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a b s t r a c t 

This paper introduces a synchronized routing problem for planning and scheduling restora- 

tive effort s f or infrastructure networks in the aftermath of a disruptive event. In this prob- 

lem, a set of restoration crews are dispatched from depots to a road network to restore 

the disrupted infrastructure network. Two mathematical formulations are presented to 

scheduling and sequencing disrupted network components to restoration crews and route 

the crews towards disrupted components to maximize network resilience progress in any 

given time horizon. In the first formulation, the number of restoration crews assigned to 

each disrupted component, the arrival time of each assigned crew to each disrupted com- 

ponent and consequently the restoration rate associated with each disrupted component 

are considered as variables to increase the flexibility of the model in the presence of differ- 

ent disruptive events. Along with the contributions applies in the first formulation, in the 

second formulation, each disrupted component can be partially active during its restora- 

tion process. To find the coordinated routes, we propose a relaxed mixed integer program 

as well as a set of valid inequalities which relates the planning and scheduling effort s to 

decision makers policies. The integration of the relaxed formulation and valid inequalities 

results in a lower bound for the original formulations. We further introduce a feasibility 

algorithm to derive a strong initial solution for the routing restorative capacity problem. 

Computational results on gas, water, and electric power infrastructure network instances 

from Shelby County, TN data, demonstrates both the effectiveness of the proposed model 

formulation, in solving small to medium scale problems, the strength of the initial solution 

procedure, especially for large scale problems. 

© 2018 Elsevier Ltd. All rights reserved. 

 

 

 

 

1. Introduction and motivation 

Critical infrastructure networks are referred to as physical and virtual systems and assets that provide services which

form the basis of society, and as such they are relied upon as “the backbone of the nation’s economy, security, and health”

( White House, 2013 ). In particular, electric power, gas, and water are considered key critical infrastructure networks as they

enable functionality and productivity across all other critical infrastructures ( White House, 2013 ). According to Presidential

Policy Directive (PPD) 21 ( White House, 2013 ), such networks “must be secure and able to withstand and rapidly recover

from all hazards.” In other words, these critical infrastructure networks must be resilient . 
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Fig. 1. Trajectory of performance across system states, adapted from Henry and Ramirez-Marquez (2012) . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Despite the progress toward enhancing the resilience of infrastructure networks, “aging equipment, capacity bottlenecks,

as well as increasing storms and climate change” increase the vulnerability of infrastructure networks in the face of terrorist

attacks, natural disasters, and manmade hazards ( American Society for Civil Engineers (ASCE), 2017 ). According to the ASCE

Infrastructure Report (2017) , the US energy sector was recently given a grade of D + , and the water and wastewater sector

was given a grade of D, citing that (i) service was at its full capacity in 640,0 0 0 miles of the high voltage transmission

lines in the lower 48 states, (ii) many of the drinking water and wastewater pipelines and gas distribution lines should

be replaced as they are approaching the end of their life expectancy, and (iii) without incorporating the negative effect of

disruptions, there are still an estimated 240,0 0 0 water major breaks per year. 

The increasing vulnerability in these critical infrastructure networks structure, combined with the more frequent and

severe natural disasters and malevolent attacks, challenge our traditional planning for responding to and restoring from dis-

ruptive events. For example, when Hurricane Harvey struck the southern coast, it caused about $200 billion in damages,

and $20–$30 billion in lost economic output ( CNBC, 2017 ). According to FEMA (2017) , nearly 40,0 0 0 people were in shel-

ters in Texas and Louisiana, most without essential lifeline services. Over 160 drinking water systems were damaged, with

50 of them totally shut down, and 800 water waste facilities were partially damaged. Also, more than 30 0,0 0 0 customers

were without power for more than 24 h ( Commission to Rebuild Texas, 2017 ). Just from Hurricane Harvey and its conse-

quences, we realize the extent to which a severe disruption to critical infrastructure networks can adversely impact the

health, security, and the productivity of a society. 

In response to this, several studies have defined, modeled, and assessed resilience across different critical infrastructure

sectors ( Hosseini et al., 2016; Celik 2017 ). Many studies focus on reducing vulnerability or enhancing restoration in energy

sectors ( Bienstock and Mattia, 2007; Nurre et al., 2012; Nan and Sansavini, 2017 ), water and wastewater sectors ( Nurre et al.,

2012; D’Ambrosio et al., 2015 ), transportation and emergency response ( Baroud et al., 2014; Celik et al., 2015; Iloglu and

Albert, 2018 ), and the interconnectivity and associated interdependency among various types of networks ( Sharkey et al.,

2015; González et al., 2016b; Barker et al., 2017; González et al., 2017; Smith et al., 2017 ). 

To illustrate the effects of a disruptive event, Fig. 1 depicts the changes in the performance of an infrastructure network

prior, during, and after its occurrence ( Henry and Ramirez-Marquez, 2012; Barker et al., 2013; Pant et al., 2014 ). The perfor-

mance (e.g., the total demand that is satisfied at time t ) and the resilience (e.g., the proportion between the performance at

time t and the performance before the disruptive event e j ) are denoted by φ( t ) and Я ϕ ( t| e j ) , respectively. 
Vugrin and Camphouse (2011) defined resilience capacity as a function of (i) absorptive capacity , or the extent to which

an infrastructure network absorbs the negative effect of a disruptive event, (ii) adaptive capacity , or the extent to which an

infrastructure network adapts to new conditions in the aftermath of a disruptive event by temporary means, and (iii) restora-

tive capacity, or the extent to which an infrastructure network is recovered in long-term manner. The collection of absorptive

and adaptive capacities addresses the vulnerability mitigation of the network, or to what extent an infrastructure network

withstands a disruptive event (i.e., φ( t e ) −φ( t d )). The restorative capacity is analogous to recoverability, or the ability of the

network to recover to a desire level of performance in a timely manner. As Fig. 1 indicates, the dimensions of vulnerability

and recoverability combine to account for resilience. Among several studies, optimization approaches to increase powerlines

capacities to prevent large scale cascading blackouts in power network ( Bienstock and Mattia, 2007 ) is an example of ab-

sorptive capacity. The robust adaptive strategies to respond to the dramatic climate change in water management systems

( Lempert and Groves, 2010 ), where simulation models of several disruption scenarios to the network are implemented to

illustrate the vulnerabilities and assess the options to ameliorate those vulnerabilities is an example of adaptive capacity.

Finally, debris removal from a transportation network after a natural disaster ( Celik et al., 2015 ) is an example of restorative

capacity. 
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In this paper, we focus on enhancing restorative capacity of infrastructure networks after a large disruptive event. The

proposed formulations and techniques in this paper can be applied to the restoration efforts of a variety of infrastructure

systems. While other works have proposed optimization formulations to assign resources or schedule work crews for in-

terdependent network restoration ( González et al., 2016a; Almoghathawi et al., 2017; Sharkey et al., 2015 ), proposed here

is a formulation that integrates the work crew scheduling problem with a vehicle routing problem to address the practical

problem of traversing a given road network to recover other infrastructure networks. The main contribution of this research

is to propose two mixed integer linear routing models that assign a set of disrupted components to each restoration crew

and identify the route with the minimum total traveling time associated with that restoration crew. In the first routing

model, referred to as the Binary Active Restoration Crew Routing model, each disrupted component is not operational unless

it is fully recovered. In the second routing model, referred to as Proportional Active Restoration Crew Routing , each disrupted

component can be partially operational in the network while it is being recovered. Disrupted components have component-

specific characteristics, including specific restoration rates and disruption levels. After a disruptive event, various restoration

crews can be assigned to a disrupted component and accelerate its restoration trajectory. Each of the assigned restoration

crews can arrive at a time that does not depend on the arrival time of other assigned crews. However, a restoration crew

cannot arrive at a disrupted component after its restoration process is completed by other crews. We also note that each

disrupted component may experience a different increase in the restoration rate when a new crew joins to the restoration

process. The optimal assignment, schedule, and route of restoration crews can significantly reduce the restoration time of

the entire set of infrastructure networks. This paper assumes that any disruption affects only the infrastructure network, not

the transportation network. As the formulation proposed here is already substantially complex, we consider this paper to

be a first step toward eventually analyzing simultaneous disruptions to infrastructure and transportation networks. 

The remainder of the paper is organized as follows. Section 2 introduces an overview of the infrastructure resilience

literature focusing on restorative capacity and restoration crew routing problems. Section 3 proposes a multiple restora-

tion crew routing formulation to distribute restoration crews to disrupted network components through a routing network

and to update the model to incorporate the proportionally operational components in each time period. We then pro-

pose a lower bound for the restoration crew routing problem by introducing a relaxed formulation of the original model

and a heuristic algorithm to provide a feasible initial solution aligned with policies for enhancing infrastructure network

resilience. Section 4 illustrates the applicability of the proposed formulations with the system of gas, water, and electric

power networks derived from those in Shelby County, Tennessee. We also discuss the computational results associated with

the illustrative examples and investigate the efficacy of the proposed algorithm to find the best lower bound. Concluding

remarks and prospective future work are provided in Section 5 . 

2. Background literature 

Several studies in recent years have focused on optimization models and algorithms to improve the restoration process

after disruptive events. Celik (2017) provides a comprehensive overview of the literature on large-scale infrastructure net-

work restoration in the aftermath of catastrophes and malevolent attacks. 

Many of the fundamental studies in the field of post disruption infrastructure network resilience do not address the

issue of routing, instead focusing on scheduling and sequencing disrupted network components to restoration crews.

Nurre et al. (2012) introduce a design and scheduling formulation to improve the infrastructure network construction and

restoration process. Aligned with particular decision making policies, the authors develop a dispatching rule based heuris-

tic to identify the next set of network components to be restored by crews. Liberatore et al. (2014) present a restoration

planning formulation for disrupted transportation networks through which emergency goods are distributed to affected 

populations, noting that the routing problem is not considered in their proposed formulation. Sharkey et al. (2015) propose

a mathematical formulation that incorporates the restoration interdependencies among different infrastructure networks 

(e.g., water, power, transportation) into the design and scheduling problems. They also investigate the effects of centralized

decision making (i.e., where one decision maker dispatches all recovery resources through all infrastructure networks) and

decentralized decision making (i.e., where decision makers associated with each infrastructure determine restoration efforts

independently and communicate with other decision makers responsible for other infrastructure networks). Özdamar and

Ertem (2015) study a variety of humanitarian operations, including relief delivery, casualty transportation, and mass evacu-

ation after large-scale disruptions. While the aforementioned works deal with various aspects of service networks engaged

after a disruption, none consider the routes of restoration crews, and none account for the routing time of each crew and

its effect on the restoration plan and schedule. In the field of supply chain networks, Wang et al. (2016) focus on the in-

terdependencies among several supply chain networks and their environment and how their resilience structure prevents

financial crises and economic recession. González et al. (2016a, b ) propose a mathematical model to recover a damaged

system of interdependent networks while considering limited resources and diverse operational constraints. Their model 

considers not only physical interdependencies among the different networks in the system, but also cost reductions asso-

ciated with recovering multiple co-located components simultaneously. Furthermore, considering the high computational 

complexity associated with optimizing the recovery of a system of interdependent networks, González et al. (2017) propose

a reduced-order linear representation based on data-driven system identification, denominated the recovery operator, which

reproduces the main recovery dynamics of the system and can be used to generate efficient recovery strategies. Extending

from the approach by Sharkey et al. (2015), Smith et al. (2017) propose a sequential game theoretic model to determine effi-
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cient recovery strategies that depict decentralized decision making processes with partial information under a time-discrete

non-cooperative configuration. Chapman et al. (2017) show that such a recovery operator can be used to efficiently model

decentralized decisions, by constructing a layered Cartesian form of the studied system. Ouyang and Fang (2017) establish a

decision making formulation to protect and restore critical infrastructure networks after malevolent attacks. Their proposed

decomposition algorithm minimizes network vulnerability by fortifying network components and/or building new support-

ing lines prior to a disruption and enhances the network restoration process after the disruption. 

With regard to routing time of restoration crews as well as scheduling and sequencing disrupted network components

to each of those crews, we found several works that specifically focus on the road network restoration process itself (e.g.,

debris cleaning and disposal, snow removal). Previous works may differ from the restoration of other infrastructure net-

works as the disruptions in transportation networks result in the loss of physical connections. As a result, the accessibility

to some disrupted network components depends on the operational state of other components. Considering the restoration

of disrupted infrastructure networks, Wang et al. (2010) provide a multi-objective optimization model to apply contraflow

techniques and plan optimal emergency resources to repair roads in a timely manner. Hu and Sheu (2013) present a reverse

logistics approach for post-disruption debris that proposes a multi-objective linear model to minimize the total reverse lo-

gistics cost, environmental and operational costs, and required medical treatment in the affected location. Faturechi and

Miller-Hooks (2014) propose a bi-level three-stage mathematical formulation to maximize the connectivity of roadway net-

works and optimize traveling time through those networks after a disruptive event. Celik et al. (2015) develop a partially ob-

servable Markov decision model to solve a stochastic debris removal problem to determine the optimal schedule of blocked

links over discrete time periods. To reconnect a disrupted transportation network in the minimum time horizon, Kasaei and

Salman (2016) propose an arc routing formulation that identifies the restoration schedule and sequence of blocked roads.

