics. 

 
Fig. 3. Rank function for the normalized load shed from cascading failure 

analysis for the reduced WECC network (red line) compared with the data for 

the western interconnect (blue line). 
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Fig. 4. The distribution of the total outages from cascading failures for the 

reduced WECC network (red line) compared with the historical data (blue line). 

B. Test System 

For the electric network, the cascading failure analysis is 

built on the data describing the Swiss grid system. The Swiss 

transmission network consists of 161 buses, 34 generation 

units, and 229 transmission lines (220kV and 380kV). The 

snapshots, provided by Swissgrid, served as a basis for 

estimating power demand. The total generation capacity is 

10098 MW, and the total load consumption in the given 

snapshot is 5214.4 MW. To simulate different operating 

conditions, the power demand is scaled with a Load Factor 

(LF). Due to the deficiency of reliability data for the Swiss 

network transmission lines, the line failure probabilities are 

derived from the fault data of the electric components in the 

German transmission network for 2004-2011 [47]. The system 

is modeled in accordance with the modeling approach 

described in Section II.A. 

The Organization of Economic Cooperation and 

Development (OECD) [48] provides I–O data and bilateral 

trade data in U.S. dollars for all of the OECD countries and for 

11 non-OECD countries in Asia and South America. Each 

national economy is divided into 34 industries. Data from 2011 

(the most recent available) are used, and it is assumed that the 

coefficients for the economic structure do not change 

drastically over time. Seven countries in addition to 

Switzerland are included in the model: Austria, China, 

Germany, Italy, France, the United States, and the United 

Kingdom. These countries represent more than 80% of all of 

Switzerland’s importing activities. The technical coefficient 

matrices and the vectors for the production and final 

consumption are constructed based on the I-O data. The 

location quotient and the LAPI are developed from the data 

provided by Swiss Federal Statistical Office. Bilateral trade 

matrices for 19 of the 34 industries are available from OECD. 

An assumption is made that the fraction that country t imports 

from country r for the other 15 industries is equal to the overall 

proportion that country t imports from that country r. The T 

matrix for OECD countries is generated based on the trade data. 

In the IIM, the economic losses are typically estimated on an 

annual basis. When a load shedding is operated, it is assumed 

that the load shedding recovery will take one day. Therefore, a 

uniform-loss assumption is made that losses are evenly 

distributed throughout the year, and the annual losses divided 

by 365 gives an estimate of the daily economic loss [14]. 

Different duration of load shedding recovery can be modelled 

in the current framework, and the associated economic 

consequences of a loss of power supply can be estimated. There 

are 26 cantons in Switzerland, as shown in Fig. 5, with all the 

substations geographically located in 18 cantons. To evaluate 

the economic losses at each Canton, the IIM is regionalized by 

the locational quotient. 

 
Fig. 5. Cantons in Switzerland [49] 

C. Results for Application of the Integrated Model 

Contingencies in the power system caused by the random 

line outages (i.e., independent line failure and common mode 

failure) are simulated with respect to increasing loading 

conditions (i.e., load factor = 1.1, 1.15, 1.2, 1.25). An optimal 

power flow is used to solve the economic dispatch problem at 

the four load conditions and to determine the initial output of 

each generator. For each loading condition, 100,000 

simulations were conducted considering a low failure 

probability of transmission lines and to ensure the convergence 

of the results. The percentage of single-line failure or multi-line 

failures are determined by the failure probability of each 

transmission line. In this study, there are 99.32% of simulations 

with single-line failure, 0.68% of simulations with double-line 

failure and 0.0004% of simulations with triple-line failure.   

Furthermore, 30% of the initial failures can lead to cascading 

failures. Each cascade simulation takes 0.057 second on 

average on a desktop with Core i7 processor and 16GB RAM. 

