IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 66, NO. 1, JANUARY 2019

207

Strategies for Removing Common Mode
Failures From TMR Designs Deployed
on SRAM FPGAs

Matthew J. Cannon

, Student Member, IEEE, Andrew M. Keller, Student Member, IEEE,

Hayden C. Rowberry, Student Member, IEEE, Corbin A. Thurlow, Andrés Pérez-Celis,

and Michael J. Wirthlin

Abstract— Triple modular redundancy (TMR) with repair has
proven to be an effective strategy for mitigating the effects of
single-event upsets within the configuration memory of static ran-
dom access memory field-programmable gate arrays. Applying
TMR to the design successfully reduces the design’s neutron cross
section by 80x. The effectiveness of TMR, however, is limited
by the presence of single bits in the configuration memory
which cause more than one TMR domain to fail simultaneously.
We present three strategies to mitigate against these failures
and improve the effectiveness of TMR: incremental routing,
incremental placement, and striping. These techniques were
tested using both fault injection and a wide spectrum neutron
beam with the best technique offering a 400x reduction to
the design’s sensitive neutron cross section. An analysis from
the radiation test shows that no single bits caused failure and
that multicell upsets were the main cause of failure for these
mitigation strategies.

Index Terms— Configuration scrubbing, field programmable
gate arrays (FPGAs), single-event effects (SEEs), single-event
upset (SEU), triple modular redundancy (TMR).

I. INTRODUCTION

RAM field-programmable gate arrays (FPGAs) are inte-
grated circuits that can implement any digital logic
function. An FPGA consists of lookup tables (LUTs), flip-
flops (FF), block memories (BRAM), other special resources
(DSPs, Multi-Gigabit Transceivers, etc.), and a large config-
urable routing network to programmatically connect all of
these components. The operations of the LUTs, FFs, BRAMs,
etc., are all controlled by static memory cells called the
configuration memory (CRAM) [1].
FPGAs are being increasingly used in many harsh envi-
ronments, such as in space and high-energy physics experi-
ments. While in these environments, FPGAs are exposed to

Manuscript received July 13, 2018; revised September 6, 2018 and
October 8, 2018; accepted October 17, 2018. Date of publication October 23,
2018; date of current version January 17, 2019. This work was supported in
part by the National Science Foundation through the 'UCRC Program under
Grant 1265957 and in part by the Utah NASA Space Grant Consortium and
LANSCE under Grant NS-2017-7574-A and Grant NS-2017-7574-F.

The authors are with the Department of Electrical and Computer Engineer-
ing, Brigham Young University, Provo, UT 84602 USA, and also with the NSF
Center for Space, High-Performance, and Resilient Computing, Alexandria,
VA 22314 USA (e-mail: matthew.cannon@byu.edu; wirthlin@byu.edu).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TNS.2018.2877579

, Senior Member, IEEE

ionizing radiation and subject to numerous types of single-
event effects (SEEs), particularly single-event upsets (SEUs).
SEUs on FPGAs typically occur in the large CRAM
(approaching 1 Gb on the newest devices) potentially changing
the circuits implementation [2], [3]. These SEUs could flip an
LUT value and change the circuits functionality or occur in
the routing network and connect/disconnect physical wires on
the device. It is imperative, then, to consider the effects of
SEUs in the CRAM before the circuit is deployed within the
intended environment.

Triple modular redundancy (TMR) with repair is a com-
monly employed strategy to mitigate against the effects of
SEUs on FPGAs [4]. With TMR, the circuit module is tripli-
cated and voters are inserted on the outputs. The voters then
propagate the majority logic value, masking single-module
failures. Applying TMR with repair to a circuit has shown
to greatly increase the mean time to failure (MTTF) of the
circuit by 50-100x [5].

However, the effectiveness of TMR is limited by the pres-
ence of single CRAM bits that cause TMR failure. When
upset, these bits cause multiple domain failures in the circuit
and are referred to as common-mode failures (CMFs) [6], [7].
The presence of these bits in the mitigated design place a limit
on the maximum achievable improvement TMR with repair
can provide.

The goal of this paper is to identify the underlying architec-
tural causes for these bits that cause CMF as well as introduce
mitigation techniques to address their problems. We do this
by developing three techniques to mitigate the existence of
CMF in TMR FPGA circuits: incremental routing, incremental
placement, and striping. The best of these techniques showed
an improvement from 80x without these techniques up to
400x with these techniques, a 5x improvement over TMR.

Section II presents a background on TMR with repair
and how it is implemented on FPGAs as well as a review
of the previous work in this field. Section III introduces a
new Markov chain to model CMFE. Section IV reviews the
main cause of CMF and proposes three strategies to mitigate
for CMF. Section V details the experimental setup we used
and Section VI shows and analyzes the results. Finally, this
paper concludes with an in-depth analysis of the reliability
differences between the techniques in Section VII and then
offers a final conclusion and future work.

0018-9499 © 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0003-0378-7622
https://orcid.org/0000-0003-0328-6713

208

Triplication and
Voter Insertion

Fig. . TMR.

II. BACKGROUND

TMR can be used to triplicate the circuitry within the FPGA,
as shown in Fig. 1, so that if an SEU occurs within the CRAM
or FF of one circuit domain, the redundant copies will success-
fully mask the error. TMR also provides protection for other
SEEs such as single-event transients. TMR is usually applied
to the circuit using automated tools by directly modifying the
design’s netlist. The tool we use for this paper is called the
BL-TMR tool [8].

