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Measuring Community and Multi-industry
Impacts of Cascading Failures in Power Systems
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Abstract—Many economic activities strongly depend on critical
infrastructure systems, especially the electric power system.
Failures in the electric power infrastructure not only cause the
disruption of power supply but also result in losses in productivity
across other dependent industries. This work aims to develop a
framework that uniquely integrates a AC flow-based cascading
failure analysis for the electric network with a multi-regional,
multi-industry interdependency model to quantify the short-term
economic impacts of electric power disruption due to cascading
failures. A AC power flow-based cascading failure analysis is
developed to enable the accurate reproduction and consequences
estimation of a cascading event. We use the economic
interdependency model to evaluate the economic impact of a
cascading event taking into account spatial explicitness and cross
border effects. The economic impacts due to both the direct power
supply disruption and the workforce unavailability are estimated.
A case study was conducted on the Swiss electric network,
accounting for the international impact on other related
countries. The results provide guidance for ranking the criticality
of the elements in the electric network and for identifying the
vulnerable regions and economic sectors that could be
strengthened through preparedness planning.

Index Terms—Cascading failure analysis; component
criticality; multi-industry impacts; power systems; risk analysis.

I. INTRODUCTION

Cascading outages in power systems are defined as one or
more sequential dependent component outages that
successively weaken the system [1]. Cascading outages can
either terminate before interrupting the electricity service or
continue until a blackout occurs. If the cascade process extends
to the system level, it can cause massive disruption to electric
power service. In August 14, 2003, the blackout event in the
Northeastern U.S. and Southeastern Canada led to a disruption
in power for 50 million people. The power supply disruption
(i.e., 63 GW) accounted for approximately 11% of the total load
demand in the affected area. Despite their infrequency,
blackout events significantly affect system safety and reduce
customer perception of power supply reliability [2, 3]. To
maintain the security of the power supply and limit the potential
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societal impact of the cascading events, it is important to assess
system vulnerabilities and identify critical components that
ensure the reliable operations of the power system.

Vulnerability analysis is an emerging approach used in the
risk management of critical infrastructures. It assesses the
consequence in the system when a set of its elements is
removed or when the system is operating in extreme conditions
[4]. System vulnerability can be measured from two
perspectives: (i) global vulnerability analysis, and (ii) critical
component analysis [4], which provide different insights for a
system’s ability in withstanding disturbances and stress. Global
vulnerability analysis is carried out by removing an increasing
number of components or changing the loading of the system to
increase the stress on the system and uses a model of system
response to estimate the resulting consequences. In critical
component analysis, a component, or set of components, is
identified as critical if, when failed, it gives rise to significant
adverse consequences. Criticality measures serve as useful
tools to identify weak links that may affect the performance of a
system and to prioritize reliability improvement activities,
among other uses [5]. Several analytical and empirical
component importance measures have been proposed to rank
the components according to their criticality in the system [6].

Traditional vulnerability analyses often narrowly focus on
the direct consequences of each individual infrastructure.
However, the increasing functional and geographical
interdependence among critical infrastructures that make them
more efficient also make them more complex and vulnerable to
the propagation of malfunctions [7]. As such, vulnerability
measures should account for larger scale impacts, including
across infrastructures and across multiple industries that rely
upon them. Adapted from [8], the term cascading effects used
here refers to the inoperability that occurs internally to a
network (e.g., flow redistribution due to capacity exceedances),
and interdependent effects refers to the inoperability that occurs
external to the network as a result of its disruption (e.g., often
experienced in communities and different industries that rely
on electric power).

In a power system, DC/AC flow-based cascading failure
analysis has been proposed to estimate the consequence of a
cascading event caused by various scenarios, e.g.,
ORNL-PSerc-Alaska (OPA) model [9, 10] or Manchester
model [11]. These analyses measure the severity of a cascading
event based on the direct impact in the power sector such as the
power supply disruption. Due to the strong dependency of
economic activities on the electric power supply [12], a
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cascading failure in the electric power sector may propagate its
impact to interconnected industries. According to [13], the total
cost to the US caused by the 2003 Northeast Blackout ranges
between $4 and $10 billion. Over 10 sectors experienced
economic losses of more than $100 million, with the business
services, electric power, and depository institutions and
brokers industries among the most affected in terms of
three-day economic losses [14]. The extensive societal impact
of the cascading events on dependent economic sectors stresses
the necessity of a systematic evaluation of the consequence of
their disruption. Additionally, the direct infrastructure
consequences and the societal effects caused by the component
failure may differ to a large extent, which can lead to a different
measure of component criticality and incorrect vulnerability
reduction decisions [15]. Therefore, it is significant to account
for the societal impact when identifying critical components in
power systems.

The inoperability input-output model (IIM) is proposed for
quantifying the interdependent inoperability and economic
losses experienced across multiple industries. The model takes
into account both direct and higher-order economic effects
caused by a disruptive event (e.g., a regional blackout). The
IIM has wide applications in various vulnerability studies. Pant
etal. [16, 17] developed an integrated model with the IIM and a
simulation model of port operations to assess the
interdependent impact caused by disruptions at an inland port
terminal and to inland waterways, respectively. In [15], a model
of the Swedish power transmission system and a regional I[IM
are integrated for measuring the long-term societal effects of a
power supply reduction.

