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ABSTRACT

Research efforts have demonstrated the potentials of improving the performance of Heating, Ventilation, and
Air-Conditioning (HVAC) systems by leveraging personalized thermal comfort preferences and profiles.
However, there are remaining challenges for effective control in collective conditioning in multi-occupancy
scenarios. In this study, we have investigated the impact of personal thermal comfort sensitivities — distinct
individual reactions to temperature variations- on collective conditioning. To this end, we have explored
whether taking the thermal comfort sensitivity into account influences the selection of temperature setpoints and
the overall probability of achieving comfort. We have also examined the impact of different thermostat tem-
perature resolutions (0.1, 0.5, and 1.0 °C) on these factors with a hypothesis that finer resolutions could aid in
achieving improved overall thermal comfort. In doing so, we have proposed an agent-based control mechanism
to simulate the multi-occupancy space, controlled by an HVAC agent to provide air conditioning for multiple
human agents using three operational strategies to compare conventional strategies with our proposed approach.
The first strategy relies on majority thermal votes, the second one relies on the gap between thermal preferences
(i.e., preferred temperature) and ambient temperature, and the third strategy uses thermal comfort sensitivity in
addition to preferences. The investigations were conducted by using stochastically modeled comfort profiles (six
actual comfort profiles and 15 mathematically synthesized profiles from actual data). These profiles were used to
model the behavior of human agents in diverse multi-occupancy scenarios, modeling two to ten occupants in a
space for different thermostat temperature resolutions. Our investigations demonstrated that thermal comfort
sensitivity plays a statistically significant role in collective conditioning as it resulted in changes of temperature
setpoint in 86% of cases and a higher probability of achieving collective comfort.

1. Introduction

literature has pointed to a number of reasons for this suboptimal per-
formance of the current HVAC systems. First, the comfort zone, defined

Heating, Ventilation, and Air Conditioning (HVAC) systems control
almost half of building energy use in the US — 44.0% in commercial and
47.7% in residential buildings respectively [1,2] — with the aim of sa-
tisfying occupants' thermal preferences in indoor environments.
American Society of Heating, Refrigeration, and Air Conditioning En-
gineers (ASHRAE) has specified that, in acceptable thermal environ-
ments, the majority (>80%) of the occupants should find the thermal
condition acceptable [3]. Specifically, the Predicted Mean Vote (PMV)
model, which ASHRAE uses for HVAC design [3], states that 90% of
occupants would be satisfied if the PMV-defined comfort zones are met
(i.e., Predicted Percentage of Dissatisfied (PPD)). However, field studies
have shown that only a small portion of buildings (11% among 215
buildings in the USA, Canada, and Finland) fulfilled such a goal [4]. The
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by the PMV model, refers to the neutral vote (on a 7-point ASHRAE
thermal sensation scale) according to controlled experimental studies
[5] and does not necessarily represent occupants' diversity [6,7].
Therefore, this model might not be universally applicable [8]. Second,
limitations in human-building interaction play a part. Office occupants
often experience difficulties in controlling thermostats due to their
ambiguous interfaces, authority concerns, and unknown locations
[9,10]. Moreover, default temperature setpoints are often set by facility
managers regardless of actual occupants’ perspectives [11]. Accord-
ingly, survey studies show that office occupants were less satisfied,
compared to residential occupants [9,10].

To address these limitations, research efforts have focused on en-
abling intelligent and Human-In-The-Loop (HITL) HVAC operations in
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the past decade. Specifically, the advancements in information and
communication technologies facilitated the collection of occupant
thermal votes through electronic and real-time surveys as a major di-
rection of research efforts in this field [7,12-22,50,51]. Furthermore,
recent studies have explored the potentials of using physiological re-
sponses as input parameters to HVAC operations [23-26]. Therefore,
occupants have been provided with a means of active participation in
driving the control feedback of the HVAC operation by providing
contextual information. These efforts have also paved the way for de-
veloping personalized comfort profiles (indicating an individual's
properties like temperature preference with regard to thermal comfort)
and comfort-aware HVAC operations [7,11,17-19]. In this way, in-
dividual thermal preferences (i.e., temperature values that most likely
result in thermal comfort) could be identified by processing the his-
torical thermal vote data. Such preferences have been used as feedback
in the control loop of HVAC systems to provide improved thermal sa-
tisfaction and improve energy efficiency by avoiding over-conditioning
[27-29]. In other words, compared to the conventional approach of
generalizing occupants' characteristics (i.e., the PMV model), current
research efforts are trying to make use of individual characteristics for
improved HVAC operations.

Nonetheless, an outstanding question in this field is how to generate
collectively acceptable conditions while using personalized thermal
preferences. When multiple occupants share a space, served by a single
HVAC air supply unit, which is common due to the use of thermal zones
(spaces that are controlled by the same HVAC unit) [30], experiencing
discomfort by some occupants is inevitable unless the thermal pre-
ferences of all occupants are close. When using personalized comfort
profiles, achieving a satisfaction rate above 80% depends on the control
strategy. A common approach is to use the average of thermal pre-
ference values as the control feedback parameter [31]. However, a
noteworthy property in personalized comfort profiles is the difference in
response to temperature variations, which we have defined as thermal
comfort sensitivity. For example, one expresses discomfort quickly
when the ambient temperature is increasing but has a high tolerance to
lower temperatures. Another person could be sensitive to being cold
while being more tolerant to higher temperatures [32]. Thermal com-
fort sensitivity manifests distinct features in personalized comfort pro-
files that have been observed in previous studies. Occupants have
shown unbalanced reactions to temperature variations when providing
thermal votes [27,31,33], which were also reflected in probabilistic
modeling of thermal comfort profiles [7,17].

Accordingly, in this study, we hypothesized that these features
could be leveraged for a more efficient control strategy. Specifically,
our hypothesis states that when individual thermal comfort sensitivities
of occupants are taken into consideration, different temperature set-
points with improved overall comfort could be achieved, compared to
the cases that only rely on thermal preferences (i.e., the preferred
temperatures). In addition, we have investigated the impact of HVAC
systems’ operable resolution of temperature setpoints in accounting for
thermal comfort sensitivities. We considered 0.1 °C, 0.5°C (~1 °F) and
1.0°C intervals considering the resolution of available temperature
sensors (often 0.1 °C [34]) and the commonly used resolutions (0.5 °C
and 1.0 °C) in the literature [18,19,28,31]). To this end, our hypothesis
is that the smaller the gap, the higher the probability of satisfied oc-
cupants. For example, for a preferred temperature of 24.5°C, con-
straints in thermostat temperature resolution (e.g., having a 1°C re-
solution) could pose a limitation to the realization of the optimal
operational potential. Accounting for these hypotheses, we sought to
investigate the following questions:

e Could leveraging individual thermal comfort sensitivities affect the
control strategy by selecting a different temperature setpoint?

® Could leveraging the individual thermal comfort sensitivities im-
prove individuals' thermal satisfaction in a multi-occupancy space?

® Does higher resolution of the sensing systems (i.e., smaller
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temperature setpoint intervals) facilitate in improving collective
thermal satisfaction?

We have developed an agent-based model (ABM) to address these
questions and to reflect the strategies for intelligent HVAC operation by
accounting for personalized thermal comfort profiles and sensitivities,
quantified through stochastic methods. Following the definition of
generic ABM architecture, in this ABM, we have created individual
elements (hereinafter agents), who independently possess their own
characteristics, interact with each other, and respond autonomously to
the variations of ambient conditions [35]. ABMs use a projection of
natural language similar to when human users express their experiences
[35] to allow for replication of real-world mechanisms. Hence, ABMs
could be used as a powerful method to reflect individual characteristics
of occupants (e.g., personalized comfort profiles and sensitivities) and
simulate their behaviors in the context of different scenarios, in which
they interact with HVAC systems [36,37]. To this end, we have adopted
probabilistic and data-driven modeling techniques for simulating oc-
cupant behavior, which is reflected in the thermal comfort profiles.

The rest of the paper is structured as follows. The second section
presents a review of previous collective conditioning strategies and
their limitations. Section 3 elaborates on the methodology including the
ABM and the mathematical modeling of human agents’ behavior, de-
signed to answer the aforesaid research questions. Section 4 presents
the results of scenario analyses and the relevant discussions. Finally, the
paper is concluded in Section 5 by presenting discussions, limitations,
and future directions of this study.

2. Research background

Creating a collectively acceptable condition has been a long-lasting
objective in the field of HVAC system operations. Accordingly, the
objective of the PMV model, at the time of its development, was to
identify system characteristics, for which the environmental and
human-related factors result in feeling thermally comfortable by the
majority of occupants [8]. However, individual differences in thermal
perception and preferences have been shown to cause dissatisfaction
and inefficient energy use during occupancy unless all the occupants of
a thermal zone have similar preferences. Consequently, the personali-
zation paradigm, which leverages the enhanced post-occupancy
human-building interactions, was introduced to bring about strategies
to improve collectively comfortable (or at least acceptable) conditions.
Through our literature review [38], it has been noted that four opera-
tional strategies are introduced and the first approach leverages occu-
pants' instantaneous thermal feedback [28,29]. In an example study,
Murakami et al. [29] utilized occupants' instantaneous thermal votes
(e.g., cooler, no change, or warmer) to shift the temperature setpoint
depending on the thermal preferences that the majority of the occu-
pants desired at each moment. This field study showed an energy saving
potential of 20% while maintaining the percentage of satisfied occu-
pants compared to the conventional operational strategy. Similarly,
Purdon et al. [28] employed occupants' thermal feedback (i.e., votes) to
evaluate the overall discomfort and selecte the temperature setpoint
that minimizes the number of dissatisfied occupants. In their simulation
study, energy savings of up to 60% were observed with a similar
number of satisfied occupants. The second strategy uses occupants'
feedback to update the PMV values. In an example study, Erickson and
Cerpa [39] collected and averaged occupants' actual thermal votes,
using the conventional 7-point thermal sensation scale (cold (—3) to
hot (3)), to calculate the gaps between the average actual thermal votes
and the calculated PMV values. Such gaps were used to update PMV-
based thermal comfort estimations. Through field studies, it was de-
monstrated that this approach not only saved energy but also improved
overall occupant thermal comfort, compared to the PMV-based opera-
tions. Compared to the first approach, the second one has made use of
occupants' historical thermal votes for the benefit of operational
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strategies, which could reduce occupants’ required dedication after a
limited period of data collection [39].