For large-scale routing problems, they develop a heuristic algorithm to maximize the benefit gained by network connectivity

promptly. Iloglu and Albert (2018) propose a p-median formulation to find the minimized weighted distance between the

emergency responders and disrupted locations in a transportation network. Wang et al. (2017) study the urgent evacuation

problem through transportation networks, proposing an algorithm to connect the transportation network to minimize the

traveling time between each pair of locations. Akbari and Salman (2017) extend the arc routing formulation to dispatch more

than one restoration crew through the disrupted network such that a closed road cannot be traversed unless its restoration

procedure is completed. They then propose a local search algorithm to find a set of synchronized routes resulting in min-

imum required time to reach to the complete network connectivity. Xu et al. (2018) propose a data-driven approach to

manage multiple types of emergency fleets and successfully strike a balance between dynamic rescue demands and restora-

tion vehicles supplies in post disruption urban flood control to dispatch restoration vehicles through disrupted areas using

real time disruption scenarios. 

We integrate the two areas of literature described in the previous two paragraphs, (i) infrastructure restoration and (ii)

transportation network dispatch, to propose a new problem that addresses the dependent relationship between a disrupted

infrastructure network and the routing network that connects all disrupted components. The proposed model is an extended

form of the multiple restoration crew routing problem and the fundamental constraints employed in such a model (e.g., the

routing network, subgraph elimination, crew arrival time consideration). 

3. Problem formulation 

Mentioned in Sections 1 and 2 , the purpose of this paper is to establish the optimal restoration plan for a disrupted

infrastructure network by determining, among others, the best schedule and sequence of disrupted components assigned to

each crew through an underlying routing network. The infrastructure network is represented by an undirected connected

graph G = ( N, A ), where N is the set of nodes and A is the set of links. There is a set of supply nodes N + ⊆N , where each

supply node i ∈ N + supplies amount o i in each time period, a set of demand nodes N − ⊆N , where each demand node i ∈
N − demands amount b i in each time period, and a set of transition nodes N = ⊆N . There is also a set of links A ′ ⊆A , that are

affected by a disruptive event. Each link ( i, j ) ∈ A has a pre-defined capacity u ij and a pre-disruption flow value f ij calculated

based on the total amount of demand. In some cases, some demand nodes need to be prioritized over others as they might

be located in more critical areas (e.g., more populated, located near hospitals or other critical facilities). To incorporate the

relative importance of each demand node i ∈ N − , we define weight w i to give priority such nodes. The principal goal of our

formulation is to send maximum flow from supply nodes to demand nodes, while respecting the flow capacity of links and

supply/demand capacities. 

Separate from the infrastructure network, we model the routing network as a complete undirected graph Ḡ = ( ̄N , Ā ) ,

where N̄ is the set of nodes and Ā is the set links defined between each pair of nodes. Relating the infrastructure net-

work to the routing network, the disrupted locations on disrupted links A ′ ∈ A in the infrastructure network, are the set of

nodes N̄ A ′ ⊆ N̄ forming the routing network Ḡ . There is a set of depots N̄ D ⊆ N̄ from which the restoration crews are dis-

patched and a dummy sink node n + 1 ∈ N̄ to which all the restoration routes end. For directed routing networks, we simply

assign x ijk = 0, for k ∈ K , ∀ i, j ∈ N̄ , if there is no path from node i to node j , where x ijk is a binary variable that equals 1 if

crew k travels from node i to node j and 0, otherwise. The traveling time through each link ( ̄i , j̄ ) is c 
ī ̄j 
. Similar to Akbari and

Salman (2017) , we assume that the traveling time from ī to j̄ is equivalent to the traveling time from j̄ to ī (i.e., c 
ī ̄j 

= c 
j̄ ̄i 
).

When a restoration crew arrives to a node in N̄ A ′ ⊆ N̄ , or its counterpart disrupted location in the infrastructure network, it
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Fig. 2. The geographical relation between the routing network and the infrastructure network. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

spends a particular amount of time to restore that location, whether alone or with the aids of other crews, and then leaves

the node to join another restoration task. As more restoration tasks are completed in the routing network, we see the in-

frastructure network performance enhanced (i.e., the total flow reaching to the demand nodes increases). Fig. 2 depicts the

relation between the infrastructure network and its corresponding routing network after a disruptive event. In Fig. 2 , the

disrupted locations on links in the infrastructure network, shown by lightning bolts, are the nodes in the routing network,

shown by circular nodes. Each particular line in the routing network (e.g., bold, bold dashing, long and small dashes), is

associated with the route of a particular restoration crew starting from a depot, shown by a square node, and may intersect

and share nodes with other restoration routes. As mentioned in Section 1 , the routing network itself remained unaffected

by the disruptive effects in such way that there is always a path which connects each pair of nodes in the routing net-

work, whether the pre-disruption shortest path unaffected by disruptions or the shortest undisrupted path between those

corresponding nodes. 

After a disruptive event, the mixed integer programming (MIP) formulation determines |K| open routes on the complete

graph Ḡ = ( ̄N , Ā ) such that network G = ( N, A ) becomes fully operational after all disrupted arcs in A ′ ∈ A are restored.

Without loss of generality, we model disrupted nodes using disrupted links, since each node can be represented as two

nodes and one link. Each restoration crew starts its route from its originating depot and ends in a dummy sink node,

( n + 1). The disrupted links in network G are assigned to multiple parallel restoration crews, where the total number of

crews available to work on each link is |K|, and the maximum number of restoration crews that are able to work at each

period of time is L . Note that more than one crew is able to work on a disrupted link simultaneously. The processing time

of each disrupted link ( i, j ) ∈ A ′ depends on the characteristics of that link, its level of disruption, the number of restoration

crews assigned to it, and the arrival time of each crew to that link. In this paper, we consider the fact that doubling or

tripling a working crew does not lead to a doubled or tripled as much as the restoration rate associated with it (e.g., due

to some conflicts among crews and their role in the restoration process). Furthermore, we consider that the increase in the

number of working crews would not necessarily result in the increase in the restoration rate (i.e., the restoration rate might

remain the same). To implement this consideration, we choose 10% of total disrupted components randomly and set their

rate of recovery (processing time) in such a way that after adding a certain number of crews, no increase would be observed

in the rate of recovery. 

3.1. Dynamic restoration process 

Depending on its originating depot and route, the arrival time of each restoration crew assigned to each disrupted node

ī ∈ N̄ A ′ may be different from other crews assigned to that node. The restoration process starts as soon as the first crew

arrives to node ī ∈ N̄ A ′ and each time a new crew joins the restoration process, it accelerates the remaining restoration

process and consequently decreases the remaining processing time of node ī . Fig. 3 illustrates how the restoration rate

accelerates when a new crew joins the restoration process (relative to when crews arrive at the same time). We assume

that p l 
ī 
is an integer parameter that represents the processing time of node ī ∈ N̄ A ′ if l restoration crews are assigned to ī

and start their restoration tasks at the same time. Note that when all crews arrive to node ī at the same time, the restoration

process will be completed sooner than when work crews arrive at different times. In Fig. 3 (a), at time t 1 , the first assigned

crew arrives to node ī ∈ N̄ A ′ and starts the restoration process. If no other crew joins to the restoration process, it will

be completed at time t ′ 
1 
, in p 1 

ī 
time periods. Fig. 3 (b) illustrates when a second crew arrives at time t 2 , showing how the

restoration rate accelerates, and the process is completed at time t ′ 
2 
, where t 1 + p 2 

ī 
< t ′ 

2 
< t ′ 

1 
. Finally, in Fig. 3 (c), a third crew

arrives and at time t 3 , and the restoration process is completed in time t ′ 
3 
, where t 1 + p 3 

ī 
< t ′ 

3 
< t ′ 

2 
. 

The restoration of each link should be processed without interruption, and the model prevents time conflicts by calcu-

lating the arrival time of each crew k ∈ K at each node ī ∈ N̄ A ′ , or its counterpart disrupted location on a link A ′ ⊆A in the

infrastructure network G = ( N, A ). 

The objective of the optimization model is to maximize resilience of the infrastructure network over time, where re-

silience is measured as a time-dependent function of recovered network performance to total performance loss, as adapted

from Henry and Ramirez-Marquez (2012) . Noting that only the infrastructure network contains demand nodes, shown by
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Fig. 3. Illustration of restoration rates as new crews arrive at a disrupted component. 
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i ∈ N − , the resilience measure tracks the trajectory of restoration at each time, t = 1, …, T , by determining the maximum

weighted flow, denoted by 
∑ 

i ∈ N − w i ϕ it , that reaches to demand nodes in the infrastructure network. The resilience measure

is calculated for a particular disruption e j following Eq. (1) , where 
∑ 

i ∈ N − w i ϕ i t e is the total weighted flow reaching to de-

mand nodes before the disruption and 
∑ 

i ∈ N − w i ϕ i t d 
is the total weighted flow of reaching to the demand nodes immediately

after disruption e when no restoration crew takes part in the restoration process. Time periods t e and t d are illustrated in

Fig. 1 as the pre- and post-disruption time periods. 

Я ϕ ( t| e ) = 

∑ 

i ∈ N − w i ϕ it −
∑ 

i ∈ N − w i ϕ i t d ∑ 

i ∈ N − w i ϕ i t e −
∑ 

i ∈ N − w i ϕ i t d 

(1) 

3.2. Mathematical model 

We present two variations on the proposed MIP restoration routing problem. In the Binary Active model, it is assumed

that each disrupted link remains inoperable until the related recovery process is completed in full. Although the Binary Ac-

tive model has many applications in many realistic case studies (e.g., water pipe networks, railways), other applications (e.g.,

road transportation networks, the physical structure of internet networks) assume that disrupted links can be partially op-

erable during their restoration. As such, the Proportional Active model addresses this latter category of restoration problems

in which the level of operability in each disrupted link ( i, j ) ∈ A ′ increases during its restoration process until it becomes

completely operational. The Proportional Active model may not always be directly applicable to power, water, and gas net-

works. However, we used this model on the three proposed network instances, as it provides relevant insights on their

performance and behavior. In particular, by using this model we can: (i) study the behavior of the model on various sizes of

problem instances, from small size networks (i.e., gas network) to large size networks (i.e., power network), and (ii) consider

the applicability of the model the problem instances where temporary and emergency components are installed along with

the main infrastructure network to satisfy a portion of demand. Considering both formulations, the indices, parameters, and

decision variables for the infrastructure network and routing network are found in Table 1 . 

In this paper, we consider that, in the case where the transportation network is damaged, the model uses the remain-

ing undamaged subgraph. We further assume that the network is still connected after the disruptions. In cases where the

subgraph does not connect all the disrupted locations in the network, the model restores only the accessible locations. 

3.2.1. MIP model for Binary Active network restoration 

max 
∑ 

t∈ T 
Я ϕ ( t| e ) (2) 

∑ 

k ∈ K 

∑ 

j̄ : ∈ ̄N A ′ : ( ̄i , ̄j ) ∈ ̄A 
x k 
ī ̄j 

= v ̄i ∀ ̄i ∈ N̄ D (3) 

∑ 

i : ∈ N \ ( n +1 ) : ( i , j ) ∈ N 
x k 
i j 

≤ 1 ∀ j ∈ N A ′ ∪ ( n + 1 ) , k ∈ K (4) 

∑ 

j̄ : ∈ ̄N A ′ : ( ̄i , ̄j ) ∈ ̄N 
x k 
ī ̄j 

≤ 1 ∀ ̄i ∈ N̄ \ ( n + 1 ) , k ∈ K (5) 

∑ 

i : ∈ N A ′ ∪ N D : ( i , j ) ∈ A 
x k 
i ( n +1 ) 

= 1 k ∈ K (6) 

∑ 

i : ∈ N \ ( n +1 ) : ( i , j ) ∈ A 
x k 
i j 

−
∑ 

i : ∈ N A ′ ∪ ( n +1 ) : ( i, j ) ∈ A 
x k 
j i 

= 0 ∀ j ∈ N A ′ , k ∈ K (7) 

∑ 

ī : ∈ ̄N \ ( n +1 ) : ( ̄i , ̄j ) ∈ ̄A 
x k 
ī ̄j 

= 

T ∑ 

t=1 

τ k 

j̄ t 
∀ ̄j ∈ N̄ A ′ , k ∈ K (8) 

∑ 

k ∈ K 

T ∑ 

t=1 

τ k 

ī t 
= 

L ∑ 

l=1 

lz l 
ī 

∀ ̄i ∈ N̄ A ′ , l = 1 , . . . , L (9) 

L ∑ 

l=1 

z l 
ī 
≤ 1 ∀ ̄i ∈ N̄ A ′ (10) 
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Table 1 

Notation for the Binary and Proportional Active restorative capacity routing problems. 