Although not intuitive, the MTTF of a TMR system is
actually lower than a single system. The MTTF for the single
system is 1/4, where 1 is the failure rate of the single system.
The MTTF of the TMR system is

5
MTTF = —
64

or 5/6 that of the single system. The MTTF of TMR is lower
because TMR increases the circuit footprint by 3x, adding
additional hardware that can fail.

To realize the full benefits of TMR, it is necessary to provide
a repair element. Repairing a system refers to bringing the
broken module into a correct operating state after it has failed
and then resynchronizing it with the other modules. The MTTF
of the TMR with repair system is

where g is the rate of TMR repair. According to this equation,
the MTTF will grow with the repair rate. This means as the
repair rate increases, TMR with repair will be significantly
better than the TMR with no repair and single systems [9].

There are two components to implementing repair for
an FPGA circuit. The first step is to restore upset CRAM
bits to their original value to “repair” the original circuit
functionality. This is done through configuration scrubbing,
i.e., continually correcting the original bitstream to its
proper value [10]. There are numerous ways to implement
configuration scrubbing including blind scrubbing with a
golden copy, readback scrubbing with an external scrubbing
circuit, or the use of error-correcting codes (ECC).

The second component is to provide repair for the dynamic
memory elements in the circuit, such as the FFs and BRAMs,
called resynchronization. For memory that is written every
cycle (such as FFs), TMR voters can be added along the
feedback paths which will automatically resynchronize the

IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 66, NO. 1, JANUARY 2019

> &
Fig. 2. TMR reliability model.
memory as soon as the CRAM is scrubbed, called feedback
TMR [11].

For memory that is not updated every clock cycle, feedback
TMR may not be sufficient. It may be necessary to employ
ECC and to refresh the memory every few clock cycles.
To refresh the memory, each word is read and ECC is used
to correct any errors and the corrected word is stored back
in memory [12]. Another option for resynchronization is to
assert a global reset when an error is detected.

In spite of adding TMR with repair to static random access
memory (SRAM) FPGAs, upsets within some single CRAM
bits have been shown to cause design failures [6], [13]. These
bits that affect the operation of more than one TMR domain
are CMF. These CMF events have been observed in multiple
studies [6], [13] and limit the improvement of TMR with repair
can provide to 50-100x, but much higher improvements in
reliability were expected.

Sterpone and Violante [6] seek to identify both the cause
of TMR CMF and to mitigate them using a custom packing,
placement, and routing tool. The failure modes that the authors
identified for the routing network are shorts between the two
wires, double open where two nets are disconnected and a
short combined with an open. To resolve these failure modes,
the authors propose the reliability-oriented place and route
algorithm. This group measured their improvement to be on
the order of 350-650x during fault injection. The same group
created the VERI-Place tool which also includes an estimator
to predict a design sensitivity to SEUs [14]-[16].

One of the main differences between this and other works
is that we seek to improve the failure rate of the design when
it is subjected to one and only one single-bit upset (SBU).
This makes it difficult to compare neutron cross sections with
a previous work that used the same circuit, but allowed upsets
to accumulate [16]. The authors of [16] presented their results
in the form of number of SBUs before failure. In our work,
we assume that most deployed systems will have a high repair
to failure rate, justifying a mitigation strategy for only one
SBU.

ITI. RELIABILITY MODELING TMR WiTH CMF

The reliability of a TMR system with repair is traditionally
modeled using a Markov chain [9], as shown in Fig. 2.
Mathematical models are often used to represent the reliability
of systems and potential fault-tolerant techniques. Markov
chains are useful because reliability metrics such as reliability
as a function of time and the MTTF can be derived.

In the Markov chain representing TMR with repair, there are
three states: normal operation (Sp), single failed module (Sy),
and TMR system failure (S7), as shown in Fig. 2. In state
So. the system is functioning correctly and no modules have
failed. In state S, the system still functions correctly, but there

CANNON et al.: STRATEGIES FOR REMOVING CMFS FROM TMR DESIGNS DEPLOYED ON SRAM FPGAs 209

ACME

Fig. 3. TMR with CMF reliability model.

is one failed module. The transition from Sy to S; occurs
at 34 or three times the failure rate of a single module.
As scrubbing and resynchronization occur, the system can
transition back into state Sp, at the repair rate x, or the CRAM
scrub and memory resynchronization rate. If another failure
occurs before repair can happen while in state Si, then the
system transitions into the failure state S;. This occurs two
times faster than the single module failure rate. The MTTF
equation can be derived from this model as

SA+p
61 -

Using the failure rate of a single module (1/4), the TMR with
repair improvement can be derived as

MTTF =

ItmMr = i
64
Assuming a module failure rate of 1/501 failures/day and a
repair rate of 1 repair/second, the TMR improvement should
be approximately 120 000x |

However, recent experiments have measured the improve-
ment to be on the order of 10-100x [6], [17]. Results
have shown that there are CRAM bits that when upset will
impact the behavior of more than one circuit domain. These
bits, called CMF bits, cause CMFs in the design to cancel
the mitigation effects of TMR. The discrepancy between
the model prediction and measured MTTF can be explained
by CMF bits. The model assumes that there must be two
independent failures to reach the failure state. However, CMF
bits contradict this assumption. They prove that it is possible
for one event to cause system failure.

