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A B S T R A C T

Critical interdependent infrastructure networks such as water distribution, natural gas pipeline, electricity
power, communication and transportation systems provide the essential necessities for societies and their uti-
lization is the backbone of everyday processes such as production, health, convenience and many more. Often
cascading dysfunctionality or disruption in these critical infrastructure networks triggers chain reactions of
blackouts or blockages through the system of highly interconnected infrastructure networks, and the disruption
of surrounding societies. For the planning of restoration processes and resilience of these, social aspects and
demographics should also be considered to assign and mitigate the possible social risks associated with these
disruptions. In this work, we study the restoration planning of critical interdependent infrastructure networks
after a possible disruptive event by mainly emphasizing on the vulnerability indices of interacting society. We
integrate (i) a resilience-driven multi-objective mixed-integer programming formulation to schedule the re-
storation process of disrupted network components in each network with (ii) an index of social vulnerability that
is geographically distributed. We present an illustrative example of the proposed integrated model that focuses
on studying the community resilience in Shelby County, TN, United States.

1. Introduction

Modern societies heavily rely on the sustainability and proper per-
formance of critical infrastructure networks. Two decades ago, the
Report of the President's Commission on Critical Infrastructure
Protection [1] defined a critical infrastructure network as a “network of
independent, mostly privately-owned, man-made systems and processes
that function collaboratively and synergistically to produce and dis-
tribute a continuous flow of essential goods and services.” These critical
infrastructure networks, such as water distribution, electric power,
natural gas, communication, and transportation systems, are essential
for providing the basic human needs of society and maintaining its
quality of life. More recently, the Infrastructure Security Partnership
[2] emphasized the importance of forming physically interdependent
infrastructure networks that are resilient against the disruptions that
will eventually occur. It defined resilient infrastructure networks as the
networks that should “prepare for, prevent, protect against, respond or
mitigate any anticipated or unexpected significant threat or event” and
that are able to “rapidly recover and reconstitute critical assets, op-
erations, and services with minimum damage and disruption.” There

exists a need for resilience-driven planning to maintain “secure, func-
tioning, and resilient critical infrastructures” [3]. The National Infra-
structure Protection Plan [4] notes the risk imposed by the inter-
dependencies among these networks and the importance of addressing
these issues as it is “essential to enhancing critical infrastructure se-
curity and resilience” against inevitable disruptions due to natural
disasters, malevolent attacks, and age-driven failures.

While measuring the vulnerability of infrastructure networks by
either topological descriptors [5–8] or by flow-based descriptors [9–12]
has been a well-studied problem, the restoration of infrastructure net-
works has been an important area of study for the last decade, parti-
cularly from an optimization perspective. The stochastic integer pro-
gram proposed by Xu et al. [13] determines the schedule of inspection,
damage assessment, and repair tasks that optimize the power network
restoration. Yan and Shih [14] proposed a multi-objective, mixed-in-
teger programming method with the objective of minimizing the total
time of repair and relief distribution after a disruption in a transpor-
tation network. Similarly, Matisziw et al. [15] developed a multi-ob-
jective optimization model to maximize the total system flow while
minimizing the system cost through the recovery of a communication
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system. The integer programming model by Nurre et al. [16] considers
the maximization of the cumulative weighted flow in the infrastructure
networks by scheduling work crews to restore disrupted components.
Aksu and Ozdamar [17] proposed a dynamic path based mathematical
model to maximize network accessibility by scheduling debris removal.
Vugrin et al. [18] developed a bi-level optimization model for network
recovery, providing the recovery sequence that maximizes the total
flow in a critical infrastructure network. The multi-objective optimi-
zation model developed by Kamamura et al. [19] focuses on the re-
covery of transportation systems by maximizing the traffic recovery
ratio and minimizing the number of switched transportation paths in
each stage of a multi-stage restoration process. Finally, Fang et al. [20]
proposed a Monte Carlo simulation-based method to rank the disrupted
components according to their impact on system resilience to order
their recovery. In general, the previously proposed algorithms com-
monly cover the objective of maximizing the performance of infra-
structure networks, rebuilding the disrupted components and their
functionality by assigning those components to work crews, and de-
termining the order of restoration sequence in the aftermath of a dis-
ruption. However, notably absent in these studies is the perspective of
the communities that rely on infrastructure networks and that are ad-
versely impact during their disruption. Hence, in this study we model
the restoration scheduling of critical interdependent infrastructure
networks from a community resilience perspective.

As noted by Rinaldi et al. [21]; physical infrastructure networks do
not exist and function on their own in an isolated environment. In fact,
they often rely heavily on each other in various ways. The inter-
dependency of infrastructure networks has been categorized into four
groups [21]: (i) physical, where output from one infrastructure network
serves as an input to another, (ii) cyber, where one network depends on
the information transmitted from another, (iii) geographical, where two
infrastructure networks can be affected by the same local disruptive
event, and (iv) logical, for all other possible types of dependency. In this
study, we focus on the physical interdependency among three major
infrastructure networks, though the proposed approach is generalizable
for considering other types of interdependencies as well.

Interdependencies among infrastructure networks become more
frequent and complex due to the increasing trend of globalization and
technological developments [21–24, 84]. Even though the inter-
dependencies can improve the efficiency of network functionality, this
type of complex coordination cause them to become more vulnerable to
disruptions. As a result of the interdependency, a disruption in some
components of one of the infrastructure networks could lead a dys-
functionality in the undisrupted components of other dependent net-
works and could result in a series of cascading failures among the whole
infrastructure network system [25–28]. Therefore, this high vulner-
ability of infrastructure networks against disruptions is a critical con-
cern for decision makers where they should account for the inter-
dependencies through the recovery planning to achieve a realistic
performance analysis [29]. Moreover, scheduling the restoration pro-
cesses separately for interdependent infrastructure networks without
considering their interdependencies could cause misutilization of re-
sources, waste of time and funds, and even might trigger additional
inoperability of distribution systems [30]. However, functional con-
nectivity among these critical infrastructures is not the only de-
pendency that should be taken into account. The supply-demand re-
lationship, thus an existence-based dependency that exists within
infrastructure networks, is another challenging aspect that should be
addressed in restoration scheduling models.