Infrastructure network notation 

N Set of nodes in network G = ( N, A ) 

A Set of links in network G = ( N, A ) 

A ′ Set of disrupted links in network G = ( N, A ) 

{1, …, T } Set of time periods in the restoration horizon 

Routing network notation 

N̄ Set of nodes in network Ḡ = ( ̄N , ̄A ) 

N̄ A ′ Set of nodes in network Ḡ = ( ̄N , ̄A ) corresponding to disrupted links in network G = ( N, A ) 

N̄ D Set of depots from which recovery crews commence their routes 

Ā set of links in network Ḡ = ( ̄N , ̄A ) which connects the nodes corresponding to disrupted links in 

network G = ( N, A ) 

K Set of restoration crews, where | K | is the maximum number of available crews through the 

restoration horizon 

{1, …, L } Set of restoration crews assigned to each node i ∈ N̄ A ′ , where L is the maximum number of crews 

that can be assigned to each disrupted component 

( n + 1) The dummy sink node where the routes of all restoration crews ends 

Parameters 

v 
i 

Maximum number of restoration crews sent from depot ̄i ∈ N̄ D 
p l 
ī 

Processing time of node ̄i ∈ N̄ A ′ when l crews are assigned to its restoration 

c ̄i ̄j Traveling time from node ̄i to node j̄ , ( ̄i , ̄j ) ∈ Ā 
θi j ̄i Binary parameter equals to 1 if node ̄i ∈ N̄ A ′ represents link ( i, j ) ∈ A ′ in graph G = ( N, A ) 

u ̄i ,te Capacity of node ̄i ∈ N̄ A ′ , or its corresponding link ( i, j ) ∈ A ′ , before the disruptive event 
u ̄i ,td Capacity of node ̄i ∈ N̄ A ′ , or its corresponding link ( i, j ) ∈ A ′ , immediately after the disruptive event 

b i Capacity of demand node i ∈ N −
M Very large number 

Decision variables 

x k 
ī ̄j 

Binary variable equal to 1 if restoration crew k ∈ K travels link ( ̄i , ̄j ) ∈ Ā 
z l 
ī 

Binary variable equal to 1 if l restoration crews are assigned to node i ∈ N̄ A ′ 
τ k 

ī t 
Binary variable equal to 1 if restoration crew k arrives to node ̄i ∈ N̄ A ′ at time t 

g l 
ī t 

Binary variable equal to 1 if the l th restoration crew arrives to node ̄i ∈ N̄ A ′ at time t 

β l 

ī 
Continuous variable representing the completion time of the restoration process associated with 

node ̄i when l crews are assigned 

f ijt Integer variable representing the flow on link ( i, j ) ∈ A at time t 

φ it Integer variable representing the flow reaching to demand node i ∈ N − at time t 

αijt Binary variable equal to 1 if restoration task on link ( i, j ) finishes at time t 

y k 
ī 

Binary variable equal to 1 if restoration crew k ∈ K is assigned to node i ∈ N̄ A ′ 
f̄ k 
ī ̄j 

Integer variable representing the flow of restoration crew k on link ( ̄i , ̄j ) ∈ Ā 

Note: All subscripts with an overbar refer to nodes in the routing network 

 

 

 

 

 

 

 

T ∑ 

t=1 

t τ k 

j̄ t 
≥ c ̄i ̄j + 

T ∑ 

t=1 

t τ k 

ī t 
+ p l 

ī 
− M 

(
1 − x k 

ī ̄j 

)
− M 

(
1 − z l 

ī 

) ∀ ̄i ∈ N̄ A ′ , ∀ ̄j ∈ N̄ A ′ , l = 1 , . . . , L, k ∈ K (11)

T ∑ 

t=1 

tτ k 

j̄ t 
≥ c ̄i ̄j + β l 

ī 
− M 

(
1 − x k 

ī ̄j 

)
− M 

(
1 − z l 

ī 

) ∀ ̄i ∈ N̄ A ′ , l = 2 , . . . , L, k ∈ K (12)

T ∑ 

t=1 

t g l+1 

ī t 
≥

T ∑ 

t=1 

t g l 
ī t 

− M 

( 

1 −
L ∑ 

l̄ = l+1 

z l̄ 
ī 

) 

∀ ̄i ∈ N̄ A ′ , l = 1 , . . . , L (13)

T ∑ 

t=1 

tg l+1 

ī t 
≤ β l 

ī 
+ M 

( 

1 −
L ∑ 

l̄ = l+1 

z l̄ 
ī 

) 

∀ ̄i ∈ N̄ A ′ , l = 1 , . . . , L (14)

∑ 

k ∈ K 
τ k 

ī t 
≥

L ∑ 

l=1 

g l 
ī t 

∀ ̄i ∈ N̄ A ′ , t = 1 , . . . , T (15)

T ∑ 

t=1 

g l 
ī t 

= 

L ∑ 

l̄ = l 
z l̄ 
ī 

l = 1 , . . . , L, ∀ ̄i ∈ N̄ A ′ (16)

∑ 

j: ( i, j ) ∈ A 
f i jt −

∑ 

j: ( j,i ) ∈ A 
f jit ≤ O i ∀ i ∈ N + , t = 1 , . . . , T (17)



74 N. Morshedlou et al. / Transportation Research Part B 118 (2018) 66–89 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

∑ 

j: ( i, j ) ∈ A 
f i jt −

∑ 

j: ( j,i ) ∈ A 
f jit = 0 ∀ i ∈ N = , t = 1 , . . . , T (18) 

∑ 

j: ( i, j ) ∈ A 
f i jt −

∑ 

j: ( i, j ) ∈ A 
f jit = −ϕ it ∀ i ∈ N − , t = 1 , . . . , T (19) 

0 ≤ ϕ it ≤ b i ∀ i ∈ N − , t = 1 , . . . , T (20) 

0 ≤ f i jt ≤ u i j ∀ ( i, j ) ∈ A, t = 1 , . . . , T (21) 

0 ≤ f i jt ≤
t ∑ 

s =1 

αi js u i j ∀ ( i, j ) ∈ A ′ , t = 1 , . . . , T (22) 

T ∑ 

s =1 

s αi js ≥ β l 

ī 
− M 

(
1 − z l 

ī 

)
− M 

(
1 − θi j ̄i 

) ∀ h ∈ N̄ A ′ , ∀ ( i, j ) ∈ A ′ , k ∈ K (23) 

T ∑ 

s =1 

αi js ≤ 1 ∀ ( i, j ) ∈ A ′ (24) 

z l 
ī 
= { 0 , 1 } l = 1 , . . . , L, ∀ ̄i ∈ N̄ A ′ (25) 

τ k 

ī t 
= { 0 , 1 } , g l 

ī t 
= { 0 , 1 } ∀ ̄i ∈ N̄ A ′ , k ∈ K , l = 1 , . . . , L, t = 1 , . . . , T (26) 

x k 
ī ̄j 

= { 0 , 1 } (
ī , j̄ 

)
∈ Ā , k ∈ K (27) 

ϕ it > 0 , i ∈ N − ∀ i ∈ N −t = 1 , . . . , T (28) 

αi jt = { 0 , 1 } , f i jt > 0 ( i, j ) ∈ A, t = 1 , . . . , T (29) 

The objective function focuses on the performance of the infrastructure network as determined by its resilience measure

over the horizon of restoration. Eqs. (3) –(8) are restoration crew routing balance equations. Eq. (3) requires that at most

v i restoration crews can be dispatched from each depot ∀ ̄i ∈ N̄ D . Eqs. (4) and (5) ensure that each restoration crew travels

through each link ( ̄i , j̄ ) ∈ Ā and visits each node ī ∈ N̄ A ′ at most once, respectively. In Eq. (6) , a dummy sink node, ( n + 1), is

considered for crews where their routes end, where x k 
ī ( n +1 ) 

, i ∈ N̄ D is equal to 1 for crew k ∈ K when it is not used in the

restoration process and does not leave its depot at all. In Eq. (7) , each crew k ∈ K that enters a node ī ∈ N̄ A ′ should leave
that node after restoration tasks are completed. In Eq. (8) , no crew travels link ( ̄i , j̄ ) ∈ Ā unless it is scheduled to restore

node j̄ ∈ N̄ A ′ . Eq. (9) ensures that no crew visits node ī unless it is assigned to that corresponding node. Eq. (10) ensures

that when a certain number of restoration crews are assigned to link ( i, j ) ∈ A ′ , or its counterpart node h ∈ N̄ A ′ , then the
number of crews cannot be changed during the restoration process. 

Eqs. (11) –(14) determine the arrival time related to each restoration crew, k ∈ K, ī ∈ N̄ A ′ , and the processing time associ-

ated with each disrupted link. Eqs. (11) and (12) calculate the arrival time of each restoration crew k ∈ K to each disrupted

node j̄ ∈ N̄ A ′ from node ī ∈ N̄ \ ( n + 1 ) . It is assumed that all restoration crews work independently, and each crew starts the

restoration process as soon as it arrives to any disrupted node. Consider disrupted node j̄ to which we assigned l restora-

tion crews. After completing the restoration process associated with node ī ∈ N̄ at time β l 
ī 
, the first crew arrives at time

t τ k 
j̄ t 

= t g 1 
j̄ t 

= β l 
ī 
+ c 

ī ̄j 
, for j̄ ∈ N̄ A ′ , k ∈ K , and commences restoration operations with the recovery rate λ1 

ī 
, then the second

crew arrive at time t ′ τ k 
j̄ t ′ = t ′ g 2 

j̄ t ′ = β l 

i 
+ c 

i ̄j 
, after completing the restoration process of node i , and so forth. Each time a new

crew joins to the restoration process of a disrupted link, its rate of increases. Therefore, the processing time of each dis-

rupted link ( i, j ) ∈ A ′ , or its counterpart node j̄ ∈ N̄ A ′ , is a function of the arrival time of that crew to that corresponding link.

Eqs. (13) and (14) set a time window for l th restoration crew, l = 1, …, L , arriving to node ī ∈ N̄ A ′ starting from the arrival

time of the prior restoration crew and ending to the completion time of the restoration process of by l −1 restoration crews.

Eqs. (15) and (16) sort the arrival time associated with crews assigned to each disrupted link. 

Eqs. (17) –(22) are flow balance equations through supply nodes, transition nodes, and demand nodes. Eq. (20) en-

sures that the amount of flow reaching to each demand node i ∈ N − does not exceed the capacity of that demand node.

Eqs. (21) and (22) require that the flow of each link ( i, j ) ∈ A , whether undisrupted, disrupted, or recovered, does not exceed
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the capacity of that link. Eq. (23) demonstrates that once the restoration process of each link ( i, j ) ∈ A ′ , or its counterpart
node ī ∈ N̄ A ′ , is completed, it becomes fully operational. Eq. (24) ensures that none of the disrupted links receives restoration

services more than once. 

To clarify how β l 
ī 
is calculated and implemented in the mathematical model, consider node ī ∈ N̄ A ′ in routing network

Ḡ = ( ̄N , Ā ) , to which l = 1, …, L restoration crews are assigned, where L is the maximum number of crews that can be

assigned to ī . Each assigned crew arrives at a particular time t = 1, …, T , that might be different from the arrival time of

other assigned crews. In this paper, the restoration progress in node ī is measured in terms of the increase in the capacity of

node ī in a given time window 	t = t l ′ + 1 − t l ′ , l 
′ = 1, …, l (i.e., between the arrival time of l ′ th and ( l ′ + 1)st assigned crews).

Referred to as F l 
′ 

ī 
( 	t ) , the restoration progress related to node ī is calculated as follows. As the first restoration crew

arrives to ī , the restoration process begins. The restoration progress of node ī in the time window after the arrival of the first

crew, t 1 , and before the arrival of the second crew, t 2 , is F 
1 
ī 
( t − t 1 ) , t 1 ≤ t < t 2 . Immediately after the arrival of the second

crew, the restoration progress is accelerated and upgraded to F 2 
ī 
. The restoration progress in the time window after the

arrival of the second crew, t 2 , and before the arrival of the third crew, t 3 , is F 
2 
ī 
( t − t 2 ) , t 2 ≤ t < t 3 , and the total restoration

progress to that point is F 1 
ī 
( t 2 − t 1 ) + F 2 

ī 
( t − t 2 ) , t 2 ≤ t < t 3 . Finally, after the arrival of the l th crew, the restoration progress

is upgraded to F l 
ī 
(t ) , t l < t , and the total restoration progress is calculated as 

∑ l−1 
n =1 F 

n 
ī 
( t n +1 − t n ) + F l 

ī 
( t − t l ) . 

Considering parameters u 
ī t e 

as the capacity of node ī ∈ N̄ A ′ , or its corresponding link ( i, j ) ∈ A ′ , before the disruption (i.e.,
at time t e ), and u ī t d 

as its residual capacity after the disruption (i.e., at time t d ), the restoration process continues until node

ī is completely operational, or its capacity is fully restored (i.e., u 
ī t d 

+ 

∑ l−1 
h =1 

F h 
ī 
( t n +1 − t n ) + F l 

ī 
( t l ) 
 u 

ī t e 
). 