The existence of CMF in TMR designs motivates the need
for a new reliability model. A new model is presented in Fig. 3
which introduces the possibility of a failure directly from state
So. A new arc can be added from Sy directly to Sy with a
new failure rate Acmr, which represents the failure rate due
to CMF. This arc represents a failure due to a single CMF bit
in the design. Using the new Markov chain, a more accurate
equation for MTTF can be calculated for TMR with repair

B 54+ AcMmF + p
612 + S52AcMF + Alyp + HACME

I'The failure rate of a single module A is different that the failure rate of a
single bit 4 p;;. Not all bits will cause a module failure, only some bits will
cause a failure. Thus, for an FPGA, 1 = gipj;. where ¢ is the percent of
bits that cause a single module failure. The failure rate was calculated for
an unmitigated LEON3 processor in GEO orbit implemented on a Xilinx 7-
Series device (see Table V in [17]). The repair rate was chosen from measured
speeds using SelectMap and Joint Test Action Group (JTAG) to perform a
full device scrub on a XC7K325T device.

TABLE I
CLASSIFICATION OF FAILURES IN TMR
Error Type Number | Percentage
Clock Routing CMF 67 92%
Site CMF 6 8%
Total | 73 | 100%

Assuming an infinite repair to failure rate (x/A — 0©0),
to measure the best possible MTTF, yields

1

ACMF
or the MTTF of this system is limited by its CMF rate. Using
this model, the improvement TMR provides is calculated
to be

MTTF =

Imax = pr—

This suggests that at sufficiently high repair rates, increasing
the repair rate further has little impact. Rather the improvement
is limited by the amount of CMF bits in the design. This equa-
tion shows that the improvement is bounded by the portion of
the design that is protected. As Acmr — 0, there are no CMF
bits and the MTTF becomes bounded by the repair rate.

IV. CMF MITIGATION

The presence of CMF bits in a design can be observed by
fault injecting the device, or introducing upsets into a single
CRAM bit and then observing the circuit’s behavior. Any bit
that causes circuit failure must affect multiple TMR domains
and is a CMF bit. Multiple studies have shown the existence
of CMF bits in several TMR designs [6], [13].

We conducted a fault-injection campaign to determine the
cause of CMF. Through this campaign, we identified two
different causes for CMF, clock routing CMF (referred to as
routing CMF), and site CMF. As shown in Table I, routing
CMF accounts for the majority (92%) of failures, with site
CMF accounting for the other 8% of failures.

We have developed three techniques to address this issue:
incremental routing, incremental placement, and striping. The
incremental techniques are implemented as separate steps to
the flow using the open-source CAD tools RapidSmith2 with
Tincr [18], [19] as well as RapidWright [20].2 The striping
technique operates as a set of tool command language (TCL)
commands into the tool flow, as shown in Fig. 4.

Routing CMF occurs in muxes that are used in the routing
network. An example of a routing mux is shown in Fig. 5.
When an SEU occurs in one of the configuration bits asso-
ciated with a routing mux, it can cause multiple shorts in
the circuit. For example, in Fig. 5, an SEU occurs in the
red configuration bit. This causes a short between the nets
data TMR_2 and clk. TMR_0 and another short between the
nets clk TMR_1 and data_ TMR_1. Because this shorting
involves clocks from multiple domains, it causes CMF. The

2This paper has implemented these techniques on both CAD tools, but no
distinction will be made between them for the duration of this paper. The
exact implementation details vary slightly due to differences in the appli-
cation programming interface, but they perform the same from a reliability
standpoint.

210

TCL Inputs to
Flow

Striping
constraint inputs
T

1
1
k4

Typical Flow place_design route_design

bitstream

,| Incremental | |
Routing

Alternate
Flow Steps

Incremental
Placement

Fig. 4. Flow for implementing CMF mitigation techniques.

Configuration Upset

[l L]
data_TMR_2 E TMR_O
data_TMR_O

.l

data_TMR_1

Short

T

TMR_1

P

t

Fig. 5. Example of multiple shorts in a routing mux.
incremental routing and incremental placement techniques
focus on addressing the routing CMF issue, as it is the most
prevalent and should impact the circuit’s reliability the most.

Site CMF can affect the cells in a special logic site called a
SLICEM. These sites have other configurable properties that
can set the LUTs into different modes. When a site CMF
bit is fault injected, we observe many additional upsets upon
readback, occurring in the LUTs of the site. Whenever LUT
cells from multiple TMR domains are placed on the same
SLICEM site, site CMF can occur. The striping technique
addresses site CMF as well as routing CMFE.

Section IV-A—C details each technique and explains their
benefits and limitations.

