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This paper introduces a synchronized routing problem for planning and scheduling restora-
tive efforts for infrastructure networks in the aftermath of a disruptive event. In this prob-
lem, a set of restoration crews are dispatched from depots to a road network to restore
the disrupted infrastructure network. Two mathematical formulations are presented to
scheduling and sequencing disrupted network components to restoration crews and route
the crews towards disrupted components to maximize network resilience progress in any
given time horizon. In the first formulation, the number of restoration crews assigned to
each disrupted component, the arrival time of each assigned crew to each disrupted com-
ponent and consequently the restoration rate associated with each disrupted component
are considered as variables to increase the flexibility of the model in the presence of differ-
ent disruptive events. Along with the contributions applies in the first formulation, in the
second formulation, each disrupted component can be partially active during its restora-
tion process. To find the coordinated routes, we propose a relaxed mixed integer program
as well as a set of valid inequalities which relates the planning and scheduling efforts to
decision makers policies. The integration of the relaxed formulation and valid inequalities
results in a lower bound for the original formulations. We further introduce a feasibility
algorithm to derive a strong initial solution for the routing restorative capacity problem.
Computational results on gas, water, and electric power infrastructure network instances
from Shelby County, TN data, demonstrates both the effectiveness of the proposed model
formulation, in solving small to medium scale problems, the strength of the initial solution
procedure, especially for large scale problems.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction and motivation

Critical infrastructure networks are referred to as physical and virtual systems and assets that provide services which
form the basis of society, and as such they are relied upon as “the backbone of the nation’s economy, security, and health”
(White House, 2013). In particular, electric power, gas, and water are considered key critical infrastructure networks as they
enable functionality and productivity across all other critical infrastructures (White House, 2013). According to Presidential
Policy Directive (PPD) 21 (White House, 2013), such networks “must be secure and able to withstand and rapidly recover
from all hazards.” In other words, these critical infrastructure networks must be resilient.
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Fig. 1. Trajectory of performance across system states, adapted from Henry and Ramirez-Marquez (2012).

Despite the progress toward enhancing the resilience of infrastructure networks, “aging equipment, capacity bottlenecks,
as well as increasing storms and climate change” increase the vulnerability of infrastructure networks in the face of terrorist
attacks, natural disasters, and manmade hazards (American Society for Civil Engineers (ASCE), 2017). According to the ASCE
Infrastructure Report (2017), the US energy sector was recently given a grade of D+, and the water and wastewater sector
was given a grade of D, citing that (i) service was at its full capacity in 640,000 miles of the high voltage transmission
lines in the lower 48 states, (ii) many of the drinking water and wastewater pipelines and gas distribution lines should
be replaced as they are approaching the end of their life expectancy, and (iii) without incorporating the negative effect of
disruptions, there are still an estimated 240,000 water major breaks per year.

The increasing vulnerability in these critical infrastructure networks structure, combined with the more frequent and
severe natural disasters and malevolent attacks, challenge our traditional planning for responding to and restoring from dis-
ruptive events. For example, when Hurricane Harvey struck the southern coast, it caused about $200 billion in damages,
and $20-$30 billion in lost economic output (CNBC, 2017). According to FEMA (2017), nearly 40,000 people were in shel-
ters in Texas and Louisiana, most without essential lifeline services. Over 160 drinking water systems were damaged, with
50 of them totally shut down, and 800 water waste facilities were partially damaged. Also, more than 300,000 customers
were without power for more than 24 h (Commission to Rebuild Texas, 2017). Just from Hurricane Harvey and its conse-
quences, we realize the extent to which a severe disruption to critical infrastructure networks can adversely impact the
health, security, and the productivity of a society.

In response to this, several studies have defined, modeled, and assessed resilience across different critical infrastructure
sectors (Hosseini et al., 2016; Celik 2017). Many studies focus on reducing vulnerability or enhancing restoration in energy
sectors (Bienstock and Mattia, 2007; Nurre et al., 2012; Nan and Sansavini, 2017), water and wastewater sectors (Nurre et al.,
2012; D’Ambrosio et al., 2015), transportation and emergency response (Baroud et al., 2014; Celik et al., 2015; Iloglu and
Albert, 2018), and the interconnectivity and associated interdependency among various types of networks (Sharkey et al.,
2015; Gonzalez et al., 2016b; Barker et al., 2017; Gonzalez et al., 2017; Smith et al., 2017).

To illustrate the effects of a disruptive event, Fig. 1 depicts the changes in the performance of an infrastructure network
prior, during, and after its occurrence (Henry and Ramirez-Marquez, 2012; Barker et al.,, 2013; Pant et al., 2014). The perfor-
mance (e.g., the total demand that is satisfied at time t) and the resilience (e.g., the proportion between the performance at
time t and the performance before the disruptive event e) are denoted by ¢(t) and Ay (t|ed), respectively.

Vugrin and Camphouse (2011) defined resilience capacity as a function of (i) absorptive capacity, or the extent to which
an infrastructure network absorbs the negative effect of a disruptive event, (ii) adaptive capacity, or the extent to which an
infrastructure network adapts to new conditions in the aftermath of a disruptive event by temporary means, and (iii) restora-
tive capacity, or the extent to which an infrastructure network is recovered in long-term manner. The collection of absorptive
and adaptive capacities addresses the vulnerability mitigation of the network, or to what extent an infrastructure network
withstands a disruptive event (i.e., ¢(te) — ¢(ty)). The restorative capacity is analogous to recoverability, or the ability of the
network to recover to a desire level of performance in a timely manner. As Fig. 1 indicates, the dimensions of vulnerability
and recoverability combine to account for resilience. Among several studies, optimization approaches to increase powerlines
capacities to prevent large scale cascading blackouts in power network (Bienstock and Mattia, 2007) is an example of ab-
sorptive capacity. The robust adaptive strategies to respond to the dramatic climate change in water management systems
(Lempert and Groves, 2010), where simulation models of several disruption scenarios to the network are implemented to
illustrate the vulnerabilities and assess the options to ameliorate those vulnerabilities is an example of adaptive capacity.
Finally, debris removal from a transportation network after a natural disaster (Celik et al., 2015) is an example of restorative
capacity.
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In this paper, we focus on enhancing restorative capacity of infrastructure networks after a large disruptive event. The
proposed formulations and techniques in this paper can be applied to the restoration efforts of a variety of infrastructure
systems. While other works have proposed optimization formulations to assign resources or schedule work crews for in-
terdependent network restoration (Gonzalez et al., 2016a; Almoghathawi et al., 2017; Sharkey et al., 2015), proposed here
is a formulation that integrates the work crew scheduling problem with a vehicle routing problem to address the practical
problem of traversing a given road network to recover other infrastructure networks. The main contribution of this research
is to propose two mixed integer linear routing models that assign a set of disrupted components to each restoration crew
and identify the route with the minimum total traveling time associated with that restoration crew. In the first routing
model, referred to as the Binary Active Restoration Crew Routing model, each disrupted component is not operational unless
it is fully recovered. In the second routing model, referred to as Proportional Active Restoration Crew Routing, each disrupted
component can be partially operational in the network while it is being recovered. Disrupted components have component-
specific characteristics, including specific restoration rates and disruption levels. After a disruptive event, various restoration
crews can be assigned to a disrupted component and accelerate its restoration trajectory. Each of the assigned restoration
crews can arrive at a time that does not depend on the arrival time of other assigned crews. However, a restoration crew
cannot arrive at a disrupted component after its restoration process is completed by other crews. We also note that each
disrupted component may experience a different increase in the restoration rate when a new crew joins to the restoration
process. The optimal assignment, schedule, and route of restoration crews can significantly reduce the restoration time of
the entire set of infrastructure networks. This paper assumes that any disruption affects only the infrastructure network, not
the transportation network. As the formulation proposed here is already substantially complex, we consider this paper to
be a first step toward eventually analyzing simultaneous disruptions to infrastructure and transportation networks.

The remainder of the paper is organized as follows. Section 2 introduces an overview of the infrastructure resilience
literature focusing on restorative capacity and restoration crew routing problems. Section 3 proposes a multiple restora-
tion crew routing formulation to distribute restoration crews to disrupted network components through a routing network
and to update the model to incorporate the proportionally operational components in each time period. We then pro-
pose a lower bound for the restoration crew routing problem by introducing a relaxed formulation of the original model
and a heuristic algorithm to provide a feasible initial solution aligned with policies for enhancing infrastructure network
resilience. Section 4 illustrates the applicability of the proposed formulations with the system of gas, water, and electric
power networks derived from those in Shelby County, Tennessee. We also discuss the computational results associated with
the illustrative examples and investigate the efficacy of the proposed algorithm to find the best lower bound. Concluding
remarks and prospective future work are provided in Section 5.

2. Background literature

Several studies in recent years have focused on optimization models and algorithms to improve the restoration process
after disruptive events. Celik (2017) provides a comprehensive overview of the literature on large-scale infrastructure net-
work restoration in the aftermath of catastrophes and malevolent attacks.

Many of the fundamental studies in the field of post disruption infrastructure network resilience do not address the
issue of routing, instead focusing on scheduling and sequencing disrupted network components to restoration crews.
Nurre et al. (2012) introduce a design and scheduling formulation to improve the infrastructure network construction and
restoration process. Aligned with particular decision making policies, the authors develop a dispatching rule based heuris-
tic to identify the next set of network components to be restored by crews. Liberatore et al. (2014) present a restoration
planning formulation for disrupted transportation networks through which emergency goods are distributed to affected
populations, noting that the routing problem is not considered in their proposed formulation. Sharkey et al. (2015) propose
a mathematical formulation that incorporates the restoration interdependencies among different infrastructure networks
(e.g., water, power, transportation) into the design and scheduling problems. They also investigate the effects of centralized
decision making (i.e., where one decision maker dispatches all recovery resources through all infrastructure networks) and
decentralized decision making (i.e., where decision makers associated with each infrastructure determine restoration efforts
independently and communicate with other decision makers responsible for other infrastructure networks). Ozdamar and
Ertem (2015) study a variety of humanitarian operations, including relief delivery, casualty transportation, and mass evacu-
ation after large-scale disruptions. While the aforementioned works deal with various aspects of service networks engaged
after a disruption, none consider the routes of restoration crews, and none account for the routing time of each crew and
its effect on the restoration plan and schedule. In the field of supply chain networks, Wang et al. (2016) focus on the in-
terdependencies among several supply chain networks and their environment and how their resilience structure prevents
financial crises and economic recession. Gonzalez et al. (2016a, b) propose a mathematical model to recover a damaged
system of interdependent networks while considering limited resources and diverse operational constraints. Their model
considers not only physical interdependencies among the different networks in the system, but also cost reductions asso-
ciated with recovering multiple co-located components simultaneously. Furthermore, considering the high computational
complexity associated with optimizing the recovery of a system of interdependent networks, Gonzalez et al. (2017) propose
a reduced-order linear representation based on data-driven system identification, denominated the recovery operator, which
reproduces the main recovery dynamics of the system and can be used to generate efficient recovery strategies. Extending
from the approach by Sharkey et al. (2015), Smith et al. (2017) propose a sequential game theoretic model to determine effi-
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cient recovery strategies that depict decentralized decision making processes with partial information under a time-discrete
non-cooperative configuration. Chapman et al. (2017) show that such a recovery operator can be used to efficiently model
decentralized decisions, by constructing a layered Cartesian form of the studied system. Ouyang and Fang (2017) establish a
decision making formulation to protect and restore critical infrastructure networks after malevolent attacks. Their proposed
decomposition algorithm minimizes network vulnerability by fortifying network components and/or building new support-
ing lines prior to a disruption and enhances the network restoration process after the disruption.