Being familiar with the performance of restoration progress, { F l ′ 
ī 
} −1 ( 	u ) is the inverse function of restoration progress

and calculates the time required to have 	u progress in the restoration process of node ī ∈ N̄ A ′ with l ′ crews assigned. 	u

is the amount of disruption in node ī that should be restored. The domain of 	u is 0 ≤ 	u ≤ u 
ī te 

− u 
ī t d 
, and the domain of

the inverse function is 0 ≤ { F l ′ 
ī 
} −1 ( 	u ) ≤ p l 

′ 
ī 
. Considering ( u 

ī te 
− u 

ī t d 
) as the total loss in the capacity of node ī , when the l th

crew arrives to node ī , there is exactly ( u 
ī te 

− u 
ī t d 

) − ∑ l−1 
h =2 

F ( h −1 ) 

ī 
( t h − t h −1 ) units of capacity left disrupted, and consequently

{ F l 
ī 
} −1 ( ( u 

ī te 
− u 

ī t d 
) − ∑ l−1 

h =2 
F ( h −1 ) 

ī 
( t h − t h −1 ) ) is the time required to finish the restoration process of node ī after the arrival

of l th assigned crew. 

To illustrate the calculation of the completion time of the restoration process associated with each disrupted node ī ∈ N̄ A ′ ,
consider the example in which the first crew arrives at node ī at time t 1 and starts the restoration process. If only one crew

is assigned to node ī ∈ N̄ A ′ , the restoration process will be completed in { F 1 
ī 
} −1 ( u 

ī te 
− u 

ī t d 
) = p 1 

ī 
time periods, where p 1 

ī 
is

the processing time of node ī ∈ N̄ A ′ when only one crew is assigned to node ī . Otherwise, the next restoration crew arrives

at time t 2 , where t 1 ≤ t 2 < t 1 + { F 1 
ī 
} −1 ( u 

ī te 
− u 

ī t d 
) (i.e., the second crew arrives before the restoration process of node ī is

completed), accelerates the restoration process of the remaining task, completing it in { F 2 
ī 
} −1 ( ( u 

ī te 
− u 

ī t d 
) − F 1 

ī 
( t 2 − t 1 ) ) . The

third crew arrives at time t 3 , t 2 ≤ t 3 < t 2 + { F 2 
ī 
} −1 ( ( u 

ī te 
− u 

ī t d 
) − F 1 

ī 
( t 2 − t 1 ) ) , accelerates the restoration process of the re-

maining work, and will complete it in { F 3 
ī 
} −1 ( u 

ī te 
− u 

ī t d 
) − ( 

∑ 3 
l ′ =2 F 

( l ′ −1) 

ī 
( t 

h̄ 
− t 

h̄ −1 
) ) . Finally, the l th crew is the last restora-

tion crew arriving at time t l , t l−1 ≤ t l < t l−1 + { F ( l−1 ) 

ī 
} −1 ( ( u 

ī te 
− u 

ī t d 
) − ∑ l−1 

l ′ =2 
F ( l 

′ −1 ) 

ī 
( t 

h̄ 
− t 

h̄ −1 
) ) and the remaining tasks will

be completed in { F l 
ī 
} −1 ( ( u 

ī te 
− u 

ī t d 
) − ∑ l 

h̄ =2 
F ( l 

′ −1 ) 

ī 
( t 

h̄ 
− t 

h̄ −1 
) ) time periods. The total restoration process associated with

node ī ∈ N̄ A ′ is calculated as t l + { F l 
ī 
} −1 ( ( u 

ī te 
− u 

ī t d 
) − ∑ l 

l ′ =2 F 
( l ′ −1) 

ī 
( t 

h̄ 
− t 

h̄ −1 
) ) . In general, the arrival time of l ′ th restoration

crew, l ′ = 1, …, l , to node ī ∈ N̄ A ′ is shown by tg l 
′ 
ī t 
, where g l 

′ 
ī t 
is a binary variable, equals to 1 if the l ′ th restoration crew arrives

at node ī . Considering l crews assigned to each node ī ∈ N̄ A ′ , the completion time of each node ī ∈ N̄ A ′ , β l 
ī 
, is equal to the

completion time of its counterpart link ( i, j ) ∈ A ′ and calculated with Eq. (30) . 

β l 

ī 
= 

T ∑ 

t=1 

t g l 
ī t 

+ 

{
F l i 

}−1 

( (
u ̄i te − u ̄i t d 

)
−

l ∑ 

l ′ =2 

F 
( l ′ −1 ) 
ī 

( 

T ∑ 

t=1 

t g l 
′ 
ī t 

−
T ∑ 

t=1 

t g 
( l ′ −1 ) 
ī t 

) ) 

(30)

Without loss of generality, we consider a linear relationship between the progress in the restorative capacity of each link

and restoration time of that corresponding link, updating Eq. (30) with Eq. (31) . In Eq. (31) , node ī is restored with rate λl ′
ī 

when the l ′ restoration crews are working on node ī , F l 
′ 

ī 
( 	t ) = λl ′ 

ī 
	t . The recovery time for node ī when one restoration

crew is assigned is p 1 
ī 
, therefore p h 

ī 
is the recovery time when h crews commence restoring node ī at the same time, where

l = 1, …, L is the number of crews assigned to a link (i.e., its counterpart node in network Ḡ ). 

β l 

ī 
= 

T ∑ 

t=1 

t g l 
ī t 

+ 

⎛ 

⎝ 

(
u ̄i te − u ̄i t d 

)
− ∑ l 

l ′ =2 λ
( l ′ −1) 

ī 

(∑ T 
t=1 t g 

l ′ 
ī t 

− ∑ T 
t=1 t g 

( l ′ −1 ) 
ī t 

)
λl 

¯

⎞ 

⎠ (31)
i 
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3.2.2. MIP model for Proportional Active network restoration 

In the Proportional Active formulation, the processing time of each link ( i, j ) ∈ A ′ is presented as a function of: (i)
the number of assigned restoration crews to that link, (ii) the level of disruption associated with that link and the set of

required tasks for its restoration, and (iii) the characteristics of that link, such as the level of disruption it experiences and

the series of required task for its recovery. It is assumed that each recovery task should be processed without interruption.

The formulation has many of the same constraints as the Binary Active model with the addition of Eq. (32) , which calculates

the improvement in the restoration process of each disrupted link ( i, j ) ∈ A ′ in each time period after its restoration process

commences. 

max 
∑ 

t∈ T 
Я ϕ ( t| e ) (32) 

(4) - (22) 

f i jt ≤
t ∑ 

s =1 

( t − s ) 

( 

λ1 
ī 
g 1 
ī s 

+ 

l−1 ∑ 

h =1 

(
λh +1 

ī 
g h +1 

ī s 
− λh 

ī 
g h +1 

ī s 

)) 

+ M 

(
1 − z l 

ī 

)
+ M 

(
1 − θi j ̄i 

)
∀ ( i, j ) ∈ A ′ , t = 1 , . . . , T , l = 1 , . . . , L, ̄i ∈ N̄ A ′ (33) 

3.3. MIP model for relaxed network restoration 

Since the model is complicated by tracking the arrival time of crews to each node j̄ ∈ N̄ A ′ , and consequently calculating
the restoration processing time, we present a relaxed formulation of the proposed problem such that the timing of restora-

tion crews is ignored. This helps to reduce the number of binary variables from O ( n 2 K + m 
2 T ) to O ( n 2 K ). However, it may

result in solutions that are infeasible for the original formulations as (i) it may assign crews to a disrupted node ī ∈ N̄ A ′ 
which arrive after the completion of restoration process to that corresponding node, and (ii) it may form direct cycles in the

network, meaning that two or more crews are present in two different locations at the same time. To tackle this problem,

we derive a feasible solution by modifying the assignment of restoration tasks to crews using Initial Solution Preprocessing &

Feasibility algorithm in Section 3.3.1 . 

min 
 (34) 

(3) –(7) 

∑ 

k ∈ K 

∑ 

( ̄i , ̄j ) ∈ ̄A 
c ̄i ̄j x 

k 

ī ̄j 
+ 

L ∑ 

l=1 

∑ 

ī ∈ ̄N A ′ 
p l 
ī 
z l 
ī 
≤ 
 (35) 

∑ 

k ∈ K 

∑ 

ī : ∈ ̄N \ ( n +1 ) : ( ̄i , ̄j ) ∈ ̄N 
x k 
ī ̄j 

≥ 1 ∀ ̄j ∈ N̄ A ′ (36) 

∑ 

i : ∈ N \ ( n +1 ) : ( i , j ) ∈ A 
f 
k 

i j −
∑ 

i : ∈ N A ′ ∪ N D : ( i , j ) ∈ A 
f 
k 

ji = y k 
j 

∀ j ∈ N A ′ , k ∈ K (37) 

f̄ k 
ī ̄j 

−
∑ 

i : ̄N A ′ : ( i, j ) ∈ ̄A 

y k 
ī 

≥ −
∣∣N̄ 

∣∣x k 
ī ̄j 

∀ ̄i ∈ N̄ D , ∀ j ∈ N̄ A ′ , k ∈ K (38) 

x k 
ī ̄j 

≤ Q 
k 

ī ̄j 
≤

∣∣N̄ A ′ 
∣∣x k 

ī ̄j 
∀ 

(
ī , j̄ 

)
∈ Ā , k ∈ K (39) 

Eq. (35) minimizes the total traveling and restoration time, and Eq. (36) ensures that all disrupted links and their coun-

terpart nodes should be visited. Eqs. (37) –(39) provide flow balance. In Eq. (37) , the net flow of each node i ∈ N̄ A ′ equals
the number of the crews assigned to the corresponding node. For each depot, the net flow is the total number of nodes

assigned to each restoration crew that starts its route from the corresponding depot, as shown in Eq. (38) . Eq. (39) does not

allow a crew to travel on a link unless it is traveled by that crew, and if a link is used by a crew, then there must be a

positive amount of flow associated with the restoration crew passing through that link. 

To incorporate w i in the relaxed formulation, we first find the set of paths that push required flow to prioritized demand

nodes. Among those paths, we determine the level of importance of each link from one of a number of importance measure

types representing different graph theoretical (e.g., edge betweenness) or flow-based measures (e.g., edge flow centrality,

maximum flow edge count, flow capacity impact) ( Nicholson et al. 2016 ). We use I π to refer to the importance measure

calculated for each link ( i, j ) ∈ A ′ , or its counterpart node ī ∈ N̄ A ′ , of type π . In this paper we consider three types of

importance measure: (i) max flow edge count, I MFcount = 
1 

n ( n −1 ) 

∑ 

s̄ , ̄t ∈ N μs̄ ̄t ( i, j ) , where μs̄ ̄t ( i, j ) is a binary parameter and

equals 1 if link ( i, j ) is used in a given source-sink max flow path, (ii) edge flow centrality, I Flow 
= 

∑ 

s̄ , ̄t ∈ N ω s̄ ̄t ( i, j ) ∑ 

s̄ , ̄t ∈ N ω s̄ ̄t 
, where ω st ( i,j )
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Table 2 

Order of disrupted links assigned to each crew and their restoration process completion time, 

adapted from Akbari and Salman (2017) . 

Crew Order of disrupted links 

1 b 11 → b 12 → b 13 . . . b 1 n 1 
2 b 21 → b 22 → b 23 . . . b 2 n 2 
� �

K b K1 → b K2 → b K3 . . . b K n k 
Completion time of restoration tasks 

1 ˜ F 11 = c D b 11 + ̃  p i b 11 → ˜ F 12 = ˜ F 11 + c b 11 b 12 + ˜ p i b 12 . . . ˜ F 1 n 1 = ˜ F 1 n 1 −1 + c b 1 n 1 −1 b 1 n 1 
+ ˜ p i b 1 n 1 

2 ˜ F 21 = c D b 21 + ˜ p i b 21 → ˜ F 22 = ˜ F 21 + c b 21 b 22 + ˜ p i b 12 . . . ˜ F 1 n 1 = ˜ F 1 n 2 −1 + c b 21 b n 2 −1 n 2 
+ ̃  p i b 2 n 2 

� �

K ˜ F K1 = c D b K1 + ˜ p i b K1 → ˜ F K2 = ˜ F K1 + c b K1 b K2 + ˜ p i b K2 . . . ˜ F K n 1 = ˜ F K n 1 −1 + c b K n K −1 b K n K 
+ ˜ p i b K n 1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

is the flow on link ( i, j ) for all possible source-sink paths, and (iii) flow capacity rate, I FCR = 
1 

n ( n −1 ) 

∑ 

s̄ , ̄t ∈ N ω s̄ ̄t ( i, j ) 
c 
i j 

, where c 
i j

is the capacity of link ( i, j ). More details about the calculation of these three importance measures are found in Nicholson

et al. (2016) . 