The use of the IIM for quantifying the interdependency
among economic sectors relies on large-scale databases that
support the model, and such databases has resulted in the
maturity of the field of input-output analysis. The wide
application of IIM, especially in the study of the societal
impacts of disruptive events [18], validates the application of
IIM here. For instance, Anderson et al. [14] applied an [IM
analysis to the 2003 US blackout, the results obtained are very
similar to other estimations of published empirical studies. As
the base IIM only provides an averaged estimation across
geography, and model results may be insufficient for
preparedness decision making within and across regions [19].
To address such spatial disruptions, Crowther et al. [19]
introduced a Multiregional [IM (MRIIM) to extend the IIM for
modeling the multiregional interdependencies among the
various regions. The MRIIM captures cross border effects by
accounting for the spatial explicitness in intraregional and
multiregional interdependency matrices.

The contributions of this paper are three-fold. First, a AC
power flow-based cascading failure analysis is developed for
estimating the consequence of cascading events caused by a set
of failure scenarios. Second, the cascading failure analysis is
validated against historical blackout data to demonstrate the
model’s capability in capturing important statistical
characteristics of cascading events. Third, the cascading failure
analysis for the electric network is uniquely integrated with the
MRIIM to quantify the short-term societal impacts of power

supply disruption caused by cascading events. This paper
extends prior work by the authors [20] by including the
important step of cascading failure analysis validation and
taking into account the inter-regional commodity and services
exchanged to effectively capture the interdependent effects of
economic consequences across the border. In the proposed
framework, random failures of physical components are
introduced in the power system to trigger a cascading event.
The direct power supply disruption in the electric sector and the
workforce unavailability in each sector with reliance on power
supply are structured as inputs to the MRIIM. The analysis of
interdependencies estimates the propagation of the losses
among industries at the regional and international level. Both
global vulnerability with respect to increasing load factors and
critical component analysis are conducted. The case study on
the Swiss electric network and affected countries provide an
estimate of the large-scale economic impacts of disruptions due
to cascading failures at the local and international level. The
criticality of system components can be ranked based on the
severity of these impacts. Furthermore, by aggregating the
losses caused in each region and in each industry for various
failure scenarios, it is possible to identify the vulnerable regions
and economic sectors that should be strengthened for the risk
management of cascading failures.

This paper is structured as follows. Section II introduces the
cascading failure analysis model, the MRIIM used for the
interdependence study in the integrated model, and the metrics
used for evaluating the societal impact of the cascading
failures. The results of the case study on the Swiss electric
network and the related countries and their implications are
discussed in Section III. Section IV concludes the work and
offers thoughts on future work.

II. METHODOLOGY

A. AC-PF based Cascading Failure Analysis

In cascading events, the initial contingency can be
unexpected outages of generators or transmission lines, a
sudden unanticipated increase of demand, fluctuations of the
generator output, or outage of other equipment [21]. The
outages may be local and terminate before causing power
supply disruption, or they may propagate to wide areas and lead
to blackouts. Cascading phenomena are complicated because
there are many failure mechanisms involved, which include
cascading overloads, failures of protection equipment, reactive
power problems, and voltage collapse. Cascading line
overloads is one of the most common propagation mechanisms
[3]. When a transmission line is overloaded, it triggers a
dynamic of automatic disconnection from the network by a
circuit breaker to prevent system damage. The load that is
originally carried by the disconnected line is redistributed to
other lines, which may lead to additional line overloads.
FACTS can be applied to nudge power flows in desired
directions and mitigate the line overloads [22]. The topology
change can cause island operation in the system, and in the case
of large power imbalance in the island, frequency instability
can occur, which can lead to power supply disruption. The



>REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 3

system may enter a state of voltage instability after sequential
line tripping or other changes in system condition that can lead
to a progressive and uncontrollable drop in voltage. Under
Frequency Load Shedding (UFLS) or Under Voltage Load
Shedding (UVLS) can be implemented, respectively, when
there is a potential of frequency/voltage instability in the
system. The imbalance of the power generation and load
consumption in the island is compensated by primary and
secondary frequency control. If there is not enough generation
capacity in the island, load shedding has to be conducted to
restore the power generation/consumption balance and to
correct the frequency deviation.

To simulate the evolution of cascading failures and to assess
potential adverse consequences, the steady-state operations of
the power system is simulated with an approximate model. The
model represents the dynamical process of cascading events
that is consistent with some basic network and operational
constraints. The cascading failure analysis is based on AC
power flow. The linear nature of the DC PF method leads to
efficient computation and applicability to large-scale systems.
However, the voltage profile of buses and reactive power have
significant impacts on the system conditions, and by
disregarding their effects, the underlying assumptions in the
DC PF method may provide underestimated results. This
approach can model combinations of several types of failures
such as cascading line overloads, frequency deviation, reactive
power problems, and voltage drop. The non-sequential Monte
Carlo method [23, 24] is applied to power system risk analysis,
where the states of the components are sampled and a
non-chronological system state is obtained. The model captures
following phenomena: (i) it simulates critical scenarios that
may trigger a cascading event; (ii) the post-contingency power
flow on the transmission lines is computed with a AC power
flow algorithm; (iii) primary and secondary frequency control
of generators are activated in case of power
generation/consumption imbalance in island operation [1], the
frequency deviation are computed and the frequency control is
modeled according to [25]; (iv) the lines are disconnected
automatically when they reach the failure limit [26] [27]; (v) it
identifies blackout conditions when there is frequency
instability due to the large power imbalance in the island [1,
28], and UFLS is conducted when the frequency exceeds the
acceptable threshold [28]; (vi) UVLS is performed when the
voltage magnitude at a bus is under the limit [29]; and (vii) if
there is not enough generation capacity in the island, load
shedding is conducted as a last resort. Constant load demand
from the customer during the cascading event is assumed. In
addition, the probability of having additional random failures of
transmission equipment in the evolution of the cascading event
is very low and is not considered. Demand not served (DNS) is
used to measure the consequences of the cascading event,
which is a commonly used reliability measure for power
systems [30] [1].