A. Incremental Routing

As shown in Fig. 4, the incremental routing technique is
implemented after the routing step. This technique starts with
the routed design and modifies the routing to address the
routing CMF issue. The steps for this flow are:

1) identify tiles where routing CMF occurs;

2) unroute all nets associated with these locations (only

partially unroute the clock nets);

3) route all these nets with a cost penalty for creating a

routing CMF; and

4) iterate using a routing algorithm until all nets are routed

(with no resource congestion) and no routing CMF
exists [21].
Although this technique does provide fine-grain control over
the process, it does have its drawbacks. Particularly, without
the vendor’s proprietary information associated with the wires
on the device, it is difficult to create a router that would have

IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 66, NO. 1, JANUARY 2019

Tile V1 Tile XV T T FT¥T

Slice X-2Y1 || Slice X-1¥1 Slice XOY1 Slice X1¥1 Slice X2Y1 Slice X3Y1
Potential Swap

TRk | e X0¥0 v |

Shice X-2¥0 || Slice X-1Y0 Slice X0Y0 Slice X1Y0 Slice X2Y0 Slice X3Y0
Tile with CMF

Tile AY-1 Tite piv-1 Tite]fiv=1

Slice X-2¥-1 || Slice Xe1¥=1 Slice XO¥-1 || Slice X1¥=1 Slice X2¥-1 || Slice X3¥-1

Fig. 6. Incremental placement technique.

the same quality as the one provided by the vendor. This could
increase the critical path delay of the design causing it to not
meet timing.

B. Incremental Placement

This technique is also implemented as a separate step from
the traditional flow, as shown in Fig. 4. It is performed
after the placement step, but before the routing step. Because
of the design of the FPGA architecture, multiple clock shorting
from a single CRAM bit is only possible with clocks in the
same tile. Therefore, it is possible to eliminate routing CMF
by altering the placement so that a tile cannot contain more
than one clock, as shown in Fig. 6. The steps to this flow are:

1) identify tiles with multiple clocks;

2) swap sites within these tiles with neighboring tiles to

remove the multiple clocks within the same tile; and

3) ensure that the swap does not introduce multiple clocks

to another tile.
One of the benefits for this technique is that most of the
optimizations from placement are preserved and that routing
is performed using the vendor’s tool, thus allowing all of the
routing optimizations. Additional details about this technique
can be found in [13].
C. Striping

Striping is different from the incremental techniques in
that it does not utilize a separate flow or open-source CAD
tools, as shown in Fig. 4. Instead, striping introduces a set of
constraint commands to the placer and uses TCL commands so
that the placer generates a implementation that does not have
CMEF. The idea behind striping is to restrict every third column
in the device to one TMR domain, as shown in Fig. 7. This
restriction automatically ensures that every tile has at most
one clock. The steps to perform striping are:

1) create a physical block for each column of the device;

2) combine physical blocks such that every third column is

included within the same TMR domain; and

3) assign all the cells within a TMR domain to be placed

within the associated physical blocks.

The main benefit of this technique is that it can be completely
performed within the vendor’s tool and no separate flow is
needed. However, because of the spatial separation, this could
increase routing congestion, potentially yielding an unroutable
design, depending on the device utilization.

Striping also differs from other techniques as it mitigates for
site CMF. Because site CMF affects multiple cells in the same
SLICEM, site CMF can be mitigated by ensuring no two TMR

CANNON et al.: STRATEGIES FOR REMOVING CMFS FROM TMR DESIGNS DEPLOYED ON SRAM FPGAs 211

FPGA Columns >

FPGA Rows
- OO0BO0080O08
(I o o o o o o o o
OE0s00EEno
OOEOOEOORO
OO0O00o0o0oo0ono
O0800080080

fIDDDIDIDID
-O0000008000
»0800800800

»f
|

|

TMR Domain TMR Domain TMR Domain
1 2 3

Fig. 7. Striping technique. Each domain is constrained to every third column.

Fig. 8. TURTLE pond in the neutron beam at LANSCE.

domains place cells in the same SLICEM. This condition is
met in striping as each column, and by consequence, each slice
is restricted to one domain. As shown in Section VI, we have
observed no CMF bits when using striping.

V. EXPERIMENTAL SETUP

Due to the reduction in cross section and bit sensitivity of
these new techniques, it is difficult to observe enough events
during radiation testing for statistical significance and to per-
form significant fault-injection testing. We addressed this prob-
lem by developing the testing ultrareliability techniques using
low-cost equipment (TURTLE) platform, depicted in Fig. 8.
Each TURTLE setup utilizes two Nexys video boards, which
contain an Artix-7 XC7A200T FPGA, fabricated at the
28-nm process. One board is designated as the device under
test (DUT) and the other as the golden copy. During testing,
the DUT is exposed to faults (either through radiation testing
or fault injection) and run in lockstep with the golden copy.
All of the detection logics is isolated to the golden copy so
that it does not contribute to the error rate. Both boards are
managed via the JTAG configuration manager (JCM), which
has been developed at Brigham Young University [22]. The
JCM scrubs and injects faults into the DUT (depending on
the type of test) and queries the golden copy to detect errors.

To aid statistics collection, many TURTLESs are stacked on
top of each other to form a pond. Typically, in our setup,
each pond consists of five TURTLEs. This setup is used for
both our radiation testing and fault-injection testing. Because
we use five TURTLEs, five instances of the circuit are run
concurrently, allowing us to collect data 5x faster in fault
injection, or allows us to observe 5x more events during
radiation testing.