We then cluster disrupted links based on their importance measure. Aligned with decision making policies, we may

define various thresholds for clusters and represent different number of clusters. The more the number of defined clusters

is, the more accurate the demand nodes are prioritized. Yet, the obtained solution may be different from the optimal solution

which merely focuses on maximizing the network resilience enhancement. For example, if the importance measure of each

link falls into the range of [0, 0.9], links with the importance measure equal to or greater than 0.6 are categorized in cluster

1, or the most important set of links, N̄ A ′ 
1 
, links with the importance measure between 0.3 and 0.5 are categorized in cluster

2, N̄ A ′ 
2 
, and links with importance measure less than 0.3 are categorized in cluster 3, N̄ A ′ γ , or the least important set of

links, where N̄ A ′ 
1 

∪ N̄ A ′ 
2 

∪ . . . ∪ N̄ A ′ 
�

= N̄ A ′ . Eq. (40) then ensures that the disrupted links in N̄ A ′ 
1 
should be restored before the

disrupted links in N̄ A ′ 
2 
, and disrupted link in cluster two should be served before disrupted links in N̄ A ′ 

3 
and so forth. 

∑ 

k ∈ K 

∑ 

i ∈ ̄N 
A ′ 
γ +1 

∑ 

j∈ ̄N 
A ′ γ

x k 
ī ̄j 

= 0 , γ = 1 , . . . , � − 1 (40)

Proposition 1. The optimal recovery scheduling of the Relaxed Restorative Capacity problem, S ∗
R _ RC 

, builds a lower bound

for the optimal solution to the original formulation. 

The proof of Proposition 1 is given in Appendix A-1 . 

3.3.1. Solution approach 

Since time-related variables (e.g., τ k 
ī t 
, g l 

ī t 
, αijt , φit , f ijt ) are not considered, the routing time associated with each restora-

tion crew should be evaluated to be synchronized with other routes with which it has restoration tasks in common. To

achieve this, we start by obtaining a lower bound for the original problem by using the relaxed formulation. Then, we

use Algorithm 2 to obtain a feasible solution for the original problem. Afterwards, we compare this feasible solution with

the solution obtained from solving the original formulations. Note that if the original formulation could not be solved to

optimality due to limited computation time, we may simply use the best solution achieved. 

The proposed feasibility algorithm modifies the optimal solution obtained by the relaxed formulation as follows. First,

adapted from Akbari and Salman (2017) , with the results obtained from the relaxed formulation, we form a solution table

such as Table 2 , to illustrate the scheduled set of disrupted links assigned to each restoration crew and the completion time

of each restoration task assigned to that crew. Here, b kh is the h th disrupted link ( i, j ) ∈ A ′ visited by crew k , and τ ki is the

time when the restoration process of this link is completed. As the number of disrupted links assigned to each restorative

crew can vary, to facilitate the update of restoration orders, we construct |K| lists in Table 2 in which there are n k elements

in row k . 

Then we detect whether there is a directed cycle in the graph (i.e., whether there is a particular restoration crew that is

present in two different locations at the same time). For example, from the relaxed formulation results, we know that two

crews k and κ share disrupted nodes i and j . Crew k is scheduled to restore node i then node j , while crew κ is scheduled to

restore node j and then node i . This schedule prevents the recovery task completion of nodes i and j as two crews should be

present in two different locations at the same time and therefore it is an infeasible solution for original formulation. Inspired

by the Depth First Search (DFS) algorithm, we present the Direct Cycle Elimination algorithm using the DFS algorithm to

identify the direct cycles and eliminate them by reversing the restoration order of one of the involved routes that intersect

with the corresponding cycle. One input to the algorithm is a list including the scheduled set of disrupted links assigned

to each restoration crew, B . Another input is a dictionary, named graph , whose keys are the all nodes, ī ∈ N̄ A ′ , in the routing
network and the values associated with each key are the nodes, j̄ ∈ N̄ A ′ , where x k 

ī ̄j 
= 1 , k ∈ K , and x = 1.The output is a list of



78 N. Morshedlou et al. / Transportation Research Part B 118 (2018) 66–89 

Fig. 4. Illustrative example of Algorithm 1 , the Direct Cycle Elimination algorithm: (a) the routing network contains the direct cycle ̄i → j̄ → ̄k → ̄l → ̄h → ̄i , 

(b) the direct cycle is eliminated by changing the route of crew 2 from d 2 → ̄l → ̄h to d 2 → ̄h → ̄l , (c) the direct cycle is eliminated by changing the 

route of crew 3 from d 2 → ̄h → ̄i to d 2 → ̄i → ̄h , and (d) the direct cycle is eliminated by changing the route of crew 1 from d 1 → ̄i → j̄ → ̄k → ̄l to 

d 1 → j̄ → ̄i → ̄k → ̄l . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

scheduled links to each crew forming a routing network without any direct cycle. The steps of the proposed algorithm are

as follows. 

Using the Convert Procedure , we convert the obtained list B to its counterpart dictionary graph . In the Cycle Detection

Procedure , we use the DFS algorithm to find all cycles in the routing network and put them in a list, named all path . Then, in

the Elimination Procedure , we pick the first cycle in all path , find the sequence of a pair of nodes ( ̄i → j̄ ) in that cycle with the

maximum repetition in all cycles in all path , change the order of the corresponding nodes ( ̄i → j̄ ) → ( ̄j → ̄i ) in the schedule

of each crew in B , and delete all cycles that include ( ̄i → j̄ ) from all path . The output of this procedure is the updated list B .

The algorithm repeats until it finds no further direct cycles the routing network formed from B (i.e., x = 0). Fig. 4 presents

an illustration of the performance of the Direct Cycle Elimination algorithm . As Fig. 4 a shows, the restoration crews one,

two, and three form the direct cycle ī → j̄ → k̄ → l̄ → h̄ → ̄i . To eliminate this cycle, we can change the restoration order

associated with crew 2 from d 2 → l̄ → h̄ to d 2 → h̄ → l̄ , as shown in Fig. 4 b, or the restoration order associated with crew 3

from d 2 → h̄ → ̄i to d 2 → ̄i → h̄ , shown in Fig. 4 c, or the restoration order associated with crew 1 from d 1 → ̄i → j̄ → k̄ → l̄ 

to d 1 → j̄ → ̄i → k̄ → l̄ , shown in Fig. 4 d. According to Algorithm 1 , as changing the route of crew two has the least increase

in traveling cost, we update the routing network accordingly in Fig. 4 b. The updated routing network does not contain a

direct cycle. 

Next, we present the Initial Solution Preprocessing & Feasibility algorithm to detect whether there is a timing conflict

among the restoration crews assigned to each disrupted link. That is, an assigned restoration crew k ∈ K arrives to a disrupted

link, or its corresponding node ī ∈ N̄ A ′ , after that link has been restored. In this situation, two options are considered: (i) the

position of node ī ∈ N̄ A ′ in the outlier crew schedule in Table 2 is swapped with one of the precedent nodes in the schedule

where the arrival time of crew k to node ī falls in the restoration task time window ( Shift Procedure ), and (ii) node ī ∈ N̄ A ′ is
simply deleted from the restoration schedule of the crew k ( Delete Procedure ). 

3.3.1.1. Shift Procedure . Considering the order of the corresponding disrupted node, j̄ , in the schedule of the outlier crew

k in Table 2 , b kj , look for a precedent disrupted node, j̄ (e.g., b k ̄j , j̄ < j in the outlier crew schedule) that is not shared

with any other crew. If the summation of the arrival time to node, j̄ , and p 1 
j 
is greater than maximum arrival time of other

restoration crews to node j , we change the order of disrupted node to b new 

k j 
= b 

k ̄j 
and consequently b new 

k ̄j 
= b k j . In cases

where there is no precedent disrupted node, j̄ , with the defined characteristics, simply apply the Delete Procedure . 
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Algorithm 1 Direct Cycle Elimination. 

1: Input B = [ 

[ B 11 . . . B 1 n 1 ] 

. 

. 

. 
. . . 

. 

. 

. 

[ B K1 . . . B K n k ] 

] , graph, x = 1 

Procedures: 

2: Convert Set graph as an empty dictionary with all key ∈ V and all value = [] 

3: for each key in V do : 

4: for all B ij = key graph [ key ]. value ← B ij + 1 
5: Cycle Detection Set graph ← Convert procedure, all path = [ ] 

6: for i ∈ V A do: 
7: Set start ← i, end ← i and temp = [( i , [ ])] 

8: While temp do 

9: if start = end do 

10: all cycles ← path and go to line 8 

11: for next in graph [ state ] do 

12: if nex t not in path do 

13: path ← next 

14: state ← next 

15: temp = [( next , path )] 

16: Elimination Set all cycle ← Cycle detection 

17: While all path 
 = ∅ do 
18: Among all links all path [1][ i ] → all cycle [1][ i + 1], i = 1, …, | all cycle [1]| find one with the 

19: maximum repetition in cycles in all path 
20: Substitute all cycle [1][ i + 1] → all cycle [1][ i ] for all all cycle [1][ i ] → all cycle [1][ i + 1] in B 

21: all path ← all cycles in all path but ones contain all path [1][ i ] → all cycle [1][ i + 1] 

22: While x 
 = 0 

23: B = Elimination ( Cycle detection ( graph ), B ) 

24: graph = Convert (V, B) 

25: all path = ( graph ) 

26: x = | all path | 

27: Return B 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.3.1.2. Delete Procedure . Remove the disrupted link from the restoration schedule of the outlier crew and update its sched-

ule by shifting the orders of the following disrupted links one step backward. 

As multiple crews can restore a single disrupted link, it may appear in the restoration order of more than one crew.

However, naturally, restoration of a link should not be repeated. We further define ˜ F and F̄ as lists of | K | lists to track

fixed and unfixed completion time, respectively. We note that each sub-list is related to a crew and has a defined length

equal to the number of nodes assigned to that corresponding crew. During the algorithm, the completion time related to

the restoration process of each node ī ∈ N̄ A ′ is marked as unfixed if there is at least one unscheduled task ahead for that

corresponding node in B , when a disrupted link (its corresponding node) is restored we mark its completion time as fixed ,

that is, no more restoration task remains as unscheduled for that corresponding link. To determine a restoration crew as an

outlier for a disrupted link, all precedent restoration tasks assigned to the crew, and consequently their completion time,

must be marked as fixed. After determining the exact time when crew k, k ∈ K, arrives to the i th node (e.g., node ī ), ˜ τki ,
we face three options: (i) the node is only assigned to one crew and the restoration time is p 1 

ī 
, in which case ˜ F ki = F̄ ki =

˜ τki + p 1 
ī 
, (ii) the arrival time of crew k is greater than the completion time of the restoration task associated with that link,

in which case we apply the Shift or Delete Procedures, or (iii) considering κ̄ restoration crews assigned and working on

that corresponding node, the arrival time of crew k , ˜ τki , to the i th node is smaller than the calculated completion time of

the restoration process done by κ̄ restoration crews, yet ˜ τki + p 1 
i 
is greater than the maximum arrival time related to κ̄

restoration crews, in which case crew k joins to the restoration task of node ī and the restoration rate of the remaining

restoration work is accelerated. In cases where ˜ τki + p 1 
i 
is smaller than the maximum arrival time related to κ̄ restoration

crews, we apply the Shift or Delete Procedures on the restoration crew with the maximum arrival time and update the

maximum arrival time related to κ̄ restoration crews, in case the Shift Procedure was applicable, or the maximum arrival

tile related to κ̄ − 1 restoration crews. This procedure continues until ˜ τki + p 1 
i 
is greater than the updated maximum arrival

time related to remained crews working on the i th node. Algorithm 2 continues until all b ik , k ∈ K , i = 1 , . . . , n k are visited

and their completion time is marked as fixed. 

Proposition 2. The initial solution resulting from solving the Initial Solution Preprocessing & Feasibility algorithm is at least

equal to the max 
k ∈ K 

˜ F k n k 
(i.e.., the optimal solution obtained from Relaxed RCRP) and at most equal to | K | × max 

k ∈ K 
˜ F k n k 

(i.e.,

the maximum routing time obtained from the Relaxed RCRP), which is at most equal to | K | × max 
k ∈ K 

˜ F k n k 
obtained from the

original Binary and Proportional RCRP. 

The proof of Proposition 2 is presented in Appendix A-2 . 
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Algorithm 2 Initial Solution Preprocessing & Feasibility Algorithm. 