The cascading failure analysis evaluates the steady-state
post-contingency system conditions [31]. The transient process
after the failure (e.g., the dynamic frequency characteristics of
the generator/load) is not involved in the analysis.

1) Frequency Control
The steady state frequency deviation after the cascading
failure is evaluated according to the following equation [32]:

—AP
=5 b
DU/D,,+> 1/R,
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where AP is the power imbalance in MW. Dy and Ry are the
frequency characteristics of the demand and generator at bus 4,
respectively.

Here we restrict ourselves to a single-area system, where
the objective of secondary control is power balancing within
the area and to release the capacity used for primary frequency
control. The contribution of each generator to secondary
frequency control is computed from the nodal balance at bus %

[25]
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where Pgnzm is the nominal powerh generation,
PP =—Af'/ R, and P —y , are the power delivery

for primary frequency control and secondary control. Py is the
power demand at bus /%, n; is the set of the buses that are
connected to bus 42 and Pyu is the flow on line {hk},
respectively. By summing up (2) for all the buses, we obtain
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where the left-hand side denotes the measurable system
frequency deviation Af, the term Pjn depicts the power loss
on the transmission line {A,k}, and the term in brackets on the
right-hand side denotes the total power imbalance. Observe that
Af is zero if and only if the power injections and losses are
balanced by means of the secondary control input ugs. The
secondary control action ug; is implemented via integral
control of the frequency error Af' with integral gain equal to the
generation participation factor By, for each generator, which
represents the ratio of generator h’s capacity to the total

capacity, i.e., PcapaC"V / z p“’“’ac'ty Thus, the
steady-state of the secondary 1ntegra1 control input achieving Af
=0 is given by
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The simulation algorithm, depicted in Fig. 1, is as follows:

1. For each failure scenario,

1.1 Initialize the system (topology, load/generation at each
bus) with the output from the optimal power flow with the
objective of generation costs minimization.

1.2 Run random component failure (for each component, a
random number is sampled, the component is supposed to be
failed if the number is smaller than the failure probability of the
component, Pr).

1.3 Check for an island in the system based on the new
topology.

2. For each island

2.1. Evaluate the system frequency deviation and the voltage
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magnitude of each bus.

2.2. Apply UFLS if the frequency deviation exceeds the
acceptable threshold [28] (e.g., 2.5Hz).

2.3. Apply UVLS if the voltage magnitude at a bus is lower
than 92% of nominal [29].

2.4. Restore load/generation balance through primary and
secondary frequency control.

2.5. Run the AC power flow model.

2.6. Remove lines with flow higher than the line tripping
threshold T;. If there are new islands, return to step 1.3.

3. Output total load shed (DNS) and total line outages.

Initial system state
N-k contingency
¥
‘ Island identification |<—| New topology }‘7

Evaluate
frequency deviation Af,
voltage magnitude V,

\ Restore Power Balance |

Run AC PF

Total DNS No
Total outages

Line flow limits
violation?

Yes .
New line
disconnection

Fig. 1. Algorithm applied in the simulation model.

B. Inoperability Input-Output Model

The IIM is derived from Leontief’s input-output (I-O) model
[33], which is used to quantify the interconnectedness within
sectors of the economy. Extending from the traditional I-O
model, inoperability is expressed as a proportional lack of
productivity relative to its “as-planned” production capacity
[34]. This normalized production loss is calculated in (5).

Normalized production loss

as-planned production — degraded production

as — planned production

The IIM is constructed based on two assumptions. The first
is the equilibrium assumption (i.e., all production is consumed).
The supply inoperability of an industry is equal to the sum of
the direct perturbation to the industry’s production and
cascading inoperability from interconnected industries. The
second is that interdependent industries receive proportional
impact from disruptive sectors. The basic formulation of IIM is
found in (6), where A* is an industry interdependency matrix
that is modified from the Leontief technical coefficient matrix
A according to [34] (i.e., A*=1/%-A-X. Matrix X is the
diagonal matrix derived the production vector x. Each element
aj; describes the amount of inoperability occurred in industry i
due to the inoperability in industry j. f* is a vector of direct
perturbation to a industry’s production. The inoperability

vector q is a real-valued vector of normalized production losses
for each industry at the national level. ¢;> 0 and ¢; < 0 represent
the ratios of unrealized and excessive production with respect
to the nominal production level of the sector, respectively. The
unrealized production represents the proportional extent to
which industries aren’t producing. Inoperability can also be
understood as the supply unreliability of a sector [35]: g;= 0 if
industry i is operating at its nominal level — it experiences no
inoperability in such a case. q;= 1 if industry i is completely
inoperable relative to nominal. The element of f*, f;" is the
change to the final demand with respect to nominal production
output for industry .