Our fault-injection approach consists of randomly selecting
a bit and flipping it through the JTAG port. After injection,
the circuit is tested with numerous input vectors and if an
error is observed on the output after a propagation delay,
we record that bit as sensitive. The injected bit is then scrubbed
and the design is brought back into a known, working state.
Fault injection then continues by selecting a new random bit.
We randomly choose the bit from the entire device, including
sections that might not be used by the circuit. This approach
allows us to more accurately measure the bit sensitivity of the
circuit and measure improvement margins [16], [23], [24].

Our radiation setup consists of the same setup as fault-
injection, five stacked TURTLE boards. During radiation test-
ing, the JCM is used to scrub CRAM upsets, using a readback
scrubber. The readback scrubber first reads the bitstream from
the DUT and compares that with a stored golden bitstream.
Any errors in the DUT bitstream are identified and then
corrected. This is continuously done over the JTAG interface
and each cycle takes about 2 sec to complete. The board with
the golden copy is also scrubbed to correct any SEUs that
may occur due to its close physical proximity to the DUT. All
SEUs and system outputs are logged for posttest analysis.

VI. PERFORMANCE AND RELIABILITY RESULTS

All the CMF mitigation techniques were implemented on
the b13 design. The b13 design comes from the ITC 99 bench-
mark suite and is a simple finite state machine that interfaces
with a weather station [16]. Our design instantiates 256 copies
of the b13 to increase resource utilization and statistics col-
lection. We choose the b13 design from the benchmark suite
to study in depth because its reliability characteristics were
well studied in [16]. The unmitigated copy has a neutron
cross section of 1.85 x 10~ cm? and bit sensitivity of
1.36 x 1072 in fault injection. As previously stated, we used
the BL-TMR tool to generate feedback TMR designs, and
implemented configuration scrubbing using the JCM. Our
TMR circuit triplicated everything (including I/O) and had a
neutron cross section of 2 x 10~!! cm? for an improvement of
80x over no mitigation. We will first analyze each technique’s
performance and then analyze each technique’s reliability
characteristics.

A. Timing Analysis

Area effects for TMR are well known (roughly 3-4x more
than no mitigation) and these techniques do not affect the area
(they only modify the placement and routing, not the netlist).
The unmitigated design uses 25542 cells and 3688 sites,
while the TMR design uses 104066 cells and 19096 sites.
We choose to analyze each technique’s maximum achievable

212

TMR

TABLE II
PERFORMANCE ANALYSIS FOR TMR TYPES
Type fmax (MHz) | Change | Routing Nodes | Change
Unmitigated 824 1x 233,780 1x
TMR (trip 1/O) 68.2 B3x 1,372,336 5.87Tx
RCMF 53.0 Bdx 1,434,789 6.14x
PCMF 68.6 B3x 1,395,282 5.97x
Striped 69.7 B5x 1,512,096 6.47x
107 Fault Injectlion Resultsl
102 *
102
£z
S 10%
§
10°% ! 1
10°® l I
10 7 L
i
@

Unmitigated -
RCMF +
PCMF

Fig. 9. Fault-injection sensitivity of designs.

clock frequency and the number of routing nodes used as these
characteristics will change between each technique. These are
reported in Table II.

The timing characteristics follow the expected trends.
Applying TMR decreases the maximum achievable clock
frequency and applying the incremental placement (PCMF) or
striped techniques does not significantly alter that (there is a
slight increase). However, the clock frequency is significantly
worse for incremental routing (RCMF). This is likely due to
the complexity in building a router for large designs and could
probably be improved with development.

The number of routing nodes shows a similar trend. Apply-
ing TMR significantly increases the number of routing nodes
over no mitigation. PCMF shows a slight increase in nodes
over TMR (about 20000), RCMF shows a moderate increase
(about 70000), while the striped design shows a sizable
increase (about 140000). The number of routing nodes is a
significant metric because they signify how long the router
might take to complete, the amount of routing congestion
(routability) and correlate to power consumption (extra capac-
itance to charge/discharge).

B. Fault Injection Results

All of the TMR variations were tested using fault injec-
tion, with the results shown in Fig. 9 and numerical
results are shown in Table III. TMR shows an improve-
ment of 730x over no mitigation. RCMF did not prove
to be as promising as initial tests suggested, with only an
830x improvement over no mitigation, a slight improvement
over TMR.

For the striped design, no single bits have been discovered
which caused the design to fail. Tests are still ongoing to

IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 66, NO. 1, JANUARY 2019

10€ Neutron Radiation Results

10

10-10

w00} I

Cross Section {em?)

10-12

10-13

Unmitigated TMR Striped PCMF

Fig. 10. Neutron cross section of designs.

determine whether any bits exist that would cause failure,
but to do so would require exhaustive fault injection (about
60000000 bits). Since we assume one fault when we detect
no faults, the improvement is capped by the number of fault
injections we have performed. The striped design currently
shows a 50000x bit sensitivity improvement over no mitiga-
tion (60x over TMR).

PCMF also offers a significant improvement over TMR,
showing an improvement of 10000x (10x over TMR) in
bit sensitivity over no mitigation. We detected three bits that
caused failure for the PCMF design, all site CMF bits. Part of
our future work will include creating an additional technique
we can use with PCMF to address these bits. Although
these results have only been shown on the bl3 design,
we anticipate that it will be applicable to many other
designs.