1: Input B, C 

2: Apply the Direct Cycle Algorithm on the input 

3: Set ˜ F = [] , F̄ = [] , P̄ = [] , and ˜ τ = [] for all disrupted links; each of which is a list of K lists and the length each list 

is equal to the number of disrupted nodes assigned to each restoration crew 

4: for r = 1, …, K do 

5: ˜ F [ r][1] = 1 , F̄ [ r][1] = 1 , P̄ [ r][1] = 1 , and ˜ τ [ r][1] = 1 

6: for h = 1 , . . . , max 
r=1 , ... ,K 

( | B [ r] | ) do 
7: for r = 1, …, K do 

8: if ˜ F [ r][ h − 1 ] > 0 

9: Case1 : if z 1 
B [ r][ h ] 

= 1 (only one crew is assigned to B [ r ][ h ]): 

10: P̄ [ r][ h ] = p 1 
B [ r][ h ] 

, ˜ F [ r][ h ] = F̄ [ r][ h ] = ˜ τ [ r][ h ] + p 1 
B [ r][ h ] 

, 

11: ˜ τ [ r][ h + 1 ] = F̄ [ r][ h ] + C[ B [ r][ h ] , B [ r][ h + 1 ] ] 

12: end if 

13: Case2 : if z l 
B [ r][ h ] 

= 1 , l > 1 (more than one crew is assigned to B [ r ][ h ]) and B [ r ][ h ] is visited for 

14: the first time: 

15: P̄ [ r][ h ] = p l 
B [ r][ h ] 

, F̄ [ r][ h ] = ˜ τ [ r][ h ] + p 1 
B [ r][ h ] 

, 

16: ˜ τ [ r][ h + 1 ] = F̄ [ r][ h ] + C[ B [ r][ h ] , B [ r][ h + 1 ] ] 

17: end if 

18: Case3 : if z l 
B [ r][ h ] 

= 1 , l > 1 ( B [ r ][ h ] is visited l − l̄ times before): 

19: form X = { ̃ τ [ i ][ j ] | B [ i ][ j ] = B [ r][ h ] } , Y = { ̄F [ i ][ j ] | B [ i ][ j ] = B [ r][ h ] } , sorted non-increasing order 
20: Case3-1 : if min 

i =1 , ... , |X | X [ i ] < ˜ τ [ r][ h ] < max 
i =1 , ... , |Y| 

Y[ i ] : 

21: for ∀ B [ i ][ j ] = B [ r ][ h ] 

22: F̄ [ i ][ j] = max 
i =1 , ... , |X | 

X [ i ] + 

( λ1 
B [ r][ h ] 

p 1 
B [ r][ h ] 

−∑ l−1 
h =2 λ

h 
B [ r][ h ] 

( X [ l] −X [ l−1 ] ) ) 

λl 
B [ r][ h ] 

23: P̄ [ i ][ j] = F̄ [ i ][ j] − ˜ τ [ i ][ j] 

24: if l̄ = 1 : 

25: ˜ F [ i ][ j] = F̄ [ i ][ j] 
26: end if 

27: end for 

28: end if 

29: Case3-2 : if max 
i =1 , ... , |Y| 

Y[ i ] < ˜ τ [ r][ h ] : 

30: Shift Procedure : if ∃ B [ r][ ̄h ] where z 1 
B [ r][ ̄h ] 

= 1 , h̄ < h, ˜ τ [ r][ ̄h ] + p 1 
B [ r][ h ] 

< max 
i =1 , ... , |X | 

X [ i ] : 

31: Change the position of B [ r][ ̄h ] and B [ r ][ h ] in B 

32: Go to Case3-1 (line 17) 

33: Go to Update procedure 

34: Delete Procedure : else Delete B [ r ][ h ] in B 

35: Go to Update procedure 

36: end if 

37: end if 

38: end if 

39: end for 

40: end for 

41: Update Procedure : for h ′ = ̄h + 1 , . . . , | B [ r] | : 
42: If ˜ τ [ r][ h ′ ] > 0 : 

43: ˜ τ [ r][ h ′ ] = ˜ F [ r][ h ′ − 1 ] + C[ B [ r][ h ′ − 1 ] , B [ r][ h ′ ] ] 
44: end if 

45: If ˜ F [ r][ h ′ ] > 0 : 

46: ˜ F [ r][ h ′ ] = F̄ [ r][ h ′ ] = ˜ τ [ r][ h ′ ] + P̄ [ r][ h ′ ] 
44: examine Case1, Case2 , and Case3 for B [ r ][ h ′ + 1] 

47: end if 

48: end for 

 

 

 

 

 

 

 

 

 

 

 

4. Illustrative examples based on power grid transmission, water, and gas networks in Shelby County, TN 

To test the performance of the mathematical formulations and heuristic algorithm, we apply the restoration crew routing

problem to realistic data sets representing three different infrastructure systems, including the electric power, water, and

gas networks in Shelby County, Tennessee. Shelby County, which is located in the New Madrid Seismic Zone, is home to

Memphis, a city with a population of over 650,0 0 0. Shown in Fig. 5 , the power network is composed by 136 components

(i.e., 60 nodes and 76 links), the water network by 120 components (i.e., 49 nodes and 71 links), and the gas network

by 33 components (i.e., 16 nodes and 17 links) ( González et al., 2016b ). The combination of these three networks has a

total number of 289 components (i.e., 125 nodes and 164 links). Based on González et al. (2016b) , we consider a realistic

earthquake scenario with epicenter at 35.3 ◦ N, and 90.3 ◦ W located 33 km northwest of the center of Memphis, including

magnitudes within the range of M w ∈ [6, 9]. On average, for the simulated earthquakes with M w = 6, about 6.2% of all

network components are destroyed, for M w = 7, 9.3% are destroyed, for M w = 8, 16.6% are destroyed, and for M w = 9, 22.8%

are destroyed. We distribute the disruptions among the components of the three networks randomly. Since each restoration
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Fig. 5. Graphical representations of the (a) power grid transmission, (b) water, and (c) gas networks at a transmission level in Shelby County, TN 

( González et al., 2016b ). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

crew is accompanied with personnel and equipment, the increase in the number of restoration crews adds additional costs

to the problem. The maximum number of crews working in each time period is 6, 5, and 4 for the power grid, water,

and gas networks, respectively. The distance between each pair of disrupted locations is the shortest unblocked path (in

miles) obtained through ArcGIS and Google Earth. Each of the disrupted infrastructure links may experience a certain level

of damage and require a specific restoration time that depends on the number of assigned restorative crews, its level of

damage, and other characteristics. After the occurrence of the disruption, crews should be dispatched from the depots.

For each disruption scenario associated with each infrastructure network, we select 5, 10, and 15 potential locations for

depots respectively. To simplify the calculation of the distance between a depot node and the location of disrupted links,

the potential depot nodes are chosen from the nodes of each infrastructure network. In different scenarios, the depots are

randomly chosen from the potential depots nodes. The traveling time between each pair of nodes c 
ī ̄j 

, ( ̄i , j̄ ) ∈ Ā is equal

the distance between ī and j̄ divided by the speed of restoration crew, 60 mph on average ( Akbari and Salman 2017 ). We

consider the restoration time horizon as 100 h or about four days ( FEMA, 2017 ). 

4.1. Computational experiment 

In this section, we present the computational results on 60 instances, where for each network we test five instances

for each level of magnitude vibration, and the disruption links are randomly distributed through each network. The com-

putational experiments for both mathematical formulations and heuristic are performed on an Intel Core TM i7-7500U CPU

2.90 GHz (with 32GB RAM) using Gurobi 7.0.2 on Python 2.7.13. The outputs of the heuristics are compared with the exact

solutions obtained by solving the Binary and Proportional Active restoration crew routing problems. For cases where the

Gurobi Solver is not able to return the exact solution within the allowed time of one hour, we compare the lower bound

obtained by Algorithm 1 with the lower bounds and the best obtained solution found by Gurobi in the given time limit.

While the Proportional Active model may not always be directly applicable to power, water, and gas networks, to provide

relevant insights, we study the behavior of these networks under Proportional Active assumptions for illustrative purposes.

Furthermore, the Proportional Active is also applicable in some cases where, along with the installation of main infrastruc-

ture networks (e.g., power lines), temporary and emergency lines are installed and used to meet a portion of demands. The

model is also applicable in cases where the redundant components (e.g., powerline and transformers, water pipelines and

pumps or gas lines) are installed to play the same role in parallel. Finally, we apply the Proportional Active model to all

three infrastructure networks to evaluate the behavior of the model for small size problems (i.e., gas network), medium size

(i.e., water network), and large size (i.e., power network) problems. 

Table 3 through Table 5 , which show the results for the power grid, water, and gas network instances in Shelby County,

represent the results of Binary Active and Proportional Active restoration crew routing models and the initial solution ob-

tained from the Relaxed-Restoration Crew Routing formulation and Initial Solution Preprocessing & Feasibility algorithm. For
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Table 3 

Percentage gap and solution time for the Relaxed-Based Initial Solution Algorithm, Binary Active, and Proportional Active 

restoration crew routing problem for the electric power network. 

Initial solution Binary Active formulation Proportional Active formulation 

Ins. M w K CPU ( s ) T Ga p G 
∗
(%) Gap Z (%) CPU ( s ) T Ga p G 

∗
(%) Gap Z (%) CPU ( s ) T 

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) 

1 6 2 2.9 96 11.5 19.9 1800 70 3.86 15.7 1800 85 

2 3 2.4 67 7.45 32.9 1800 43 0.9 58.5 1800 35 

3 4 2.7 47 4.5 16.4 1800 41 0.1 35.3 1800 28 

4 5 5.8 47 5.55 19.1 1800 35 0.1 26.5 1800 28 

5 7 2 2.0 83 11 36.8 1800 69 2.73 12.4 1800 66 

6 3 6.3 62 9.1 31.2 1800 53 0.4 45.8 1800 37 

7 4 2.3 60 6.67 37.7 1800 44 0.7 49.4 1800 34 

8 5 3.9 57 5.85 37.2 1800 39 0.1 45.5 1800 26 

9 8 4 2.3 111 – – 1800 – – – 1800 –

10 5 4.4 103 – – 1800 – – – 1800 –

11 6 4.9 95 23 27.5 1800 86 14.10 21.8 1800 85 

12 7 2.9 83 18.6 16.1 1800 74 12.3 15.5 1800 72 

13 9 4 4.2 75 – – 1800 – – – 1800 –

14 5 2.6 72 – – 1800 – – – 1800 –

15 6 6.8 68 – – 1800 – – – 1800 –

16 7 3.4 65 – – 1800 – – – 1800 –

Table 4 

Percentage gap and solution time for the Relaxed-Based Initial Solution Algorithm, Binary Active, and Proportional Active 

restoration crew routing problem for the water network. 

Initial solution Binary Active formulation Proportional Active formulation 

Ins. M w K CPU ( s ) T Ga p G 
∗
(%) Gap Z (%) CPU ( s ) T Ga p G 

∗
(%) Gap Z (%) CPU ( s ) T 

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) 

1 6 2 6.05 77 3.45 18.4 1800 65 2.37 31.5 1800 49 

2 3 3.72 42 2.67 12.7 1800 36 2.32 1.1 1800 40 

3 4 4.65 32 3.08 −2.7 1800 35 2.43 8.1 1800 29 

4 5 7.71 22 2.45 −2.4 1800 32 1.54 −6.1 1800 25 

5 7 2 3.44 89 3.42 3.8 1800 76 3.67 17.2 1800 59 

6 3 7.24 68 3.05 27 1800 47 3.73 20.0 1800 47 

7 4 6.78 54 3.71 38.2 1800 35 3.52 8.5 1800 46 

8 5 7.88 40 3.93 18.3 1800 34 4.23 −3.7 1800 42 

9 8 2 3.77 99 6.64 5.2 1800 95 5.5 26.8 1800 74 

10 3 3.46 71 6.24 5.1 1800 53 5.76 7.8 1800 63 

11 4 3.48 59 6.43 4.3 1800 51 5.75 2.2 1800 55 

12 5 4.90 51 6.34 1.8 1800 48 5.43 3.2 1800 45 

13 9 3 7.84 90 12 3.3 1800 79 9.85 8.1 1800 77 

14 4 6.69 81 23 −3.5 1800 85 14.56 45.3 1800 54 

15 5 7.37 69 13.5 8.6 1800 60 9.5 25.9 1800 38 

16 6 6.05 43 12.7 1.5 1800 41 9.6 24.2 1800 30 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

each infrastructure network, the level of disruption (i.e., earthquake magnitude) and the number of restoration crews are

shown in the first and second columns. The fourth and fifth columns provide the CPU time required for the computation of

the initial solution and the makespan or the restoration time, provided by the initial solution, T , respectively. The optimal-

ity gaps for each scenario obtained from Gurobi optimization, Ga p G 
∗
, are shown for Binary and Proportional formulations

(columns 6 and 10, respectively). In the Gurobi optimization process, first a relaxed formulation is driven from the original

model and a lower bound is determined for the optimization process. Then using the Branch and Bound algorithm, the best

bound is obtained through the CPU limitation time. Ga p G 
∗
measures how far the best bound is from the relaxed formulation

obtained by Gurobi. The percentages of difference between improvement in network resilience associated with the initial

solution (obtained from the heuristic algorithm) and the optimization model solved by Gurobi, Gap z , is calculated in Eq. (41) .

Results are shown for both the Binary and Proportional formulations (columns 7 and 11, respectively). Tables 3–5 also show

the CPU times required for the computation of initial solution, Binary and Proportional formulations (columns 8 and 12,

respectively), as well as the Makespan related to the two formulations (columns 9 and 13, respectively). 