With regard to routing time of restoration crews as well as scheduling and sequencing disrupted network components
to each of those crews, we found several works that specifically focus on the road network restoration process itself (e.g.,
debris cleaning and disposal, snow removal). Previous works may differ from the restoration of other infrastructure net-
works as the disruptions in transportation networks result in the loss of physical connections. As a result, the accessibility
to some disrupted network components depends on the operational state of other components. Considering the restoration
of disrupted infrastructure networks, Wang et al. (2010) provide a multi-objective optimization model to apply contraflow
techniques and plan optimal emergency resources to repair roads in a timely manner. Hu and Sheu (2013) present a reverse
logistics approach for post-disruption debris that proposes a multi-objective linear model to minimize the total reverse lo-
gistics cost, environmental and operational costs, and required medical treatment in the affected location. Faturechi and
Miller-Hooks (2014) propose a bi-level three-stage mathematical formulation to maximize the connectivity of roadway net-
works and optimize traveling time through those networks after a disruptive event. Celik et al. (2015) develop a partially ob-
servable Markov decision model to solve a stochastic debris removal problem to determine the optimal schedule of blocked
links over discrete time periods. To reconnect a disrupted transportation network in the minimum time horizon, Kasaei and
Salman (2016) propose an arc routing formulation that identifies the restoration schedule and sequence of blocked roads.
For large-scale routing problems, they develop a heuristic algorithm to maximize the benefit gained by network connectivity
promptly. lloglu and Albert (2018) propose a p-median formulation to find the minimized weighted distance between the
emergency responders and disrupted locations in a transportation network. Wang et al. (2017) study the urgent evacuation
problem through transportation networks, proposing an algorithm to connect the transportation network to minimize the
traveling time between each pair of locations. Akbari and Salman (2017) extend the arc routing formulation to dispatch more
than one restoration crew through the disrupted network such that a closed road cannot be traversed unless its restoration
procedure is completed. They then propose a local search algorithm to find a set of synchronized routes resulting in min-
imum required time to reach to the complete network connectivity. Xu et al. (2018) propose a data-driven approach to
manage multiple types of emergency fleets and successfully strike a balance between dynamic rescue demands and restora-
tion vehicles supplies in post disruption urban flood control to dispatch restoration vehicles through disrupted areas using
real time disruption scenarios.

We integrate the two areas of literature described in the previous two paragraphs, (i) infrastructure restoration and (ii)
transportation network dispatch, to propose a new problem that addresses the dependent relationship between a disrupted
infrastructure network and the routing network that connects all disrupted components. The proposed model is an extended
form of the multiple restoration crew routing problem and the fundamental constraints employed in such a model (e.g., the
routing network, subgraph elimination, crew arrival time consideration).

3. Problem formulation

Mentioned in Sections 1 and 2, the purpose of this paper is to establish the optimal restoration plan for a disrupted
infrastructure network by determining, among others, the best schedule and sequence of disrupted components assigned to
each crew through an underlying routing network. The infrastructure network is represented by an undirected connected
graph G=(N, A), where N is the set of nodes and A is the set of links. There is a set of supply nodes N N, where each
supply node i € N, supplies amount o; in each time period, a set of demand nodes N_ CN, where each demand node i €
N_ demands amount b; in each time period, and a set of transition nodes N_ CN. There is also a set of links A’CA, that are
affected by a disruptive event. Each link (i, j) € A has a pre-defined capacity u;; and a pre-disruption flow value f; calculated
based on the total amount of demand. In some cases, some demand nodes need to be prioritized over others as they might
be located in more critical areas (e.g., more populated, located near hospitals or other critical facilities). To incorporate the
relative importance of each demand node i € N_, we define weight w; to give priority such nodes. The principal goal of our
formulation is to send maximum flow from supply nodes to demand nodes, while respecting the flow capacity of links and
supply/demand capacities.

Separate from the infrastructure network, we model the routing network as a complete undirected graph G=(N,A),
where N is the set of nodes and A is the set links defined between each pair of nodes. Relating the infrastructure net-
work to the routing network, the disrupted locations on disrupted links A" € A in the infrastructure network, are the set of
nodes N, € N forming the routing network G. There is a set of depots Ny € N from which the restoration crews are dis-
patched and a dummy sink node n+ 1 € N to which all the restoration routes end. For directed routing networks, we simply
assign x;; =0, for ke K, Vi, je N, if there is no path from node i to node j, where Xjjx is a binary variable that equals 1 if
crew k travels from node i to node j and 0, otherwise. The traveling time through each link (i, j) is Cijr Similar to Akbari and

Salman (2017), we assume that the traveling time from i to j is equivalent to the traveling time from jtoil(ie, = c]l)

When a restoration crew arrives to a node in Ny, € N, or its counterpart disrupted location in the infrastructure network, it
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spends a particular amount of time to restore that location, whether alone or with the aids of other crews, and then leaves
the node to join another restoration task. As more restoration tasks are completed in the routing network, we see the in-
frastructure network performance enhanced (i.e., the total flow reaching to the demand nodes increases). Fig. 2 depicts the
relation between the infrastructure network and its corresponding routing network after a disruptive event. In Fig. 2, the
disrupted locations on links in the infrastructure network, shown by lightning bolts, are the nodes in the routing network,
shown by circular nodes. Each particular line in the routing network (e.g., bold, bold dashing, long and small dashes), is
associated with the route of a particular restoration crew starting from a depot, shown by a square node, and may intersect
and share nodes with other restoration routes. As mentioned in Section 1, the routing network itself remained unaffected
by the disruptive effects in such way that there is always a path which connects each pair of nodes in the routing net-
work, whether the pre-disruption shortest path unaffected by disruptions or the shortest undisrupted path between those
corresponding nodes.

After a disruptive event, the mixed integer programming (MIP) formulation determines |K| open routes on the complete
graph G = (N, A) such that network G=(N, A) becomes fully operational after all disrupted arcs in A’ € A are restored.
Without loss of generality, we model disrupted nodes using disrupted links, since each node can be represented as two
nodes and one link. Each restoration crew starts its route from its originating depot and ends in a dummy sink node,
(n+1). The disrupted links in network G are assigned to multiple parallel restoration crews, where the total number of
crews available to work on each link is |K|, and the maximum number of restoration crews that are able to work at each
period of time is L. Note that more than one crew is able to work on a disrupted link simultaneously. The processing time
of each disrupted link (i, j) € A’ depends on the characteristics of that link, its level of disruption, the number of restoration
crews assigned to it, and the arrival time of each crew to that link. In this paper, we consider the fact that doubling or
tripling a working crew does not lead to a doubled or tripled as much as the restoration rate associated with it (e.g., due
to some conflicts among crews and their role in the restoration process). Furthermore, we consider that the increase in the
number of working crews would not necessarily result in the increase in the restoration rate (i.e., the restoration rate might
remain the same). To implement this consideration, we choose 10% of total disrupted components randomly and set their
rate of recovery (processing time) in such a way that after adding a certain number of crews, no increase would be observed
in the rate of recovery.

3.1. Dynamic restoration process

Depending on its originating depot and route, the arrival time of each restoration crew assigned to each disrupted node
ie Ny may be different from other crews assigned to that node. The restoration process starts as soon as the first crew
arrives to node i e Ny and each time a new crew joins the restoration process, it accelerates the remaining restoration
process and consequently decreases the remaining processing time of node i. Fig. 3 illustrates how the restoration rate
accelerates when a new crew joins the restoration process (relative to when crews arrive at the same time). We assume

that p is an integer parameter that represents the processing time of node i e N, if I restoration crews are assigned to i

and start their restoration tasks at the same time. Note that when all crews arrive to node i at the same time, the restoration
process will be completed sooner than when work crews arrive at different times. In Fig. 3(a), at time t;, the first assigned
crew arrives to node i e N, and starts the restoration process. If no other crew joins to the restoration process, it will
be completed at time t7, in p,ltime periods. Fig. 3(b) illustrates when a second crew arrives at time t,, showing how the
restoration rate accelerates, and the process is completed at time t/, where t; + pl? < t) < t}. Finally, in Fig. 3(c), a third crew
arrives and at time t3, and the restoration process is completed in time t;, where t; + p3 <t} <t

The restoration of each link should be processed without interruption, and the model prevents time conflicts by calcu-
lating the arrival time of each crew keK at each node ie Ny, or its counterpart disrupted location on a link A’CA in the
infrastructure network G=(N, A).