The load shedding caused by the cascading events at each 

substation is mapped into the DNS at each canton. The 

economic losses for the DNS at each canton is evaluated with 

the regional IIM for each canton. The electric power imports 

and exports between Switzerland and other neighboring 

countries can be disrupted when load shedding is conducted at 

the nodes on the border. The economic losses due to the direct 

perturbation on each sector of Switzerland (i.e., unfulfilled 

electric power demand and workforce unavailability), and the 

direct perturbation on the electric sectors of the countries which 

have power import/export with Switzerland are evaluated with 

the MRIIM for Switzerland and the dependent countries.  

1) Correlation: Power Supply Losses and Economic Losses in 

Switzerland 

For each scenario, the economic losses in Switzerland 

estimated with the regional IIM (from direct power 

perturbation and workforce unavailability) are plotted against 

DNS with respect to the initial power demand, which is the 

perturbation input 𝑓electricity
∗𝑠  to the IIM. In Fig. 6, the 

comparison with the linear regression trend line indicates that 
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the economic impact of a power loss of supply does not scale 

proportionally with the DNS. This is due to the fact that the 

power dependence of economic sectors varies in different 

cantons. Therefore, when different cantons are affected by the 

power disruption, the same DNS can translate into different 

magnitudes of economic losses. 

 
Fig. 6. Correlation plot for the risk of economic losses from the regional IIM 

(vertical axis) and the risk of DNS (horizontal axis) given the same scenario. 

2) Risk Analysis of Cascading Events 

The consequences of a cascading event (e.g., DNS and 

economic losses) are plotted against the probability of the 

initial contingency in Fig. 7 and Fig. 8.  

 i  
Fig. 7. Probability of the initial contingency against the DNS in a cascading 

event. 

      
Fig. 8. Probability of the initial contingency against the economic losses in each 

cascading event. 

The cascading events in the bottom left corner have a low 

level of risk. As illustrated in the figures, most of the events are 

associated with relatively lower consequences (i.e., lower than 

2000 MW in terms of DNS and less than $150 million in 

multi-industry economic losses). It can be observed that the 

contingencies with different probabilities can lead to the same 

consequences. This is due to the fact that when different 

contingencies occur, the same island condition with certain 

generation insufficiency can be formed when the cascade stops. 

The cascading events towards the top right corner have higher 

risk. These events, marked with red circles in Fig. 7 and Fig. 8, 

are associated with a higher priority in risk management 

because they have a high probability of occurring and can cause 

large DNS and economic losses. 
 

3) Regional Vulnerability 

In Fig. 9, the risk of DNS caused at each canton for these 

scenarios is plotted. It can be observed that canton Zug (ZG), 

Graubünden (GR), and Aargau (AG) suffered the largest DNS 

in the scenarios. The losses in Canton Zug (ZG) are twice the 

losses experienced by the second most impacted canton. The 

power losses are translated into the economic losses through the 

RIIM, and Fig. 10 illustrates the cumulative economic losses at 

each canton.  

 
(a) 

 
(b) 

Fig. 9. Risk of DNS at each canton (a) and its geographical distribution (b) 

 
(a) 
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(b) 

Fig. 10. Risk of economic losses at each canton (a) and its geographical 

distribution (b) 

 

The result demonstrates that the power supply robustness of 

each canton is ranked differently based on the risk of DNS and 

on the risk of economic losses. For instance, Canton AG has the 

third largest power supply losses but ranked on the top of 

economic losses among regions because this canton has many 

energy intensive companies and therefore a strong dependence 

on the electric power supply. 

Fig. 11 provides important insight in the interdependent 

impacts that large disruptions might have in different countries. 

In Europe, Switzerland assumes a key role as an electricity hub 

of Europe. Switzerland imports power from Germany, Austria, 

and France and exports power to Italy. Table I shows the 

amount power that is imported and exported between 

Switzerland the neighboring countries for the considered 

operating condition.  

 
Fig. 11. Economic losses in each country. 