The third operational strategy leverages individual thermal pre-
ferences, derived from personalized comfort profiles for collective
conditioning. In contrast to the conventional control configuration (i.e.,
one thermostat in a thermal zone), Jazizadeh et al. [31] additionally
installed temperature sensors in every room of a thermal zone, and then
used an objective function to minimize the sum of gaps between the
measured air temperature and the occupants' thermal preferences to
adjust the thermostat setpoint. Through a field implementation, they
have shown a 39% of energy saving (in the form of reducing daily
average air flow) and improved users’ thermal comfort. Finally, in a
fourth operational strategy, Ghahramani et al. [33] created and lever-
aged zone level occupant discomfort profiles from multiple persona-
lized profiles for multi-objective optimization. The personalized com-
fort profiles were converted into discomfort profiles and then
combined. This study demonstrated 12.8% of additional energy savings
compared to the 39% from their previous study [27] while maintaining
the required comfort levels. More details on the spectrum of the op-
erational strategies and their performance could be found in our com-
prehensive quantitative review paper on human-in-the-loop HVAC op-
erations [38].

Despite studies on these operational strategies, the role of individual
thermal comfort sensitivities in the control logic of HVAC systems is
still unknown. As a common trend in the literature, in control strategies
that leverage personalized thermal profiles, thermal comfort sensitivity
has been uniformly applied. In other words, it is assumed that in-
dividuals have similar reactions to variations in temperature. ASHRAE
states that at least a 3.0 °C (5.4 °F) of temperature variation is needed to
provoke a change in thermal sensation [40,41]. As example studies,
Klein et al. [40] and Kwak et al. [42,52] applied a generalized and
linear thermal comfort sensitivity to human agents in their multi-agent-
based simulation studies by referring to ASHRAE [5]. In another effort,
Yang and Wang [42] utilized a normal distribution for human agents’
comfort profiles, which still could not represent the difference in tol-
erances with respect to high and low temperature values due to their
symmetrical form.

On the other hand, on the control side, the influence of operable
temperature intervals (i.e., resolution) has not been thoroughly ex-
plored. Studies have not raised any questions on the influence of these
intervals. They either did not specify the temperature setpoint interval
[33,39], or they have used a single operable temperature interval (i.e.,
0.56°C or 1.0°F) in configuring the optimal setpoint [18,19,31].
Purdon et al. [28] have discussed the impact of temperature step sizes
in their control logic that searches to optimize the temperature set-
points according to occupants’ comfort. They have identified a 1.0°C
step size as optimal compared to smaller and larger values. They have
shown that depending on the initial temperature setpoint (i.e., the
setback value) the use of small step sizes could be inefficient in reaching
to the desired temperature even over a few hours. In this study, re-
gardless of the control feasibility, we have looked at this problem from
a different perspective. We have explored whether the temperature
setpoint resolution could influence the probability of the overall com-
fort in multi-occupancy spaces.

As the trends in the literature show, this study contributes by de-
veloping a personalized comfort-driven HVAC operation that accounts
for personal thermal comfort sensitivity in creating collectively accep-
table indoor environments. Furthermore, we have evaluated the per-
formance of different operational strategies that use personalized
thermal comfort in comparison to the proposed approach. In doing so,
we have compared the selected temperature setpoints and the overall
occupants' satisfaction, derived from the operational strategy that le-
verages thermal comfort sensitivity against the strategies that ignore
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that factor. Furthermore, as noted, we have investigated the impact of
varying operable temperature setpoint intervals on the temperature
setpoint selection and collective occupants’ satisfaction.

3. Methodology

In order to address the questions and test the hypotheses, we have
developed an ABM simulation using MATLAB to reflect control strate-
gies that account for the interaction between occupants and HVAC
systems as shown in Fig. 1. The interactions were simulated using a
scenario, in which HVAC operation is carried out using personalized
thermal comfort profiles in multi-occupancy spaces. In this scenario, a
human agent (a proxy of an occupant) provides its thermal votes to an
Occupant Voting System (OVS) agent. Thermal votes could be selected
among uncomfortably cool, comfortable, or uncomfortably warm with
a degree of dissatisfaction. Hence, each data point contains information
like uncomfortably cool at 21.5°C with a specific magnitude of dis-
comfort. The actions of the OVS agent include requesting a human
agent for its thermal votes, collecting the human agents' thermal votes,
and generating the thermal comfort profiles. The HVAC agents (a proxy
of an HVAC system) request OVS agents for feedback to select the op-
timal temperature setpoint with the aim of maximizing human agents'
thermal comfort in a space. Depending on the optimization method
(i.e., operational strategy), the HVAC agent asks for different para-
meters from OVS agents and then searches the optimal temperature
setpoint. In this ABM, we intentionally disregard the possible interac-
tion between human agents (e.g., negotiating the temperature setpoint
between occupants). In this study, we have only focused on the attri-
butes associated with individuals’ thermal comfort profiles and we as-
sumed that the interaction dynamics between occupants could be re-
flected in their comfort profiles, developed over a long period of time.
In other words, the impact of behavioral factors on thermal preferences
have not been taken into account.However, as studies have shown
[43,44], these interactions are important driving factors in energy
management in buildings.

(A) Overall mechanism of the agent-based model
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Fig. 1. Mechanism of the ABM in this study.
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The following subsections elaborate on the specifics of the human,
occupant voting system, and HVAC agents’ modeling. Note that we
have used air temperature as the sole control parameter in considera-
tion of its substantial contribution to driving the thermal comfort votes
[45]. Furthermore, in modeling the behavior of the HVAC agent, we
assumed that temperature is uniformly distributed in space.

3.1. Populating comfort datasets for human agent modeling

In assessing the impact of thermal comfort sensitivity, it is im-
portant to consider the realistic comfort sensitivities of human subjects,
collected through field observations. Accordingly, we have adopted real
data sets from the literature to create thermal comfort profiles of oc-
cupants. In doing so, we have employed two sources of data: (1) actual
thermal votes, extracted from previous studies [31,46] and (2) syn-
thesized thermal votes, obtained from actual personalized comfort
profiles, presented by Daum et al. [7]. The first source of the data was
adapted given that these studies are the only ones that shared the raw
thermal comfort data to the extent of our literature review. The second
source was adopted to expand the datasets by simulating situations
with a larger number of occupants. In the second source of data, the
actual thermal votes were not presented in the paper explicitly.
Therefore, we synthesized thermal votes based on the presented com-
fort profiles. The study presents six comfort profiles, created as prob-
ability distribution functions using datasets, collected through an
electronic survey in a field study over a long period of time. We le-
veraged the mathematical representation of these six profiles to create a
higher diversity in simulating the behavior of human agents.

From the first data source, we extracted six thermal vote datasets
[31,46] by excluding one case in Jazizadeh et al. [31] as it did not
represent votes, requesting warmer conditions. As shown in Fig. 2, the
data collection in these two studies utilized a 100-point thermal pre-
ference scale (from —50 to 50) to reflect users’ thermal preference
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votes. This scale presents a preferred level of change to achieve comfort
— warmer with positive values, no change with zero, and cooler with
negative values. We divided the votes into three classes; uncomfortably
cool (from 6 to 50), comfortable (from —5 to 5), and uncomfortably
warm (from —6 to —50). Several studies have shown that the three-
category scale showed a better performance in comfort inference,
compared to higher numbers of scales (e.g., 5 or 7 values) [38].
Moreover, as shown in Fig. 3, thermal votes from Pazhoohesh and
Zhang [46] are aligned with the values in multiples of ten (—30, — 20,
—10, ..., 30) except for the votes near zero. All the values in the vicinity
of zero were utilized to represent a comfortable state. Therefore, we
expanded the range for the comfortable state from —5 to 5 for con-
sistency in data from both studies in the first source of data. Once the
comfort profiles are shaped, to create a numeric representation for
votes, we used + 1 for uncomfortably cool votes, O for comfortable, and
—1 for uncomfortably warm votes.

By using the thermal vote data, Daum et al. [7] used multinomial
logistic models to create thermal comfort profiles (see Fig. 4A), which
we used to create the second group of datasets. Similar to our data
processing approach, they have used three types of thermal votes (too
hot, comfortable, and too cold) for data collection and modeling.
However, as noted, they have not presented the raw data. Therefore, we
sampled thermal votes as shown in Fig. 4. Each model specifies the
probabilities of being uncomfortably cool, comfortable, and un-
comfortably warm with respect to each indoor temperature value with
a sum of 100%. Leveraging these models, we utilized two random
variables to synthesize the voting process (Fig. 4B): (1) the first random
variable selects an indoor temperature within the range from 20 to
30 °C, representing the typical indoor temperature range that is usually
controlled by HVAC systems [47], and (2) the second random variable
takes a value in [0,1] to simulate the vote based on the area where the
variable falls (uncomfortably cool, comfortable, and uncomfortably
warm). In order to create human agents’ datasets, we sampled 50
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Fig. 2. Thermal vote categorization process (thermal votes are from Jazizadeh et al. [31]).
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A. Personalized comfort profile
(subject #5in Daum. et al. (2011))

B. Sampling thermal votes
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Fig. 4. Sampling thermal votes using personalized comfort profiles in Daum et al. [7].

thermal votes for each agent to simulate the process for thermal votes
collection to match the number of thermal votes used in Refs. [31,46]
for comfort profiling.

Note that when a human agent provides a new thermal vote to an
OVS agent, the comfort profile of the human agent gets updated.
However, we intentionally reduced the dynamics of our ABM to focus
on the role of thermal comfort sensitivity in the operation of HVAC
systems. Moreover, thermal votes, used in this study, reflect the dy-
namics of the human thermoregulation mechanisms such as change
skin temperature (i.e., physiological) due to clothing insulation. All the
studies we used as data sources for thermal votes [7,31,46] used field
measurements without limiting the clothing insulation and therefore,
they have accounted for the uncertainties associated with clothing in-
sulation.

3.2. Personalized comfort profiling process using stochastic modeling

All the studies that have used thermal comfort votes for creating
comfort profiles have shown vote overlaps under the same thermal
condition. In other words, there are overlapping ranges of temperature,
in which occupants have expressed comfort and discomfort in different
occasions. This phenomenon could be seen in Fig. 4A. Therefore, in
order to create a unified probabilistic thermal comfort profile to reflect
the uncertainty of user experiences, we have adopted a stochastic
modeling approach. To this end, we employed a Bayesian network
modeling process for comfort profiling as proposed by Ghahramani
et al. [17]. The method was adopted given that it leverages the prob-
ability distribution functions of comfortable and uncomfortable condi-
tions to create one overall comfort profile that reflects thermal comfort
sensitivity. We added a normalization step to assign the same scale to
every comfort profile (from 0% to 100%).

The Bayesian network method creates the overall comfort profile by
leveraging the Bayes rules and probability distributions of thermal
perception across different ranges of temperature, associated with the
three types of thermal votes. These thermal votes comprise the spec-
trum of occupants’ individual comfort states (Fig. 5). In doing so, this
method employs the range of air temperature that can be perceived as
comfortable (Fig. 6 (a)) to create three probability distributions; un-
comfortably cool, comfortable, and uncomfortably warm (Fig. 6 (b)). As
shown in Fig. 6 (b), we have leveraged the overlapped parts, re-
presented by three distributions, and created the overall comfort

Uncomfortably cool Comfortable

— ==

Overall comfort

Uncomfortably warm

Fig. 5. Graphical representation of the Bayesian network [17].
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profiles as mathematically presented and shown in Fig. 6 (c) and (d).
For the probability distribution of comfortable votes P(clt), a
normal distribution is used (Equation (1) and Fig. 6 (b)).