The objective of the optimization model is to maximize resilience of the infrastructure network over time, where re-
silience is measured as a time-dependent function of recovered network performance to total performance loss, as adapted
from Henry and Ramirez-Marquez (2012). Noting that only the infrastructure network contains demand nodes, shown by
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i € N_, the resilience measure tracks the trajectory of restoration at each time, t=1, ..., T, by determining the maximum
weighted flow, denoted by >; .y W;@;, that reaches to demand nodes in the infrastructure network. The resilience measure
is calculated for a particular disruption e following Eq. (1), where ;. Wiy, is the total weighted flow reaching to de-
mand nodes before the disruption and 3_;.y_ w;igy, is the total weighted flow of reaching to the demand nodes immediately
after disruption e when no restoration crew takes part in the restoration process. Time periods t. and t; are illustrated in
Fig. 1 as the pre- and post-disruption time periods.
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3.2. Mathematical model

We present two variations on the proposed MIP restoration routing problem. In the Binary Active model, it is assumed
that each disrupted link remains inoperable until the related recovery process is completed in full. Although the Binary Ac-
tive model has many applications in many realistic case studies (e.g., water pipe networks, railways), other applications (e.g.,
road transportation networks, the physical structure of internet networks) assume that disrupted links can be partially op-
erable during their restoration. As such, the Proportional Active model addresses this latter category of restoration problems
in which the level of operability in each disrupted link (i, j) € A’ increases during its restoration process until it becomes
completely operational. The Proportional Active model may not always be directly applicable to power, water, and gas net-
works. However, we used this model on the three proposed network instances, as it provides relevant insights on their
performance and behavior. In particular, by using this model we can: (i) study the behavior of the model on various sizes of
problem instances, from small size networks (i.e., gas network) to large size networks (i.e., power network), and (ii) consider
the applicability of the model the problem instances where temporary and emergency components are installed along with
the main infrastructure network to satisfy a portion of demand. Considering both formulations, the indices, parameters, and
decision variables for the infrastructure network and routing network are found in Table 1.

In this paper, we consider that, in the case where the transportation network is damaged, the model uses the remain-
ing undamaged subgraph. We further assume that the network is still connected after the disruptions. In cases where the
subgraph does not connect all the disrupted locations in the network, the model restores only the accessible locations.

3.2.1. MIP model for Binary Active network restoration
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Notation for the Binary and Proportional Active restorative capacity routing problems.

Infrastructure network notation

N
A
A/
.. T}

Routing network notation

N

Set of nodes in network G=(N, A)

Set of links in network G=(N, A)

Set of disrupted links in network G=(N, A)
Set of time periods in the restoration horizon

Set of nodes in network G = (N, A)

Set of nodes in network G = (N, A) corresponding to disrupted links in network G=(N, A)

Set of depots from which recovery crews commence their routes

set of links in network G = (N, A) which connects the nodes corresponding to disrupted links in

network G=(N, A)
K Set of restoration crews, where |K| is the maximum number of available crews through the
restoration horizon

{1, .., L} Set of restoration crews assigned to each node i € Ny, where L is the maximum number of crews
that can be assigned to each disrupted component

(n+1) The dummy sink node where the routes of all restoration crews ends

Parameters

vr Maximum number of restoration crews sent from depot ieNp

pg Processing time of node ie Ny when [ crews are assigned to its restoration

o Traveling time from node i to node f,_(f, j)eA

91-).; Binary parameter_equ_als to 1 if node i € Ny represents link (i, j) € A’ in graph G=(N, A)

Us Capacity of node i € Ny, or its corresponding link (i, j) € A’, before the disruptive event

U g Capacity of node i e Ny, or its corresponding link (i, j) € A/, immediately after the disruptive event

b; Capacity of demand node i € N_

M Very large number

Decision variables

xf‘] Binary variable equal to 1 if restoration crew k e K travels link (i, j) € A

z§ Binary variable equal to 1 if I restoration crews are assigned to node i € Ny

tf’; Binary variable equal to 1 if restoration crew k arrives to node i Nf_\r at time ¢

g Binary variable equal to 1 if the It"restoration crew arrives to node i € Ny at time ¢

node i when I crews are assigned

fiie Integer variable representing the flow on link (i, j) € A at time t

bi Integer variable representing the flow reaching to demand node i € N_ at time t
e Binary variable equal to 1 if restoration task on link (i, j) finishes at time ¢t

yE Binary variable equal to 1 if restoration crew keK is assigned to node i € Ny

i . L
fl’; Integer variable representing the flow of restoration crew k on link (i, j) € A

1 Continuous variable representing the completion time of the restoration process associated with

Note: All subscripts with an overbar refer to nodes in the routing network
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t=1 t=1
T

t%zcﬁ+ﬂ—hml—%>—M@—4) VieNg.l=2... LkeK
t=1
T T L ) o
Yorgt =Yg —M(1- Y 2 VieNgl=1,....L
=1 t=1 =141
T L
Yotgl=piAM(1- ) 2 VieNyI=1,...L
t=1 i=l+1

L - -

(DA VieNy,t=1,...T
keK 1=1
T L _ ) i
g =>72 I=1,... LVieNy
t=1 I=l

> fi— > fi<0

Ju(i.j)eA J:(dii)eA

VieN, . t=1,....T

73

(15)

(16)

(17)
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o fie— Y fiu=0 VieN_ .t=1...T (18)
J:(i.j)eA J:(Ji)eA
o fi— Y fie=—or VieN_,t=1,...T (19)
Jji(i.j)eA Jji(i.j)eA
0 < @i <b VieN_,t=1,....,T (20)
0< fie <uj V@i, j)eAt=1,...T (21)
t
0< fise < ) _atysiy VijeA.t=1...T (22)
s=1

T -

> sy = BL-M(1-2) —M(1-6,) Vhe Ny, V(i j)eA, keK (23)
s=1

T
3 o < 1 V(i j)eA (24)
s=1
Z={0.1} I=1,...,L,Vie Ny (25)
' ={0,1}. g ={0.1} VieNg keKl=1,...,Lt=1,...,T (26)
xf:fz{o,l} (i.j) €A kek (27)
@i >0, ie N_ VieN_t=1,...,T (28)
aije = 10,1}, fije > 0 (i, j)eA t=1,...,T (29)

The objective function focuses on the performance of the infrastructure network as determined by its resilience measure
over the horizon of restoration. Eqs. (3)-(8) are restoration crew routing balance equations. Eq. (3) requires that at most
v; restoration crews can be dispatched from each depot Vi e Np. Eqs. (4) and (5) ensure that each restoration crew travels
through each link (i, j) € A and visits each node i e N, at most once, respectively. In Eq. (6), a dummy sink node, (n+1), is

considered for crews where their routes end, where x:f(nﬂ), ie Np is equal to 1 for crew k e K when it is not used in the

restoration process and does not leave its depot at all. In Eq. (7), each crew k e K that enters a node i e NA/ should leave
that node after restoration tasks are completed. In Eq. (8), no crew travels link (i, j) € A unless it is scheduled to restore
node je Ny Eq. (9) ensures that no crew visits node i unless it is assigned to that corresponding node. Eq. (10) ensures
that when a certain number of restoration crews are assigned to link (i, j) € A/, or its counterpart node h € Ny, then the
number of crews cannot be changed during the restoration process.

Egs. (11)-(14) determine the arrival time related to each restoration crew, keK, i e NA,, and the processing time associ-
ated with each disrupted link. Eqgs. (11) and (12) calculate the arrival time of each restoration crew k €K to each disrupted
node j e N, from node ie N\(n+1). It is assumed that all restoration crews work independently, and each crew starts the
restoration process as soon as it arrives to any disrupted node. Consider disrupted node j to which we assigned [ restora-

tion crews. After completing the restoration process associated with node i e N at time 'le the first crew arrives at time
t‘L'fk[ = tg}t = /3',.’ +Gp for je Ny, keK, and commences restoration operations with the recovery rate All then the second

crew arrive at time t’r}i‘t/ = t/gf?t/ =pl+ cﬁ, after completing the restoration process of node i, and so forth. Each time a new
1

crew joins to the restoration process of a disrupted link, its rate of increases. Therefore, the processing time of each dis-
rupted link (i, j) € A’, or its counterpart node j e Ny, is a function of the arrival time of that crew to that corresponding link.
Eqgs. (13) and (14) set a time window for I th restoration crew, =1, ..., L, arriving to node i € N, starting from the arrival
time of the prior restoration crew and ending to the completion time of the restoration process of by [ — 1 restoration crews.
Egs. (15) and (16) sort the arrival time associated with crews assigned to each disrupted link.

Eqs. (17)-(22) are flow balance equations through supply nodes, transition nodes, and demand nodes. Eq. (20) en-
sures that the amount of flow reaching to each demand node i € N_ does not exceed the capacity of that demand node.
Egs. (21) and (22) require that the flow of each link (i, j) € A, whether undisrupted, disrupted, or recovered, does not exceed
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the capacity of that link. Eq. (23) demonstrates that once the restoration process of each link (i, j) € A/, or its counterpart
node i e Ny, is completed, it becomes fully operational. Eq. (24) ensures that none of the disrupted links receives restoration
services more than once.

To clarify how ,31,_’ is calculated and implemented in the mathematical model, consider node i e N, in routing network

G=(N,A), to which [=1, ..., L restoration crews are assigned, where L is the maximum number of crews that can be
assigned to i. Each assigned crew arrives at a particular time t=1, ..., T, that might be different from the arrival time of
other assigned crews. In this paper, the restoration progress in node i is measured in terms of the increase in the capacity of
node i in a given time window At=ty  ;—ty, I'=1, ..., [ (i.e,, between the arrival time of I'th and (I’ +1)st assigned crews).

Referred to as F{”(At), the restoration progress related to node i is calculated as follows. As the first restoration crew
arrives to i, the restoration process begins. The restoration progress of node i in the time window after the arrival of the first
crew, tq, and before the arrival of the second crew, t,, is FIJ (t —t1), t; <t <t,. Immediately after the arrival of the second
crew, the restoration progress is accelerated and upgraded to I-',2 The restoration progress in the time window after the
arrival of the second crew, t,, and before the arrival of the third crew, ts, is F{2 (t —ty), t; <t <t3, and the total restoration
progress to that point is F-‘ (t —t1) +F-2 (t —ty), ty <t < t3. Finally, after the arrival of the Ith crew, the restoration progress
is upgraded to F’(t) t; <t, and the total restoration progress is calculated as Zl ! F" (thy1 —tn) + Fi’ (t=1tp).

Considering parameters Uy as the capacity of node i e Ny, or its corresponding lmk (i, j) € A’, before the disruption (i.e.,
at time t.), and Uz, as its residual capacity after the disruption (i.e., at time t ), the restoration process continues until node

i is completely operational, or its capacity is fully restored (i.e., Uz + 22;11 F{h (thy1 —tn) + Fil (t) =~ ug, )-
Being familiar with the performance of restoration progress, {F{"}*l(Au) is the inverse function of restoration progress

and calculates the time required to have Au progress in the restoration process of node i e N, with I’ crews assigned. Au

is the amount of disruption in node i that should be restored. The domain of Au is 0 < Au < Ugge — Ui » and the domain of

the inverse function is 0 < {F.’ 11 (Aw) < p Considering (us - ) as the total loss in the capacity of node i, when the Ith

ite
crew arrives to node i, there is exactly (s — ultd) - Z’h ! F(h 1)(th — tp_1) units of capacity left disrupted, and consequently

{F'J} ((uz, — ul.[d) - ZL:Z Fl,(h l)(th —tp_1)) is the time requ1red to finish the restoration process of node i after the arrival
of Ith assigned crew.