C. Radiation Testing Results

All of the TMR strategies were tested with a broad-
spectrum neutron beam at the Los Alamos Neutron Science
Center (LANSCE) [26], excluding the RCMF design due
to its poor fault-injection results. The results of the test
are presented in Fig. 10 with numerical results provided
in Table IV. Each test was performed at normal incident and
at room temperature. For these tests, the beam was collimated
to 2 in.

The striped design was tested in August 2017 in ICE
House II. It showed a 130x improvement over no mitigation
and offers a 2x improvement over TMR. Although this is not
as much improvement as we anticipated, it still offers two
orders of magnitude improvement over no mitigation on a
commercial device.

The PCMF was tested in November 2017 in ICE
House I. It showed a 400x improvement over no miti-
gation, which translates to a 5x improvement over TMR.
Even with five days of testing across five TURTLE
boards, only two errors were observed for the PCMF
design during the entire test. Since only two errors were
observed for this test, the error range of this estimate is
relatively high.

TABLE III

CANNON et al.: STRATEGIES FOR REMOVING CMFS FROM TMR DESIGNS DEPLOYED ON SRAM FPGAs

FAULT-INJECTION RESULTS

213

TMR Number of | Number +95% Confidence
Type Injections | of Faults Sensitivity | -95% Confidence | Improvement
=)
Unmitigated | 2,193,073 | 29,436 | 1.34 x 10~2 1.36x 10 1x
1.33 x 102
-5
TMR 2,351,568 43 1.8 x 1075 2:5x10 5 730x
1.3 x 10~
-5
RCMF 2,400,791 39| 1.6x10°° 2210 830
1.2x 1075
4 %108
PCMF 2,396,265 3 1x10-6 x 10 , 10,000
3x 10~
—6
Striped 3,401,285 0 3x10°7 1x10 0 50, 000x
Note: 1 error is assumed when no faults were detected.
TABLE IV
RADIATION TESTING RESULTS
TMR Fluence Number | Cross-Section | +95% Confidence FIT
Type (n/cm?) | of Faults (cm?®) | -95% Confidence Sea-Level | Improvement
i 1 . 9 2.06 x 1079 1
Unmitigated | 1.70 x 10 314 1.85 x 10 2.40 x 10 1%
1.64 x 1079
—11
TMR 2.48 x 1011 6 2x 10711 5x10 12 3x 107! 80x
9x 10~
—11
PCMF | 3.98 x 1011 2| 5x10712 2x10 7 x 10-2 400
5x 1013
2.1 x 10~
Striped 1.90 x 1012 28 1.5 x 10~11 x 10 1.9x 1071 130x
9.8 x 10~12

Note: FIT rates calculated using sea-level neutron flux level of 13 n/emzh according to JESD89A standard [25].

VII. FAILURE ANALYSIS

The difference in neutron cross section between the striped
and PCMF designs is surprising, considering that the striped
design had a 3x lower bit sensitivity than the PCMF design.
Using the log files from the test, it is possible to observe
where the SEUs occurred during the scrub cycle that each
failure was detected. For every failure for both the striped and
PCMF designs, the scrubber logged multiple upset bits.

Using the radiation logs, we can “replay” the radiation test
by using fault injection, that is, inject all the upset CRAM
bits logged during the scrub cycle of the failure. This can be
done to observe whether the logged CRAM bits cause failure
outside of the beam. During the radiation replay for the striped
design test, we were able to replicate 24 failures.> We were
able to replicate both errors from the PCMF design test using
replay.

The repeatable failures from the radiation replay can be
further analyzed for the smallest subset of CRAM upsets that
cause failure. For example, the log shows five CRAM upsets
for one failure in the striped design. However, only two CRAM
upsets are needed to replicate the failure. We determined this
by trying all one-bit upsets, then after observing that none
of those caused failure, we tried all combinations of two-bit
upsets and found a combination that caused a failure.

3The other four failures are likely caused by SEEs in other parts of the
FPGA that are not logged during the test.

TABLE V
RESOURCES AFFECTED BY MCUS

Striped PCMF
Resources # of Bits | Percentage | # of Bits | Percentage
Routing 52 96.3% 3 75%
LUT Contents 2 3.7% 1 25%

We performed this technique for all of the repeatable failures
for both the striped and PCMF design tests. We then analyzed
the specific FPGA resources these bits were associated with
and report those in Table V. For the striped design, 96% of
these bits were associated with the routing. The PCMF design
also shows high sensitivity to the routing, with 75% of these
bits being associated with the routing. This leads us to believe
that the striped design was more sensitive because it uses more
routing resources and has a higher routing congestion.

We noticed another interesting trend during this failure
analysis; a high amount of these bits appeared to be multicell
upsets (MCUs). For example, the following logical CRAM
bits caused failure for the striped design.

« FAR: 0x0040148a, Word: 42, Bit: 31.

« FAR: 0x0040148b, Word: 42, Bit: 30.