As infrastructure networks exist to enable the fundamental services
that support the economic productivity, security, and quality of life of
the community, interdependency among infrastructures is not the sole
interdependency of interest in this study. The relationship among in-
frastructure and community networks, defined as the interconnected
society that infrastructure networks support [31], is generally depicted
in Fig. 1. Among the planning documents by government agencies on

resilience, there is a particular emphasis on the resilience of commu-
nities after a disruptive event. The National Academies of Science [32]
suggests “One way to reduce the impacts of disasters on the nation and
its communities is to invest in enhancing resilience […].” Some of the
many various explanations of the concept of community resilience in
the literature can be summarized by the National Institute for Standards
and Technology [85], which defines community resilience as “the
ability of a community to prepare for anticipated hazards, adapt to
changing conditions, and withstand and recover rapidly from disrup-
tions.” Additionally, according to Rotmans et al. [33] and Resilience
Alliance [34]; community resilience is the ability of a community to
successfully cope with disruptions from the economic, social, and en-
vironmental aspects, as well as to coordinate recovery activities. From a
more social sciences-based perspective, the relationship between phy-
sical systems and social communities has been recognized for several
years. The 1994 World Conference on Natural Disaster Reduction em-
phasized building disaster risk reduction frameworks that specifically
address the impacts of the social norms [35]. Assessing the human
occupancy in hazard zones and understanding the human dimensions of
disasters was a feature of disaster risk reduction studies [36,37], where
various scientific assessments for developing disaster-resistant com-
munities are introduced in the literature [38,39]. Furthermore, research
for defining disaster resilience in terms of the adaptive capacities of
individuals [40,41], communities [42,43], and larger societies [44,45]
have gained prominence [46,47]. The Subcommittee on Disaster Risk
Reduction [48] states that “… with consistent factors and regularly
updated metrics, communities will be able to maintain report cards that
accurately assess the community's level of disaster resilience. This, in
turn, will support comparability among communities and provide a
context for action to further reduce vulnerability,” where it is assumed
that assessing and enhancing the community resilience is one of the
grand challenges in planning disaster reduction strategies. Therefore,
based on the general understanding of the community resilience con-
cept from both engineering and social sciences perspectives, commu-
nities contribute to the overall impact of a disruption and should be
considered in restoration and resilience enhancement processes.

In this paper, we study the restoration of interdependent infra-
structure networks from the perspective of community impact, as
measured by socio-economic and demographic information describing
the affected communities. We make use of social vulnerability indices
[49] and population densities of the service areas to represent

Fig. 1. Relationship between physical infrastructure and community networks
(adapted from Barker et al. [31]).
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community impact, thus guiding the restoration process toward areas of
potential community need. The primary objective of this study is to: (i)
integrate a resilience-driven multi-objective mixed-integer program-
ming formulation to schedule the restoration of disrupted components
in each network, (ii) assign the restoration of these components to
specific work crews, and (iii) prioritize them with social vulnerability
indices and densities of the serviced population to account for the im-
pacts on the geographically surrounding community.

2. Background

In this section, we address the relevant methodological background
on network resilience measures, independent infrastructure network
recovery problems, and social vulnerability indices.

2.1. Modeling and measuring network resilience

The general terminology of resilience is often considered to be the
ability to withstand, adapt to, and recover from a disruption [3]. While
many generally agree on the definition that is introduced by Obama [3]
(e.g., Haimes [50]; Aven [51] and Ayyub [52]), a number of different
approaches to measure and model system resilience have been pro-
posed in the recent literature [53]. For example, Cimellaro et al. [54]
measured the resilience of a system as the normalized area underneath
a function describing the performance of the system, while Rosenkrantz
et al. [55] represented system resilience as a function of topological
measures, and Li and Lence [56] quantified system resilience as the
probability of failure recovery, among others.

However, in this study, we quantify the resilience of a system of
networks by adopting the paradigm proposed by Henry and Ramirez-
Marquez [57]. Denoted as , the resilience of a network at time t is
formulated as =t e t t( | ) Recovery( )/Loss( ),j

d for disruptive event e j and
where < <t t td f as shown in Fig. 2. The two primary dimensions of
network resilience are vulnerability and recoverability [57,58]. Jönsson
et al. [59] defined the vulnerability of a network as “the magnitude of
damage in network performance due to a disruptive event” and re-
coverability could be described as “the speed at which the network
reaches to a desired performance level” [60]. Through our proposed
approach, among all the above introduced explanations in the litera-
ture, we adopted the system resilience measure proposed by Henry and
Ramirez-Marquez [57].

2.2. Restoring interdependent infrastructure networks

Attention has recently been devoted to studying the optimal sche-
duling of restoration resources for interdependent infrastructure

networks. Lee et al. [61] proposed an interdependent layered network
model using mixed-integer programming with the objective of mini-
mizing the sum of costs associated with flow and slack through time,
where cost and available work crews for restoration were not accounted
for. Gong et al. [62] proposed an optimization model for the restoration
of disrupted interdependent network components assuming that the
predetermined due dates of these components as the upper-limit on the
completion of the restoration process are known through the study.
Their multi-objective restoration scheduling model was solved using
Benders decomposition with the objective of minimizing the cost, tar-
diness, and makespan. Coffrin et al. [63] proposed an integrated mixed-
integer programming method to maximize the weighted sum of inter-
dependent met demand through the recovery duration. Cavdaroglu
et al. [64] and Sharkey et al. [65] proposed mixed-integer program-
ming models to determine the set of disrupted components that should
be restored and to assign them to available work crews with the ob-
jective of minimizing the sum of flow cost, slack cost, and the cost as-
sociated with the restoration process (e.g., installation and assignment
of disrupted components). Holden et al. [29] studied an extended net-
work-flow model at a local-scale of physically interdependent infra-
structure networks to simulate their performance by providing a linear
programming optimization model that minimized the total cost of
production, commodity flow, storage, discharge, and slack demand.
González et al. [66] proposed the Interdependent Network Design
Problem (INDP), which focuses on finding the optimal recovery strategy
of a system of interdependent networks, while considering limited re-
sources, possible savings due simultaneous repairs of co-located com-
ponents, and other budget and operational constraints. Smith et al. [67]
proposed a game-theory-based model to study and optimize the re-
covery of system of interdependent networks when each network is
separately managed by a different entity (or player). González et al.
[68] proposed a data-driven system identification approach that uses a
linear operator (defined as the recovery operator) to depict the main
damage and recovery dynamics of a system of interdependent net-
works, which later on can be used to efficiently generate quasi-optimal
recovery strategies. Baidya and Sun [30] formulated a mixed-integer
linear programming approach to prioritize the restoration activities of
disrupted components in the physically interdependent power and
communications infrastructure networks with the objective of mini-
mizing the number of energizing activities required through the re-
storation to ensure the operability of every node. Tootaghaj et al. [69]
proposed a two-phase recovery approach for physically interdependent
power and communications network while assuming that the disruption
occurred only in the power network. First, the formulation of a linear
programming model for minimum flow cost assignment problem to
avoid further failures in the system is completed. The objective of this