To illustrate the calculation of the completion time of the restoration process associated with each disrupted node i e Ny,
consider the example in which the first crew arrives at node i at time t; and starts the restoration process. If only one crew

is assigned to node i e Ny, the restoration process will be completed in {F-]} ](uxte l[d) = p time periods, where p‘ is

the processing time of node i € Ny when only one crew is assigned to node i. Otherwise, the next restoration crew arrives
at time t,, where t; <t; <t; + {Fl} (Uz, — Uz, (ie., the second crew arrives before the restoration process of node i is

B, 1
ite uitd) — F;— (fz — t])). The
third crew arrives at time t3, t; <t3 <ty + {F?} ]((”ue @ ) F- (t; —t1)), accelerates the restoration process of the re-

completed), accelerates the restoration process of the remaining task, completing it in {FZ} ((us

maining work, and will complete it in {F3} (uz, — Uy ) (Zl, F(’ ‘”(t— — t;_4)). Finally, the Ith crew is the last restora-
tion crew arriving at time ¢, £_y <t <ty + {E/"V} 1 ((ug, — )~ Yk F;(V_U(fﬁ —t; 1)) and the remaining tasks will
be completed in {F_’} 1((”ire —u; )7 Zh ) i(l’”(tﬁ —t;_4)) time periods. The total restoration process associated with
node i e Ny is calculated as t; + {F’} 1((”ue ”ftd) - Zg,zz F;(l””(t}—? —t;_4)). In general, the arrival time of I'th restoration
crew, =1, ..., I, to node i N, is shown by tg%, where gﬂ is a binary variable, equals to 1 if the I'th restoration crew arrives
at node i. Considering I crews assigned to each node i € N, , the completion time of each node i € Ny, ﬂ. is equal to the

completion time of its counterpart link (i, j) € A’ and calculated with Eq. (30).

T o T
=Yg+ (B (e —ug,) - TV (el - Ztg("l) (30)

t=1 =2 t=1
Without loss of generality, we consider a linear relationship between the progress in the restorative capacity of each link
and restoration time of that corresponding link, updating Eq. (30) with Eq. (31). In Eq. (31), node i is restored with rate )»ff
when the I restoration crews are working on node i, FIJ'(At) = A:T/At. The recovery time for node i when one restoration
crew is assigned is pl1 therefore p? is the recovery time when h crews commence restoring node i at the same time, where
I=1, ..., L is the number of crews assigned to a link (i.e., its counterpart node in network G).

r e — Uz, ) = X g AV (20 kgl - 3T g
:Ztgfrt‘i‘ (t td) I )S 1 t=1 ) (31)

t=1




76 N. Morshedlou et al./ Transportation Research Part B 118 (2018) 66-89

3.2.2. MIP model for Proportional Active network restoration

In the Proportional Active formulation, the processing time of each link (i, j) € A’ is presented as a function of: (i)
the number of assigned restoration crews to that link, (ii) the level of disruption associated with that link and the set of
required tasks for its restoration, and (iii) the characteristics of that link, such as the level of disruption it experiences and
the series of required task for its recovery. It is assumed that each recovery task should be processed without interruption.
The formulation has many of the same constraints as the Binary Active model with the addition of Eq. (32), which calculates
the improvement in the restoration process of each disrupted link (i, j) € A’ in each time period after its restoration process
commences.

max ) s, (tle) (32)

teT
(4)-(22)

t -1
fir = (-9 Hal+ 3 (47 - ad) )+ M(1 - ) + M(1 -6,
S= =
V@i, jyeA t=1,....T, I=1,... LieNy (33)

3.3. MIP model for relaxed network restoration

Since the model is complicated by tracking the arrival time of crews to each node j e Ny, and consequently calculating
the restoration processing time, we present a relaxed formulation of the proposed problem such that the timing of restora-
tion crews is ignored. This helps to reduce the number of binary variables from O(n2K+ m?2T) to O(n2K). However, it may
result in solutions that are infeasible for the original formulations as (i) it may assign crews to a disrupted node i€ Ny
which arrive after the completion of restoration process to that corresponding node, and (ii) it may form direct cycles in the
network, meaning that two or more crews are present in two different locations at the same time. To tackle this problem,
we derive a feasible solution by modifying the assignment of restoration tasks to crews using Initial Solution Preprocessing &
Feasibility algorithm in Section 3.3.1.

min (34)
(3)-(7)
L
Z Z C,T]TX%-{- Z Z pi—Zf— <Q (35)
keK (i.j)eA I=1ieN,,
> > xf‘l >1 Vje Ny (36)
keK i:eN\ (n+1): (i.7)eN
—k —k R

3 fi- X Ti=s VjeNy.keK (37)
i:eN\(n+1):(i,j) €A i:eN, UNp: (i,j) €A
Fo= 0 vz —|N|X VieNp, VjeNy. keK (38)

BNy (i j)eh

i K [k TN 7

X< Qf < |NAr‘x,§j V(i.j)eA keK (39)

Eq. (35) minimizes the total traveling and restoration time, and Eq. (36) ensures that all disrupted links and their coun-
terpart nodes should be visited. Eqs. (37)-(39) provide flow balance. In Eq. (37), the net flow of each node i e NA, equals
the number of the crews assigned to the corresponding node. For each depot, the net flow is the total number of nodes
assigned to each restoration crew that starts its route from the corresponding depot, as shown in Eq. (38). Eq. (39) does not
allow a crew to travel on a link unless it is traveled by that crew, and if a link is used by a crew, then there must be a
positive amount of flow associated with the restoration crew passing through that link.

To incorporate w; in the relaxed formulation, we first find the set of paths that push required flow to prioritized demand
nodes. Among those paths, we determine the level of importance of each link from one of a number of importance measure
types representing different graph theoretical (e.g., edge betweenness) or flow-based measures (e.g., edge flow centrality,
maximum flow edge count, flow capacity impact) (Nicholson et al. 2016). We use I to refer to the importance measure
calculated for each link (i, j) € A/, or its counterpart node ie Ny, of type 7. In this paper we consider three types of
importance measure: (i) max flow edge count, Iyircount = ﬁ Y5 en Mai(l ), where ug(i, j) is a binary parameter and
Xsi en @)

Y eg where wq(i,j)

equals 1 if link (i, j) is used in a given source-sink max flow path, (ii) edge flow centrality, I gow =
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Table 2
Order of disrupted links assigned to each crew and their restoration process completion time,
adapted from Akbari and Salman (2017).

Crew  Order of disrupted links

1 byt — b1z > biz... bin,
2 by — by — by ... by,
K b — b — bis ... bgn
Completion time of restoration tasks
1 Fi1 = Cppy, + Bibyy = F12 =T + Gy, + Bivyy - - Fimy = Fing=1 +Cpyy by, + Dby,
2 Fo1 = Cobyy + Divyy = F22 = F21 + Copby, + Divyy -+ Finy = Fing=1 + Coyyby, 1, + Dita,
K Fk1 = Coby + Dby = Fk2 = Fict + Coybs + ity - Fiimy = Fhkm=1 + Chy_1bn, T Dibie,

1 2si en@s (i) _
T 765 where Cij

is the capacity of link (i, j). More details about the calculation of these three importance measures are found in Nicholson
et al. (2016).

We then cluster disrupted links based on their importance measure. Aligned with decision making policies, we may
define various thresholds for clusters and represent different number of clusters. The more the number of defined clusters
is, the more accurate the demand nodes are prioritized. Yet, the obtained solution may be different from the optimal solution
which merely focuses on maximizing the network resilience enhancement. For example, if the importance measure of each
link falls into the range of [0, 0.9], links with the importance measure equal to or greater than 0.6 are categorized in cluster
1, or the most important set of links, NA/l, links with the importance measure between 0.3 and 0.5 are categorized in cluster

is the flow on link (i, j) for all possible source-sink paths, and (iii) flow capacity rate, I gcr =

2, NA'z' and links with importance measure less than 0.3 are categorized in cluster 3, NA;/, or the least important set of
links, where NA/l UNA/Z U...u NA/F = Ny Eq. (40) then ensures that the disrupted links in NA; should be restored before the

disrupted links in NA/Z, and disrupted link in cluster two should be served before disrupted links in NAQ and so forth.

>0 2 ¥=0y=1..T-1 (40)

keKieN,  jeN,
Ay Y

Proposition 1. The optimal recovery scheduling of the Relaxed Restorative Capacity problem, S} builds a lower bound

for the optimal solution to the original formulation.

R_RC’
The proof of Proposition 1 is given in Appendix A-1.

3.3.1. Solution approach

Since time-related variables (e.g., 'L'll[‘ gft @i, Gir, fijr) are not considered, the routing time associated with each restora-
tion crew should be evaluated to be synchronized with other routes with which it has restoration tasks in common. To
achieve this, we start by obtaining a lower bound for the original problem by using the relaxed formulation. Then, we
use Algorithm 2 to obtain a feasible solution for the original problem. Afterwards, we compare this feasible solution with
the solution obtained from solving the original formulations. Note that if the original formulation could not be solved to
optimality due to limited computation time, we may simply use the best solution achieved.

The proposed feasibility algorithm modifies the optimal solution obtained by the relaxed formulation as follows. First,
adapted from Akbari and Salman (2017), with the results obtained from the relaxed formulation, we form a solution table
such as Table 2, to illustrate the scheduled set of disrupted links assigned to each restoration crew and the completion time
of each restoration task assigned to that crew. Here, by, is the hth disrupted link (i, j) € A’ visited by crew k, and t; is the
time when the restoration process of this link is completed. As the number of disrupted links assigned to each restorative
crew can vary, to facilitate the update of restoration orders, we construct |K]| lists in Table 2 in which there are n, elements
in row k.