Ga p Z = 

∑ 

t∈ T Я ϕ 
(
t| e j )

initial 
− max 

∑ 

t∈ T Я ϕ 
(
t| e j )

max 
∑ 

t∈ T Я ϕ 
(
t| e j ) (41) 

According to Table 3 through Table 5 , all instances under the disruption scenarios with M W 
= 6, 7, and 8 were solved

within a reasonable amount of time (i.e., 1800 s) and with an average optimality gap of 4.5%. The variation of the optimality

gap is larger for the disruption scenario with M = 9, where the minimum, maximum, and average gaps are 3.03%, 23%, and
W 
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Table 5 

Percentage gap and solution time for the Relaxed-Based Initial Solution Algorithm, Binary Active, and Proportional Active 

restoration crew routing problem for the gas network. 

Initial solution Binary Active formulation Proportional Active formulation 

Ins. M w K CPU ( s ) T Ga p G 
∗
(%) Gap Z (%) CPU ( s ) T Ga p G 

∗
(%) Gap Z (%) CPU ( s ) T 

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) 

1 6 2 4.22 27 0 0 25 27 0 6.5 18 9 

2 3 3.57 21 0 0 45 21 0 20.5 32 10 

4 7 2 1.13 11 0.03 0 1800 51 0 1.6 38 21 

5 3 4.72 22 0.06 0 1800 27 0 28.8 41 11 

7 8 2 4.54 38 1.93 0 1800 59 0.3 26.3 1800 42 

8 3 1.97 32 2.32 0 1800 55 0.95 22.6 1800 21 

10 9 4 3.68 28 2.47 0 1800 43 1.56 10.4 1800 20 

11 3 2.27 36 3.34 0 1800 59 2.42 11.1 1800 32 

12 4 2.23 31 3.03 0 1800 44 2.65 37.8 1800 25 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

7.89%, respectively, for the Binary formulation, and 1.56%, 14.5%, and 5.93%, respectively, for the Proportional formulation. For

water and gas networks, the initial solution demonstrates the efficacy of the Algorithm 2 in providing a strong initial feasible

solution for any solution improvement algorithm for the Restoration Routing Problems. It is also shown that in some cases

the initial solution algorithm provides the better upper bound for the Binary and Proportional formulations (e.g., instances

1, 2, and 8–12 in gas network and instances 4, 5, and 14 for water network). 

For the power network instances, as an example for large scale problems, Algorithm 2 reaches to a reasonable initial

feasible solution, with the average optimality gap of 28.9% for Binary formulation and 36% for Proportional formulation,

in a considerably short time of 3.5 seconds on average. For disruption scenario with M W 
= 9, as the size of the instances

increase dramatically, the Binary and Proportional formulations fall short of solving the power network instances with the

disruptions level of 22.8%. However, the algorithm obtained the initial solution in a considerably short time of 4.5 s on

average. The exact formulations fall short in solving instances 10 and 11 simply because the number of restoration crews

were not adequate to restore the whole network in the given time horizon (i.e., T = 100). 

Results suggest that there should be a balance between the number of restoration crews and the number of disrupted

links in the infrastructure network to obtain the minimum optimality gap in a given solution time. For example, for the

disruption scenario with M W 
= 6, using three crews to restore the water network and four crews to restore the power net-

work results in the minimum optimality gap, and with M W 
= 7 using three and five crews for restoring the water and power

networks, respectively, results in the minimum optimality gap. The minimum optimality gap does not guarantee a minimum

restoration time horizon, but rather it assures the best upper bound in a limited solution time. 

Comparing the solutions with and without the consideration of routing time, we see that more disrupted components

receive restoration services from multiple crews. In the former category, restoration crews are more scattered thoroughout

the network, and there is a smaller number of disrupted components that receive restoration services from multiple crews

because time spent traveling in the network is being accounted for. In the latter category which does not consider routing

time, sets of restoration tasks assigned to crews may form direct cycles, which means, for example, two crews would in-

correctly be assigned at two different geographical locations at the same time. In the latter category when routing time is

not considered, the crews assigned to each component are assumed to start the restoration task at the same time. However,

this might not always be the case for the former category as the difference in traveling time results in different crew arrival

times. The difference of arrival time affects how the disrupted components are scheduled to each crew. Finally, regardless of

the consideration of routing time, depending on the distance among the depots and the distribution of disruptions over the

network (whether highly scattered or spatially focused), the number of disrupted components that are restored by multiple

crews and the average number of crews assigned to them changes. As such, the closer the depots are together and/or the

closer are the disrupted components, the number of disrupted components visited by multiple crews increases as well as

the average number of crews assigned to each of those components. 

We examine the effect of the weight w i , ī ∈ N −, for weighting the importance of demand nodes, where, for example,

demand nodes located in highly populated areas could have a higher priority for restoration relative to other demand nodes.

To incorporate w i in both mathematical formulations, we update the objective function with Eq. (42) . 

Я ϕ ( t| e ) = 

∑ 

i ∈ N − w i ϕ it −
∑ 

i ∈ N − w i ϕ i t d ∑ 

i ∈ N − w i ϕ i t e −
∑ 

i ∈ N − w i ϕ i t d 

(42)

For the relaxed formulation, we use three measures of importance (i.e., I MFCount , I flow 
, I FCR ) and categorize the important

links to three clusters, one with IMs less than 0.3, one with IMs between 0.3 and 0.6, and one with IMs greater than 0.6.

Table 6 compares the performance of Algorithm 2 and the Binary Active RCR when we incorporate demand nodes with

priority weight w i , ī ∈ N −. To compare all results obtained from the Restoration Crew Routing formulation and Algorithm 2 ,

we examined the results under the disruption scenarios with M w = 6, 7, and 8. The type of the infrastructure network, the

instance number, the magnitude of the earthquake, and the number of the restoration crews are shown in the first four

columns of Table 6 . The effect of employing different importance measures in Eq. (40) on the CPU time and the required
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Table 6 

Percentage gap and solution time for Relaxed-Based Initial Solution Algorithm, Binary Active restoration crew routing problem under the employment 

of importance measures I MFCount , I FCR , and I flow . 

I MFCount I FCR I flow Binary Active formulation 

Gap Z (%) 

Ins. M w K CPU ( s ) T CPU ( s ) T CPU ( s ) T Ga p G 
∗
(%) CPU ( s ) T MFCount FCR flow 

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (11) (12) (13) (14) 

Power 1 6 2 4.80 97 4.23 99 1.32 100 5.4 1800 92 6.7 9.5 18.2 

2 3 3.52 68 5.24 69 4.40 70 2.2 1800 39.6 41 37.1 40.7 

3 4 4.67 49 4.63 49 3.77 51 1.8 1800 34 27.5 27.5 29.5 

4 5 4.96 49 2.93 49 5.64 49 2.1 1800 34 27.5 27.5 27.5 

5 7 2 3.40 84 2.22 86 2.91 86 3.7 1800 73 13.6 15.0 15.0 

6 3 6.36 64 3.60 65 2.09 64 2.1 1800 42 24.0 26.2 24.0 

7 4 3.83 61 2.23 61 3.72 64 2.4 1800 38 35.3 35.3 37.3 

8 5 3.94 59 5.53 59 5.97 59 1.8 1800 33 32.0 32.3 32.3 

9 8 2 6.96 115 6.43 115 6.82 115 – 1800 – – – –

10 3 6.67 112 6.93 113 6.29 112 – 1800 – – – –

11 4 6.83 105 6.29 108 6.02 109 26 1800 95 15.6 15.8 15.8 

12 5 6.71 92 6.92 94 6.12 94 21.3 1800 83 7.5 7.8 7.8 

Water 13 6 2 6.73 79 6.40 79 4.57 79 3.6 1800 54 32.7 32.7 32.7 

14 3 2.76 44 6.46 45 6.69 43 3.9 1800 44 0 0.3 −0.3 

15 4 4.11 33 1.17 33 3.59 34 4.3 1800 37 −2.8 −2.8 −2.5 

16 5 4.28 24 3.34 23 1.01 25 2.6 1800 27 −2.9 −3.3 −1.4 

17 7 2 2.62 90 1.60 90 2.06 93 5.1 1800 64 28.2 28.2 31.2 

18 3 2.78 69 4.33 70 5.31 69 4.7 1800 52 16.3 19.3 16.3 

19 4 6.99 55 5.67 55 3.43 56 5.1 1800 53 1.6 1.6 2.1 

20 5 3.01 42 5.94 43 5.53 42 5.4 1800 47 −5.6 −6.6 −5.6 

21 8 2 4.55 101 5.1 103 5.43 103 – 1800 – – – –

22 3 5.1 67 4.91 69 5.21 68 5.41 1800 59 16.4 17.1 17.5 

23 4 4.32 65 4.55 65 4.58 65 5.38 1800 55 19.3 19.3 19.3 

24 5 4.68 75 4.69 75 4.96 76 6.59 1800 51 27.4 28.9 27.4 

Gas 25 6 2 3.64 29 2.91 29 3.48 29 0 22 14 37.3 37.3 37.3 

26 3 3.99 22 3.39 22 3.70 22 0 45 15 28.9 28.9 28.9 

27 7 2 3.50 12 2.10 14 2.93 14 0 49 28 −33.8 −32.8 −32.8 

28 3 2.98 24 3.01 25 2.37 24 0 63 15 29.0 30.8 29.0 

29 8 2 3.1 25 2.36 27 2.41 27 0 65 24 3.1 4.5 4.5 

30 3 3.4 46 2.65 47 2.58 50 0 67 43 12.9 13.6 16.8 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

restoration time is shown in columns 4 and 5 for I MFCount , columns 6 and 7 for I FCR , and columns 8 and 9, for I flow 
. For

each scenario the optimality gap, Ga p G 
∗
, the CPU time, and the required restoration time obtained from Gurobi optimization

are shown in columns 10 through 12. Finally, the percentage of difference between improvement in the network resilience

measure associated with the initial solution for I MFCount , I FCR , and I flow 
and the optimization model, Gap Z , is shown the final

three columns. 

According to Table 6 , the Binary Active formulation solved all instances in a reasonable amount of time (i.e., 1800 s) and

with an average optimality gap of 2.81%. Employing each of the three importance measures, all prioritized demand nodes

are satisfied before others. In cases where we suppose to consider the importance of some demand nodes over the others,

scaled w i , i ∈ N − , the implementation of all three importance measures provides strong initial solutions for any of the

solution improvement algorithms. The average, maximum, and minimum of Gap Z related to I MFCount are 16.2%, 37.3%, and

−33.8%, for I FCR are 16.7%, 41%, and −32.8%, and for I flow 
are 17.4%, 40.7%, and −32.8%. Among the importance measures the

implementation of I MFcount results in full network resilience in less required restoration time. This is because, regardless of

the percentage of the network flow a link carries, the implementation of I MFcount finds links that are shared in the maximum

number of source-target paths. Therefore, restoring more important links, measured by the employment of I MFcount , bring

more paths into activation as well as satisfying the prioritized demand nodes contained on the paths. On the other hand,

the implementation of I Flow 
and I FCR leads the relaxed formulation to focus on the links carrying the highest percentage of

flow relative to total network flow and their defined capacity, respectively, which may not come from many source-target

paths. As such, the choice of importance measure is an important consideration in finding a good solution. 

Depending on the magnitude of the disruption scenario, and the accessibility to each disrupted component (i.e., the ratio

of the restoration time, related to each disrupted component, to its traveling time to other components and depots), there is

a certain number of restoration crews, k ∗, for which the results obtained from the Binary and Proportional formulations rep-

resent the maximum number of disrupted components that receive restoration services from more than one crew. Assigning

more restoration crews than k ∗ may result in a more scattered routing network, where the length of the route assigned

to each restoration crew may decrease, yet a smaller number of disrupted components may be assigned to more than one

restoration crew. 

To illustrate this behavior, Fig. 6 indicates different scheduling and routing patterns obtained from Binary Active formu-

lation, and Algorithm 2 . These methods are studied under the disruption scenario with magnitude M w = 9 for the water
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Fig. 6. The water network under the disruption scenario with magnitude M w = 9. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

network. In Fig. 6 , the rectangular nodes represent the available depots, and the numbered nodes represent the disrupted

locations in the network after the occurrence of a disruptive event. 

According to Fig. 7 , for the Binary Active formulation, the maximum number of disrupted components which receive

restoration services from more than one crew obtained when we incorporate three restoration crews. For the proposed algo-

rithm, assigning three restoration crews to the disrupted network results in the maximum number of disrupted components

scheduled to more than one crew. Accordingly, Considering Binary formulation, for power network, we may incorporate

k ∗ = 3, 4 and 3, under the disruption scenarios with magnitudes M w = 6, 7 and 8, respectively, to see the maximum number

of disrupted components scheduled to more than one crew. For water network the number would be k ∗ = 2, 2, 3, and 3,

under the disruption scenario with magnitudes M w = 6, 7, 8, and 9, respectively. Finally, for the gas network, this number

would be k ∗ = 2, 2, 3, and 4, under the disruption scenario with magnitudes M w = 6, 7, 8, and 9, respectively, for the gas

network. Considering the proposed algorithm, for power network, this number would be k ∗ = 3, 4, 3 and 6, under the dis-

ruption scenario with magnitudes M w = 6, 7, 8 and 9, respectively. For water network, this number would be k ∗ = 3, 3, 3,

and 3, under the disruption scenario with magnitudes M w = 6, 7, 8, and 9, respectively. Finally, for the gas network, k ∗ = 2,

2, 3, and 3, under the disruption scenarios with magnitude M w = 6, 7, 8, and 9 respectively. 