Fig. 2. Network performance representation t( ), across various stages of a disruptive event (adapted from Henry and Ramirez-Marquez et al. [57]).
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model is finding the setting of the power flow which avoids further
cascading. Then, the formulation of a mixed-integer programming for
the recovery problem of these interdependent infrastructure networks
in order to provide the schedule of recovery for the disrupted compo-
nents took place. The objective of this approach is to maximize the total
amount of commodity delivered through both networks (i.e. electricity
power) in the recovery duration. Zhang et al. [70] proposed an opti-
mization model to determine the allocation of available restoration
resources (i.e., time and work crews) and the optimal budget associated
with the restoration process after a specific disruption scenario for the
physically interdependent infrastructure networks while the resilience
of the system is enhanced. In the literature, even though the restoration
scheduling of interdependent infrastructure networks has been ex-
amined both with network performance and a resilience perspective in
mind, accounting for the resilience of communities is the most im-
portant contribution of this work.

In this study, we propose a general approach to account for com-
munity resilience in a multi-objective optimization model (adopted
from Almoghathawi et al. [71]). The model considers time availability
and specific skill requirements in the work crews for the restoration of
disrupted components (i.e., each network has been assigned with se-
parate work crews for the restoration process, differentiated based on
their ability restore a distinct type of infrastructure). The two objectives
of our proposed model are developed based on the two major concerns
of potential decision makers for an infrastructure network restoration
problem which are (i) enhancing system resilience and ensuring a de-
sired level of operability in a timely manner, and (ii) achieving this goal
under a certain budget expectation. Therefore, the two objectives of our
proposed model are (i) maximizing the resilience of studied inter-
dependent infrastructure networks, and (ii) minimizing the costs asso-
ciated with the disruption, resulting unsatisfied demand, and restora-
tion. Discussed subsequently and suggested as one of the major
improvement for the already existing interdependent infrastructure
network restoration problem, the model proposed in this paper ad-
ditionally accounts for the social vulnerability and population densities
associated with the disrupted components of the interdependent net-
works. Through the restoration planning process, our approach prior-
itizes the restoration of disrupted components that serve to socially
more vulnerable and denser areas in the complete study region.
Therefore, our model integrates a community resilience perspective by
reformulating system resilience. Hence, relative to the existing litera-
ture, our approach mainly considers the well-being of the served
community and emphasizes a broader humanitarian motivation for
interdependent infrastructure network restoration problem.

2.3. Characterizing social vulnerability

Various aspects have been studied for measuring the vulnerabilities
of the systems that are caused by their surrounding environment. Mileti
[38] stated that the external vulnerabilities that would impact the
overall system fragility could be formed by three major elements due to
its interaction with them. These three aspects are defined as (i) the
surrounding physical environment, (ii) the social and demographic
characteristics of the related community, and (iii) the built structures
that are included in the system. Thus, Mileti [38] utilized spatially-
explicit information such as the location of nodes and links in the
network and their capacities in as-planned operating conditions to
characterize vulnerabilities. Additionally, to assign the indicators of
vulnerability of the built environment, different approaches have been
introduced such as the evacuation potential (in arterial miles/mi2) of
the studied area [72] and the housing age (% of houses that are built
between 1970 and 1994) in that location, among others. Moreover,
many studies have been conducted to characterize service networks and
their vulnerabilities. These studies generally focus on quantifying the
vulnerabilities that are shaped by the ability or inability of the related
region to mitigate risk. Thus, these studies mostly accounted for

vulnerabilities by identifying the number of work crews in the area,
amounts of available resources (i.e., restoration equipment), their dis-
patch locations, numbers of physicians in the region [47], shelter ca-
pacity [73], and the medical capacity of the disrupted location [74]. To
address the baseline conditions for community networks, the proposed
algorithms described the existing vulnerabilities generally by ac-
counting for spatially explicit populations and work locations, but also
by considering static indicators of resilient communities. These static
indicators mostly capture societal characteristics such as racial/ethnic
inequality [36,47], educational inequality [47,75], previous disaster
experience [36], and the social vulnerability index (SoVI) [49,73,75].
Among these approaches to address the vulnerabilities that arise due to
the surrounding social environment, SoVI-based methods provide a
comprehensive perspective of socio-economic attributes.

Social vulnerability is defined as the set of characteristics of an in-
dividual or a group that influence their capacity to anticipate, cope
with, resist and recover from the impact of a hazard [76]. Hence, social
vulnerability is often measured as a function of the socio-economic
conditions of the communities that represent their inherent vulner-
abilities that influence their ability to respond to a disruptive event.
Thus, even if different communities are exposed to similar disruptive
events, the associated consequences will differ due to their diverse
socio-economic conditions. The SoVI algorithm is a popular means to
quantify these conditions [49]. Through this algorithm, the inherent
vulnerabilities in society are quantified by the differences between the
percentages of each socio-economic sub-group. These sub-groups gen-
erally represent the members of the society that, according to Cutter
et al. [49]; are more fragile and more dependent on the support of
external resources in times of crisis. To measure social vulnerability,
Cutter et al. [49] identified 42 variables that represent different socio-
economic properties and the existing levels of these properties through
society. With these 42 variables all the existing demographic categories
to define a community are covered, whereas these variables are clus-
tered into 11 related groups. These 11 factor groups are categorized
mostly around age, gender, race, wealth, and occupation of the mem-
bers of the community, as listed in Table 1.

According to the definitions and percentages of these factors, these
various properties either contribute to or degrade the social vulner-
ability of a region. By utilizing these 11 factor groups, Cutter et al. [49]
then developed a social vulnerability index algorithm to calculate the
vulnerability of spatially explicit communities, suggesting that the
utilization of available resources through the pre- and post-disruption
stages may differ for each community.

In our study, a reduced version of the SoVI algorithm, SoVI-Lite
[77,78], is utilized to measure the potential of community loss and
possible community response after a disruption. Thus, the SoVI-Lite
algorithm is used here to guide the restoration scheduling problem, thus
adding a community resilience perspective to physical infrastructure
network restoration.

The SoVI-Lite algorithm calculates the social vulnerability index for
a given community with the following three steps: (i) obtaining the
percentage of the population in that community that belongs to the
social group categorized by the 42 variables to define socio-economic
vulnerabilities, then (ii) calculating the z-scores for each of the 42
variables by using the overall mean and standard deviation per factor,

Table 1
The 11 factor groups that are identified by Cutter et al. [49] to quantify the
social vulnerability of a community.