Then we detect whether there is a directed cycle in the graph (i.e., whether there is a particular restoration crew that is
present in two different locations at the same time). For example, from the relaxed formulation results, we know that two
crews k and « share disrupted nodes i and j. Crew k is scheduled to restore node i then node j, while crew « is scheduled to
restore node j and then node i. This schedule prevents the recovery task completion of nodes i and j as two crews should be
present in two different locations at the same time and therefore it is an infeasible solution for original formulation. Inspired
by the Depth First Search (DES) algorithm, we present the Direct Cycle Elimination algorithm using the DFS algorithm to
identify the direct cycles and eliminate them by reversing the restoration order of one of the involved routes that intersect
with the corresponding cycle. One input to the algorithm is a list including the scheduled set of disrupted links assigned
to each restoration crew, B. Another input is a dictionary, named graph, whose keys are the all nodes, i € Ny, in the routing
network and the values associated with each key are the nodes, j e Ny, where X'j =1, k€K and x=1.The output is a list of
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© (d)
] Depot O Disrupted location (counterpart node)

==% Route related to restoration crew &=1 = "> Route related to restoration crew 4=2
"= Route related to restoration crew /=3

Fig. 4. lllustrative example of Algorithm 1, the Direct Cycle Elimination algorithm: (a) the routing network contains the direct cycle i - j — k- — h— i,
(b) the direct cycle is eliminated by changlng the route of crew 2 from d, — I — h to d, - h — I, (c) the direct cycle is eliminated by changing the
route of crew 3 from d, > h — i to d, > i — h, and (d) the direct cycle is eliminated by changing the route of crew 1 from d; -1 — j— k— I to
d>joisk—1

scheduled links to each crew forming a routing network without any direct cycle. The steps of the proposed algorithm are
as follows.

Using the Convert Procedure, we convert the obtained list B to its counterpart dictionary graph. In the Cycle Detection
Procedure, we use the DFS algorithm to find all cycles in the routing network and put them in a list, named all,,g,. Then, in
the Elimination Procedure, we pick the first cycle in all,q, find the sequence of a pair of nodes (i— j)in that cycle with the
maximum repetition in all cycles in allyqy, change the order of the corresponding nodes (i— j) = (j— 1) in the schedule
of each crew in B, and delete all cycles that include (i — j ) from all,qep. The output of this procedure is the updated list B.
The algorithm repeats until it finds no further direct cycles the routing network formed from B (i.e., x=0). Fig. 4 presents
an illustration of the performance of the Direct Cycle Elimination algorithm. As Fig. 4a shows, the restoration crews one,
two, and three form the direct cycle i— j—k—1I—h—i To eliminate this cycle, we can change the restoration order
associated with crew 2 from d — [ — h to dy — h — [, as shown in Fig. 4b, or the restoration order associated with crew 3
from d; — h - ito d, — i— h, shown in Fig. 4c, or the restoration order associated with crew 1 from d; »i— j— k— [
to d; — j — i — k — I, shown in Fig. 4d. According to Algorithm 1, as changing the route of crew two has the least increase
in traveling cost, we update the routing network accordingly in Fig. 4b. The updated routing network does not contain a
direct cycle.

Next, we present the Initial Solution Preprocessing & Feasibility algorithm to detect whether there is a timing conflict
among the restoration crews assigned to each disrupted link. That is, an assigned restoration crew k € K arrives to a disrupted
link, or its corresponding node i € N, after that link has been restored. In this situation, two options are considered: (i) the
position of node i N, in the outlier crew schedule in Table 2 is swapped with one of the precedent nodes in the schedule
where the arrival time of crew k to node i falls in the restoration task time window (Shift Procedure), and (ii) node i e Ny is
simply deleted from the restoration schedule of the crew k (Delete Procedure).

3.3.1.1. Shift Procedure. Considering the order of the corresponding disrupted node, j, in the schedule of the outlier crew

k in Table 2, by;, look for a precedent disrupted node, j (e.g., bk] , j < j in the outlier crew schedule) that is not shared
with any other crew. If the summation of the arrival time to node, j, and p} is greater than maximum arrival time of other

restoration crews to node j, we change the order of disrupted node to b;{‘j?w = bkj and consequently széw = by;. In cases

where there is no precedent disrupted node, j, with the defined characteristics, simply apply the Delete Procedure.
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Algorithm 1 Direct Cycle Elimination.
[Bu ... Bl
1: Input B=[ : - . |, graph, x=1
[Bki ... Bkal

Procedures:
2 Convert  Set graph as an empty dictionary with all key < V and all value= []
3 for each key in V do:
4: for all B =key graph [key].value < Bj,
5: Cycle Detection Set graph < Convert procedure, allyqp =] |
6: for i ¢ V4 do:
7 Set start < i, end <i and temp=|[(i, [])]
8: While temp do
9: if start=end do

10: alleyeies < path and go to line 8

11: for next in graph [state] do

12: if next not in path do

13: path < next

14: state < next

15: temp = [(next, path)]

16: Elimination Set allyqe < Cycle detection

17: While ally, # ¢ do

18: Among all links allye[1][i] — alleye[1][i+ 1], i=1, ..., |allyqe[1]] find one with the
19: maximum repetition in cycles in allyqm

20: Substitute allyye[1][i+ 1] — alleyqe[11[i] for all alleyqe[1][i] — alleye[1][i+1] in B
21: allyy, < all cycles in allyy; but ones contain ally,[1][i] — alleyee[1][i+ 1]

22: While x # 0

23: B = Elimination(Cycle detection(graph), B)

24: graph = Convert (V, B)

25: allyq, = (graph)

26: x = |allpg|

27: Return B

3.3.1.2. Delete Procedure. Remove the disrupted link from the restoration schedule of the outlier crew and update its sched-
ule by shifting the orders of the following disrupted links one step backward.

As multiple crews can restore a single disrupted link, it may appear in the restoration order of more than one crew.
However, naturally, restoration of a link should not be repeated. We further define F and F as lists of |K| lists to track
fixed and unfixed completion time, respectively. We note that each sub-list is related to a crew and has a defined length
equal to the number of nodes assigned to that corresponding crew. During the algorithm, the completion time related to
the restoration process of each node i e Ny is marked as unfixed if there is at least one unscheduled task ahead for that
corresponding node in B, when a disrupted link (its corresponding node) is restored we mark its completion time as fixed,
that is, no more restoration task remains as unscheduled for that corresponding link. To determine a restoration crew as an
outlier for a disrupted link, all precedent restoration tasks assigned to the crew, and consequently their completion time,
must be marked as fixed. After determining the exact time when crew k, k<K, arrives to the ith node (e.g., node i), %,
we face three options: (i) the node is only assigned to one crew and the restoration time is pl1 in which case Fi; = Fi; =
Thi + pl1 (ii) the arrival time of crew k is greater than the completion time of the restoration task associated with that link,
in which case we apply the Shift or Delete Procedures, or (iii) considering k restoration crews assigned and working on
that corresponding node, the arrival time of crew k, %j;, to the ith node is smaller than the calculated completion time of
the restoration process done by k restoration crews, yet %; + p} is greater than the maximum arrival time related to k
restoration crews, in which case crew k joins to the restoration task of node i and the restoration rate of the remaining
restoration work is accelerated. In cases where %y; + p! is smaller than the maximum arrival time related to & restoration
crews, we apply the Shift or Delete Procedures on the restoration crew with the maximum arrival time and update the
maximum arrival time related to £ restoration crews, in case the Shift Procedure was applicable, or the maximum arrival
tile related to k¥ — 1 restoration crews. This procedure continues until %; + p} is greater than the updated maximum arrival
time related to remained crews working on the ith node. Algorithm 2 continues until all by, ke K, i=1,..., n, are visited
and their completion time is marked as fixed.

Proposition 2. The initial solution resulting from solving the Initial Solution Preprocessing & Feasibility algorithm is at least
equal to the r’na]g(]:‘knk (i.e.., the optimal solution obtained from Relaxed RCRP) and at most equal to |K| x rkne%(xﬁknk (ie.,
Ke €
the maximum routing time obtained from the Relaxed RCRP), which is at most equal to |K]| x Taxﬁknk obtained from the
ek

original Binary and Proportional RCRP.

The proof of Proposition 2 is presented in Appendix A-2.
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Algorithm 2 Initial Solution Preprocessing & Feasibility Algorithm.

1: Input B, C

2: Apply the Direct Cycle Algorithm on the input

3: Set F =[], F=[], P=[], and # =[] for all disrupted links; each of which is a list of K lists and the length each list
is equal to the number of disrupted nodes assigned to each restoration crew

4:forr=1, ..., Kdo

5: Flril=1, Frl[1] =1, P[r][1] = 1, and #[r][1] =1

6:forh=1,..., r£r11axK(|B[r]|) do

7 forr=1, ..., Kdo

8: if F[r]lh—1]>0

9: Casel: if z}?m[h]:l (only one crew is assigned to B[r][h]):

10: P[T][h] = plli[r][h]' ﬁ[r][h] = ﬁ[T][h] = f[r][h] + p}}[r][h]'

11: £[r]lh + 1] = Fr][h] + C[B[r][h], B[r][h + 1]]

12: end if

13: Case2: if zg[r”h] =1,1> 1 (more than one crew is assigned to B[r][h]) and B[r][h] is visited for

14: the first time:

15: P[F][h] = pﬁg[r][h]v ]'_-[T][h] = f[r][h] + p;[r][h]'

16: Z[r]lh + 1] = Fr][h] + C[B[r][h], B[r][h + 1]]

17: end if

18: Case3: if zg[r][h] =1,1> 1 (B[r][h] is visited | — I times before):

19: form x = {£[i][j]|Bli][j] = Blrl[h]}, ¥ = {Flil[j1|Bli][j] = B[r][h]}, sorted non-increasing order

20: Case3-1: if i_gnir‘lué\?[i] < T[r][h] < iirlnai(y‘ VIi]:

21: for V Bli][j] =B[r][h]

22; Flilljl = max_xfi] + ChonPhonYies iy (021D
B i=1,...|¥| Birin)

23: PLiljT = FLlT = TG

24: ifl=1:

25: Flillj1 = Flilli]

26: end if

27: end for

28: end if

29: Case3-2: if ‘__rlna)‘(y‘ Vil < T[r][h]:

30: Shift Procedure: if 3B[r|[h] where zll%[r][ﬁl =1, h<h, [r][h]+ plli[r][h] < x‘:Tﬂ(,ﬂX[i]:

31: Change the position of B[r][h] and B[r][h] in B

32: Go to Case3-1 (line 17)

33: Go to Update procedure

34: Delete Procedure: else Delete B[r][h] in B

35: Go to Update procedure

36: end if

37: end if

38: end if

39: end for

40: end for

41: Update Procedure: for ' =h+1...., |B[r]| :

42: If Z[r][h'] > 0:

43: F[r][h'] = Flr][ — 1]+ C[B[r][h’ — 1], B[r][W']]

44: end if

45: If F[r][h']>0:

46: FIrlih'] = FIrlik'] = (][0 + PlrliR']

44: examine Casel, Case2, and Case3 for B[r][h’' + 1]

47: end if

48: end for

4. Illustrative examples based on power grid transmission, water, and gas networks in Shelby County, TN

To test the performance of the mathematical formulations and heuristic algorithm, we apply the restoration crew routing
problem to realistic data sets representing three different infrastructure systems, including the electric power, water, and
gas networks in Shelby County, Tennessee. Shelby County, which is located in the New Madrid Seismic Zone, is home to
Memphis, a city with a population of over 650,000. Shown in Fig. 5, the power network is composed by 136 components
(i.e., 60 nodes and 76 links), the water network by 120 components (i.e., 49 nodes and 71 links), and the gas network
by 33 components (i.e., 16 nodes and 17 links) (Gonzalez et al., 2016b). The combination of these three networks has a
total number of 289 components (i.e., 125 nodes and 164 links). Based on Gonzalez et al. (2016b), we consider a realistic
earthquake scenario with epicenter at 35.3c N, and 90.30 W located 33 km northwest of the center of Memphis, including
magnitudes within the range of My, € [6, 9]. On average, for the simulated earthquakes with My, =6, about 6.2% of all
network components are destroyed, for My, =7, 9.3% are destroyed, for My, =8, 16.6% are destroyed, and for My, =9, 22.8%
are destroyed. We distribute the disruptions among the components of the three networks randomly. Since each restoration
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Fig. 5. Graphical representations of the (a) power grid transmission, (b) water, and (c) gas networks at a transmission level in Shelby County, TN
(Gonzélez et al., 2016b).

crew is accompanied with personnel and equipment, the increase in the number of restoration crews adds additional costs
to the problem. The maximum number of crews working in each time period is 6, 5, and 4 for the power grid, water,
and gas networks, respectively. The distance between each pair of disrupted locations is the shortest unblocked path (in
miles) obtained through ArcGIS and Google Earth. Each of the disrupted infrastructure links may experience a certain level
of damage and require a specific restoration time that depends on the number of assigned restorative crews, its level of
damage, and other characteristics. After the occurrence of the disruption, crews should be dispatched from the depots.
For each disruption scenario associated with each infrastructure network, we select 5, 10, and 15 potential locations for
depots respectively. To simplify the calculation of the distance between a depot node and the location of disrupted links,
the potential depot nodes are chosen from the nodes of each infrastructure network. In different scenarios, the depots are
randomly chosen from the potential depots nodes. The traveling time between each pair of nodes Cif » @, j) €A is equal

the distance between i and j divided by the speed of restoration crew, 60 mph on average (Akbari and Salman 2017). We
consider the restoration time horizon as 100 h or about four days (FEMA, 2017).

4.1. Computational experiment

In this section, we present the computational results on 60 instances, where for each network we test five instances
for each level of magnitude vibration, and the disruption links are randomly distributed through each network. The com-
putational experiments for both mathematical formulations and heuristic are performed on an Intel Core™ i7-7500U CPU
2.90 GHz (with 32GB RAM) using Gurobi 7.0.2 on Python 2.7.13. The outputs of the heuristics are compared with the exact
solutions obtained by solving the Binary and Proportional Active restoration crew routing problems. For cases where the
Gurobi Solver is not able to return the exact solution within the allowed time of one hour, we compare the lower bound
obtained by Algorithm 1 with the lower bounds and the best obtained solution found by Gurobi in the given time limit.
While the Proportional Active model may not always be directly applicable to power, water, and gas networks, to provide
relevant insights, we study the behavior of these networks under Proportional Active assumptions for illustrative purposes.
Furthermore, the Proportional Active is also applicable in some cases where, along with the installation of main infrastruc-
ture networks (e.g., power lines), temporary and emergency lines are installed and used to meet a portion of demands. The
model is also applicable in cases where the redundant components (e.g., powerline and transformers, water pipelines and
pumps or gas lines) are installed to play the same role in parallel. Finally, we apply the Proportional Active model to all
three infrastructure networks to evaluate the behavior of the model for small size problems (i.e., gas network), medium size
(i.e., water network), and large size (i.e., power network) problems.

Table 3 through Table 5, which show the results for the power grid, water, and gas network instances in Shelby County,
represent the results of Binary Active and Proportional Active restoration crew routing models and the initial solution ob-
tained from the Relaxed-Restoration Crew Routing formulation and Initial Solution Preprocessing & Feasibility algorithm. For
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Table 3
Percentage gap and solution time for the Relaxed-Based Initial Solution Algorithm, Binary Active, and Proportional Active
restoration crew routing problem for the electric power network.

Initial solution  Binary Active formulation Proportional Active formulation
Ins. M, K CPU(s) T Gap® (%)  Gap“(%) CPU(s) T Gap% (%)  Gap“(%) CPU(s) T
mn @ 6 @ (5) (6) (7) (8) (9 (10 (11) (12) (13)
1 6 2 29 96 11.5 19.9 1800 70 3.86 15.7 1800 85
2 3 2.4 67 7.45 329 1800 43 0.9 58.5 1800 35
3 4 2.7 47 4.5 16.4 1800 41 0.1 353 1800 28
4 5 5.8 47 5.55 19.1 1800 35 0.1 26.5 1800 28
5 7 2 2.0 83 1 36.8 1800 69 2.73 124 1800 66
6 3 6.3 62 9.1 31.2 1800 53 0.4 45.8 1800 37
7 4 23 60 6.67 377 1800 44 0.7 49.4 1800 34
8 5 3.9 57 5.85 372 1800 39 0.1 45.5 1800 26
9 8 4 2.3 111 - - 1800 - - - 1800 -
10 5 44 103 - - 1800 - - - 1800 -
1 6 49 95 23 275 1800 86 14.10 21.8 1800 85
12 7 2.9 83 18.6 16.1 1800 74 123 15.5 1800 72
13 9 4 4.2 75 - - 1800 - - - 1800 -
14 5 2.6 72 - - 1800 - - - 1800 -
15 6 6.8 68 - - 1800 - - - 1800 -
16 7 34 65 - - 1800 - - - 1800 -
Table 4

Percentage gap and solution time for the Relaxed-Based Initial Solution Algorithm, Binary Active, and Proportional Active
restoration crew routing problem for the water network.

Initial solution  Binary Active formulation Proportional Active formulation

Ins. M, K CPU(s) T Gap® (%)  Gap“(%) CPU(s) T Gap® (%)  GapX(%) CPU(s) T
m @ 6 @ (5) (6) (7) (8) (9 (10 (11) (12) (13)
1 6 2 6.05 77 3.45 18.4 1800 65 2.37 315 1800 49
2 3 3.72 42 2.67 12.7 1800 36 2.32 11 1800 40
3 4 4.65 32 3.08 -2.7 1800 35 2.43 8.1 1800 29
4 5 7.71 22 2.45 -24 1800 32 1.54 —-6.1 1800 25
5 7 2 3.44 89 3.42 3.8 1800 76 3.67 17.2 1800 59
6 3 724 68 3.05 27 1800 47 373 20.0 1800 47
7 4 6.78 54 3.71 38.2 1800 35 3.52 8.5 1800 46
8 5 7.88 40 3.93 18.3 1800 34 423 -3.7 1800 42
9 8 2 3.77 99 6.64 5.2 1800 95 5.5 26.8 1800 74
10 3 3.46 71 6.24 5.1 1800 53 5.76 7.8 1800 63
1 4 3.48 59 6.43 43 1800 51 5.75 2.2 1800 55
12 5 490 51 6.34 1.8 1800 48 5.43 32 1800 45
13 9 3 7.84 90 12 33 1800 79 9.85 8.1 1800 77
14 4 6.69 81 23 -35 1800 85 14.56 453 1800 54
15 5 737 69 13.5 8.6 1800 60 9.5 25.9 1800 38
16 6 6.05 43 12.7 1.5 1800 41 9.6 24.2 1800 30

each infrastructure network, the level of disruption (i.e., earthquake magnitude) and the number of restoration crews are
shown in the first and second columns. The fourth and fifth columns provide the CPU time required for the computation of
the initial solution and the makespan or the restoration time, provided by the initial solution, T, respectively. The optimal-
ity gaps for each scenario obtained from Gurobi optimization, Gap®", are shown for Binary and Proportional formulations
(columns 6 and 10, respectively). In the Gurobi optimization process, first a relaxed formulation is driven from the original
model and a lower bound is determined for the optimization process. Then using the Branch and Bound algorithm, the best
bound is obtained through the CPU limitation time. Gap® measures how far the best bound is from the relaxed formulation
obtained by Gurobi. The percentages of difference between improvement in network resilience associated with the initial
solution (obtained from the heuristic algorithm) and the optimization model solved by Gurobi, Gap?, is calculated in Eq. (41).
Results are shown for both the Binary and Proportional formulations (columns 7 and 11, respectively). Tables 3-5 also show
the CPU times required for the computation of initial solution, Binary and Proportional formulations (columns 8 and 12,
respectively), as well as the Makespan related to the two formulations (columns 9 and 13, respectively).

Gap? = 2 eerfly (t|ej)initia1 —max}_ .y fly (t|ej)
max ¥ .5 sl (tlef)

According to Table 3 through Table 5, all instances under the disruption scenarios with My, =6, 7, and 8 were solved
within a reasonable amount of time (i.e.,, 1800s) and with an average optimality gap of 4.5%. The variation of the optimality
gap is larger for the disruption scenario with My, =9, where the minimum, maximum, and average gaps are 3.03%, 23%, and

(41)
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Table 5
Percentage gap and solution time for the Relaxed-Based Initial Solution Algorithm, Binary Active, and Proportional Active
restoration crew routing problem for the gas network.