q=A*q+f*©{q,-=Za;qj+ﬁ*} (6)
J

Equation (6) estimates supply inoperability from
intermediate economic exchanges between industries. To
calculate the inoperability resulting from a given disruption, q
is represented in (7) as a function of a pre-specified
perturbation vector f*, the interdependency matrix A", and a
conformable identity matrix I.

q=>-A)" xf’ (7

Note that (7) is linear in nature, therefore an increased
perturbation results in a proportional increase in inoperability.
Inoperability can be converted into economic loss by
multiplying inoperability by the production vector x.

To reflect the spatially explicit intraregional
interdependencies, which are likely to differ from those at the
national level, the IIM is regionalized by adding spatial
explicitness to the model. Generally, the regional
interdependency coefficients are estimated through the use of
regional multipliers, which indicate the regional production
compared to the national production. In [19], a specific type of
regional multiplier called a location quotient is used for the
estimation of regional interdependency coefficients. The
location quotient represents the proportion of demand for
industry 7 in region s that can be satisfied regionally, compared
to the nation’s ability to satisfy the nation’s internal demand for
industry i. The location quotient for industry i and region s, lq},
is found in (8), where x; and x indicate the overall production
from industry i in region s and nation N, respectively, and x*
and xV indicate the overall production from all sectors in
region s and nation N, respectively. Equation (9) provides the
calculation for a;f, the amount of inoperability incurred in
industry i due to the inoperability in industry j specifically in
region s. a;; is the amount of inoperability experienced in
industry i due to total inoperability in industry j in the nation.
When lg; is less than 1, it means that the production output of
industry i is insufficient to satisfy the regional supply demand,
otherwise there is no adjustment to al-*j.

X/ x
lg) =———, 8
q; e (®)
o ay, lg; <1, ©
v a;, lg] =21,
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To assess the international impact of a disruption that occurs
in one country, a multiregional IIM was introduced to connect
all countries based on international trade [36]. The bilateral
trade data between countries is used to construct an
interregional matrix, T, which indicates the percentage of
commodities and services in industry i that are produced in
country r and consumed by country ¢, as illustrated in (10).

rt

m; .
——, ift#r
T X, +m —e
;= L (10)
X, —e T
. . 5 1 t=r
X +m; —e

where m]* is the value of industry i’s commodities and services
that are imported by country ¢ from country r, m! and ef are
country #’s total imports from and exports to all other countries
included in the model for industry i. The commodities and
services that are both produced and consumed in country ¢ are
represented as T}**. Both exports and imports are included in the
calculation in order to ensure that T/* captures all the
production in industry i and that Y. T/"* = 1. The interregional
matrix T is shown in (11), where each T/* is of size n and the
ith element on the diagonal is T/*. Variable b is the number of
countries that are considered in the model.

Tll TlZ le

21 22 2b
=TT T (1

Tbl TbZ Tbb

The IIM is extended to the multiregional [IM by
incorporating the interregional matrix as shown in (12). For
notational simplicity, the notation y*b =
[(yMT, (y**t )T, ..., (y?)T]" is adopted to represent a vector of
length n(b — a + 1) for countries a,a + 1, ..., b, where y© is a
vector of interest (e.g., production, final demand, changes in
production). The square matrix is of order nb, where T* =
1/%-T-X. The right-hand side of (12) illustrates how the
demand level in one or more countries can affect the production
in b countries.

q1:17 — T*A*qlzb + T*f*l:b — (I _ T*A*)—lT*f*l:b (12)

The IIM enterprise has successfully deployed to provide an
account of how a disruption that adversely impacts a particular
industry can lead to inoperable conditions in other industries in
several domains, including waterways [16, 17, 37], inventory
[38, 39], and electric power outages [14, 40]. The IIM
enterprise, and more broadly interdependency models of
multi-industry impact, were among the 10 Most Important
Accomplishments in Risk Analysis: 1980-2010 [41]. The
assumption of model linearity is overshadowed by the amount
of real data describing interdependencies (A*) and total
production from the US Bureau of Economic Analysis (BEA),
the Organization of Economic Cooperation and Development
(OECD), and dozens of other countries worldwide.

C. Integrating Cascading Failures with Interdependent
Impacts

As introduced in [14], in a blackout event, the initial sector
perturbation f* can be decomposed into: (i) the direct impact of

a power supply disruption in electric power sector, and (ii) the
direct impact of reduced workforce productivity in each sector
with reliance on power supply. The former is only applied to
electric power sector directly, while the latter can have impacts
practically on all the sectors and is the largest source of the
overall economic losses [42]. For example, Anderson et al. [14]
concluded that the Northeast Blackout 2003 caused an
approximately $6.5 billion reduction of earnings, of which $4.2
billion could be attributed to the income losses suffered by the
workers and investors. It is difficult to capture the perturbation
effects of an electric power disruption in a macro-level analysis
(i.e., without looking at industry-specific operations in each
disrupted region). The workforce perturbation is meant to work
as a proxy for the lack of productivity in industries that rely on
electric power, particularly in workforce-intensive industries.
1) Losses Resulting from Unfulfilled Electric Power Demand
To evaluate the direct effect on the electric sector and the
higher order effect on other dependent sectors, the percentage
of demand not served at the national and regional level are
translated in (13) and (14) as an electricity sector perturbation
in the national and regional IIM, where fe*l’gctricity and

electricity are used as a perturbation to the electricity sector in

the national and regional IIM, respectively. DNSY and DNS*®
are the demand not served values in nation N and in region s,
respectively. P.4 and PS4 denote the national total load
demand and load demand in region s, respectively.