These bits only differ by one in the frame address
register (FAR) and bit, and are in the same word. Using the
technique presented in [27], we confirmed that these were
MCUs. This led us to further classify the repeatable failures

214

TABLE VI
CLASSIFICATION OF FAILURES FROM RADIATION TEST

Failure Type Striped | PCMF
MCU 18 1
SEU Accumulation 6 1
Not repeatable 0
Not Accumulation | 22 | 1
TABLE VII

CROSS SECTION EXCLUDING ACCUMULATION FAILURES

Failure Type Striped PCMF
Cross-Section (cm?) 1.2x 10711 | 3x 10712
Improvement (over no mitigation) 160x T00%
TABLE VIII

NUMBER OF BIT UPSETS PER SEU

MCU Striped | PCMF
1-bit (SBU) | 71.2% 69.8%
2-bit 23.1% 23.9%
3-bit 2.4% 2.5%
4+-bit 33% 3.8%

as MCUs or SEU accumulation (multiple SEUs in the same
scrub cycle). As shown in Table VI, out of the 24 repeatable
bits for the striped design, 18 were caused by an MCU, with
six being caused by SEU accumulation. For the PCMF design,
one failure was caused by an MCU and one was caused by
SEU accumulation. To ensure that no MCU caused a failure
in the classified SEU accumulation failures, each full MCU
from the scrub cycle was tested.*

When testing in an accelerated environment, the chances
of observing multiple events during a scrub cycle are greatly
increased. In an unaccelerated environment, it is much less
likely to observe multiple events, if the scrub rate is sufficiently
high. Using the data from Table VI, we can filter out the fail-
ures caused by SEU accumulation to recalculate the neutron
cross section for single events. As shown in Table VII, the
striped design reduces the cross section over no mitigation
by 160x and the PCMF design reduces the cross section
by 700x.

Using the MCU data, we can revisit the cross section differ-
ences between the striped and PCMF designs. From the data
in Table VI, the striped design appears to be more sensitive
to MCUs than the PCMF design, or MCUs are more likely to
cause failure in the striped design than in the PCMF design.
Because the striped and PCMF designs were tested in different
locations at LANSCE (ICE House Il and ICE House I),
the ratio of single-cell upsets (SCU) to MCUs could be
different. Using the technique in [27], we computed this ratio
for both design tests and present that in Table VIII.

The ratio of SCUs to MCUs for this 28-nm device is
comparable to those obtained in heavy-ion testing from [27].
The differences in the SCU to MCU distribution between the

4Each failure classified as SEU accumulation was only caused by bits from
separate events, such as bits from multiple MCUs.

IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 66, NO. 1, JANUARY 2019

striped and PCMF design tests are almost negligible, with the
striped design test having 2% less MCUs than the PCMF
design test. This is significant as it shows that while the
striped design test experienced fewer MCUSs per particle, it still
demonstrated a higher susceptibility to MCUs.

VIII. CONCLUSION

Mitigating for single bits that cause multiple domain failures
has shown significant improvement for TMR with repair on
SRAM FPGAs. Accelerated broad-spectrum neutron testing
has also showed that these techniques improve the TMR
with repair technique, with the best technique offering a
400x reduction in cross section over no mitigation, a 5x
improvement to TMR. We anticipate that these techniques
will be beneficial to future FPGA designs in high-upset
environments.

We are currently planning future work to develop techniques
for other TMR variations. This paper used a TMR variation
that included complete triplication of all the 1/0. For some
designs, this might not be possible to do. TMR variations
without I/O triplication might introduce other types of single
bit failures into the design that could be addressed by other
low-level techniques. Those techniques could then be used in
tandem with the CMF mitigation techniques from this paper
to provide more options for FPGA circuit designers.

REFERENCES

[1] M. L. Chang, “Device architecture,” in Reconfigurable Computing: The
Theory and Practice of FPGA-Based Computation, vol. 1, S. Hauck and
A. DeHon, Eds. Burlington, MA, USA: Denise E. M. Penrose, 2008,
pp. 16-18.

[2] P. Graham er al, “Consequences and categories of SRAM FPGA
configuration SEUs,” in Proc. Int. Conf. Mil. Aerosp. Program. Log.
Devices, 2003, pp. 1-10.

[3] M. Ceschia et al., “Identification and classification of single-event upsets
in the configuration memory of SRAM-based FPGAs.” IEEE Trans.
Nucl. Sci., vol. 50, no. 6, pp. 2088-2094, Dec. 2003.

[4] K. S. Morgan, D. L. McMurtrey, B. H. Pratt, and M. J. Wirthlin,
“A comparison of TMR with alternative fault-tolerant design techniques
for FPGAs,” IEEE Trans. Nucl. Sci., vol. 54, no. 6, pp. 2065-2072,
Dec. 2007.

[5] A. M. Keller and M. J. Wirthlin, “Benefits of complementary
SEU mitigation for the LEON3 soft processor on SRAM-based
FPGAs,” IEEE Trans. Nucl. Sci., vol. 64, no. 1, pp. 519-528,
Jan. 2017.

[6] L. Sterpone and M. Violante, “A new reliability-oriented place and route
algorithm for SRAM-based FPGAs,” IEEE Trans. Comput., vol. 55,
no. 6, pp. 732-744, Jun. 2006.

[71 H. Quinn, K. Morgan, P. Graham, J. Krone, M. Caffrey, and
K. Lundgreen, “Domain crossing errors: Limitations on single device
triple-modular redundancy circuits in Xilinx FPGAs,” IEEE Trans. Nucl.
Sci., vol. 54, no. 6, pp. 2037-2043, Dec. 2007.

[8] B. Pratt et al., “Improving FPGA design robustness with partial TMR,”
in Proc. IEEE Int. Rel. Phys. Symp., Mar. 2006, pp. 226-232.