Due to the strong dependency of the electricity supply 

between Switzerland and the neighboring countries, a power 

supply disruption caused by cascading events in Switzerland 

can lead to a significant change in production in the electric 

sectors of neighboring countries. The neighboring countries 

that have grid connection and electricity exchange with 

Switzerland (i.e., Austria, France, Germany, and Italy) suffered 

more significant impacts in this disruptive scenario than the 

countries without electricity exchange with Switzerland (i.e., 

China, U.K., and U.S.). The power that exports from Austria to 

Switzerland is 15% of Austria’s total electric power 

consumption, therefore Austria is the most impacted country. 

The direct perturbation can lead to further economic losses in 

interdependent industries. The higher order impacts on the 

interdependent industries are obvious. For instance, the indirect 

economic losses Switzerland constitute 20% of the total 

economic losses, and for Austria the indirect economic losses 

are higher than the direct losses.  

4) Industry Vulnerability 

To identify the most susceptible sectors to power supply 

disruption, the distribution of the overall economic losses 

among sectors is analyzed. We aggregated the 34 industries 

into 10 related industries and explore the impacts in each. Fig. 

12 shows the interdependent economic losses in each industry 

in Switzerland for the disruption scenario. It can be observed 

that the economic losses caused by the workforce unavailability 

significantly contribute to total losses. As expected, the energy, 

utility and construction industry suffered the greatest 

production losses, as these losses consist of the impact of 

disruption in electric sector and the workforce unavailability in 

the construction sector. The wholesale and retail trade, 

business services, and education and health industries have 

high economic losses caused by workforce unavailability as 

these industries are labor intensive. The electric disruption 

scenario also caused economic losses in the transportation and 

telecommunication services, which requires electricity for 

operating facilities.  

Fig. 13 demonstrates the macroeconomic impact on the 

selected countries. Disaggregating the production losses by 

industry reveals that except from the energy, utility and 

construction industry, the cascading event that occurred in 

Switzerland also has a strong international impact on the 

business services sector.  

 
Fig. 12. Economic losses in Swiss industries. 

 

 
Fig. 13. Economic losses in the industries of the selected countries. 

TABLE I 

THE AMOUNT OF POWER, IN MEGAWATTS, THAT SWITZERLAND IMPORTED 

FROM AND EXPORTED TO EACH COUNTRY. 
 

Countries Austria  France  Germany Italy 

Import 845.7 1144.2 2212.7 0 

Export 0 157.9 165.9 2560.8 

 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

10 

5) Criticality of Transmission Lines 

For each transmission line, its contribution to the risk of 

DNS and economic losses is analyzed. Fig. 14 and Fig. 15 

display the criticality of the lines measured in the terms of DNS 

and economic losses in Switzerland, respectively. It can be 

observed that the criticalities of lines are ranked differently 

when measured with these two metrics. In Fig. 14, there are two 

lines significantly contributed to the DNS, line 35 and line 198, 

which are associated with risk of DNS for 10.93 MW and 13.35 

MW, respectively. Although line 35 and line 198 are ranked as 

the most critical lines in DNS in Fig. 14, they are less critical 

compared to the line 200 in economic losses in Fig. 15.  

 
Fig. 14.  Line criticalities ranked based on the risk of DNS occurring in 

Switzerland. 

 
Fig. 15. Line criticalities ranked based on the risk of economic losses occurring 

in Switzerland. 