o DNS"

f;lectricity = R(],\;d ( 1 3)
. DNS®

4f<:lr;ctricity = T ( 1 4)

load

2) Losses Resulting from Workforce Impacts

Inoperability due to unfulfilled electric power demand does
not provide the complete picture of how industries require and
use electric power. Another perspective accounts for a lack of
productivity due to facilities being inoperable. A proxy for
measuring the effects of this disruption is to estimate the extent
to which productivity requires labor, suggesting that workforce
unavailability resulting from a power supply disruption leads to
reduced productivity [42]. For instance, in the manufacturing
industry, a proxy for measuring the production that is
interrupted in a blackout could be a function of labor
requirements. An electric power blackout may affect the
mobility of the workforce in terms of unavailable
power-dependent transportation modes [42]. There are two
layers of interdependencies: the workforce’s dependence on the
electric power and the industry’s dependence on the workforce.
First, by examining each industry’s contribution to the
workforce, the effect on the workforce due to a perturbation
originating from the electric power sector is estimated. To
quantify an industry’s dependence on the workforce, the
amount spent on labor costs is estimated. To do so, the local
area personal income (LAPI), which reflects the amount of an
industry’s economic production spent on workforce, is used.
Therefore, it is assumed that the effect on industry i of a
disruption in the workforce is proportional to LAPI. The direct
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workforce effects can cause other higher-order effects on the
productivity of interdependent sectors.

The procedure to construct the perturbation vector
considering the effect of workforce unavailability is:

1. For each industry i, evaluate LAPI;, which is the product
of personal income in industry i and the number of people
employed in industry i.

2. Calculate the ratio of LAPI; to total production in industry
i by dividing LAPI; by the industry’s output x; to estimate the
proportional contribution of workforce to the total output of
industry i.

3. Estimate the direct workforce perturbation to sector i at
region s with (15).

G LAPI,

fz?,\f/orkforcc = /,cflcctricity —

This equation is based on two assumptions: (i) the direct
impact of workforce unavailability on the productivity of each
sector is estimated by converting the supply constraints into
equivalent demand reduction (i.e., fi dlectricity X Ci/%; Where ¢;

(15)

is the final demand in industry 7) and (ii) workforce intensity is
proportional to the percentage of an industry’s total economic
output that is spent on salaries (i.e., LAPI; /x;).

Repeat steps 1-3 for all industries and regions to find the
vector of the direct workforce perturbation at each region

S, fiworkforce - The mnational direct workforce perturbation

fii‘vlgorkforce is calculated as ZS fij‘\i/orkforce'
3) Integrating the Failure and Impact Models

The cascading failure analysis is integrated with the regional
IIM (RIIM) and the multiregional IIM to capture the direct and
higher-order effects of the consequence of a cascading event,
illustrated in Fig. 2.

Direct perturbation

f’s 5
electricity .)‘: workforce

for each region s

Economic
)
—+> losses for

region .
6 each region

Cascading Failure

Analysis in Electric DNS

i
i

i

i

|

1

Network of a Direct perturbation | !
country N i
f‘. N f\ !

Jetearricity Ji, workforcel 1

i

i

i

i

i

i

International
> economic
losses

for country N
*M
j’c]culli\.il)' for
each neighboring
country M

MRIIM for the
countries N and M

Fig. 2. The integration of cascading failure and interdependent impact models.

The cascading failure analysis evaluates the DNS for a
cascading event in a country N. The DNS at each substation is
mapped into the DNS at each region of the country. To evaluate
the economic losses in each region, the DNS is used to
construct the direct perturbation fljectriciey and fiworkforce »
which are the inputs for each regional IIM. The disruption of
the power exchange between the neighboring countries M is
modeled as the direct perturbation on the electricity sector of
country M (i.e., feﬁ]g’ctricity). The international economic impact
can be estimated by introducing the inputs of direct
perturbation on country N (i.e., faibcricity a4 f7workforce )»
and the direct perturbation on the dependent countries M (i.e.,

foloctricity in the multiregional IIM).

The severity of the consequence of a cascading event in the
electric transmission system is measured as the DNS to
customers and the economic losses at the regional and
international levels. The risk of a cascading event is evaluated
by incorporating the probability of the initial contingency (i.e.,
[1%, Pr; for k initial line failures) and the severity of the
consequence.

III. CASE STUDIES

We deploy the framework to estimate national and
international impacts following a cascading disruption in the
Swiss electric system.