[9] D. Siewiorek and S. McConnel, “Evaluation criteria,” in Reliable Com-

puter Systems: Design and Evaluation, 3rd ed. New York, NY, USA:

CRC Press, 1998, ch. 5, pp. 334-336.

1. Heiner, B. Sellers, M. Wirthlin, and J. Kalb, “FPGA partial reconfig-

uration via configuration scrubbing,” in Proc. Int. Conf. Field Program.

Log. Appl., Aug./Sep. 2009, pp. 99-104.

J. M. Johnson and M. Wirthlin, “Voter insertion algorithms for

FPGA designs using triple modular redundancy,” in Proc. 18th Annu.

ACM/SIGDA Int. Symp. Field Program. Gate Arrays (FPGA), New York,

NY, USA, 2010, pp. 249-258.

N. Rollins, M. Fuller, and M. J. Wirthlin, “A comparison of fault-

tolerant memories in SRAM-based FPGAs,” in Proc. IEEE Aerosp.

Conf., Mar. 2010, pp. 19721983,

[10]

[11]

[12]

CANNON et al.: STRATEGIES FOR REMOVING CMFS FROM TMR DESIGNS DEPLOYED ON SRAM FPGAs

[13]

[14]

[15]

[16]

(7

[18]

[19]

M. Cannon, A. Keller, and M. Wirthlin, “Improving the effectiveness
of TMR designs on FPGAs with SEU-aware incremental placement,”
in Proc. IEEE 26th Annu. Int. Symp. Field-Program. Custom Comput.
Mach. (FCCM), Apr. 2018, pp. 141-148.

L. Sterpone et al., “Experimental validation of a tool for predicting the
effects of soft errors in SRAM-based FPGAs,” IEEE Trans. Nucl. Sci.,
vol. 54, no. 6, pp. 2576-2583, Dec. 2007.

M. Desogus, L. Sterpone, and D. M. Codinachs, “Validation of a
tool for estimating the effects of soft-errors on modern SRAM-based
FPGAs,” in Proc. IEEE 20th Int. On-Line Test. Symp. (IOLTS), Jul. 2014,
pp. 111-115.

H. Quinn ef al., “Using benchmarks for radiation testing of microproces-
sors and FPGAs,” IEEE Trans. Nucl. Sci., vol. 62, no. 6, pp. 2547-2554,
Dec. 2015.

M. J. Wirthlin, A. M. Keller, C. McCloskey, P. Ridd, D. Lee, and
J. T. Draper, “SEU mitigation and validation of the LEON3 soft
processor using triple modular redundancy for space processing,” in
Proc. ACM/SIGDA Int. Symp. Field-Program. Gate Arrays (FPGA),
New York, NY, USA, 2016, pp. 205-214.

T. Haroldsen, B. Nelson, and B. Hutchings, “RapidSmith 2: A frame-
work for BEL-level CAD exploration on Xilinx FPGAs,” in Proc.
ACM/SIGDA Int. Symp. Field-Program. Gate Arrays (FPGA), New York,
NY, USA, 2015, pp. 66-69.

B. White and B. Nelson, “Tincr—A custom CAD tool framework
for Vivado,” in Proc. Int. Conf. ReConFigurable Comput. FPGAs
(ReConFig), Dec. 2014, pp. 1-6, doi: 10.1109/ReConFig.2014.7032560.

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

215

C. Lavin and A. Kaviani, “RapidWright: Enabling custom crafted
implementations for FPGAs,” in Proc. IEEE 26th Annu. Int.
Symp. Field-Program. Custom Comput. Mach. (FCCM), Apr. 2018,
pp- 133-140.

L. McMurchie and C. Ebeling, “PathFinder: A negotiation-based
performance-driven router for FPGAs,” in Proc. 3rd Int. ACM Symp.
Field-Program. Gate Arrays, Feb. 1995, pp. 111-117.

A. Gruwell, P. Zabriskie, and M. Wirthlin, “High-speed FPGA con-
figuration and testing through JTAG,” in Proc. IEEE AUTOTESTCON,
Sep. 2016, pp. 1-8.

H. Quinn, “Challenges in testing complex systems,” IEEE Trans. Nucl.
Sci., vol. 61, no. 2, pp. 766-786, Apr. 2014.

J. A. Clark and D. K. Pradhan, “Fault injection: A method for validating
computer-system dependability,” Computer, vol. 28, no. 6, pp. 47-56,
Jun. 1995.

Measurement and Reporting of Alpha Particle and Terrestrial Cos-
mic Ray Induced Soft Errors in Semiconductor Devices, JEDEC
Standard JESD89A, JEDEC Solid State Technology Association,
Oct. 2006.

P. W. Lisowski, C. D. Bowman, G. J. Russell, and S. A. Wender,
“The los alamos national laboratory spallation neutron sources,” Nucl.
Sci. Eng., vol. 106, no. 2, pp. 208-218, 1990.

M. Wirthlin, D. Lee, G. Swift, and H. Quinn, “A method and case
study on identifying physically adjacent multiple-cell upsets using
28-nm, interleaved and SECDED-protected arrays,” IEEE Trans. Nucl.
Sci., vol. 61, no. 6, pp. 3080-3087, Dec. 2014.

http://dx.doi.org/10.1109/ReConFig.2014.7032560

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