To better understand the observations, Fig. 16 illustrates the 

DNS that is caused by the failure of lines 35, 198, and 200 in 

each canton. As expected, the line failures lead to high losses in 

Canton ZG, AG and Canton GR, which are identified as the 

most vulnerable regions in power supply disruption in Section 

III.C.3. The failure of line 200 leads to high DNS in region AG, 

which is the region with strong dependence on the power 

supply and therefore the DNS is translated into high economic 

losses. In Fig. 17, the international impacts of the cascading 

events are considered for line criticality. Note that line 35, 

which exports power from Switzerland to Italy, has the highest 

criticality. The failure of this line can lead to direct power 

supply disruption of 1773 MW. The high economic losses 

caused within Switzerland adding the international economic 

losses make line 35 as the most critical line in terms of the 

multi-country economic losses. The results demonstrate the 

necessity of using economic impact as a measure for the 

component criticality. Table II illustrates the 10 most critical 

lines ranked based on the risk of DNS, risk of economic losses 

in Switzerland, and risk of international economic losses that 

can be caused by the failure of the line. The line criticality ranks 

vary for different criteria, and decision makers can determine 

which criterion to use based on their interests (e.g., reducing 

power supply losses versus economic losses), or apply a 

multi-criteria decision analysis. 

 

 
Fig. 16. The risk of DNS caused by the failure of lines 1, 2, and 4 in each 

region. 

 
Fig. 17. Line criticality ranks based on international economic losses occurring 

in selected countries. 

TABLE II 
CRITICALITY RANK OF LINES IN TERMS OF RISK OF DNS, RISK OF ECONOMIC 

LOSSES IN SWITZERLAND, AND RISK OF INTERNATIONAL ECONOMIC LOSSES  

Rank 

Risk of 

DNS 

Economic losses 

(Switzerland) 

Economic losses 

(international) 

1 198 200 198 

2 35 198 35 

3 89 35 200 
4 186 206 89 

5 76 201 206 

6 200 39 186 

7 9 186 76 

8 207 192 212 

9 201 161 9 
10 99 76 207 

IV.  CONCLUSIONS AND OUTLOOK 

The effects of regional blackout events spread across 

multiple industries and regions. Moreover, they not only 

directly impact the electric power sector, but they have 

distributed direct impacts on many other sectors due to reduced 

productivity. Due to the complexity of the impacts, no single 

metric can adequately measure the consequence of such a 
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disruption and provide information for identifying system 

vulnerabilities. To quantify the direct and higher order effects 

that can result from a cascading event in a large-scale and 

complex system, we propose a framework that integrates (i) 

cascading failure analysis for the electric power network with 

(ii) a multi-regional, multi-industry interdependent impact 

model.  

The Swiss electric power case study, with impacts to several 

related countries, demonstrates the significance of including 

societal consequences as an additional metric for measuring the 

vulnerability of a system and the criticality of components in 

the infrastructure. The dependence on power of different 

industries varies in different cantons, thus the DNS and 

economic losses caused by the cascading event provide 

different perspectives, and are thus different, for the same 

canton. The framework identifies the cantons that are more 

dependent on the power supply and are vulnerable to power 

supply disruption (e.g., canton Aargau (AG) has the third 

largest DNS and the highest economic losses). I-O analysis 

provides complementary insight into the impacts on individual 

industries. Except from the electricity sector, the sectors that 

are labor intensive (e.g., wholesale and retail trade, business 

services and education and health industry) and the sectors that 

require electricity to operate the facilities (e.g., transportation 

and telecommunication services) can have high economic 

losses. Based on the results, policymakers can decide which 

region should increase the redundancy of the power supply or 

which industries may be best suited to have backup power 

generation capabilities. Additionally, ranking the criticality of 

components based on the societal consequences can provide a 

complementary insight for strengthening the component in the 

electric network. The inter-regional cascading effects of 

economic losses are captured by the commodity and service 

exchange among countries. If the cross region impact is 

neglected, the total societal consequence due to a power supply 

reduction may be underestimated. The case study based on the 

OECD member countries demonstrates the significance of 

capturing the cascading effects of economic consequences 

across the border through the MRIIM.  

In the future work, the risk management strategies would be 

proposed and compared to mitigate the risk of cascading 

failures. The restoration duration has an impact on the 

economic losses evaluation (e.g., for big cascades), longer 

restoration time is required. More specific restoration time data 

for cascading events of different sizes would be used. Further, 

economic and other societal impacts can help guide recovery 

optimization decisions.  
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