A. Validation of the Cascading Failure Analysis

The validation of the cascading failure analysis is essential,
because it is inherently infeasible to include all the cascading
failure mechanisms, and assumptions have to be made in
choosing the mechanisms to be modeled in particular
applications [43]. In this paper, the cascading failure analysis
model is validated on a reduced Western Electricity
Coordinating Council (WECC) network system [44] by
comparing the simulation results with real blackout data. In the
WECC network, the main source of blackouts data is the
frequency of blackouts from 1984 to 2006 [45], which is
provided by the North American Electrical Reliability Council
(NERC). Another available failure data set is the TADS
transmission line outage data for 8864 outages, which was
recorded by a utility company in WECC for a period of 10 years
[46].

The parameters of the cascading failure analysis model (i.e.,
the probability of random line failure, Pr and the tripping
threshold of overloaded lines, T;) are calibrated to reproduce
historical WECC blackout statistics. When Pr = 0.001 and T, =
110% of the line capacity, the distribution of the load shedding
after the simulated cascade event captures the distribution of
the historical blackout size as shown in Fig. 3. Furthermore, the
probability distribution for the total line outages is consistent
between the model results and the historical data for cascading
events involving up to six line outages as shown in Fig. 4. This
effort is important as it represents one of the first attempts to
validate cascading failure models against real power outage
statistics.

10°

102 : :
10 107 102 107" 10°
Load shed/Initial Demand
Fig. 3. Rank function for the normalized load shed from cascading failure
analysis for the reduced WECC network (red line) compared with the data for
the western interconnect (blue line).
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Fig. 4. The distribution of the total outages from cascading failures for the
reduced WECC network (red line) compared with the historical data (blue line).
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B. Test System

For the electric network, the cascading failure analysis is
built on the data describing the Swiss grid system. The Swiss
transmission network consists of 161 buses, 34 generation
units, and 229 transmission lines (220kV and 380kV). The
snapshots, provided by Swissgrid, served as a basis for
estimating power demand. The total generation capacity is
10098 MW, and the total load consumption in the given
snapshot is 5214.4 MW. To simulate different operating
conditions, the power demand is scaled with a Load Factor
(LF). Due to the deficiency of reliability data for the Swiss
network transmission lines, the line failure probabilities are
derived from the fault data of the electric components in the
German transmission network for 2004-2011 [47]. The system
is modeled in accordance with the modeling approach
described in Section II.A.

The Organization of Economic Cooperation and
Development (OECD) [48] provides I-O data and bilateral
trade data in U.S. dollars for all of the OECD countries and for
11 non-OECD countries in Asia and South America. Each
national economy is divided into 34 industries. Data from 2011
(the most recent available) are used, and it is assumed that the
coefficients for the economic structure do not change
drastically over time. Seven countries in addition to
Switzerland are included in the model: Austria, China,
Germany, Italy, France, the United States, and the United
Kingdom. These countries represent more than 80% of all of
Switzerland’s importing activities. The technical coefficient
matrices and the vectors for the production and final
consumption are constructed based on the I-O data. The
location quotient and the LAPI are developed from the data
provided by Swiss Federal Statistical Office. Bilateral trade
matrices for 19 of the 34 industries are available from OECD.
An assumption is made that the fraction that country ¢ imports
from country r for the other 15 industries is equal to the overall
proportion that country ¢ imports from that country ». The T
matrix for OECD countries is generated based on the trade data.

In the IIM, the economic losses are typically estimated on an
annual basis. When a load shedding is operated, it is assumed
that the load shedding recovery will take one day. Therefore, a
uniform-loss assumption is made that losses are evenly
distributed throughout the year, and the annual losses divided
by 365 gives an estimate of the daily economic loss [14].

Different duration of load shedding recovery can be modelled
in the current framework, and the associated economic
consequences of a loss of power supply can be estimated. There
are 26 cantons in Switzerland, as shown in Fig. 5, with all the
substations geographically located in 18 cantons. To evaluate
the economic losses at each Canton, the IIM is regionalized by
the locational quotient.
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Fig. 5. Cantons in Switzerland [49]

C. Results for Application of the Integrated Model

Contingencies in the power system caused by the random
line outages (i.e., independent line failure and common mode
failure) are simulated with respect to increasing loading
conditions (i.e., load factor = 1.1, 1.15, 1.2, 1.25). An optimal
power flow is used to solve the economic dispatch problem at
the four load conditions and to determine the initial output of
each generator. For each loading condition, 100,000
simulations were conducted considering a low failure
probability of transmission lines and to ensure the convergence
of the results. The percentage of single-line failure or multi-line
failures are determined by the failure probability of each
transmission line. In this study, there are 99.32% of simulations
with single-line failure, 0.68% of simulations with double-line
failure and 0.0004% of simulations with triple-line failure.
Furthermore, 30% of the initial failures can lead to cascading
failures. Each cascade simulation takes 0.057 second on
average on a desktop with Core i7 processor and 16GB RAM.
The load shedding caused by the cascading events at each
substation is mapped into the DNS at each canton. The
economic losses for the DNS at each canton is evaluated with
the regional IIM for each canton. The electric power imports
and exports between Switzerland and other neighboring
countries can be disrupted when load shedding is conducted at
the nodes on the border. The economic losses due to the direct
perturbation on each sector of Switzerland (i.e., unfulfilled
electric power demand and workforce unavailability), and the
direct perturbation on the electric sectors of the countries which
have power import/export with Switzerland are evaluated with
the MRIIM for Switzerland and the dependent countries.