Initial solution  Binary Active formulation Proportional Active formulation

Ins. M, K CPUGs) T Gap© (%) Gap“(%) CPU(s) T Gap© (%) Gap“(%) CPU(s) T
mn @ 6 @ (5) (6) (7) (8) (9 (10 (11) (12) (13)
1 6 2 422 27 0 0 25 27 0 6.5 18 9
2 3 3.57 21 0 0 45 21 0 20.5 32 10
4 7 2 113 1 0.03 0 1800 51 0 1.6 38 21
5 3 4.72 22 0.06 0 1800 27 0 28.8 41 1
7 8 2 4,54 38 1.93 0 1800 59 0.3 26.3 1800 42
8 3 197 32 2.32 0 1800 55 0.95 22.6 1800 21
10 9 4 3.68 28 2.47 0 1800 43 1.56 104 1800 20
11 3 2.27 36 334 0 1800 59 2.42 1.1 1800 32
12 4 2.23 31 3.03 0 1800 44 2.65 37.8 1800 25

7.89%, respectively, for the Binary formulation, and 1.56%, 14.5%, and 5.93%, respectively, for the Proportional formulation. For
water and gas networks, the initial solution demonstrates the efficacy of the Algorithm 2 in providing a strong initial feasible
solution for any solution improvement algorithm for the Restoration Routing Problems. It is also shown that in some cases
the initial solution algorithm provides the better upper bound for the Binary and Proportional formulations (e.g., instances
1, 2, and 8-12 in gas network and instances 4, 5, and 14 for water network).

For the power network instances, as an example for large scale problems, Algorithm 2 reaches to a reasonable initial
feasible solution, with the average optimality gap of 28.9% for Binary formulation and 36% for Proportional formulation,
in a considerably short time of 3.5 seconds on average. For disruption scenario with My, =9, as the size of the instances
increase dramatically, the Binary and Proportional formulations fall short of solving the power network instances with the
disruptions level of 22.8%. However, the algorithm obtained the initial solution in a considerably short time of 4.5 s on
average. The exact formulations fall short in solving instances 10 and 11 simply because the number of restoration crews
were not adequate to restore the whole network in the given time horizon (i.e., T=100).

Results suggest that there should be a balance between the number of restoration crews and the number of disrupted
links in the infrastructure network to obtain the minimum optimality gap in a given solution time. For example, for the
disruption scenario with My, =6, using three crews to restore the water network and four crews to restore the power net-
work results in the minimum optimality gap, and with My, =7 using three and five crews for restoring the water and power
networks, respectively, results in the minimum optimality gap. The minimum optimality gap does not guarantee a minimum
restoration time horizon, but rather it assures the best upper bound in a limited solution time.

Comparing the solutions with and without the consideration of routing time, we see that more disrupted components
receive restoration services from multiple crews. In the former category, restoration crews are more scattered thoroughout
the network, and there is a smaller number of disrupted components that receive restoration services from multiple crews
because time spent traveling in the network is being accounted for. In the latter category which does not consider routing
time, sets of restoration tasks assigned to crews may form direct cycles, which means, for example, two crews would in-
correctly be assigned at two different geographical locations at the same time. In the latter category when routing time is
not considered, the crews assigned to each component are assumed to start the restoration task at the same time. However,
this might not always be the case for the former category as the difference in traveling time results in different crew arrival
times. The difference of arrival time affects how the disrupted components are scheduled to each crew. Finally, regardless of
the consideration of routing time, depending on the distance among the depots and the distribution of disruptions over the
network (whether highly scattered or spatially focused), the number of disrupted components that are restored by multiple
crews and the average number of crews assigned to them changes. As such, the closer the depots are together and/or the
closer are the disrupted components, the number of disrupted components visited by multiple crews increases as well as
the average number of crews assigned to each of those components.

We examine the effect of the weight w;, ie N_, for weighting the importance of demand nodes, where, for example,
demand nodes located in highly populated areas could have a higher priority for restoration relative to other demand nodes.
To incorporate w; in both mathematical formulations, we update the objective function with Eq. (42).

YoieN. Wilic — Y ien. Wi,
DieN. Wiit, — 2ien. Wilit,

For the relaxed formulation, we use three measures of importance (i.e., Inrcount> Inow» Ircr) and categorize the important
links to three clusters, one with IMs less than 0.3, one with IMs between 0.3 and 0.6, and one with IMs greater than 0.6.
Table 6 compares the performance of Algorithm 2 and the Binary Active RCR when we incorporate demand nodes with
priority weight w;, i € N_. To compare all results obtained from the Restoration Crew Routing formulation and Algorithm 2,
we examined the results under the disruption scenarios with My,= 6, 7, and 8. The type of the infrastructure network, the

instance number, the magnitude of the earthquake, and the number of the restoration crews are shown in the first four
columns of Table 6. The effect of employing different importance measures in Eq. (40) on the CPU time and the required

Sy (tle) = (42)
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Table 6
Percentage gap and solution time for Relaxed-Based Initial Solution Algorithm, Binary Active restoration crew routing problem under the employment
of importance measures Iygcoune: Ircg, aNd Igow -

IMFcount Ircr Tfow Binary Active formulation
Gap“(%)
Ins. My K CPU(s) T CPU(GS) T CPU(GS) T Gap® (%) CPU(s) T MFCount  FCR flow
m @ B @ (5)  (6) (7 (®) (9 (10 (11) (1)  (12) (13) (14)
Power 1 6 2 4.80 97 423 99 132 100 54 1800 92 6.7 9.5 18.2
2 3 3.52 68 5.24 69 4.40 70 2.2 1800 396 41 371 40.7
3 4 4.67 49 4.63 49 3.77 51 1.8 1800 34 275 275 29.5
4 5 4.96 49 2.93 49 5.64 49 21 1800 34 275 275 275
5 7 2 3.40 84 222 86 2.91 86 3.7 1800 73 13.6 15.0 15.0
6 3 6.36 64 3.60 65 2.09 64 21 1800 42 24.0 26.2 24.0
7 4 3.83 61 223 61 3.72 64 2.4 1800 38 35.3 353 373
8 5 3.94 59 5.53 59 5.97 59 18 1800 33 32.0 323 323
9 8 2 6.96 115 6.43 115 6.82 115 - 1800 - - - -
10 3 6.67 112 6.93 113 6.29 112 - 1800 - - - -
11 4 6.83 105 6.29 108  6.02 109 26 1800 95 15.6 15.8 15.8
12 5 6.71 92 6.92 94 6.12 94 213 1800 83 75 7.8 7.8
Water 13 6 2 6.73 79 6.40 79 4.57 79 3.6 1800 54 32.7 32.7 32.7
14 3 2.76 44 6.46 45 6.69 43 3.9 1800 44 0 03 -0.3
15 4 411 33 117 33 3.59 34 43 1800 37 -2.8 -2.8 -25
16 5 4.28 24 334 23 1.01 25 2.6 1800 27 -29 -33 -14
17 7 2 2.62 90 1.60 90 2.06 93 5.1 1800 64 28.2 28.2 31.2
18 3 2.78 69 433 70 5.31 69 4.7 1800 52 16.3 19.3 16.3
19 4 6.99 55 5.67 55 343 56 5.1 1800 53 1.6 1.6 21
20 5 3.01 42 5.94 43 5.53 42 5.4 1800 47 -5.6 -6.6 -5.6
21 8 2 4,55 101 5.1 103 5.43 103 - 1800 - - - -
22 3 5.1 67 491 69 5.21 68 5.41 1800 59 16.4 171 17.5
23 4 4.32 65 4.55 65 4.58 65 538 1800 55 19.3 19.3 19.3
24 5 4.68 75 4.69 75 4,96 76 6.59 1800 51 274 289 274
Gas 25 6 2 3.64 29 291 29 3.48 29 0 22 14 373 373 373
26 3 3.99 22 3.39 22 3.70 22 0 45 15 28.9 28.9 28.9
27 7 2 3.50 12 210 14 2.93 14 0 49 28 -33.8 -328 328
28 3 2.98 24 3.01 25 2.37 24 0 63 15 29.0 30.8 29.0
29 8 2 31 25 2.36 27 2.41 27 0 65 24 3.1 45 4.5
30 3 34 46 2.65 47 2.58 50 0 67 43 129 13.6 16.8

restoration time is shown in columns 4 and 5 for Iypcount, cOlumns 6 and 7 for Igcg, and columns 8 and 9, for Iqg,. For
each scenario the optimality gap, Gap®”, the CPU time, and the required restoration time obtained from Gurobi optimization
are shown in columns 10 through 12. Finally, the percentage of difference between improvement in the network resilience
measure associated with the initial solution for Iyipcount, Ircg, and Igq, and the optimization model, Gap?Z, is shown the final
three columns.

According to Table 6, the Binary Active formulation solved all instances in a reasonable amount of time (i.e., 1800s) and
with an average optimality gap of 2.81%. Employing each of the three importance measures, all prioritized demand nodes
are satisfied before others. In cases where we suppose to consider the importance of some demand nodes over the others,
scaled w;,i € N_, the implementation of all three importance measures provides strong initial solutions for any of the
solution improvement algorithms. The average, maximum, and minimum of Gap? related to Iypcoun: are 16.2%, 37.3%, and
—33.8%, for Igcg are 16.7%, 41%, and —32.8%, and for Iy, are 17.4%, 40.7%, and —32.8%. Among the importance measures the
implementation of Iyrcoune results in full network resilience in less required restoration time. This is because, regardless of
the percentage of the network flow a link carries, the implementation of Iyjrcount finds links that are shared in the maximum
number of source-target paths. Therefore, restoring more important links, measured by the employment of Iyrcount, bring
more paths into activation as well as satisfying the prioritized demand nodes contained on the paths. On the other hand,
the implementation of I, and Igcg leads the relaxed formulation to focus on the links carrying the highest percentage of
flow relative to total network flow and their defined capacity, respectively, which may not come from many source-target
paths. As such, the choice of importance measure is an important consideration in finding a good solution.

Depending on the magnitude of the disruption scenario, and the accessibility to each disrupted component (i.e., the ratio
of the restoration time, related to each disrupted component, to its traveling time to other components and depots), there is
a certain number of restoration crews, k*, for which the results obtained from the Binary and Proportional formulations rep-
resent the maximum number of disrupted components that receive restoration services from more than one crew. Assigning
more restoration crews than k* may result in a more scattered routing network, where the length of the route assigned
to each restoration crew may decrease, yet a smaller number of disrupted components may be assigned to more than one
restoration crew.

To illustrate this behavior, Fig. 6 indicates different scheduling and routing patterns obtained from Binary Active formu-
lation, and Algorithm 2. These methods are studied under the disruption scenario with magnitude M,,=9 for the water
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Fig. 6. The water network under the disruption scenario with magnitude M,, =9.

network. In Fig. 6, the rectangular nodes represent the available depots, and the numbered nodes represent the disrupted
locations in the network after the occurrence of a disruptive event.

