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HIGHLIGHTS

A review taxonomy for human-in-the-loop HVAC operations has been proposed.
Human-in-the-loop HVAC operations have been reviewed using the proposed taxonomy.
Methods for occupancy and comfort characterization were systematically reviewed.
Methods for integration of human dynamics in the control of HAVC were reviewed.
Presented quantitative and qualitative performance assessment on different methods.
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Heating, ventilation, and air-conditioning (HVAC) systems account for almost half of the energy consumption in
buildings. By benefiting from advancements in information and communication technology, human-in-the-loop
HVAC operations have drawn considerable attention in the last decade with the aim of curtailing unnecessary energy
use and providing user-specific comfort zones with reduced user dedication. Future progress in thie field calls for an
in-depth understanding of the current state and challenges of the human-in-the-loop HVAC systems. Therefore, using
a structured literature review approach, we have investigated this field according to two parameters of human
dynamics that drive user-centric operations of HVAC systems, namely, occupancy and comfort. In this review and
assessment study, by proposing a five-tier hierarchical taxonomy, we have classified the studies based on their
contributions to occupancy- and comfort-driven human-in-the-loop HVAC operations (e.g., occupancy detection or
comfort profiling) and have presented categorization for techniques and their quantitative performance assessment.
In doing so, we have accounted for the context of the studies as they relate to developments in residential and office
buildings given that distinct circumstances in each context (e.g., accessibility to thermostats) have resulted in dif-
ferent methodologies, especially in adopting the sensing techniques and HVAC operations. Moreover, we have dis-
tinguished simulations from field evaluations to assess the actual viability and challenges in achieving desirable
results in practice. Lastly, the Hype cycle model was utilized to qualitatively evaluate the developments of different
technologies for human-in-the-loop HVAC operations from a research perspective.

Human-centered
Human-in-the-loop
HVAC system
Energy efficiency
Data requirements

1. Introduction

The efficient operation of Heating, Ventilation, and Air-
Conditioning (HVAC) systems is of critical importance considering that
people spend more than 80% of their time indoors [1], and HVAC
systems account for 47.7% and 51.0% of energy use in residential and
office buildings, respectively [2,3]. Given their substantial impacts on
energy use and occupants’ quality of life, the main objectives of re-
search efforts on HVAC systems operation include (1) the minimization
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of energy use without compromising thermal comfort or (2) the opti-
mization of occupants’ thermal comfort.

Throughout studies in the field of HVAC systems, it has been de-
monstrated that current HVAC system operations have a number of
major shortcomings: conditioning unoccupied spaces [4], assuming
maximum occupancy in spaces [5], and over-conditioning in buildings
regardless of occupants’ perspectives [6]. These suboptimal circum-
stances are primarily due to the fact that HVAC systems in their con-
ventional operating modes do not account for occupants’ dynamics.
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These modes include (1) fixed operating schedules with full occupancy
(e.g., standard working hours [7]) and (2) a single-point temperature
measurement of a space or a thermal zone (i.e., a collection of spaces
conditioned by means of one air-handling unit) [8]. In other words,
there has been a lack of context-aware information delivery and means
of interaction between occupants and HVAC systems. Specifically, it has
been shown that in office buildings, thermostats are generally in-
accessible for occupant intervention [9] and the temperature set points
are often set by facility managers without consideration of occupants’
thermal feedback [10]. Furthermore, post-occupancy evaluations, as an
opportunity for integrating occupants’ feedback, have been occasion-
ally performed [11]. These limitations in office buildings resulted in
higher thermal dissatisfaction compared with that in residential
buildings [12]. On the other hand, in residential buildings, occupants
have better access to thermostats and can configure temperature set
points, since manually-configured thermostats are still widely utilized
(41.2%) [13]. That is, operations rely on human intervention without
considering energy-use efficiency. Even in the case of residential
buildings with programmable thermostats (capable of scheduled op-
erations with a setback that relaxes the temperature set point during
vacancy), it has been reported that only 19.4% of occupants actively
utilize this function [13]. It has been observed that dynamic occupancy
patterns often do not match with user-defined setback schedules, which
results in occupants’ discomfort at their arrivals [14]. Furthermore,
given that most residential buildings are composed of a single thermal
zone [15], unnecessary conditioning for unoccupied spaces, as well as
conflicts in thermal preferences, are deemed inevitable.