1) Correlation: Power Supply Losses and Economic Losses in
Switzerland

For each scenario, the economic losses in Switzerland
estimated with the regional IIM (from direct power
perturbation and workforce unavailability) are plotted against
DNS with respect to the initial power demand, which is the
perturbation input fgjecericiey to the IIM. In Fig. 6, the

comparison with the linear regression trend line indicates that
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the economic impact of a power loss of supply does not scale
proportionally with the DNS. This is due to the fact that the
power dependence of economic sectors varies in different
cantons. Therefore, when different cantons are affected by the
power disruption, the same DNS can translate into different
magnitudes of economic losses.
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Fig. 6. Correlation plot for the risk of economic losses from the regional IIM
(vertical axis) and the risk of DNS (horizontal axis) given the same scenario.

2) Risk Analysis of Cascading Events

The consequences of a cascading event (e.g., DNS and
economic losses) are plotted against the probability of the
initial contingency in Fig. 7 and Fig. 8.
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Fig. 7. Probability of the initial contingency against the DNS in a cascading
event.
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Fig. 8. Probability of the initial contingency against the economic losses in each
cascading event.

The cascading events in the bottom left corner have a low
level of risk. As illustrated in the figures, most of the events are
associated with relatively lower consequences (i.e., lower than
2000 MW in terms of DNS and less than $150 million in
multi-industry economic losses). It can be observed that the
contingencies with different probabilities can lead to the same
consequences. This is due to the fact that when different

contingencies occur, the same island condition with certain
generation insufficiency can be formed when the cascade stops.
The cascading events towards the top right corner have higher
risk. These events, marked with red circles in Fig. 7 and Fig. 8,
are associated with a higher priority in risk management
because they have a high probability of occurring and can cause
large DNS and economic losses.

3) Regional Vulnerability

In Fig. 9, the risk of DNS caused at each canton for these
scenarios is plotted. It can be observed that canton Zug (ZG),
Graubiinden (GR), and Aargau (AG) suffered the largest DNS
in the scenarios. The losses in Canton Zug (ZG) are twice the
losses experienced by the second most impacted canton. The
power losses are translated into the economic losses through the
RIIM, and Fig. 10 illustrates the cumulative economic losses at
each canton.

Risk of DNS (MW)
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Fig. 9. Risk of DNS at each canton (a) and its geographical distribution (b)
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(b)
Fig. 10. Risk of economic losses at each canton (a) and its geographical
distribution (b)

The result demonstrates that the power supply robustness of
each canton is ranked differently based on the risk of DNS and
on the risk of economic losses. For instance, Canton AG has the
third largest power supply losses but ranked on the top of
economic losses among regions because this canton has many
energy intensive companies and therefore a strong dependence
on the electric power supply.

Fig. 11 provides important insight in the interdependent
impacts that large disruptions might have in different countries.
In Europe, Switzerland assumes a key role as an electricity hub
of Europe. Switzerland imports power from Germany, Austria,
and France and exports power to Italy. Table I shows the
amount power that is imported and exported between
Switzerland the neighboring countries for the considered

operating condition.
60
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Fig. 11. Economic losses in each country.

Due to the strong dependency of the electricity supply
between Switzerland and the neighboring countries, a power
supply disruption caused by cascading events in Switzerland
can lead to a significant change in production in the electric
sectors of neighboring countries. The neighboring countries
that have grid connection and electricity exchange with
Switzerland (i.e., Austria, France, Germany, and Italy) suffered
more significant impacts in this disruptive scenario than the
countries without electricity exchange with Switzerland (i.e.,
China, U.K., and U.S.). The power that exports from Austria to
Switzerland is 15% of Austria’s total electric power
consumption, therefore Austria is the most impacted country.
The direct perturbation can lead to further economic losses in
interdependent industries. The higher order impacts on the
interdependent industries are obvious. For instance, the indirect
economic losses Switzerland constitute 20% of the total

TABLE I
THE AMOUNT OF POWER, IN MEGAWATTS, THAT SWITZERLAND IMPORTED
FROM AND EXPORTED TO EACH COUNTRY.

Countries Austria France Germany Italy
Import 845.7 1144.2 2212.7 0
Export 0 157.9 165.9 2560.8

economic losses, and for Austria the indirect economic losses
are higher than the direct losses.
4) Industry Vulnerability

To identify the most susceptible sectors to power supply
disruption, the distribution of the overall economic losses
among sectors is analyzed. We aggregated the 34 industries
into 10 related industries and explore the impacts in each. Fig.
12 shows the interdependent economic losses in each industry
in Switzerland for the disruption scenario. It can be observed
that the economic losses caused by the workforce unavailability
significantly contribute to total losses. As expected, the energy,
utility and construction industry suffered the greatest
production losses, as these losses consist of the impact of
disruption in electric sector and the workforce unavailability in
the construction sector. The wholesale and retail trade,
business services, and education and health industries have
high economic losses caused by workforce unavailability as
these industries are labor intensive. The electric disruption
scenario also caused economic losses in the transportation and
telecommunication services, which requires electricity for
operating facilities.