(tc - :ug)z)

267

P(clt) = f(t; &) = — !

6N27 eXp(_ )

where c means being comfortable, ¢, represents any indoor temperature,
for which a human agent has comfortable votes, u, is the mean of ¢,
values, and ¢, is the standard deviation of ¢, values. This approach uses
the normal distribution to represent different probability distributions
of comfort. Therefore, we have verified the normality of the datasets
used in this study as presented in the Results section. For the probability
distribution of uncomfortably cool and warm votes that overlap with
comfortable votes, two half normal distributions are employed (Fig. 6
(b)). For these half distributions, the probability of discomfort is max-
imum at both ends in the temperature range of interest. Hence, for
example, the probability distribution of uncomfortably cool has its
center at the minimum air temperature, which was also perceived as
comfortable (min(t.)). Equation (2) and Equation (4) show the half
distributions and their related parameters. The mean values for these
distributions are min(t.) and max(t.) for P(uclt) and P (uwlt), respec-
tively.

— 2
P(uclt) = f (b 6.0) = gfﬁ exp(—“‘“ 2";}:’“0” )v b > min(t)
(2)
1 Miye
Gue = ,|— (bue — min(tc))z
\/ tuc 21: (3)

Where uc means uncomfortably cool, t,. represents any air temperature,
for which a human agent had uncomfortably cool votes in the range of
comfortable air temperature, &, is the standard deviation of t,, with
respect to min(t.), and n,,, is the number of f,.

N 2 b — t))?
P(wlt) = f (o Gan) = &uwfﬁ exp( ut 2’;5:‘“” ]v S ma@)
1 Mty
Suw = \/_ Z (buw — max(tc))z
L 1 (5)

where uw means uncomfortably warm, f,, represents any air tem-
perature, for which a human agent has uncomfortably warm votes in
the range of comfortable air temperature, 6, is the standard deviation
of t,,, with respect to max(t.), and n,, is the number of t,,,. Using these
three probability distributions and conditional probability rules, the
overall probability distribution (i.e., comfort profile) is as presented by
Equation (6).
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(a) Thermal votes

Uncomfortably cold votes within the
range of comfortable air temperature
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Fig. 6. Graphical representation of the comfort profiling process.

P(clt)
w1 P(uclt) + w,P(clt) + wsP (uwlt)

P(oclt) ©)
where P(oclt) is the probability distribution of the overall comfort for a
given temperature t, and w;, i € [1,2,3] are the weight factors for prior
probabilities associated with P(uclt), P(clt), and P(uwlt). The weight
factors present prior probabilities in the Naive Bayes formulation of
Bayesian networks. In this approach, it is assumed that all probability
distributions contribute to the overall comfort with the same weight
[17]. An alternative approach in calculating the weight factors is to
consider the frequency of votes in each thermal comfort vote category.
However, the number of votes might reflect the number of exposures to
different thermal conditions during the data collection. Therefore, in
order to avoid biases due to the data collection process, we used the
same weight factors for different categories of thermal votes in creating
thermal comfort profiles. When &, is large, as illustrated in Fig. 6 (b),
the P(clt) tails spread out beyond P (uclt) and P(uwlt) despite the fact
that comfortable votes have never been reported for those areas. When
such situations happen, we change the P (oclt) value to zero for those
tails as shown in Fig. 6 (c). In the last step, a min-max normalization is
conducted:

P(oclt) — min(P(oclt))
max (P (oclt) — min(P (oclt)

P(oclt) =
(oclt) o

Fig. 6 shows each step of this comfort profiling method.
3.3. HVAC agent's conditioning logic

The HVAC agent was designed to implement three conditioning
strategies to search for the collectively acceptable temperature set-
points. In each strategy, the HVAC agent uses the following parameters
to select the collectively acceptable temperature setpoint.
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(1) Use of human agents' instantaneous thermal votes (inspired by
Murakami et al. [29])

(2) Use of human agents' thermal preference values (inspired by
Jazizadeh et al. [31])

(3) Use of human agents' thermal preference and sensitivity values

To clarify the parameters, Fig. 7 provides a graphical representation

]OO‘! 7777777777777777
S
Qo
Q0
g 72F——————~
o
g Thermal comfort sensitivity: 24
[§)
] .
T S Operable temperature interval
o]
)
> Thermal vote: +1 (warmer)
= _—
ko)
[o]
Q
o Error: 2.4°C
o
Temperature Thermal Temp>erofure
under preference
evaluation (23.4°C)
(21°C)

Interval: Operable temperature setpoint variation
Strategy (1) - Thermal vote (Warmer, no change, cooler)
Strategy (2) - Error (Thermal preference — temperature (under evaluation))
Strategy (3) - Thermal vote (Warmer, no change, cooler)
+ Thermal comfort sensitivity (Probability variation)

Fig. 7. Graphical representation of the parameters that each strategy utilizes.
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of the parameters which have been used in each strategy. Thermal
preference stands for the temperature that has the maximum prob-
ability of comfort. Thermal votes are inferred from the comfort profiles
by using Equation (8) (see Fig. 7 for illustration). For example, when an
OVS agent uses human agent #1's comfort profile in a scenario that the
evaluating ambient temperature is higher than the agent's thermal
preference, the OVS agent sends a cooler preference vote to the HVAC
agent and vice versa.

— 1, if T > TP, (asking for cooler temperature)
Vir =11, if T < TP (asking for warmer temperature)

0, if T = TP, (no change) (8)

where T is the temperature, which is being evaluated, TP is a thermal
preference, i is the index for human agents, and V' is the thermal vote of
human agents.

In order to quantify thermal comfort sensitivity, we have used the
comfort probability differentials between temperature setpoint inter-
vals (Equation (9) and Fig. 7).

CPry4,, — CPr, if T < TP,
CPr — CPT—lima lf T > TP,
0,if T=TR

TS;r =
(C)]

where CP is the probability of being comfortable, t;,, is the temperature
setpoint interval, and TS is thermal comfort sensitivity. For example, in
a thermal comfort profile with a 48% probability of being comfortable
at 21.0°C and a 72% probability of being comfortable at 21.5°C, the
thermal comfort sensitivity is calculated as 24% of comfort gain by
moving towards 21.5°C. Fig. 7 illustrates this concept. In contrast, in
another comfort profile, with a 40% probability of being comfortable at
21.5°C and 50.0% of being comfortable at 21.0 °C, the thermal comfort
sensitivity is calculated as 10% of comfort gain by dropping the tem-
perature to 21.0 °C. As this example shows, the former profile manifests
higher sensitivity to change in temperature. If these two profiles are
present in the same room, the former profile should be prioritized when
the temperature setpoint is selected between 21.0 °C and 21.5 °C.
Using the parameters presented above, in the first strategy, the
HVAC agent requires a thermal vote from OVS agents to select the
optimal temperature setpoint. It evaluates the potentials from the
starting point, which is the setback temperature. The setback tem-
perature is selected to ensure energy efficient operations. For example,
in the warmer seasons, the setback is a higher temperature and vice
versa. From this point, the HVAC agent changes the temperature

Operation strategy #1: Thermal-vote-based

Human agent #1  Human agent #2

§ 100 N
| [0)) BN
| 5 oy
Comfort o 7N
profile 52 ! \
£9 { k
3 g 1 \\
8 o ! \
9 1 \
s 0 /I \\
Temperature IO 2] 22 23 24 25
Sum of votes +2 +2 0 0 0 2 -2
Starts from 19°C i
Temperature ) Selects 21°C
setpoint : . Storts from 25°C
; H arts from 25°
selection selects 23°C.

Fig. 8. Example of the first conditioning strategy.

T+ tin, if 2 Vir2 1
T=1T = ty, if 2f Vir < -1

T, if Y/ Vir=0 (10)
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setpoint depending on the majority thermal vote. An example has been
given in Fig. 8, in which two human agents’ comfort profiles with
thermal preferences of 20.7°C and 23.3°C shared a thermal zone.
Starting from a setback temperature of 19.0°C, the HVAC agent
monitors the sum of thermal votes at predefined temperature intervals
(e.g., with a resolution of 1.0 °C) and selects the optimal temperature
setpoint when the sum of votes is zero (at 21.0°C). This strategy has
been implemented using Equation (10) in a control loop.

The iterations continue until one of the following conditions is met:
(1) all the occupants are satisfied with the thermal conditions, (2) the
sum of thermal votes become zero, or (3) the temperature selection
process gets stuck in a loop between two temperature setpoints (at
21.0°C, there are more votes for warmer, but 22.0 °C there are more
votes for cooler). This third condition could be detected by looking at
the history of the evaluated temperatures. To break the loop, assuming
equal weight for each thermal vote, the algorithm chooses the tem-
perature setpoint, which is closer to the initial temperature. The initial
temperature is assigned as a setback temperature (18.0 °C and 28.0 °C in
the winter and summer seasons, respectively) and temperatures closer
to it are the energy efficient temperatures. Weighted thermal comfort
votes could be also considered for different scenarios such as temporary
vs. permanent occupancy although it is out of the scope of this study.
Table 1 shows the pseudo code for this strategy.

The second strategy simulates a proportional control approach,
which seeks to minimize the collective error between human agents’
thermal preferences and operable temperature setpoints (Equation
(11)). Although Jazizadeh et al. [31] pointed to uneven distribution of
temperature in different rooms of a thermal zone as the rationale for
installing room-level temperature sensors, in this study, we presumed
that the temperature is uniformly distributed in multi-occupancy
spaces. Therefore, the objective function is as follows:

n

erroror = z |0T — TP
i an

where OT is operable temperature setpoint (e.g., 20.0, 21.0, ...28.0 °C).
The HVAC agent collects errors at each temperature setpoint from OVS
agents as feedback and selects the setpoint, which has the minimum
error. For example, when we have three human agents, who prefer
21.0°C, 25.0 °C and 25.5 °C, and the HVAC agent can operate from 19.0
to 28.0°C at an interval of 1.0°C, the HVAC agent selects the tem-
perature setpoint, which has the minimum sum of errors. Fig. 9 shows
and illustration of this strategy and Table 2 shows its pseudo code.