Age Occupation
Density of the built environment Personal wealth
Ethnicity (Hispanic) Race (African-American)
Ethnicity (Native American) Race (Asian)
Housing stock and tenancy Single-sector economic dependence
Infrastructure dependence
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and finally (iii) taking the sum of z-scores of all 42 variables to account
the total social vulnerability index of a specific region. Furthermore, the
social vulnerability indices are standardized to be scaled between 0 and
1 as in Eq. (1) where 1 represents socially the most vulnerable com-
munity and 0 stands for socially the most resilient community. By
standardizing, any negative social vulnerability scores would be
avoided without changing the probability distribution, and the scores
can be integrated in the proposed optimization model without con-
flicting with the resilience metric and total recovery cost formulation.

z X
X X

z Xmin( )
max( ) min( )

,
(1)

3. Proposed methodology

We reformulate an initial multi-objective resilience-driven restora-
tion optimization model proposed by Almoghathawi et al. [71]. This
adopted mixed-integer program maximizes the resilience of the inter-
dependent infrastructure networks while minimizing the total cost as-
sociated with the restoration process. The major contribution of this
work is the introduction of social vulnerability and population density
measures to account for a community resilience perspective on infra-
structure network restoration.

3.1. Notation and assumptions

The following assumptions have been made in the development of
the restoration model (i) the components of all infrastructure networks
(i.e., nodes and links): are either undisrupted or fully disrupted, (ii) the
recovery durations can vary for each component in each network, (iii)
disrupted components cannot be operational until they have been fully
recovered, (iv) a known demand, supply, and flow capacity are assigned
to each demand node, supply node, and link, respectively, for each
network, (v) known and fixed costs associated with unmet demand (i.e.,
disruption cost) are assigned to demand nodes and varying restoration
costs are assigned to disrupted nodes in each network, (vi) known and
varying unit flow costs and restoration costs are assigned to each link in
each infrastructure network, (vii) physical interdependency is defined
such that a component can operate fully (or cannot operate at all) if the
component it depends on from either the same or different network is
fully operating (or not operating at all), (viii) a known and fixed
number of available work crews for the restoration process is assigned
to each network, and finally (ix) the assigned work crews can restore a
single disrupted component in each infrastructure at a time. Most of
these constraints that govern the component functionality, recover-
ability, disruption, and interdependency can be loosened (e.g.,
Morshedlou et al. [79]) so that they are represented by continuous
rather than binary states.

Set K represents the set of infrastructure networks, and = …T {1, , }
represents the set of available time periods for the restoration process.
For each network k K , the sets of nodes and links are represented by
Nk and Lk, respectively, where set of supply nodes and set of demand
nodes are denoted by N Ns

k k and N Nd
k k respectively. The set of

disrupted nodes are denoted by N k and the set of disrupted links are
represented by L k. The maximum amount of supply at node i Ns

k in
network k K is denoted by bi

k, calculated as the maximum flow from
node i Ns

k to all demand nodes i Nd
k in network k K . The amount

of unmet demand at node i Nd
k in network k K at time t T is

represented with sit
k. Thus, the total unsatisfied demand at all demand

nodes in network k K through the restoration process at time t T is
si N it

k
d
k . The unmet demand at demand node i Nd

k in network k K
after the disruptive event is denoted by Qi

k, and the equal weight of
each network is represented by µk for network k K , such that

=µ 1k K
k .

The cost of restoration of disrupted nodes and links in network

k K are represented as fni
k for i N k and flij

k for i j L( , ) k , re-
spectively. The unitary unsatisfied demand cost associated with node
i Nd

k is represented with pi
k , while the unitary flow cost through link

i j L( , ) k is represented with cij
k. The binary variable zi

k is equal to 1 if
node i N k is restored and 0 otherwise. Likewise, binary variable yij

k is
equal to 1 if link i j L( , ) k is restored and 0 otherwise. The total flow
through link i j L( , ) k in network k K and at time t T is re-
presented by non-negative variable xijt

k .
The restoration duration for node i N k and for link i j L( , ) k are

denoted by dni
k and dlij

k that are proportional to the capacity of the
nodes and length of the links in the networks, respectively. The flow
capacity for link i j L( , ) k in network k K is uij

k. The binary variable

it
k is equal to 1 if the node i Nk is operational and 0 otherwise, and
the binary variable ijt

k is equal to 1 if the link i j L( , ) k is operational
and 0 otherwise in network k K at time t T . The set of available
work crews or resources for the restoration process of each network
k K is represented with Rk, where the resources are assigned speci-
fically for each network in terms of the required skills and expertise. it

kr

and ijt
kr represent the scheduling variables for node i N k and link

i j L( , ) k in network k K and at time t T , respectively. These
variables are both equal to 1 if the restoration of the associated dis-
rupted component is completed by work crew r Rk at time t T and
0 otherwise. Finally, the network interdependencies are represented by

i k i k(( , ), ( , )) , where node i N k in network k K is physically
dependent to node i Nk in network k K in terms of functionality.

3.2. Community resilience measures

We introduce the social vulnerability index by defining a parameter
SoVIi

k, which represents an index between 0 (socially the least vulner-
able) and 1 (socially the most vulnerable) for demand node i Nd

k in
network k K . The value of SoVIi

k is calculated by the SoVI-Lite
method separately for each demand node according to the geographical
region the node covers. Moreover, to give relatively more emphasis on
the regional areas that are assigned with higher social vulnerability
indices (i.e., 0.7 and higher values of SoVIi

k), we introduce the ex-
ponential formulation of social vulnerability scores, which is re-
presented as Vi

k , as in Eq. (2). Hence, with this formulation we highly
penalize the increases in the social vulnerability scores for more vul-
nerable areas, as it is difficult to discern the relative importance of SoVI
values alone. The constant a in Eq, (2) is chosen such that it would
generate a reasonable emphasis on higher social vulnerability scores
without causing computational delays.

= × +V e i N a Z, ,i
k a SoVI

d
ki

k
(2)

To account for human occupancy levels in our resilience-driven
objective, we introduce the parameter Pi

k to indicate the population
density of the geographical region in which the demand node is located.
The population density measure is based on the addresses of the re-
sidents in the study area and does not reflect dynamic population
changes throughout the day. In addition to SoVI-driven measures of
social vulnerability, the size of the population being served by infra-
structure demand nodes can also be considered as a perspective of
community resilience. The formulation to represent the population
density served by demand node i Nd

k is shown in Eq. (3).