In the proposed relaxed formulation, the average number of crews assigned to each disrupted component is greater than

the average number of assigned crews in the solution obtained from Binary and Proportional Active formulations. Note that

although this feature proposes great initial solutions for heuristic algorithms to find near optimal solutions for restoration

routing problems, to solve the timing conflicts, Algorithm 2 has to change some routes and restoration sequences that may

result in solutions with more than 10% of optimality gap from the solutions obtained from Binary and Proportional Active

formulations. 

5. Concluding remarks 

Restoration capacity enhancement problems are often based on idealized assumptions (e.g., eliminating routing prob-

lems in restoration process, neglecting timing conflicts, considering fixed number of assigned crews), that may propose

assumptions that may result in models that cannot be used in realistic contexts. With the implementation of routing among

disrupted network components, we show that there is a considerable difference between these models and models that

focus only on basic infrastructure network restoration. In other words, the basic infrastructure network restoration models

may result in disrupted components schedules and sequences that are not applicable in realistic contexts, which must con-
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Fig. 7. The computational results of water network under the disruption scenario with magnitude M w = 9. (a) Binary Active model with two restoration 

crews, (b) initial solution using two restoration crews, (c) Binary Active model with three restoration crews, (d) initial solution using three restoration 

crews, (e) Binary Active model with four restoration crews, (f) initial solution using four restoration crews, (g) Binary Active model with five restoration 

crews, and (g) initial solution using five restoration crews. 
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sider traveling time of each restoration crew traveling time between each two disrupted locations it is assigned to, as the

two or more restoration crews have to be in more than one location at the same time (i.e., timing conflicts). Also, they do

not consider the difference in the arrival of time of each assigned crew to a disrupted location and the effects it has on the

restoration rate of that corresponding component in each time period. 

In this paper, we reinforced the applicability of restoration capacity problems to the real-world case studies by: (i) in-

tegrating routing and restoration problems by formulating Restoration Crew Routing problems, (ii) implementing dynamic

restoration rate, where an idle restoration crew can join other crews working on a disrupted link and accelerate the re-

maining restoration process. Two model formulations are proposed: (i) the Binary Active Restoration Crew Routing model,

in which disrupted links cannot play a role in network performance unless they are restored completely (e.g., railway net-

work), and (ii) Proportional Active Restoration Crew Routing model, in which partially restored links are proportionally

functional in the network, and as their restoration process progresses, their functionality in the network increases (e.g., the

pyhsical structure of internet networks). 

Additionally, this paper presents a new algorithm to obtain the best initial solution for the infrastructure network restora-

tive capacity enhancement problem. We first introduce a relaxed formulation of the proposed routing problems, which does

not consider the arrival time of restoration crews to each disrupted component and their effects on the restoration rate

of that component in each time period. Then, a cycle elimination algorithm is employed to solve all timing conflicts and

bring the routes of restoration crew into synchronization. Finally, the Initial Solution Preprocessing and Feasibility Algorithm

( Algorithm 2 ) calculates the routing time of each restoration crew and solve the timing conflicts caused by any restoration

crew arrives to a disrupted link after its restoration process is completed. Using instances derived from real-life data from

power grid, water, and gas networks in Shelby County, TN. 

The computational results prove the efficacy of both Binary Active and Proportional Active formulations, especially in

small to medium scale problems, by showing the small optimality gap for relatively small sized instances. The initial so-

lution obtained from Algorithm 2 are compared with the best upper bound obtained from original formulations. For the

disruption scenarios with M w = 6, 7, and 8 the optimality gap, Gap z , about 4.5% on average, shows the credibility of the

initial solution obtained from the heuristic algorithm. Decision makers are provided with insights into how the restora-

tion tasks would be distributed through the network over the time and to what extent those tasks are centralized over

the disrupted components. The demonstrated credibility of the heuristic algorithm provides a good approximation about

the restoration process, such as how the choice of depots with different geographical locations affects the distribution of

restoration tasks through the network, particularly under the large-scale disruption scenarios where both Binary Active and

Proportional Model formulations fall short in finding the best bound in a limited time. We further can use the obtained

initial solution in heuristic algorithm to find optimal or near optimal solution in a considerably short amount of time. To

incorporate the prioritization of some demand nodes over the others (scaled w i , i ∈ N − ), we introduce a variation of the

relaxed formulation that prioritizes the restoration process of disrupted links that play an important role in satisfying pri-

oritized demand nodes. Given this strategy, decision makers can analyze the effects of prioritizing certain demand nodes

on the restoration process from different aspects (e.g., prioritizing the locations near the hospitals, more populated areas,

certain vulnerable communities), thus striking a balance between the recovery of the entire network and the priority of

demands. The results in Table 6 suggest the efficiency of the proposed variation in the relaxed formulation in serving the

prioritized demand nodes before others. It also emphasizes that the performance of the proposed algorithm is aligned with

the minimizing the restoration horizon as well as serving the prioritized demand nodes when we implement I MFCount as the

measure of importance. 

An important (and realistic) direction for future work is to consider the effects of the disruptions (and posterior recovery)

on the routing network itself and analyzing the behavior of both infrastructure and routing networks in terms of sharing

restoration crews, rerouting, and restoration interdependencies. Another relevant direction in this area is to consider multiple

restoration tasks associated with each component. In this case, crews that were assigned to a given disrupted component

may finish their restoration tasks earlier than others working on the same component, and in consequence may leave before

the full restoration process of the component is completed. 
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Appendix A 

A-1 

Proof. Without loss of generality, we assume that no rerouting action takes place in the infrastructure network after the

occurrence of a disruptive event. Hence, the time when the infrastructure network reaches to fully operational state is the

same time it attains full recovery. Recall that, we can state that the purpose of original restoration model is to maximize

the infrastructure network by minimizing the maximum routing time. We prove that statement by two lemmas. 

http://dx.doi.org/10.13039/100000001
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Lemma 1. If ˜ p l 
( i, j ) 

, l = 1 , . . . , L represents the restoration time of each disrupted link ( i, j ) ∈ A ′ , defined in the independent
crew routing problem, and p l 

( i, j ) 
, l = 1 , . . . , L represents the restoration time of each disrupted link associated with the

relaxed formulation, then we have that 

˜ p l ( i, j ) ≤ p l ( i, j ) (A-1) 

Proof. Table 7 gives an instance that shows the impact of each crew on the processing time of each disrupted link ( i, j )

∈ A ′ . Each time a new crew k = 1, …, K arrives, it accelerates the restoration rate associated with the remaining disruption.

Therefore, the portion of disruptions processed prior to the arrival of crew k cannot be affected by that crew. We assume

that no crew visits a disrupted link after it has been recovered. 

According to Table 7 , we have, ˜ p l 
( i, j ) 

= ( ̂ t l 
( i, j ) 

− ˆ t 1 
( i, j ) 

) + 

λ1 
( i, j ) 

p 1 
( i, j ) 

−∑ l 
h =2 

λh −1 
( i, j ) 

( ̂ t h 
( i, j ) 

−ˆ t h −1 
( i, j ) 

) 

λl 
( i, j ) 

, and we also have p l 
( i, j ) 

= 

λ1 
( i, j ) 

p 1 
( i, j ) 

λl 
( i, j ) 

.

Through the method of proof by contradiction, suppose that 

(
ˆ t l ( i, j ) − ˆ t 1 ( i, j ) 

)
+ 

λ1 
( i, j ) 

p 1 
( i, j ) 

− ∑ l 
h =2 λ

h −1 
( i, j ) 

(
ˆ t h 
( i, j ) 

− ˆ t h −1 
( i, j ) 

)
λl 

( i, j ) 

≤
λ1 

( i, j ) 
p 1 

( i, j ) 

λl 
( i, j ) 

(A-2) 

λl 
( i, j ) 

(
ˆ t l ( i, j ) − ˆ t 1 ( i, j ) 

)
+ λ1 

( i, j ) p 
1 
( i, j ) −

l ∑ 

h =2 

λh −1 
( i, j ) 

(
ˆ t h ( i, j ) − ˆ t h −1 

( i, j ) 

)
≤ λ1 

( i, j ) p 
1 
( i, j ) (A-3) 

l ∑ 

h =2 

λl 
( i, j ) 

(
ˆ t h ( i, j ) − ˆ t h −1 

( i, j ) 

)
≤

l ∑ 

h =2 

λh −1 
( i, j ) 

(
ˆ t h ( i, j ) − ˆ t h −1 

( i, j ) 

)
(A-4) 

lλl 
( i, j ) ≤ λ1 

( i, j ) + λ2 
( i, j ) + . . . + λl 

( i, j ) (A-5) 

Thus, we have the contradiction on (A-2) as it is clear that λl 
( i, j ) 

≥ λī 
( i, j ) 

, ̄i = 1 , . . . , l − 1 . Therefore, (A-1) is proved. As the

traveling times among disrupted links remain unchanged, we conclude that 

Z ∗R ≤ Z R 
(
S ∗B/PAP 

)
(A-6) 

A-2 

Proof. Building upon Akbari and Salman (2017) , we know that the output of the Relaxed RCRP is a set of restoration routes

which may share one node or more with one another. In the worst case, using cycle elimination algorithm results in trav-

eling times related to some crews which are prolonged more than the time they save when they join to other crews on

the restoration process of disrupted nodes (i.e., max 
k =1 , ... ,K 

˜ F k n k 
(Relaxed RCRP) ≤ max 

k =1 , ... ,K 
˜ F k n k 

(feasibility algorithm)). We also 

defined a version of Binary and Proportional restoration crew routing formulation, referred to as the Modified formula-

tion, in which we substitute multiple crews to one crew. This lone crew starts its route from a depot, serves a number of

nodes, may restore some of them completely and some others partially, returns to the same depot or a different one in

zero time, and then again starts a new route. This procedure repeats until all disrupted nodes are fully recovered. Without

loss of generality, we consider that no rerouting is possible in the network after disruption. Hence, to attain fully restored

network resilience ( Я ϕ ( t| e j ) ), we need to restore all disrupted links. In Modified formulation, the crew comes back to par-

tially restored nodes and restores all remaining disruptions or a proportion of them with restoration rate λl 
ī 
, where l is

the number of times the crew has visited node ī ∈ V A ′ up to then. The maximum number of times the restoration crew

starts a new route is equal to K . The optimal solution of the Modified formulation is equal to 
∑ K 

k =1 
˜ F k n k 

. It is clear that

max 
k =1 , ... ,K 

˜ F k n k 
( Algorithm 2 ) ≤ ∑ K 

k =1 
˜ F k n k 

. Further, we can see that 

∑ K 
k =1 

˜ F k n k 
K ≤ max 

k =1 , ... ,K 
˜ F k n k 

(Relaxed formulation). We then ob-

tain max 
k =1 , ... ,K 

˜ F k n k 
(Relaxed formulation) ≤ max 

k =1 , ... ,K 
˜ F k n k 

( Algorithm 2 ) ≤ K. max 
k =1 , ... ,K 

˜ F k n k 
(Relaxed formulation). 
Table 7 

The processing time of disrupted link ( i, j ) for independent crew routing restoration problem. 

h th crew Assigned crews Acceleration in remained restoration process Processing time after the arrival of h th crew 

h = 1 k = 1 – p 1 
( i, j ) 

h = 2 k = 1, 2 ˆ p 2 
( i, j ) 

= 

λ1 
( i, j ) 

( p 1 
( i, j ) 

−( ̂ t 2 
( i, j ) 

−ˆ t 1 
( i, j ) 

) ) 

λ2 
( i, j ) 

˜ p 2 
( i, j ) 

= ( ̂ t 2 
( i, j ) 

− ˆ t 1 
( i, j ) 

) + ̂  p 2 
( i, j ) 

h = 3 k = 1, 2, 3 ˆ p 3 
( i, j ) 

= 

λ2 
( i, j ) 

( ̂ p 2 
( i, j ) 

−( ̂ t 3 
( i, j ) 

−ˆ t 1 
( i, j ) 

) ) 

λ3 
( i, j ) 

˜ p 3 
( i, j ) 

= ( ̂ t 3 
( i, j ) 

− ˆ t 1 
( i, j ) 

) + ̂  p 3 
( i, j ) 

� � � �

h = l k = 1, 2, …, l ˆ p l 
( i, j ) 

= 

λl−1 
( i, j ) 

( ̂ p l−1 
( i, j ) 

−( ̂ t l 
( i, j ) 

−ˆ t l−1 
( i, j ) 

) ) 

λl 
( i, j ) 

˜ p l 
( i, j ) 

= ( ̂ t l 
( i, j ) 

− ˆ t 1 
( i, j ) 

) + ̂  p l 
( i, j ) 
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