The last strategy uses human agents' thermal votes and comfort
sensitivities provided by OVS agents (Equation (12)). Similar to the first
strategy, the HVAC agent collects the sum of thermal votes from OVS
agents for finding the temperature setpoint closer to a majority vote.
However, once achieving a zero value for the sum of thermal votes, the
HVAC agent seeks to further finetune the temperature setpoint ac-
cording to the human agents' thermal comfort sensitivities. One ex-
ample has been given in Fig. 10. Comparing the human agents, the
human agent #2 has a higher tolerance in response to temperature
variation at the ranges, where the sum of thermal votes is zero (21, 22,
and 23 °C). Therefore, the HVAC agent evaluates each human agent's
thermal comfort sensitivity in the range of collective neutral vote.
Moving from 21.0 °C to 22.0 °C, the HVAC agent observes a 48% loss of
comfort for human agent #1 and 23% gain of comfort for the human
agent #2. For the next interval, these values are 49% loss and 9% gain
for human agents #1 and #2, respectively. Using these values and
leveraging the third strategy, the HVAC agent balances the trade-off of
comfort gain and loss by relying on thermal comfort sensitivity. In this
example, the HVAC agent leans towards 21 °C.

The HVAC agent collects feedback from OVS agents by starting from
the initial temperature and evaluates the next operable temperature
setpoints as needed (Equation (12)). As noted, this searching process
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Table 1
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Pseudo code for the first conditioning strategy, which uses direct thermal votes.

Variables:

T: Temperature which is being evaluated.

while
if length (HT) <2
PT =0
else

ifPT==T
end if

if T < P, then
Vi=+1

else if T > P, then
Vi=-1

else
Vi=0

end if

end for

T=T

else if sum(V;,i € [1,2,3,...]) > 0 then
T=T+DT

else sum(V;,i € [1,2,3,...]) > 0 then
T=T-DT

end if

end while
DT = T « Desired temperature is found

HT: History of temperature setpoints, which have been evaluated (an array).

PT: Temperature which is two iterations before T.

interval: Temperature setpoint interval that an HVAC agent can change

DT: Desired temperature (i.e., collectively acceptable temperature)

P,i € [1,2,3,...]: Thermal preferences of human agents (i is the number for each human agent).

PT = HT(end - 2) < Temperature which is two iterations before T
break (cycling between two temperature setpoints)

for Every Feedback do < Check each agent’s thermal vote

if sum(V,,i € [1,2,3,...]) == 0 then « Check the sum of all thermal votes

HT = [HT, T] « Store the temperature setpoint which has been determined by the majority of thermal votes

Operation strategy #2: Error-based

Human agent #2: 25.0°C

#1:21.0%
Human agent #1: 21.0°C / H‘u/mon agent #3: 25.5°C

Human agent's thermal preference

Operable temperature (°C) ' ERE21 22 23 24 25 2602 28\'
Error (Human agent #1) 20 10 O 10 20 30 40 50 60 70
Error (Human agent #2) 60 50 40 30 20 10 00 10 20 30
Error (Human agent #3) 65 55 45 35 25 15 05 05 1.5 25
Sum of errors 145 115 85 75 65 55 45 65 95 125

Fig. 9. Example of the second conditioning strategy.

might get stuck in two temperature setpoints. For example, at 21.0 °C,
the sum of thermal comfort sensitivity is a positive value (i.e., moving
to a warmer temperature setpoint) while the sum of thermal comfort

Table 2

sensitivity becomes a negative value at 22.0 °C. In this case, as discussed
earlier, the temperature is set to a value, which is closer to the starting
temperature value (i.e. set back temperature) given that all occupants
have the same priority in the view of the HVAC agent. Table 3 shows
the pseudo code for this strategy.

Regardless of the operational strategy, once the desired temperature
setpoint is determined by the HVAC agent, the probability of thermal
satisfaction for each human agent is extracted for comparison. For all
three operational strategies, in our analyses, we used three operable
temperature setpoint intervals of 0.1, 0.5, and 1.0 °C to assess the im-
pact of the temperature setpoint resolution.

Pseudo code for the second conditioning strategy — the use of thermal preference.

Variable:

OT: Temperatures that an HVAC agent can set (e.g., 20°C, 21°C, 22° C,...)

DT: Desired temperature (i.e., collectively acceptable temperature setpoint)

P,i € [1,2,3,...]: Thermal preferences of human agents (i is human agent index).
error;,i € [1,2,3,...],j € [OT]: Error between human agents’ thermal preference and OT;
minError « the minimum error, which is initialized to a large value.

for each OT; in OT do

for each feedback do < Check each agent’s error
error;; = error;; + [OT; — Bj|

end for

ifsum(errori,]-,i €[1,23, ]) < minError
minError = sum(errori'j,i €[1,2,3, ])
DT = OT;

end if

end for
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Operation strategy #3: Thermal-comfort-sensitivity-based

Human agent #1  Human agent #2

o
£
00
Comfort 83 Relatively small gaps
profile 3] (high tolerance in
_;‘Q temperature variation)
g g Relatively large gaps
_g O (low tolerance in
& temperature variation)
Temperature

Sum of votes
Starts from 19°C

Temperature Selects 21°C

setpoint .

selection Selects 21°C Starts from 25°C

Sum of Prioritize human agent
Thermql #1 due to its thermal
sensitivity 48-23>0 49-9>0 ™ sensitivity

Fig. 10. Example of the third conditioning strategy.

T + interval, if 3 Vir > 1orYy Vir = 0and Yy TSyr > 0
T = {T — interval, if Z:‘ Vir < -lor E:‘ Vir = 0and Z:‘ TSt <0
T, if X' Vir=0and Y TS;7 =0 12

Table 3
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4. Results
4.1. Analyses with actual comfort datasets

In Fig. 11, the six thermal comfort profiles that were created by
using direct extraction of thermal votes from prior studies have been
illustrated. To verify the normality of six human agents’ thermal votes,
we conducted the Kolmogorov-Smirnov test, one of the commonly used
normality method [48], and confirmed their normality (Table 4) with p-
values less than 0.05 for all the cases. Note that the zeros in Table 4 are
below 2.2251xe ~%%® and treated as zeros by MATLAB. It appeared that
(1) human agents #1 and #3, (2) human agent #2 and 5, and (3)
human agent #4 and 6 have similar thermal preferences. However,
when it comes to thermal comfort sensitivity, human agent #3 had a
better tolerance toward lower temperatures, compared to human agent
#1. Human agent #2 had almost equivalent thermal comfort sensitivity
to high and low temperatures in contrast to human agent #5, who had
better tolerance to low temperatures. Human agent #4 was the most
sensitive to temperature variations, and human agent #6 showed a
better tolerance, compared to human agent #4.

Pseudo code for the third conditioning strategy — the use of thermal vote and comfort sensitivity.

Variables:

T: Current temperature

temperature j.

while
if length (HT) <2
PT =0
else

if PT ==
end if

if T < P, then
Vi=+1
TS; = CPryinterval — CPr
else if T > P;; then
Vi=-1
TS; = CPryinterval — CPr
else
Vi=0
TS;=0
end if
end for

if Y7L, V; <0 then
T=T+DT

elseif X7 ;V; > 0 then
T=T-DT

else
if sum(TS;,i € [1,2,3,...]) > 0 then
T=T+DT
else if sum(TS;,i € [1,2,3,...]) < 0 then
T=T-DT
else
T=T
end if
end if

end while
DT = T « Desired temperature is found

HT: History of temperature setpoints, which have been evaluated (an array).

PT: Temperature which is two iterations before T.

OT: Temperatures that an HVAC agent can set (e.g., 20°C, 21°C, 22°C, ...)

interval: Temperature interval that an HVAC agent can change

DT: Desired temperature (i.e., collectively acceptable temperature)

P,i € [1,2,3,...]: Thermal preferences of human agents (i is the number for each human agent).

TS;,i € [1,2,3, ... ]: Thermal comfort sensitivity of human agents (i is the number for each human agent).
CP,;,i € [1,2,3,...],j € [OP]: Comfort probability of human agents (i is the number for each human agent) at

PT = HT(end - 2) « Temperature which is two iterations before T
break (cycling between two temperature setpoints)

for each feedback do « Check each agent’s thermal vote and thermal comfort sensitivity

HT = [HT, T] « Store the temperature setpoint which has been determined by the majority of thermal votes
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Comfort profiles (actual thermal votes)

100

Probability (%)
3

29

Temperature (°C)

Human agent #1 (thermal preference: 25.05°C)
Human agent #2 (thermal preference: 24.01°C)
Human agent #3 (thermal preference: 24.93°C)
Human agent #4 (thermal preference: 21.93°C)
Human agent #5 (thermal preference: 23.91°C)
Human agent #6 (thermal preference: 22.06°C)

Fig. 11. Six human agents' comfort profiles based on actual thermal votes.

Table 4
P-values of each human agent's thermal votes derived from the Kolmogorov-
Smirnov test.

Number of human P-value
agents
Uncomfortably cool =~ Comfortable  Uncomfortably
warm
1 8.039xe "% 2.079xe 3! 9.152xe”*°
2 1.645xe " 1° 5.857xe 12 2.735xe” 2
3 5.857xe 12 8.039xe” %! 9.785xe” !
4 2.156xe %8 9.785xe™'* 0
5 0 9.785xe”'*  9.785xe ™14
6 8.882xe ™ 1¢ 2.220xe” ¢ 2.156xe” %8

With these six human agents, different multi-occupancy cases were
simulated to account for diverse scenarios. Scenarios, in which different
combinations of two to five human agents interacting with a single
HVAC agent, were simulated. The number of cases (N¢) in each multi-
occupancy scenario can be computed by Equation (13), where k is the
number of human agents in multi-occupancy spaces and n represents
the maximum number of human agents (six in this case).
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n!

Ne = =k

a3

In the case with six human agents, we could only obtain a single
output. Therefore, we eliminated that scenario because the statistical
analysis was not possible. Through pair-sampled t-tests utilizing the
number of cases, we have investigated the difference between the set-
points from the third and the first two strategies. Fig. 12 shows the
selected temperature setpoints by three operational strategies for
combinations of two human agents, 28.0°C as initial setback tem-
perature, and 1°C as operable temperature setpoint interval. Even
though Fig. 12 represents a limited number of scenarios in our analyses,
it clearly demonstrates the differences among different operational
strategies. Highlighting the impact of the initial temperature setpoint,
the first operational strategy often selected 24.0 °C or 25.0 °C (80%)
given that three human agents preferred temperatures above 24.0 °C.
On the other hand, the second strategy often ended up with 23.0°C
(46.7%) to find an equidistance from human agents’ thermal pre-
ferences. The third operational strategy, however, chose 22.0 °C with a
higher frequency (46.7%). The high thermal comfort sensitivity of
human agent #4 and #6 contributed to these results. Similar tendencies
could be observed throughout different scenarios, in which other
combinations of humans share the same thermal zone.

Table 5 shows the p-values from the paired-sample t-tests. With 0.95
significance level, 29 cases out of 48 cases (60.4%) showed statistically
significant differences (the bold texts in Table 5). This demonstrates
that thermal comfort sensitivity played a pivotal role in creating a
collectively acceptable condition in a multi-occupancy space even for
scenarios that three groups of human agents preferred similar tem-
peratures.