=P i i Npopulation of the service area served by demand node
total population of all service areas

,i
k

d
k

(3)

3.3. Optimization model

The complete version of the proposed optimization model with the
focus of two objective functions to (i) maximize the resilience for a set
of interdependent infrastructure networks and (ii) minimize the total
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cost associated with the restoration process is as follows. These two
conflicting objectives and the constraints defined through the devel-
opment of our model are explained in a more detailed way in this
section.

We measure resilience as a function of unmet demand sit
k, for de-

mand node i Nd
k in network k K through recovery time t T ,

where increase in the slack demand represents the loss in the maximum
flow due to a disruption as seen in Eq. (4). The loss in demand at de-
mand node i Nd

k in network k K right after the disruption is de-
noted by Qi

k, and Qi N i
k

d
k measures the total unmet demand in net-

work k K before the recovery activities commence. In this case,
Qi N i

k
d
k represents the maximum amount of unmet demand in the

infrastructure network, and it is assumed network performance cannot
exceed its original value after recovery. Further, we introduce the im-
portance of demand nodes from a community resilience perspective
with parameters Vi

k and Pi
k for demand node i Nd

k in network k K ,
representing social vulnerability and population density,
respectively. In the resilience objective function k K
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k denotes the amount of slack re-

stored at each recovery period t T . Since reducing the total amount of
unmet demand means increasing the flow that has been carried through
the interdependent infrastructure network, it states increasing the
performance of the interdependent networks. Hence, improving the
effectiveness of the infrastructure network and its ability to recover the
maximum amount of possible slack through the recovery, given the
prioritization of the demand nodes according to the social vulnerability
scores and population densities of the region they represent, is denoted
in the resilience objective as in Eq. (4).
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For the cost objective in Eq. (5), we consider three different cost
categories that are associated with the restoration process of the system.
The flow cost, cij

k, represents the unitary cost of carrying flow through
link i j L( , ) k in network k K in the system. The varying restoration
costs, fni

k for node i N k and flij
k for link i j L( , ) k denotes the cost

associated with the available resources and their utilization in the re-
storation process of disrupted components where these costs are pro-
portional to the supply capacity of the nodes and the length of the links
in the networks. Finally, the disruption cost pi

k for node i Nd
k quan-

tifies the penalty cost for unmet demand due to the disruptive event.
Additionally, we assign social vulnerability scores and population
densities to penalty costs for disrupted demand nodes. In the objective,

p s V P( )k K i N i
k

it
k

i
k

i
k

d
k assumes that delaying or postponing the re-

covery of socially more vulnerable and denser areas should be pena-
lized more heavily than the socially less vulnerable and less dense areas
since socially more vulnerable sub-groups would suffer more if the re-
source investments (i.e., time and work crews) for the restoration of
these areas are not prioritized [49]. Hence, minimizing the cost ob-
jective of our model also considers the recovery of all demand nodes
that are associated with highly vulnerable and more populated regions
to support the community resilience perspective.
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The two objectives above are balanced for the following constraints.
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y i j L k K{0,1}, ( , ) ,ij
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(25)

z i N k K{0,1}, ,i
k k (26)

i j L k K t T{0,1}, ( , ) , ,ijt
k k (27)

i N k K t T{0,1}, , ,it
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i j L k K t T r R{0,1}, ( , ) , , ,ijt
kr k k (29)

i N k K t T r R{0,1}, , , ,it
kr k k (30)

The first set of constraints, Eqs. (6)–(8), govern the flow conserva-
tion of node i Nk. Constraints (9)–(12) control the capacity of dis-
rupted and undisrupted components, where Eq. (9) considers un-
disrupted links, Eqs. (10) and (11) consider the disrupted nodes, and
Eq. (12) considers disrupted links. Constraint (13) governs the physical
interdependency between nodes to ensure that node i N k in network
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k K is operational at time t T only if the node i Nk in network
k K is also operational at time t T . Constraints (14)–(22) represent
the assignment scheduling for the restoration process of disrupted
components, where Eqs. (14) and (15) ensure the work crew assign-
ment for the disrupted components if their restoration is a must, Eqs.
(16) and (17)ensure the operability of a component when its restoration
is completed by the specifically assigned work crew r Rk, Eq. (18)
ensures that a single work crew can restore at most one disrupted
component (either a link or a node) in network k K at a specific time
t T , and Eqs. (19)-(22) ensure that for a disrupted component to be
functional, its restoration should be completed by the assigned work
crew. Finally, constraints (23)–(30) indicate the nature of decision
variables in the optimization model.

4. Illustrative example: interdependent networks in Shelby
County, Tennessee

We apply the proposed community resilience-driven interdependent
infrastructure network restoration model with data describing inter-
dependent networks in Shelby County, Tennessee, whose location in the
New Madrid Seismic Zone makes it susceptible to earthquake risk [66].
We consider three interdependent infrastructure networks: water, nat-
ural gas, and electric power distribution systems. Fig. 3 depicts the
geographical layout of the infrastructure networks independently and
with the consideration of their physical interdependency. The inter-
dependent infrastructure networks consist of a total of 125 nodes in-
cluding 15 demand nodes in the water network, 13 demand nodes in
the gas network, and 9 demand nodes in the power network. There are
total of 176 bi-directional links from all three infrastructure networks.

4.1. Social vulnerability in Shelby County, TN

The SoVI-Lite algorithm [77,78] is adapted to calculate the social
vulnerability indices of the demand nodes from the critical infra-
structure networks in Shelby County, TN. Most of the 11 factor groups
in Table 1 are addressed by the available 14 socio-economic variables

listed in Table 2.
An initial study by Barker et al. [80] explored the 14 variables for

five different geographical districts in Shelby County. Fig. 4 illustrates
the correlation among these 14 variables that are listed in Table 2,
calculated using the Pearson correlation coefficient. Fig. 4 suggests that
among these 14 variables, the intersection of with a high positive cor-
relation (Pearson correlation coefficient r 0.85) is visualized with
dark blue. As the positive correlation decreases, the dark blue color
becomes lighter. For example, the variable “75000” which stands for
the percentage of household that earns less than $75,000 annually has a
high positive correlation r( 0.85) with the variable “African-Amer-
ican,” “Single Female,” “No Diploma,” “Food Stamp,” “Poverty,” and
“Unemployed,” where these variables stand for the percentage of the
population that is African-American, the percentage of single-female
households, the percentage of the population that did not graduate
from high school, the percentage of the households that requires social
security relief such as food stamps, the percentage of the households
that lives under the poverty line, and the percentage of the population
that is unemployed, respectively. On the contrary, the intersection of

Fig. 3. Critical (a) water, (b) gas, and (c) power infrastructure networks of Shelby County, TN and (d) their physical interdependencies respectively (adapted from
González et al. [66]).