Fig. 13 demonstrates the macroeconomic impact on the
selected countries. Disaggregating the production losses by
industry reveals that except from the energy, utility and
construction industry, the cascading event that occurred in
Switzerland also has a strong international impact on the
business services sector.
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5) Criticality of Transmission Lines

For each transmission line, its contribution to the risk of
DNS and economic losses is analyzed. Fig. 14 and Fig. 15
display the criticality of the lines measured in the terms of DNS
and economic losses in Switzerland, respectively. It can be
observed that the criticalities of lines are ranked differently
when measured with these two metrics. In Fig. 14, there are two
lines significantly contributed to the DNS, line 35 and line 198,
which are associated with risk of DNS for 10.93 MW and 13.35
MW, respectively. Although line 35 and line 198 are ranked as
the most critical lines in DNS in Fig. 14, they are less critical

compared to the line 200 in economic losses in Fig. 15.
(MW)

Fig. 14. Line criticalities ranked based on the risk of DNS occurring in
Switzerland.
(Mmill.u.S.dollars)

Fig. 15. Line criticalities ranked based on the risk of economic losses occurring
in Switzerland.

To better understand the observations, Fig. 16 illustrates the
DNS that is caused by the failure of lines 35, 198, and 200 in
each canton. As expected, the line failures lead to high losses in
Canton ZG, AG and Canton GR, which are identified as the
most vulnerable regions in power supply disruption in Section
II1.C.3. The failure of line 200 leads to high DNS in region AG,
which is the region with strong dependence on the power
supply and therefore the DNS is translated into high economic
losses. In Fig. 17, the international impacts of the cascading
events are considered for line criticality. Note that line 35,
which exports power from Switzerland to Italy, has the highest
criticality. The failure of this line can lead to direct power
supply disruption of 1773 MW. The high economic losses
caused within Switzerland adding the international economic
losses make line 35 as the most critical line in terms of the

multi-country economic losses. The results demonstrate the
necessity of using economic impact as a measure for the
component criticality. Table II illustrates the 10 most critical
lines ranked based on the risk of DNS, risk of economic losses
in Switzerland, and risk of international economic losses that
can be caused by the failure of the line. The line criticality ranks
vary for different criteria, and decision makers can determine
which criterion to use based on their interests (e.g., reducing
power supply losses versus economic losses), or apply a
multi-criteria decision analysis.
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Fig. 16. The risk of DNS caused by the failure of lines 1, 2, and 4 in each
region.
(Mill.u.S.dollars)

0

Fig. 17. Line criticality ranks based on international economic losses occurring
in selected countries.
TABLE II
CRITICALITY RANK OF LINES IN TERMS OF RISK OF DNS, RISK OF ECONOMIC
LOSSES IN SWITZERLAND, AND RISK OF INTERNATIONAL ECONOMIC LOSSES

Risk of Economic losses Economic losses
Rank DNS (Switzerland) (international)

1 198 200 198
2 35 198 35

3 89 35 200
4 186 206 89

5 76 201 206
6 200 39 186
7 9 186 76
8 207 192 212
9 201 161 9

10 99 76 207

IV. CONCLUSIONS AND OUTLOOK

The effects of regional blackout events spread across
multiple industries and regions. Moreover, they not only
directly impact the electric power sector, but they have
distributed direct impacts on many other sectors due to reduced
productivity. Due to the complexity of the impacts, no single
metric can adequately measure the consequence of such a
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disruption and provide information for identifying system
vulnerabilities. To quantify the direct and higher order effects
that can result from a cascading event in a large-scale and
complex system, we propose a framework that integrates (i)
cascading failure analysis for the electric power network with
(i) a multi-regional, multi-industry interdependent impact
model.

The Swiss electric power case study, with impacts to several
related countries, demonstrates the significance of including
societal consequences as an additional metric for measuring the
vulnerability of a system and the criticality of components in
the infrastructure. The dependence on power of different
industries varies in different cantons, thus the DNS and
economic losses caused by the cascading event provide
different perspectives, and are thus different, for the same
canton. The framework identifies the cantons that are more
dependent on the power supply and are vulnerable to power
supply disruption (e.g., canton Aargau (AG) has the third
largest DNS and the highest economic losses). I-O analysis
provides complementary insight into the impacts on individual
industries. Except from the electricity sector, the sectors that
are labor intensive (e.g., wholesale and retail trade, business
services and education and health industry) and the sectors that
require electricity to operate the facilities (e.g., transportation
and telecommunication services) can have high economic
losses. Based on the results, policymakers can decide which
region should increase the redundancy of the power supply or
which industries may be best suited to have backup power
generation capabilities. Additionally, ranking the criticality of
components based on the societal consequences can provide a
complementary insight for strengthening the component in the
electric network. The inter-regional cascading effects of
economic losses are captured by the commodity and service
exchange among countries. If the cross region impact is
neglected, the total societal consequence due to a power supply
reduction may be underestimated. The case study based on the
OECD member countries demonstrates the significance of
capturing the cascading effects of economic consequences
across the border through the MRIIM.

In the future work, the risk management strategies would be
proposed and compared to mitigate the risk of cascading
failures. The restoration duration has an impact on the
economic losses evaluation (e.g., for big cascades), longer
restoration time is required. More specific restoration time data
for cascading events of different sizes would be used. Further,
economic and other societal impacts can help guide recovery
optimization decisions.
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