The averaged probabilities of being comfortable, derived from
human agents, were also compared as presented in Fig. 13. Generally
speaking, the more human agents are present in a multi-occupancy
space, the lower the probability of collective thermal satisfaction. The
diversity in thermal preferences and comfort sensitivities across dif-
ferent human agents plays a part in this trend. As the results show, the
third operational strategy outperformed the rest of the strategies. In
some cases, the first operational strategy resulted in similar prob-
abilities, but this strategy could be considerably affected by the initial
temperature values (i.e., the starting point). When human agents can be
grouped based on their thermal preferences (e.g., human agent #1 and
#3 (with the thermal preference of 22.0 °C) vs. #4 and #6 (with the
thermal preference of 25.0 °C)), the first strategy usually gets stuck with
one group's thermal preference. We have illustrated this concept in
Fig. 14. Hence, if the human agents in the group whose thermal pre-
ferences are far from the initial temperature are sensitive to thermal
variations, the overall probability of being comfortable drops. In other

Selected temperature setpoints

Strategy #1: Thermal-vote-based

Strategy #2: Error-based

Strategy #3: thermal-comfort-sensitivity-based

10 10 10
oF oF or
8l 8l 8l
7 7 7
5 6 = 6 5 6
[}
2 2 2
£5 £ 5 [
2 =) =
Z 4 Z 4 Z 4
3 3 3
2 2 2
1 1 1
22 23 24 25 22 23 24 25 22 23 24 25
Temperature setpoint Temperature setpoint Temperature setpoint
Conditions: Number of human agents: 2,  Inifial setback temperature: 28°C,  Operable temperature interval: 1°C

Fig. 12. Examples of the selected temperature setpoints from three operational strategies.
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Table 5
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P-values from paired-sample t-tests between the operational strategies (forgoing thermal comfort sensitivity in (#1 and #2) vs. accounting for thermal comfort

sensitivity (#3)) for example actual thermal comfort profiles.

Number of human agents (Number of configurations)

P-values from pair-simple t-tests

Strategy #1 vs. #3

Strategy #2 vs. #3

Temperature setpoint interval (Initial temperature: 20.0 °C)

0.1°C 0.5°C 1.0°C 0.1°C 0.5°C 1.0°C
2 (15) .0062 .1643 .0192 3.927xe” % 3.816xe” 9.199xe %
3 (20) 3.753xe” 3.379xe” .0021 .2406 .1893 .5409
4 (15) .0104 .3343 4.264xe ™ %* .0492 .0359 .0061
5 (6) 1742 .0756 .0756 .0151 1747 1747
Initial temperature: 28°C
2 (15) .0208 .1502 .0069 .0114 1189 .3636
3 (20) .0021 3.379xe” % 3.753xe” % .2406 .1893 .5409
4 (15) 6.467xe” % 3.973xe™ 4.264xe™ .0341 .0359 .0061
5 (6) .0250 .0756 .0756 .0151 1747 1747
Bold texts are below 0.05 (statistically significantly different).
Averaged probability of being comfortable
Two human agents in a space | Three human agents in a space
|
80.0% I 800%
74.5% 74.9% 73.7% 74.0% 21 73.9% 73.5% i
71.4% 6
2z 69.9% i 2z 69.4% 69.8% 9.0, 69.8% 70.3% 70.3% 69.9% 69.9%
3 70.0% 66.9% 67.9% R ! 5 70.0% 67.4% 67.4%
[} -1 -]
S 62.8 62.8 628 628 2.0 18 62.7%
o } s
60.0% | s0% %85 58.1 57.6 57.6 58.0 580
! 56.7%
|
50.0% I 500%
20 (0.1) 28 (0.1) 20 (0.5) 28 (0.5) 20 (1.0) (1.0) ; 20 (0.1) 28 (0.1) 20 (0.5) 28 (0.5) 20 (1.0) 28 (1.0)
Initial temperature (temperature setpoint interval (°C) | Initial temperature (temperature setpoint interval (°C)
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, S
|
Four human agents in a space ! Five human agents in a space
80.0% i 80.0%
|
> 69.5% 69.8% % 3% L2
£ 700% 6 69.2% 69.3% 69.2% 69.3% 69.1% 6.1% | £ 1oz
8 642 " 265 4% 645 5 P8 64.5% 64.6% 64.5% 64.5% 64.5% 64.5% 64.6% 64.5%
4] 62.4 63 o% 62.4% ) 63.2 62.5% 62.5% 62.5% 63.2 62.5%
2 . A% & 61.3 61.3 60.2% 60.2
60.0% [ 600%
|
|
I
|
50.0% I 50.0%
20 (0.1) 28 (0.1) 20 (0.5) 28 (0.5) 20 (1.0) 28 (1.0) ; 20 (0.1) 28 (0.1) 20 (0.5) 28 (0.5) 20 (1.0) 28 (1.0)
I

Initial temperature (temperature setpoint interval (°C)

Strategy #1 (Thermal vote)

I Strategy #2 (Thermal preference)

Initial temperature (temperature setpoint interval (°C)

W Strategy #3 (Thermal preference & sensitivity)

Fig. 13. Averaged probability of being comfortable for different multi-occupancy scenarios and control configurations: three operational strategies, two initial

temperatures, and three operable temperature setpoint intervals.

Operation strategy #1: thermal-vote-based

Human agent #6: 22.06°C Human agent #3: 24.93°C
Human agent #4: 21.93°C l Human agent #1: 25.05°C

Thermal
preference

Temperature -

22 25

A o 0 4
thermal votes |

Temperature | Starts from 20°C Starts from 28°C
setpoint —
selection Stays at 22°C Stays at 25°C

Fig. 14. Example of temperature setpoint selection process using the first op-
erational strategy from different initial temperature values.
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words, the performance of this strategy shows instability, compared to
the rest.

The second strategy is not influenced by the initial temperature, but
it has demonstrated the worst performance. Fig. 15 illustrates one of the
reasons for the low performance: this strategy seeks to find the tem-
perature setpoint that is equidistant from all the preferred temperatures
by disregarding the sensitivity to temperature variations.

Lastly, investigating different temperature setpoint intervals shows
that the use of 0.1 °C has the best performance in most scenarios and the
use of 0.5 °C was the second best — that is, high flexibility in operable
temperature setpoints provides better solutions to human agents.
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Operation strategy #2: thermal-preference-based

100 —
=
=
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O
Ke]
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o setpoint
temperature
(24°C)
[ SEEEEE——— — S —
17 19 21 23 25 27 29

Temperature (°C)

Human agent #1 (thermal preference: 25.05°C)
Human agent #3 (thermal preference: 24.93°C)
Human agent #4 (thermal preference: 21.93°C)

Fig. 15. Example of a selected temperature setpoint by the second operational
strategy.

However, the gap between the overall probabilities derived from two
intervals was insignificant (the highest gap was 0.9%, for scenarios with
two human agents and the initial temperature of 20.0 °C). Therefore,
the resolution of the temperature setpoints does not appear to be an
important factor for the evaluated cases.

4.2. Analyses with synthesized comfort datasets

To further explore the importance of thermal comfort sensitivity, as
noted earlier, we created 15 synthesized comfort profiles to represent
more diverse human agents. Before applying the Bayesian network
modeling process, we checked votes data for normality (Table 6). As
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noted, the second approach helped us evaluate more combinations of
scenarios and cases, compared to the use of actual thermal profiles in
Section 4.1. It is worth mentioning that since the original profiles in
Daum et al. [7] were created using a large number of data points from
each individual (6851 entries for 28 participants), our approach of
randomly sampling 50 points from the original profiles results in
creating 15 different comfort profiles. Unlike the actual thermal pro-
files, which could be grouped by preferences, in using synthesized
profiles, we diversified thermal preferences. As shown in Fig. 16
thermal preferences were distributed across a temperature range from
20.05 to 27.31 °C, which is an acceptable range according to the field
study by Klein et al. [40]. They utilized 242 thermal votes from per-
manent and temporary occupants of a building and presented a dis-
tribution of their thermal preferences (from 18.33 to 27.22°C). In
general, compared to the comfort profiles presented in Section 4.1,
several human agents including #2, #8, #10, #11, and #12 had higher
tolerances to temperature variations.

With 15 human agents, diverse multi-occupancy scenarios were si-
mulated by using combinations from 2 to 10 human agents in a space.
Similar operational strategies as presented in Section 4.1 were used in
the analysis of this section. Table 7 shows the p-values for the t-test
between the selected temperature setpoints by the third operational
strategy vs. the first and second strategies. The number of cases (N¢) in
each multi-occupancy scenario were computed by using Equation (13).
In this case, almost for all the scenarios (97.2% of cases), statistically
significantly different setpoints with a significance level more than 0.95
were observed. This is a clear increase, compared to the previous results
(60.4%). In other words, when the diversity of thermal preferences and
comfort sensitivities of human agents are taken into consideration,
there is a high potential that the HVAC agent selects different tem-
peratures setpoint. Note that the zeros in Table 7 are below
2.2251xe ™% and are treated as zero.

When it comes to the average probability of collective comfort, as
shown in Fig. 17, similar to what we observed before, the third strategy
outperformed the other two strategies. These graphs also reveal that
when the number of human agents in a thermal zone increases, the

Table 6

P-values of each human agent's thermal votes derived from the Kolmogorov-Smirnov test.
Number of human P-value
agents

Uncomfortably cool Comfortable Uncomfortably warm

1 3.535xe 10 3.620xe 18 6.157xe”%°
2 7.564xe 10 1.051xe ™! 9.785xe ™ 14
3 2.137xe ™1 2.780xe ™7 1.268xe ™M
4 2.220xe " 1® 9.785xe 14 5.309xe %7
5 8.882xe " 1® 3.600xe >3 2.756xe %%
6 1.110xe~ ¢ 2.137xe 1 6.969xe 28
7 5.857xe 12 1.645xe™1° 8.039xe %!
8 2.137xe " ® 2.355xe %4 2.220xe” ¢
9 5.857xe 12 6.157xe "2 2.137xe” 1
10 3.535xe 10 6.157xe ™20 3.620xe ™18
11 2.156xe "8 6.243xe " >° 0
12 0 2.780xe 7 4.047xe”%°
13 4.545xe™ 1! 4.719xe™1° 3.620xe ™18
14 1.268xe ™1 1.268xe ™1 4.719xe” 10
15 1.268xe” 2.780xe "7 2.137xe” 1
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Fig. 16. Fifteen synthesized comfort profiles to represent human agents used in the analyses.

Table 7

Human agent #08 (thermal preference:
------ Human agent #09 (thermal preference:

23.02°C)
20.82°C)
: 25.55°C)
:22.22°C)
:27.31°C)
:20.26°C)
:21.74°C)
:25.16°C)

P-values from paired-sample t-tests between the operational strategies (forgoing thermal comfort sensitivity in (#1 and #2) vs. accounting for thermal comfort

sensitivity (#3)) for synthesized thermal comfort profiles.