Table 2
District-level social vulnerability variables available in Shelby County, TN data
for the SoVI-Lite algorithm.

Percentage of households earning under $75,000 annually
Percentage of population under the age of 5
Percentage of households living below the poverty line
Percentage of households requiring food stamps
Percentage of population over the age of 65
Percentage of population that is Hispanic
Percentage of population that is African-American
Percentage of population that is Asian
Percentage of single-female households
Percentage of population without a high school education
Percentage of population working in low-skilled service jobs
Percentage of population that is unemployed
Percentage of population speaking English as a second language
Percentage of population that is female
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the variables that have a high negative correlation, where the Pearson
correlation coefficient is below a certain value r( 0.85), is shaded
with dark red and as the negative correlation decreases, the dark red
color becomes lighter. As an example, the variable “Asian,” which re-
presents the percentage of population that is Asian, has a high negative
correlation r( 0.85) with the previously explained variables
“African-American,” “Single Female,” “No Diploma,” “Food Stamp,”
“Poverty,” and “Unemployed.”

To provide a higher level of granularity for social vulnerability in
Shelby County, SoVI-Lite indices are calculated at the block group level
rather than the district level. A block group is a statistical division of
census tracts that consists of clusters of blocks and generally contain
between 600 and 3000 people who are the residents of the covered
contiguous area [81]. There are 621 block groups making up Shelby
County, which consists of a total of 928,794 residents. These numbers
are the exact values that are utilized through the social vulnerability
calculations with respect to the availability of data where around 10
block groups totaling around 4000 citizens were eliminated because
certain required demographics were missing. However, not all 14
variables are available at the block group level either. Fig. 5 highlights
the correlation among the eight variables available in the block group
level of Shelby County, and it appears that all of the existing variables
have a lower positive and negative correlation between each other
when compared with the district level data. However, in the block
group level data, none of the two-variable combinations have a high
correlation (neither positive nor negative) behavior especially when the
correlation measures in the district level are considered. In the block

group level, the highest positive correlation is between the variable
“75000,” and the variables “African-American,” “Single Female,” and
“Poverty,” but the Pearson correlation coefficient has a lower value
r( 0.6). The definition of these variables is exactly the same with the
district level variables. On the other hand, in the block group level data,
none of the variable pairs end up with a Pearson correlation coefficient
value that is below a certain value r( 0.6), thus there does not exist
any high negative correlation among these variables either. Further, we
believe that including the social vulnerability variables that are only
available at the county-level through the block group-level would bias
the analysis. For example, the social vulnerability variable “2nd Lan-
guage” states the percentage of population who speaks English as a
second language and this data is not available in the block group-level
for Shelby County, TN. However, it is available in the county-level, i.e.
it is around 0.1%, which means that the percentage of the total county
population that speaks English as a second language is known but it is
not known for each block group separately. Therefore, summing up this
county-level based single value of this particular social vulnerability
variable, around 0.1%, with the other available social vulnerability
variable values would harm the sensitivity of the analysis. If this step is
repeated for all six social vulnerability variables that have missing data
in block group-level, certain social subgroups would be counted mul-
tiple times in each block group due to the existence of high positive
correlation between some of the variables, i.e. “No Diploma”, “Un-
employment”, “Food Stamps” and etc. Hence, these recounted social
subgroups could become the decision driving characteristics in the
prioritization of the regions and the disrupted components that are

Fig. 4. An illustration of the correlation analysis between the 14 social vulnerability variables available for the district level in Shelby County, TN, where darker red
color and bigger circle size represent a higher negative correlation and darker blue color and bigger circle size represent a higher positive correlation.
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serving to them. But most importantly, this idea of assigning the same
social vulnerability variable value for to all block groups and repeating
this step for six different social vulnerability variables would conflict
with the main concern of our proposed study. The mindset behind the
calculation of social vulnerability scores for block groups is that “each
region should be assigned with distinct social vulnerability scores due
to the existence and distribution of various socioeconomic character-
istics of their residents”.

As such, for the block group data, all the existing variables are in-
cluded in the social vulnerability calculations. Additionally, as some
variables that exist in the district level data but not in the block group
level data are also covered by the above analysis. For example, at the
district level data, the variable “75000” and “African-American” have a
highly positive correlation with the variables “No Diploma,” “Food
Stamp,” and “Unemployment.” As such, the existence of these two
variables in the block group data provides insight into the three missing
variables and complements the information provided with only two
variables. Thus, to not lose any information, the set of all eight variables
are considered in this study, as enumerated in Table 3. The SoVI-Lite
calculations are based on these eight variables which contain neither
high positive nor high negative correlation. Further, the correlation
between the eight social vulnerability variables and the population
densities of the block groups suggested neither a high positive (i.e.,
r 0.6) nor a high negative (i.e., r 0.6) correlation, suggesting that
redundancy in the social vulnerability and population densities is
avoided.

To assign social vulnerability scores, Vi
k , and population densities,

Pi
k , to demand nodes at the block level, specific geographical regions
were identified to represent each demand node. To estimate the geo-
graphical region that each demand node covers, we utilize Voronoi

diagrams [82]. In essence, the Voronoi diagram method can be sum-
marized as follows: for a given finite set of points …p p{ , , }n1 in the Eu-
clidean plane, X , the Voronoi cell Vork contains the point pk and all the
other points whose distance to pk , d p p( , )x k , is less than their distance to
any other point, pj, d p p( , )x j . The more formal and general definition is
formulated in Eq. (31).

= = …Vor p d p p d p p j i j n{ | ( , ) ( , )}, , 1, ,i i j (31)

In this study, each demand node from all three infrastructure net-
works in Shelby County is considered as the Voronoi seeds and the
coverage areas of the demand nodes are represented by the Voronoi
cells in which they are located. These Voronoi cells, along with their
associated block groups, are represented in Fig. 6. The social vulner-
ability indices of all the block groups that are either fully or partially
included in the single Voronoi cell are assigned to the demand node that
is considered as the seed of the region. The population densities are
however assigned proportionally to the demand nodes according their
portion that is included in each Voronoi region (i.e., for a block group

Fig. 5. An illustration of the correlation analysis with the available social vulnerability variables in the block group level in Shelby County, TN, where darker red
color and bigger circle size represent a higher negative correlation and darker blue color and bigger circle size represent a higher positive correlation.