According to Fig. 7, for the Binary Active formulation, the maximum number of disrupted components which receive
restoration services from more than one crew obtained when we incorporate three restoration crews. For the proposed algo-
rithm, assigning three restoration crews to the disrupted network results in the maximum number of disrupted components
scheduled to more than one crew. Accordingly, Considering Binary formulation, for power network, we may incorporate
k*=3, 4 and 3, under the disruption scenarios with magnitudes My,= 6, 7 and 8, respectively, to see the maximum number
of disrupted components scheduled to more than one crew. For water network the number would be k*=2, 2, 3, and 3,
under the disruption scenario with magnitudes My,= 6, 7, 8, and 9, respectively. Finally, for the gas network, this number
would be k*=2, 2, 3, and 4, under the disruption scenario with magnitudes My= 6, 7, 8, and 9, respectively, for the gas
network. Considering the proposed algorithm, for power network, this number would be k*=3, 4, 3 and 6, under the dis-
ruption scenario with magnitudes My= 6, 7, 8 and 9, respectively. For water network, this number would be k*=3, 3, 3,
and 3, under the disruption scenario with magnitudes My= 6, 7, 8, and 9, respectively. Finally, for the gas network, k* =2,
2, 3, and 3, under the disruption scenarios with magnitude M,,= 6, 7, 8, and 9 respectively.

In the proposed relaxed formulation, the average number of crews assigned to each disrupted component is greater than
the average number of assigned crews in the solution obtained from Binary and Proportional Active formulations. Note that
although this feature proposes great initial solutions for heuristic algorithms to find near optimal solutions for restoration
routing problems, to solve the timing conflicts, Algorithm 2 has to change some routes and restoration sequences that may
result in solutions with more than 10% of optimality gap from the solutions obtained from Binary and Proportional Active
formulations.

5. Concluding remarks

Restoration capacity enhancement problems are often based on idealized assumptions (e.g., eliminating routing prob-
lems in restoration process, neglecting timing conflicts, considering fixed number of assigned crews), that may propose
assumptions that may result in models that cannot be used in realistic contexts. With the implementation of routing among
disrupted network components, we show that there is a considerable difference between these models and models that
focus only on basic infrastructure network restoration. In other words, the basic infrastructure network restoration models
may result in disrupted components schedules and sequences that are not applicable in realistic contexts, which must con-
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Fig. 7. The computational results of water network under the disruption scenario with magnitude My =9. (a) Binary Active model with two restoration

crews, (b) initial solution using two restoration crews, (c) Binary Active model with three restoration crews, (d) initial solution using three restoration

crews, (e) Binary Active model with four restoration crews, (f) initial solution using four restoration crews, (g) Binary Active model with five restoration
crews, and (g) initial solution using five restoration crews.
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sider traveling time of each restoration crew traveling time between each two disrupted locations it is assigned to, as the
two or more restoration crews have to be in more than one location at the same time (i.e., timing conflicts). Also, they do
not consider the difference in the arrival of time of each assigned crew to a disrupted location and the effects it has on the
restoration rate of that corresponding component in each time period.

In this paper, we reinforced the applicability of restoration capacity problems to the real-world case studies by: (i) in-
tegrating routing and restoration problems by formulating Restoration Crew Routing problems, (ii) implementing dynamic
restoration rate, where an idle restoration crew can join other crews working on a disrupted link and accelerate the re-
maining restoration process. Two model formulations are proposed: (i) the Binary Active Restoration Crew Routing model,
in which disrupted links cannot play a role in network performance unless they are restored completely (e.g., railway net-
work), and (ii) Proportional Active Restoration Crew Routing model, in which partially restored links are proportionally
functional in the network, and as their restoration process progresses, their functionality in the network increases (e.g., the
pyhsical structure of internet networks).

Additionally, this paper presents a new algorithm to obtain the best initial solution for the infrastructure network restora-
tive capacity enhancement problem. We first introduce a relaxed formulation of the proposed routing problems, which does
not consider the arrival time of restoration crews to each disrupted component and their effects on the restoration rate
of that component in each time period. Then, a cycle elimination algorithm is employed to solve all timing conflicts and
bring the routes of restoration crew into synchronization. Finally, the Initial Solution Preprocessing and Feasibility Algorithm
(Algorithm 2) calculates the routing time of each restoration crew and solve the timing conflicts caused by any restoration
crew arrives to a disrupted link after its restoration process is completed. Using instances derived from real-life data from
power grid, water, and gas networks in Shelby County, TN.

The computational results prove the efficacy of both Binary Active and Proportional Active formulations, especially in
small to medium scale problems, by showing the small optimality gap for relatively small sized instances. The initial so-
lution obtained from Algorithm 2 are compared with the best upper bound obtained from original formulations. For the
disruption scenarios with My, =6, 7, and 8 the optimality gap, Gap?, about 4.5% on average, shows the credibility of the
initial solution obtained from the heuristic algorithm. Decision makers are provided with insights into how the restora-
tion tasks would be distributed through the network over the time and to what extent those tasks are centralized over
the disrupted components. The demonstrated credibility of the heuristic algorithm provides a good approximation about
the restoration process, such as how the choice of depots with different geographical locations affects the distribution of
restoration tasks through the network, particularly under the large-scale disruption scenarios where both Binary Active and
Proportional Model formulations fall short in finding the best bound in a limited time. We further can use the obtained
initial solution in heuristic algorithm to find optimal or near optimal solution in a considerably short amount of time. To
incorporate the prioritization of some demand nodes over the others (scaled w;,i € N_), we introduce a variation of the
relaxed formulation that prioritizes the restoration process of disrupted links that play an important role in satisfying pri-
oritized demand nodes. Given this strategy, decision makers can analyze the effects of prioritizing certain demand nodes
on the restoration process from different aspects (e.g., prioritizing the locations near the hospitals, more populated areas,
certain vulnerable communities), thus striking a balance between the recovery of the entire network and the priority of
demands. The results in Table 6 suggest the efficiency of the proposed variation in the relaxed formulation in serving the
prioritized demand nodes before others. It also emphasizes that the performance of the proposed algorithm is aligned with
the minimizing the restoration horizon as well as serving the prioritized demand nodes when we implement Iyjrcount as the
measure of importance.

An important (and realistic) direction for future work is to consider the effects of the disruptions (and posterior recovery)
on the routing network itself and analyzing the behavior of both infrastructure and routing networks in terms of sharing
restoration crews, rerouting, and restoration interdependencies. Another relevant direction in this area is to consider multiple
restoration tasks associated with each component. In this case, crews that were assigned to a given disrupted component
may finish their restoration tasks earlier than others working on the same component, and in consequence may leave before
the full restoration process of the component is completed.
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Appendix A

A-1

Proof. Without loss of generality, we assume that no rerouting action takes place in the infrastructure network after the
occurrence of a disruptive event. Hence, the time when the infrastructure network reaches to fully operational state is the
same time it attains full recovery. Recall that, we can state that the purpose of original restoration model is to maximize
the infrastructure network by minimizing the maximum routing time. We prove that statement by two lemmas.


http://dx.doi.org/10.13039/100000001

88 N. Morshedlou et al./ Transportation Research Part B 118 (2018) 66-89

Lemma 1. If ﬁ’(i i I=1,...,L represents the restoration time of each disrupted link (i, j) € A’, defined in the independent
crew routing problem, and p’(,. iy I[=1,...,L represents the restoration time of each disrupted link associated with the
relaxed formulation, then we have that

=] I

Pijy =Pij (A-T)

Proof. Table 7 gives an instance that shows the impact of each crew on the processing time of each disrupted link (i, j)
€ A'. Each time a new crew k=1, ..., K arrives, it accelerates the restoration rate associated with the remaining disruption.
Therefore, the portion of disruptions processed prior to the arrival of crew k cannot be affected by that crew. We assume
that no crew visits a disrupted link after it has been recovered.

Mi Pl Sheo My @ ) —E0 ) APt
According to Table 7, we have, p(l )= (t(, 5~ (i i)+ 0.p%ip , and we also have p( = = L) Gi)
J J J )‘(u) )‘(11)
Through the method of proof by contradiction, suppose that
1 1 I h-1(th £h-1
- MijPiig) ~ L2 M) (tu » e 1)) M jPlij
(tl _fl. ) < DTG (A-2)
(i) ~ ) U =
(@.J) (@i.J)
I
1 (7l 21 1 1 h—1(th 1 1
Mgy (Biy = Eigy) + Xy Py = 2 M (B = ) =< AipyPlayy (A-3)
h=2
I
2h—1 h—1 (th Ph—1
Z)‘(x i (g = Bip) = 2o My (g — E65) (A-4)
h=2
I
Mgy < Mijy + Ay -+ M) (A-5)
Thus, we have the contradiction on (A-2) as it is clear that )J(,.]) > }‘(1 i) i=1,...,1—1. Therefore, (A-1) is proved. As the
traveling times among disrupted links remain unchanged, we conclude that
Zp =2 (SE/PAP) (A-6)

A-2

Proof. Building upon Akbari and Salman (2017), we know that the output of the Relaxed RCRP is a set of restoration routes
which may share one node or more with one another. In the worst case, using cycle elimination algorithm results in trav-
eling times related to some crews which are prolonged more than the time they save when they join to other crews on
the restoration process of disrupted nodes (i.e., kmax f,mk (Relaxed RCRP) < ’max Fkn (feasibility algorithm)). We also

defined a version of Binary and Proportional restoration crew routing formulation, referred to as the Modified formula-
tion, in which we substitute multiple crews to one crew. This lone crew starts its route from a depot, serves a number of
nodes, may restore some of them completely and some others partially, returns to the same depot or a different one in
zero time, and then again starts a new route. This procedure repeats until all disrupted nodes are fully recovered. Without
loss of generality, we consider that no rerouting is possible in the network after disruption. Hence, to attain fully restored
network resilience (1, (t|ef)), we need to restore all disrupted links. In Modified formulation, the crew comes back to par-
tially restored nodes and restores all remaining disruptions or a proportion of them with restoration rate )Lf where [ is

the number of times the crew has visited node i eV, up to then. The maximum number of times the restoration crew

starts a new route is equal to K. The optimal solution of the Modified formulation is equal to ZL] }~‘,mk. It is clear that
" . - ko % -~ .

’max Fin,, (Algorithm 2)=< fo:l Fhn,- Further, we can see that "‘}7('“"‘ < kmax Fin, (Relaxed formulation). We then ob-

tain g max }‘kn (Relaxed formulation)< kmax }‘k,1 (Algorithm 2) < K. max fknk (Relaxed formulation).

Table 7
The processing time of disrupted link (i, j) for independent crew routing restoration problem.

ht" crew  Assigned crews  Acceleration in remained restoration process  Processing time after the arrival of hth crew
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