Number of human agents (Number of cases) P-value from pair-simple t-tests

Strategy #1 vs. #3

Strategy #2 vs. #3

Temperature setpoint interval (Initial temperature: 20 °C)

0.1°C 0.5°C 1.0°C 0.1°C 0.5°C 1.0°C

2 (105) 6.610xe™ "7 3.661xe " '3 3.112xe” % 3.788xe ™ % .0137 0.0296

3 (455) 2.601xe 72 1.487xe” % 1.308xe % 4.357xe % 2.951xe” ¢ .1290

4 (1365) 2.193xe 198 7.379xe 108 1.054xe 7> 7.870xe” >3 1.299xe " 2.393xe ™12
5 (3003) 0 0 0 7.216xe” 74 8.093xe ¢ 1.185xe 20
6 (5005) 0 1.318xe” 233 3.687xe 154 4.477xe” 115 1.974xe 130 1.275xe %5
7 (6435) 0 0 0 0 3.746xe 2% 8.328xe 122
8 (6435) 0 0 0 0 0 5.945xe 208
9 (5005) 0 0 0 0 2.620xe ~2%2 4.194xe 185
10 (3003) 0 0 0 0 1.896xe %! 4.550xe M
Initial temperature: 28 °C

2 (105) 4.461xe” '3 1.433xe 10 3.822xe %8 6.875xe %% .0415 .6594

3 (455) 2.110xe” %8 3.351xe 73 1.247xe 5 4.357xe "% 2.951xe ¢ .1290

4 (1365) 6.801xe %8 3.598xe 104 1.553xe % .004 3.047xe™ 1! 2.393xe ™12
5 (3003) 0 0 0 7.216xe 74 8.093xe *° 1.185xe 20
6 (5005) 0 0 3.631xe 225 7.477xe 104 8.116xe '2¢ 1.275xe %
7 (6435) 0 0 0 0 3.746xe 2% 8.328xe 122
8 (6435) 2.646xe " >° 0 1.345xe” 0 0 5.945xe 208
9 (5005) 0 0 0 0 2.620xe 292 4.194xe ™ 18%
10 (3003) .0132 1.034xe 28 2.656xe ! 0 1.896xe ! 4.550xe "

Bold texts are below 0.05 (statistically significantly different).

probability of collective comfort decreases, and the performances of
different operational strategies converge. The influence of initial tem-
perature on the first operational strategy was observed in this case as
well. However, due to the differences between the thermal preferences
and increases in the thermal tolerances, the variations between

different configurations in the first and second strategies do not affect
the performance as dramatic as we observed in Section 4.1. Similarly,
the resolution of the temperature sensing system does not appear to
have a significant impact on performance.
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Fig. 17. Average probability of being comfortable in several multi-occupancy scenarios — each operation strategy, two initial temperatures, and three operable

temperature setpoint intervals.

5. Discussion

The observations, in this study, could facilitate a more fundamental
discussion on control strategies according to personalized thermal
comfort in multi-occupancy spaces. According to these observations,
one could ask (1) whether the air conditioning systems should provide
an equally fair ambient condition for all the occupants or (2) providing
a comfortable environment for the majority of occupants is a better
strategy? Fig. 15 could be used as a clarifying example. In this figure,
the HVAC agent could use comfort sensitivity to account for a fair and
balanced temperature setpoint, or it could alternatively shift to meet
the thermal preferences of two occupants and recommend adaptation
strategies to the third occupant. In other words, there could be several
possibilities to better serve multiple occupants in a space. A study by
Shin et al. [49] proposed an approach to managing the fairness by
HVAC systems in a multi-occupancy space. They have stated that a
single optimized temperature setpoint could result in consistent dis-
satisfaction of some occupants and therefore selecting the majority vote
or the mean (or median) temperature value might be unfair. Accord-
ingly, they have proposed to minimize the accumulated discomfort by
varying the temperature setpoint over time to meet the desire of all
occupants at least for a period of time. In other words, in the case of
examples in Fig. 15, their approach proposes to occasionally set the
temperature setpoint according to the preference of the third occupant
to be fair. Nonetheless, adjusting the clothing level or using local and
personalized air conditioning systems could be recommended in case of
having dissatisfied occupants while using an optimized temperature
setpoint. In this study, we have explored the impact of different stra-
tegies including our proposed strategy that account for thermal comfort
sensitivity and thus left further research into control fairness for future
studies.

6. Conclusion

In this study, we have evaluated the performance of HVAC opera-
tional strategies that leverage personalized thermal comfort profiles as
contextual information. In doing so, we have specifically investigated
the role of thermal comfort sensitivity on HVAC operation in driving
the temperature control setpoint and the average probability of

collective thermal satisfaction. Simulating the interactions between
occupants and HVAC systems through agent-based modeling, we com-
pared three operational strategies by evaluating (1) the selected tem-
perature setpoints, and (2) the average probability of collective thermal
comfort in multioccupancy scenarios. Two of these strategies solely rely
on thermal preferences, obtained from personalized thermal comfort
profiles, while the third one accounts for thermal comfort sensitivity as
well. We have further investigated the impact of temperature setpoint
resolution in achieving higher overall thermal satisfaction. To this end,
we explored three temperature setpoint resolutions of 0.1, 0.5, and
1.0°C. The evaluated scenarios included combinations of occupants
from 2 to 10 human agents by using six real-world and 15 synthesized
thermal comfort profiles. Among all the evaluated scenarios, in 85.9%
(134 out of 152) cases, statistically significant differences in tempera-
ture setpoints were observed when thermal comfort sensitivity was
taken into consideration while the overall probability of having com-
fortable states increased. The results of the analyses demonstrated that
the temperature setpoint resolution does not significantly influence the
average collective satisfaction. We have also assessed the operational
strategies, proposed by previous studies, which employ personalized
comfort profiles. Therefore, this study also contributes to a better un-
derstanding of collective conditioning by using personalized comfort
profiles.

There are also limitations in this study. As noted, this study was
conducted under the assumption of having a uniform temperature
distribution in a space, which is the reason that we did not specify the
characteristics of the simulated spaces. Addressing the dynamic dis-
tribution of temperature in a thermal zone could potentially improve
the operational strategies and it can be reflected in agent-based mod-
eling by using computational fluid dynamics (CFD). Also, we have
analyzed the performance of different strategies at the time when the
environment has been stabilized. In the case of having field studies,
HVAC systems’ response time could affect the results. Moreover, as the
number of occupants in a multi-occupancy space increases, as it is ex-
pected, the efficacy of integrating personalized thermal comfort profiles
reduces and legacy operational methods could show the same outcome.
Lastly, in investigating the impact of the temperature setpoint resolu-
tions, we have considered values as low as 0.1 °C, which might not be
feasible given the existing technologies. The reason for its inclusion was
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to investigate the impact of a hypothetical scenario, in which sensing
systems could enable us to achieve that level of resolution. However,
the results showed that the impact of such a high resolution is subtle,
compared to generally operable temperature intervals (i.e., 0.5 °C and
1.0°C). These findings could contribute to a better understating of
temperature resolution impact even if it may be considered as hy-
pothetical.

The proposed ABM model could be further developed to account for
dynamic occupancy patterns, weighed comfort profiles, and real-world
implementation. There could be a number of situations, where different
weights can be assigned to different comfort profiles including perma-
nent vs. temporary occupants, healthy vs. sick occupants, and adults vs.
children occupants. The integration of the proposed operational
strategy in this study could be reflected in the temperature setpoint
configuration in real environments. The advancements of occupants'
voting systems through mobile computing devices such as smartphones
have paved the way for quantifying thermal comfort sensitivities.
Accordingly, as the future directions of this study, we plan to leverage
more complex agent-based-modeling to account for contextual in-
formation of the space, occupancy patterns, occupants’ interactions,
and energy consumption associated with different thermal comfort
strategies and explore its integration into thermostat control logic.

Acknowledgment

This material is based upon work supported by the National Science
Foundation under grant #1663513. Any opinions, findings, and con-
clusions or recommendations expressed in this material are those of the
authors and do not necessarily reflect the views of the National Science
Foundation.

References

[1] U.S. Energy Information Administration, Commercial Buildings Energy
Consumption Survey: Energy Usage Summary, (2012) 2012.

U.S. Energy Information Administration, Heating and Cooling No Longer Majority
of U.S. Home Energy Use, (2013) [cited 2017 1.8.]; Available from: http://www.
eia.gov/todayinenergy/detail.php?id = 10271&src = %E2%80%B9%
20Consumption%20%20%20%20%20%20Residential%20Energy%20Consumption
%20Survey%20(RECS)-b1.

ASHRAE, Thermal Environmental Conditions for Human Occupancy, ASHRAE,
Atlanta, GA, 2017.

C. Huizenga, S. Abbaszadeh, L. Zagreus, E.A. Arens, Air Quality and Thermal
Comfort in Office Buildings: Results of a Large Indoor Environmental Quality
Survey, (2006).

ASHRAE, ASHRAE® Handbook - Fundamentals (SI Edition), American Society of
Heating, Refrigerating and Air-Conditioning Engineers, Inc, 2017 2017.

M.A. Humphreys, M. Hancock, Do people like to feel ‘neutral’?: exploring the
variation of the desired thermal sensation on the ASHRAE scale, Energy Build. 39
(7) (2007) 867-874.

D. Daum, F. Haldi, N. Morel, A personalized measure of thermal comfort for
building controls, Build. Environ. 46 (1) (2011) 3-11.

v.J.J. Hoof, Forty years of Fanger's model of thermal comfort: comfort for all?
Indoor Air 18 (3) (2008) 182-201.

S. Karjalainen, O. Koistinen, User problems with individual temperature control in
offices, Build. Environ. 42 (8) (2007) 2880-2887.

S. Karjalainen, Thermal comfort and use of thermostats in Finnish homes and of-
fices, Build. Environ. 44 (6) (2009) 1237-1245.

F. Jazizadeh, A. Ghahramani, B. Becerik-Gerber, T. Kichkaylo, M. Orosz,
Personalized thermal comfort driven control in HVAC operated office buildings,
ASCE International Workshop on Computing in Civil Engineering (IWCCE)
Conference, 2013.

F. Jazizadeh, G. Kavulya, L. Klein, B. Becerik-Gerber, Continuous Sensing of
Occupant Perception of Indoor Ambient Factors, (2011), pp. 161-168.

F. Jazizadeh, B. Becerik-Gerber, Toward adaptive comfort management in office
buildings using participatory sensing for end user driven control, Proceedings of the
Fourth ACM Workshop on Embedded Sensing Systems for Energy-Efficiency in
Buildings, ACM, 2012.

C. Huizenga, K. Laeser, E. Arens, A web-based occupant satisfaction survey for
benchmarking building quality, Indoor Air (2002) 1-6.