Table 3
The social vulnerability variables that are utilized through the SoVI-Lite algo-
rithm for the block group level in Shelby County, TN.

Percentage of households earning under $75,000 annually
Percentage of population over the age of 65
Percentage of population that is Asian
Percentage of population under the age of 5
Percentage of population that is Hispanic
Percentage of population that is African-American
Percentage of single-female based households
Percentage of households that are in poverty
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that is divided into two by the border of two neighbor cells, its social
vulnerability index is assigned to both demand nodes, but its population
is divided into two and assigned proportionally to each demand node
separately). Therefore, neither the population density nor the social
vulnerability score of the served area assigned to a demand node
overshadows the other or solely behaves as the decision-driving para-
meter, but the integration of both with the amount of unmet demand at
the demand node determines the order of recovery activities. Hence,
even though the overall population densities of the block groups does
not represent extreme differences and are considered to be relatively
similar, the final weighting of the demand nodes in the mathematical
model generates adequate differences in terms of importance.

The social vulnerability indices of the demand nodes are calculated
by taking the average of the social vulnerability indices of the included
block groups in the same Voronoi cell. Fig. 7 represents the social
vulnerability indices, SoVIi

k, of all the demand nodes in critical infra-
structure networks of Shelby County. Fig. 8 illustrates the exponential
representation of the social vulnerability scores,Vi

k , that are included in
the optimization model to give relatively higher importance to the
demand nodes in more vulnerable areas. For example, according to
these figures, demand nodes 32, 5, 8, 3, and 11 represent areas that may

require prior and more resources to ensure their timely restoration.
Additionally, Fig. 9 represents the exponential social vulnerability
scores, Vi

k , of the demand nodes in Shelby County to illustrate which
demand nodes serve socially more vulnerable areas. The block groups
that are colored white represent a lack of household information or a
lack of residents.

The multi-objective problem is solved using the -constraint ap-
proach [83], where the resilience objective is converted to a constraint
and assigned with the values between 0 and 1 such as [0,1] as in Eq.
(32). To solve the multi-objective problem, the total cost of the re-
storation activities is not converted into a budget constraint to support
the humanitarian motivation for the work by allowing the system to
recover fully.
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Therefore, with the introduction of the -constraint formulation for
resilience, our proposed approach aims to schedule the restoration
process of the interdependent infrastructure networks with the
minimum total cost of restoration and disruption such that the overall

Fig. 6. An illustration of the distribution of block groups into Voronoi cells that are created by the demand nodes of three critical infrastructure networks in Shelby
County, TN.

Fig. 7. Illustration of social vulnerability indices, SoVIi
k , of the demand nodes.

Fig. 8. Illustration of the exponential social vulnerability scores, Vi
k.
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system performance would achieve the pre-determined level at the end
of the recovery horizon. Through the restoration scheduling, the social
vulnerability scores and the population densities of the served com-
munities shapes the order since not prioritizing the more vulnerable
and denser areas would be penalized more heavily in the system.

4.2. Disruption and restoration

We implement disruption scenarios each representing a different
earthquake magnitude where the data is obtained from a previous study
by González et al. [66]. These hypothetical earthquake scenarios

= = = =M M M M( 6, 7, 8, 9)w w w w are classified as “low,” “moderate,”
“severe,” and “extremely severe,” respectively, based on their in-
creasing moment magnitude and proportional damage. The extremely
severe earthquake scenario, =M( 9)w , results in a total of 43 disrupted
components, 19 of which are demand nodes. For the restoration pro-
cess, two work crews are assigned to each infrastructure network. A
time horizon of 28 periods is considered to complete the recovery for all
four earthquake scenarios.

Among the four disruption scenarios, the severe and extremely se-
vere scenarios, = =M M( 8, 9)w w , represent significant differences in
the optimal restoration schedules between the inclusion and exclusion
of social vulnerability and population density measures. The low and
moderate earthquake scenarios, = =M M( 6, 7)w w , contain few dis-
rupted components and a low amount of unmet demand, therefore the
inclusion of social and population measures does not result in a sig-
nificant difference in restoration scheduling.

As such, we focus our analysis on the severe and extremely severe
disruption scenarios, and we represent the effect of including social
vulnerability and population density measures by the change in the
restoration order of disrupted nodes. Fig. 10 through Fig. 12 illustrate
the change in order for severe scenarios for water, gas, and power
networks, respectively, and likewise Fig. 13 through Fig. 15 for ex-
tremely severe scenarios. The change in the importance of components
is measured as follows: (i) the optimal restoration schedules are ob-
tained for two separate cases: including and excluding social vulner-
ability and population, (ii) the restoration order of the disrupted com-
ponents is listed for each network, and (iii) the difference in orders for
each component is calculated with and without social vulnerability and
population measures. If this difference is zero, then the restoration
order of this component is the same in both cases, suggesting the im-
portance of this component did not change between the two ap-
proaches. However, a positive difference suggests that the restoration of

the component is scheduled earlier when social vulnerability and po-
pulation density of its service area is taken into account, suggesting that
such measures make the component a priority. Lighter shades represent
components with less importance when the social vulnerability and
population measures are considered. Note that the darkest shaded
components might not necessarily be the most important component in
the restoration scheduling, but it is the component that has the biggest
change in its restoration order, thus the biggest change in its im-
portance when additional measures are included in the optimization
model. While only demand nodes are considered for weighting with
social and population measures, naturally supply and transshipment
nodes are important to meeting demand (at those weighted demand
nodes).

The trajectory of the system performance over time under two dif-
ferent hypothetical earthquake magnitudes is illustrated by the change
in unmet demand in Fig. 16 and Fig. 17 to compare the effect on re-
storation when social vulnerability and population density are ac-
counted for in the analysis. As it can be seen from these three plots, the
unmet demand over time varies for each network when community
resilience measures are taken into account. According to the following
illustrations, we observe that the amount of unmet demand in each
network at given time t T is more when social vulnerabilities and
population densities are included in the restoration schedule. As it is
formulated primarily from the community resilience perspective rather
than solely the network performance perspective, our proposed ap-
proach aims to minimize the amount of unmet demand at the demand
nodes that have the highest combination of social vulnerability score,
population density, and unmet demand amount. That is, instead of
ordering the restoration schedule based on a descending order of the
amount of unmet demand, it orders the schedule based on a descending
order of the social vulnerability score times population density times
amount of unmet demand, × ×s V Pit

k
i
k

i
k. Therefore, the unmet demand

at the demand nodes that serve areas with higher social vulnerability,
population density, and unmet demand are minimized first and then the
model moves to the next disrupted component. However, at the end of
the limited recovery period, both of the models, with and without
considering SoVI, would accomplish leaving no unmet demand in the
system.