M. Pritoni, K. Salmon, A. Sanguinetti, J. Morejohn, M. Modera, Occupant thermal
feedback for improved efficiency in university buildings, Energy Build. 144 (2017)
241-250.

J. Kim, Y. Zhou, S. Schiavon, P. Raftery, G. Brager, Personal comfort models: pre-
dicting individuals' thermal preference using occupant heating and cooling

[2]

[3

—

[4]

[5]

[6]

[7]
[8]
[91
[10]

[11]

[12]

[13]

[14]

[15]

[16]

118

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

Building and Environment 158 (2019) 104-119

behavior and machine learning, Build. Environ. 129 (2018) 96-106.

A. Ghahramani, C. Tang, B. Becerik-Gerber, An online learning approach for
quantifying personalized thermal comfort via adaptive stochastic modeling, Build.
Environ. 92 (2015) 86-96.

D. Li, C.C. Menassa, V.R. Kamat, A personalized HVAC control smartphone appli-
cation framework for improved human health and well-being, Computing in Civil
Engineering, (2017).

D. Li, C.C. Menassa, V.R. Kamat, Personalized human comfort in indoor building
environments under diverse conditioning modes, Build. Environ. 126 (2017)
304-317.

A. Sanguinetti, M. Pritoni, K. Slamon, J. Morejohn TherMOOstat, Occupant feed-
back to improve comfort and efficiency on a university campus, American Council
for an Energy-Efficient Economy Summer Study on Energy Efficiency in Buildings,
Asilomar, CA, 2016.

A.H.-y. Lam, Y. Yuan, D. Wang, An occupant-participatory approach for thermal
comfort enhancement and energy conservation in buildings, Proceedings of the 5th
International Conference on Future Energy Systems, ACM, Cambridge, United
Kingdom, 2014, pp. 133-143.

J. Kim, S. Schiavon, G. Brager, Personal Comfort Models — A New Paradigm in
Thermal Comfort for Occupant-Centric Environmental Control, Building and
Environment, 2018.

W. Jung, F. Jazizadeh, Towards integration of Doppler radar sensors into perso-
nalized thermoregulation-based control of HVAC, 4th ACM Conference on Systems
for Energy-Efficient Built Environment (BuildSys' 17), ACM, Delft, The Netherlands,
2017.

F. Jazizadeh, W. Jung, Personalized thermal comfort inference using RGB video
images for distributed HVAC control, Applied Energy 220 (2018) 829-841.

W. Jung, F. Jazizadeh, Towards non-intrusive metabolic rate evaluation for HVAC
control, ICCCBE 2018, Tampere, Finland, 2018.

W. Jung, F. Jazizadeh, Vision-based Thermal Comfort Quantification for HVAC
Control, Building and Environment. 142 (2018) 513-523.

F. Jazizadeh, A. Ghahramani, B. Becerik-Gerber, T. Kichkaylo, M. Orosz, User-led
decentralized thermal comfort driven HVAC operations for improved efficiency in
office buildings, Energy Build. 70 (2014) 398-410.

S. Purdon, B. Kusy, R. Jurdak, G. Challen, Model-free HVAC control using occupant
feedback, 38th Annual IEEE Conference on Local Computer Networks - Workshops,
2013.

Y. Murakami, M. Terano, K. Mizutani, M. Harada, S. Kuno, Field experiments on
energy consumption and thermal comfort in the office environment controlled by
occupants' requirements from PC terminal, Build. Environ. 42 (12) (2007)
4022-4027.

J. Brooks, S. Kumar, S. Goyal, R. Subramany, P. Barooah, Energy-efficient control of
under-actuated HVAC zones in commercial buildings, Energy Build. 93 (2015)
160-168.

F. Jazizadeh, A. Ghahramani, B. Becerik-Gerber, T. Kichkaylo, M. Orosz, Human-
building interaction framework for personalized thermal comfort-driven systems in
office buildings, J. Comput. Civ. Eng. 28 (1) (2014) 2-16.

W. Jung, F. Jazizadeh, Multi-occupancy Indoor Thermal Condition Optimization in
Consideration of Thermal Sensitivity, Workshop of the European Group for
Intelligent Computing in Engineering (EG-ICE 2018), 2018 Lausanne; Switzerland.
A. Ghahramani, F. Jazizadeh, B. Becerik-Gerber, A knowledge based approach for
selecting energy-aware and comfort-driven HVAC temperature set points, Energy
Build. 85 (2014) 536-548.

Philips, Digital Temperature Sensor Accuracy Explained, (2006) [cited 2018 01/
23]; Available from: https://www.nxp.com/docs/en/application-note/AN10349.
pdf.

U. Wilensky, W. Rand, Introduction to Agent-Based Modeling: Modeling Natural,
Social, and Engineered Complex Systems with NetLogo, The MIT Press, Cambridge,
Massachusetts;London, England, 2015.

M.W. Ahmad, M. Mourshed, B. Yuce, Y. Rezgui, Computational intelligence tech-
niques for HVAC systems: a review, Building Simulation 9 (4) (2016) 359-398.
M. Jia, R.S. Srinivasan, A.A. Raheem, From occupancy to occupant behavior: an
analytical survey of data acquisition technologies, modeling methodologies and
simulation coupling mechanisms for building energy efficiency, Renew. Sustain.
Energy Rev. 68 (2017) 525-540.

W. Jung, F. Jazizadeh, Human-in-the-loop HVAC operations: a quantitative review
on occupancy, comfort, and energy-efficiency dimensions, Applied Energy 239
(2019) 1471-1508.

V.L. Erickson, A.E. Cerpa, Thermovote: participatory sensing for efficient building
HVAC conditioning, Proceedings of the Fourth ACM Workshop on Embedded
Sensing Systems for Energy-Efficiency in Buildings, ACM, Toronto, Ontario,
Canada, 2012, pp. 9-16.

L. Klein, J.-y. Kwak, G. Kavulya, F. Jazizadeh, B. Becerik-Gerber, P. Varakantham,
M. Tambe, Coordinating occupant behavior for building energy and comfort man-
agement using multi-agent systems, Autom. ConStruct. 22 (2012) 525-536.

J.-y. Kwak, P. Varakantham, R. Maheswaran, M. Tambe, F. Jazizadeh, G. Kavulya,
L. Klein, B. Becerik-Gerber, T. Hayes, W. Wood, SAVES: a sustainable multiagent
application to conserve building energy considering occupants, Proceedings of the
11th International Conference on Autonomous Agents and Multiagent Systems, vol.
1, International Foundation for Autonomous Agents and Multiagent Systems,
Valencia, Spain, 2012, pp. 21-28.

R. Yang, L. Wang, Development of multi-agent system for building energy and
comfort management based on occupant behaviors, Energy Build. 56 (Supplement
C) (2013) 1-7.

J. Zhao, B. Lasternas, K.P. Lam, R. Yun, V. Loftness, Occupant behavior and sche-
dule modeling for building energy simulation through office appliance power


http://refhub.elsevier.com/S0360-1323(19)30295-1/sref1
http://refhub.elsevier.com/S0360-1323(19)30295-1/sref1
http://www.eia.gov/todayinenergy/detail.php?id=10271&src=%E2%80%B9%20Consumption%20%20%20%20%20%20Residential%20Energy%20Consumption%20Survey%20(RECS)-b1
http://www.eia.gov/todayinenergy/detail.php?id=10271&src=%E2%80%B9%20Consumption%20%20%20%20%20%20Residential%20Energy%20Consumption%20Survey%20(RECS)-b1
http://www.eia.gov/todayinenergy/detail.php?id=10271&src=%E2%80%B9%20Consumption%20%20%20%20%20%20Residential%20Energy%20Consumption%20Survey%20(RECS)-b1
http://www.eia.gov/todayinenergy/detail.php?id=10271&src=%E2%80%B9%20Consumption%20%20%20%20%20%20Residential%20Energy%20Consumption%20Survey%20(RECS)-b1
http://refhub.elsevier.com/S0360-1323(19)30295-1/sref3
http://refhub.elsevier.com/S0360-1323(19)30295-1/sref3
http://refhub.elsevier.com/S0360-1323(19)30295-1/sref4
http://refhub.elsevier.com/S0360-1323(19)30295-1/sref4
http://refhub.elsevier.com/S0360-1323(19)30295-1/sref4
http://refhub.elsevier.com/S0360-1323(19)30295-1/sref5
http://refhub.elsevier.com/S0360-1323(19)30295-1/sref5
http://refhub.elsevier.com/S0360-1323(19)30295-1/sref6
http://refhub.elsevier.com/S0360-1323(19)30295-1/sref6
http://refhub.elsevier.com/S0360-1323(19)30295-1/sref6
http://refhub.elsevier.com/S0360-1323(19)30295-1/sref7
http://refhub.elsevier.com/S0360-1323(19)30295-1/sref7
http://refhub.elsevier.com/S0360-1323(19)30295-1/sref8
http://refhub.elsevier.com/S0360-1323(19)30295-1/sref8
http://refhub.elsevier.com/S0360-1323(19)30295-1/sref9
http://refhub.elsevier.com/S0360-1323(19)30295-1/sref9
http://refhub.elsevier.com/S0360-1323(19)30295-1/sref10
http://refhub.elsevier.com/S0360-1323(19)30295-1/sref10
http://refhub.elsevier.com/S0360-1323(19)30295-1/sref11
http://refhub.elsevier.com/S0360-1323(19)30295-1/sref11
http://refhub.elsevier.com/S0360-1323(19)30295-1/sref11
http://refhub.elsevier.com/S0360-1323(19)30295-1/sref11
http://refhub.elsevier.com/S0360-1323(19)30295-1/sref12
http://refhub.elsevier.com/S0360-1323(19)30295-1/sref12
http://refhub.elsevier.com/S0360-1323(19)30295-1/sref13
http://refhub.elsevier.com/S0360-1323(19)30295-1/sref13
http://refhub.elsevier.com/S0360-1323(19)30295-1/sref13
http://refhub.elsevier.com/S0360-1323(19)30295-1/sref13
http://refhub.elsevier.com/S0360-1323(19)30295-1/sref14
http://refhub.elsevier.com/S0360-1323(19)30295-1/sref14
http://refhub.elsevier.com/S0360-1323(19)30295-1/sref15
http://refhub.elsevier.com/S0360-1323(19)30295-1/sref15
http://refhub.elsevier.com/S0360-1323(19)30295-1/sref15
http://refhub.elsevier.com/S0360-1323(19)30295-1/sref16
http://refhub.elsevier.com/S0360-1323(19)30295-1/sref16
http://refhub.elsevier.com/S0360-1323(19)30295-1/sref16
http://refhub.elsevier.com/S0360-1323(19)30295-1/sref17
http://refhub.elsevier.com/S0360-1323(19)30295-1/sref17
http://refhub.elsevier.com/S0360-1323(19)30295-1/sref17
http://refhub.elsevier.com/S0360-1323(19)30295-1/sref18
http://refhub.elsevier.com/S0360-1323(19)30295-1/sref18
http://refhub.elsevier.com/S0360-1323(19)30295-1/sref18
http://refhub.elsevier.com/S0360-1323(19)30295-1/sref19
http://refhub.elsevier.com/S0360-1323(19)30295-1/sref19
http://refhub.elsevier.com/S0360-1323(19)30295-1/sref19
http://refhub.elsevier.com/S0360-1323(19)30295-1/sref20
http://refhub.elsevier.com/S0360-1323(19)30295-1/sref20
http://refhub.elsevier.com/S0360-1323(19)30295-1/sref20
http://refhub.elsevier.com/S0360-1323(19)30295-1/sref20
http://refhub.elsevier.com/S0360-1323(19)30295-1/sref21
http://refhub.elsevier.com/S0360-1323(19)30295-1/sref21
http://refhub.elsevier.com/S0360-1323(19)30295-1/sref21
http://refhub.elsevier.com/S0360-1323(19)30295-1/sref21
http://refhub.elsevier.com/S0360-1323(19)30295-1/sref22
http://refhub.elsevier.com/S0360-1323(19)30295-1/sref22
http://refhub.elsevier.com/S0360-1323(19)30295-1/sref22
http://refhub.elsevier.com/S0360-1323(19)30295-1/sref23
http://refhub.elsevier.com/S0360-1323(19)30295-1/sref23
http://refhub.elsevier.com/S0360-1323(19)30295-1/sref23
http://refhub.elsevier.com/S0360-1323(19)30295-1/sref23
http://refhub.elsevier.com/S0360-1323(19)30295-1/sref24
http://refhub.elsevier.com/S0360-1323(19)30295-1/sref24
http://refhub.elsevier.com/S0360-1323(19)30295-1/sref25
http://refhub.elsevier.com/S0360-1323(19)30295-1/sref25
http://refhub.elsevier.com/S0360-1323(19)30295-1/sref26
http://refhub.elsevier.com/S0360-1323(19)30295-1/sref26
http://refhub.elsevier.com/S0360-1323(19)30295-1/sref27
http://refhub.elsevier.com/S0360-1323(19)30295-1/sref27
http://refhub.elsevier.com/S0360-1323(19)30295-1/sref27
http://refhub.elsevier.com/S0360-1323(19)30295-1/sref28
http://refhub.elsevier.com/S0360-1323(19)30295-1/sref28
http://refhub.elsevier.com/S0360-1323(19)30295-1/sref28
http://refhub.elsevier.com/S0360-1323(19)30295-1/sref29
http://refhub.elsevier.com/S0360-1323(19)30295-1/sref29
http://refhub.elsevier.com/S0360-1323(19)30295-1/sref29
http://refhub.elsevier.com/S0360-1323(19)30295-1/sref29
http://refhub.elsevier.com/S0360-1323(19)30295-1/sref30
http://refhub.elsevier.com/S0360-1323(19)30295-1/sref30
http://refhub.elsevier.com/S0360-1323(19)30295-1/sref30
http://refhub.elsevier.com/S0360-1323(19)30295-1/sref31
http://refhub.elsevier.com/S0360-1323(19)30295-1/sref31
http://refhub.elsevier.com/S0360-1323(19)30295-1/sref31
http://refhub.elsevier.com/S0360-1323(19)30295-1/sref32
http://refhub.elsevier.com/S0360-1323(19)30295-1/sref32
http://refhub.elsevier.com/S0360-1323(19)30295-1/sref32
http://refhub.elsevier.com/S0360-1323(19)30295-1/sref33
http://refhub.elsevier.com/S0360-1323(19)30295-1/sref33
http://refhub.elsevier.com/S0360-1323(19)30295-1/sref33
https://www.nxp.com/docs/en/application-note/AN10349.pdf
https://www.nxp.com/docs/en/application-note/AN10349.pdf
http://refhub.elsevier.com/S0360-1323(19)30295-1/sref35
http://refhub.elsevier.com/S0360-1323(19)30295-1/sref35
http://refhub.elsevier.com/S0360-1323(19)30295-1/sref35
http://refhub.elsevier.com/S0360-1323(19)30295-1/sref36
http://refhub.elsevier.com/S0360-1323(19)30295-1/sref36
http://refhub.elsevier.com/S0360-1323(19)30295-1/sref37
http://refhub.elsevier.com/S0360-1323(19)30295-1/sref37
http://refhub.elsevier.com/S0360-1323(19)30295-1/sref37
http://refhub.elsevier.com/S0360-1323(19)30295-1/sref37
http://refhub.elsevier.com/S0360-1323(19)30295-1/sref38
http://refhub.elsevier.com/S0360-1323(19)30295-1/sref38
http://refhub.elsevier.com/S0360-1323(19)30295-1/sref38
http://refhub.elsevier.com/S0360-1323(19)30295-1/sref39
http://refhub.elsevier.com/S0360-1323(19)30295-1/sref39
http://refhub.elsevier.com/S0360-1323(19)30295-1/sref39
http://refhub.elsevier.com/S0360-1323(19)30295-1/sref39
http://refhub.elsevier.com/S0360-1323(19)30295-1/sref40
http://refhub.elsevier.com/S0360-1323(19)30295-1/sref40
http://refhub.elsevier.com/S0360-1323(19)30295-1/sref40
http://refhub.elsevier.com/S0360-1323(19)30295-1/sref41
http://refhub.elsevier.com/S0360-1323(19)30295-1/sref41
http://refhub.elsevier.com/S0360-1323(19)30295-1/sref41
http://refhub.elsevier.com/S0360-1323(19)30295-1/sref41
http://refhub.elsevier.com/S0360-1323(19)30295-1/sref41
http://refhub.elsevier.com/S0360-1323(19)30295-1/sref41
http://refhub.elsevier.com/S0360-1323(19)30295-1/sref42
http://refhub.elsevier.com/S0360-1323(19)30295-1/sref42
http://refhub.elsevier.com/S0360-1323(19)30295-1/sref42
http://refhub.elsevier.com/S0360-1323(19)30295-1/sref43
http://refhub.elsevier.com/S0360-1323(19)30295-1/sref43

W. Jung and F. Jazizadeh

[44]

[45]

[46]
[47]
[48]

[49]

consumption data mining, Energy Build. 82 (2014) 341-355.

M. Bonte, F. Thellier, B. Lartigue, Impact of occupant's actions on energy building
performance and thermal sensation, Energy Build. 76 (2014) 219-227.

F. Jazizadeh, F.M. Marin, B. Becerik-Gerber, A thermal preference scale for perso-
nalized comfort profile identification via participatory sensing, Build. Environ. 68
(2013) 140-149.

M. Pazhoohesh, C. Zhang, A satisfaction-range approach for achieving thermal
comfort level in a shared office, Build. Environ. 142 (2018) 312-326.

W. Liu, Z. Lian, Y. Liu, Heart rate variability at different thermal comfort levels, Eur.
J. Appl. Physiol. 103 (3) (2008) 361-366.

A. Ghasemi, S. Zahediasl, Normality tests for statistical analysis: a guide for non-
statisticians, Int. J. Endocrinol. Metab. 10 (2) (2012) 486.

E.-J. Shin, R. Yus, S. Mehrotra, N. Venkatasubramanian, Exploring fairness in

119

[50]

[51]

[52]

Building and Environment 158 (2019) 104-119

participatory thermal comfort control in smart buildings, The 4th ACM
International Conference On Systems For Energy-Efficient Built Environments
(BuildSys 2017), ACM, Delft, The Netherlands, 2017.

F. Jazizadeh, S. Pradeep, Can computers visually quantify human thermal comfort?:
Short paper, Proceedings of the 3rd ACM International Conference on Systems for
Energy-Efficient Built Environments 2016 Nov 16 (pp. 95-98), ACM, 2016.

S. Dabiri, F. Jazizadeh, Exploring video based thermal perception identification,
16th international conference on computing in civil and building engineering,
ICCCBE2016. Osaka, 2016.

J.Y. Kwak, P. Varakantham, M. Tambe, L. Klein, F. Jazizadeh, G. Kavulya,

B.B. Gerber, D.J. Gerber, Towards optimal planning for distributed coordination
under uncertainty in energy domains, Workshop on Agent Technologies for Energy
Systems (ATES) at AAMAS, Vol. 2011 2011, May.


http://refhub.elsevier.com/S0360-1323(19)30295-1/sref43
http://refhub.elsevier.com/S0360-1323(19)30295-1/sref44
http://refhub.elsevier.com/S0360-1323(19)30295-1/sref44
http://refhub.elsevier.com/S0360-1323(19)30295-1/sref45
http://refhub.elsevier.com/S0360-1323(19)30295-1/sref45
http://refhub.elsevier.com/S0360-1323(19)30295-1/sref45
http://refhub.elsevier.com/S0360-1323(19)30295-1/sref46
http://refhub.elsevier.com/S0360-1323(19)30295-1/sref46
http://refhub.elsevier.com/S0360-1323(19)30295-1/sref47
http://refhub.elsevier.com/S0360-1323(19)30295-1/sref47
http://refhub.elsevier.com/S0360-1323(19)30295-1/sref48
http://refhub.elsevier.com/S0360-1323(19)30295-1/sref48
http://refhub.elsevier.com/S0360-1323(19)30295-1/sref49
http://refhub.elsevier.com/S0360-1323(19)30295-1/sref49
http://refhub.elsevier.com/S0360-1323(19)30295-1/sref49
http://refhub.elsevier.com/S0360-1323(19)30295-1/sref49
http://refhub.elsevier.com/S0360-1323(19)30295-1/sref50
http://refhub.elsevier.com/S0360-1323(19)30295-1/sref50
http://refhub.elsevier.com/S0360-1323(19)30295-1/sref50
http://refhub.elsevier.com/S0360-1323(19)30295-1/sref51
http://refhub.elsevier.com/S0360-1323(19)30295-1/sref51
http://refhub.elsevier.com/S0360-1323(19)30295-1/sref51
http://refhub.elsevier.com/S0360-1323(19)30295-1/sref52
http://refhub.elsevier.com/S0360-1323(19)30295-1/sref52
http://refhub.elsevier.com/S0360-1323(19)30295-1/sref52
http://refhub.elsevier.com/S0360-1323(19)30295-1/sref52

	Comparative assessment of HVAC control strategies using personal thermal comfort and sensitivity models
	Introduction
	Research background
	Methodology
	Populating comfort datasets for human agent modeling
	Personalized comfort profiling process using stochastic modeling
	HVAC agent's conditioning logic

	Results
	Analyses with actual comfort datasets
	Analyses with synthesized comfort datasets

	Discussion
	Conclusion
	Acknowledgment
	References