Finally, to validate the differences between the optimal restoration
schedules (without SoVI, with SoVI) for the critical infrastructure net-
works in Shelby County, and to highlight the contribution of the pro-
posed study, we formulated a model to minimize the sum of differences
in the restoration times of each disrupted component between the

Fig. 9. Representation of the exponential social vulnerability scores, Vi
k , of the demand nodes of all three critical infrastructure networks over Shelby County, TN.
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without SoVI and with SoVI models. At the end, we did not find a zero
distance result, suggesting that there is not one restoration schedule
that is optimal for both models. Additionally, we observed that there is
no restoration schedule such that the restoration of a single disrupted
component is scheduled in the same order among the complete re-
storation schedule for both “with SoVI” and “without SoVI.” For every
possible alternate restoration schedule, the restoration order of a cer-
tain disrupted component is different in between the two schedules.
Hence, we conclude that the speed for recovery does not overcome the
social vulnerability scores of the served community. We can conclude
that accounting for social vulnerability in restoration schedule indeed
changes the optimal scheduling and assignment solution for the re-
storation of interdependent infrastructure networks after a disruptive
event.

5. Concluding remarks

Due to the globalization of networks and the developments in the
infrastructure technology, interdependencies among critical infra-
structure networks are being formed incrementally. Such enhanced
interdependencies result in more complex and vulnerable systems,
where it becomes more challenging for the decision makers to plan
their recovery after a disruptive event. Additionally, the dependency of
the surrounding communities over these networks and their social
vulnerabilities increase the possible impacts of the disruptive events, by
hardening the problem of recovery planning both for the system and the
society.

In this paper, we study the interdependent infrastructure network
restoration problem and propose an optimization model from the

Fig. 10. The change in the importance of the disrupted supply, transshipment, and demand nodes in the water network when the community perspective is
considered with the severe earthquake where lighter blue represents higher negative change and darker blue represents higher positive change.

Fig. 11. The change in the importance of the disrupted supply, transshipment, and demand nodes in the gas network when the community perspective is considered
with the severe earthquake where lighter green represents higher negative change and darker green represents higher positive change.

Fig. 12. The change in the importance of the disrupted supply, transshipment, and demand nodes in the power network when the community perspective is
considered with the severe earthquake where lighter orange represents higher negative change and darker orange represents higher positive change.
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Fig. 13. The change in the importance of the disrupted supply, transshipment, and demand nodes in the water network when the community perspective is
considered with the extremely severe earthquake where lighter blue represents higher negative change and darker blue represents higher positive change.

Fig. 14. The change in the importance of the disrupted supply, transshipment, and demand nodes in the gas network when the community perspective is considered
with the extremely severe earthquake where lighter green represents higher negative change and darker green represents higher positive change.

Fig. 15. The change in the importance of the disrupted supply, transshipment, and demand nodes in the power network when the community perspective is
considered with the extremely severe earthquake where lighter orange represents higher negative change and darker orange represents higher positive change.
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community resilience perspective. Our proposed model plans the re-
storation schedule for each network by (i) prioritizing the disrupted
components, and (ii) assigning them to available work crews for

specific time periods according to their relative importance on the
overall system resilience. The aim of prioritizing the disrupted com-
ponents and enhancing the resilience of physically interdependent

Fig. 16. Illustration of unmet demand over the recovery time (a) without SoVI, (b) with SoVI, and (c) comparison on the same plot where dashed lines represent the
consideration and solid lines represent the inconsideration of social vulnerability and population density under a severe earthquake.

Fig. 17. Illustration of unmet demand over the recovery time (a) without SoVI, (b) with SoVI, and (c) comparison on the same plot where dashed lines represent the
consideration and solid lines represent the inconsideration of social vulnerability and population density under an extremely severe earthquake.
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infrastructure networks consider the community resilience perspective
through the restoration scheduling process as each demand node is
assigned with the (i) social vulnerability score and the (ii) population
density of the residential area they represent.

The social vulnerability scores are calculated with a reduced ap-
proach of Social Vulnerability Index [49], in order to account for the
major social dimensions in the community, -such as age, income level,
and race attainments. Also, population densities are calculated to
measure the human occupancy in the surrounding of the network
components. These community resilience measures are added to a
mixed-integer multi-objective resilience-driven restoration model,
which maximizes the cumulative community resilience of the inter-
dependent infrastructure networks over time while considering the
total cost associated with the restoration process.

As for the results of our case study, we observe that accounting for
the community resilience measures in the restoration planning of in-
terdependent infrastructure networks affects the scheduling of the dis-
rupted components since there exists no such restoration schedule that
is optimal for both including and excluding community resilience
measures. As expected, disrupted components that represent socially
more vulnerable and denser regions are prioritized in the restoration
process. Thus, the components with higher priority correspond to not
only the ones with large unmet demands in their service area, but also
to the ones that are responsible for the supply and transshipment of
commodities to socially more vulnerable communities.

For future work, from the network properties perspectives, the
model could be extended to consider partial disruptions, such that the
system can operate with reduced capacities. Moreover, partial physical
dependencies could be included in the proposed model, where a com-
ponent could be partially functional, if the components upon which it
depends are partially operational. Other interdependent infrastructure
networks that are important for completing and coordinating the re-
covery activities (e.g., transportation, communication) could be in-
cluded. While most of the model parameters are taken from a previous
study [66], the uncertainties in the system (e.g., restoration costs, re-
storation durations disruption scenarios) could be considered in the
optimization model. From the community resilience perspective, the
impacts of prioritizing the socially more vulnerable subgroups and the
social implications of this strategy could be analyzed in terms of mea-
suring the community adaptation and past disaster experience to
measure the behavioral expectations and humanitarian response
against disruptions better and more accurately. The dynamic nature of
socioeconomic characteristics and the population densities, along with
the uncertainties related to their varying existing levels, could also be
included in the future studies. Naturally, a centralized decision making
environment is assumed here, where a lone, central decision maker is
determining schedules across all networks, and future work will address
a decentralized decision making process wherein network utilities make
restoration decisions with their own information. Furthermore, the
proposed community resilience-based prioritization and scheduling
process could be combined with geographical hazard metrics to account
for spatial risks associated with the specific location of the network
components. Lastly, a benchmark analysis for comparing the obtained
results of the proposed approach and the heuristic.
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