In the past decade, studies have sought to tackle the aforementioned
limitations by leveraging cutting-edge Information and Communication
Technologies (ICT). Advancements in ICT provided opportunities for
ubiquitous data collection and communication and for application of
data-driven pattern recognition and control algorithms. Accordingly,
studies have moved towards Human-In-The-Loop (HITL) operations,
which rely on information from human interactions, that is, accounting
for the dynamics of occupants in indoor environments (e.g., occupancy-
related features [i.e., presence, count, and position] and thermal com-
fort). These efforts have been sought under the constraints of energy
efficiency and the need for user interaction. As a general trend, HVAC
systems are envisioned to be aware of actual occupancy schedule, to
prepare the desired conditions prior to occupant arrival, to maintain
them during occupancy, and to adjust operations once the vacancy is
confirmed to curtail energy waste. In this study, this approach is re-
ferred to as HITL HVAC operations.

Despite the remarkable progress of research and development in
HVAC systems’ operation and attention from the HVAC research com-
munity regarding HITL HVAC operations, little effort has been made to
comprehensively review previous studies and to synthesize them quanti-
tatively and qualitatively. Although there have been a number of high-
quality review studies in this field (as details are presented in Section
2.1), these studies either were conducted in earlier years, when HITL
HVAC operations had been in early stages of development (e.g., Guo
and Zhou [15]), or focused on a specific aspect of human-centered
operations by presenting the contribution of each individual study. An
example of a recent review article, with a specific focus, is the study by
Mirakhorli and Dong [16] on occupancy-based HVAC operation (one of
the modalities in HITL HVAC operations), which concentrated on the
control aspect (rule-based and model-predictive) by presenting each
study’s results. In this study, in order to facilitate the identification of
the trends, we have presented a holistic comparative review through
synthesis assessments. Enabling HITL HVAC operations depends on the
interconnected processes of data acquisition and processing, occupancy
and comfort inference/prediction, as well as control strategies for
system operation. Therefore, given the performance interdependency of
these processes, it is important to review the contribution of each study
in the context of each individual process. Furthermore, in-depth un-
derstanding of the takeaways, limitations, and discovered difficulties of
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the state-of-the-art research efforts is imperative for the community in
order to move towards more efficient HVAC operations. Thus, the goal
of this study is to present an in-depth review and performance-based
assessment of HITL HVAC operations by addressing the following re-
search questions:

(1) What are the modalities for HITL HAVC systems? What technolo-
gies have been proposed for each modality? What are the proposed
configurations for these technologies?

(2) How effectively does each technology perform? How reliably/ro-
bustly does each technology operate? What are the limitations of
each technology?

(3) How has each technology/modality been integrated within the
HVAC operational algorithms?

(4) What is the efficacy of each technology in improving energy effi-
ciency? How has the efficiency been quantified?

(5) Do HITL-based systems improve occupants’ thermal comfort? How
has their performance for thermal comfort improvement been
quantified?

(6) Are performances across the studies comparable? How could the
studies move towards benchmarking?

(7) What is the level of maturity/development for each technology?

(8) What could be the potential future research needs within the scope
of the identified modalities?

With the aim of addressing these questions in a systematic and
comprehensive way, we proposed a five-tier taxonomy to classify and
analyze each study: HITL HVAC modality, building type, measurement
techniques, sensing performance, and performance of HVAC operations.
The first two tiers are used for high-level contextual categorization of
the collected studies, and the remaining tiers are used for quantitative
assessment of the reported performance on the technology itself and the
use for the HVAC system operation. Moreover, we employed a tech-
nology implementation evaluation approach (i.e., the Hype cycle
model) to qualitatively assess the current state of HITL HVAC opera-
tions. Accordingly, the this study contributes by:

e Comprehensively covering the studies that have introduced human-
related context-aware intelligence for HVAC system operation to
improve performance in terms of energy efficiency and occupant
comfort.

Proposing a hierarchical taxonomy for systematic review of the lit-
erature and benchmarking efforts.

Formalizing modalities for HITL HVAC operations including sub-
classes and parameters of interest.

Presenting HITL HVAC operational strategies in the form of process
maps as a holistic perspective of the state-of-the-art techniques.
Organizing the technology use distribution based on building types
(residential vs. office).

Quantitatively assessing the performance of sensing and pattern
recognition technologies with respect to their contextual informa-
tion (i.e., occupancy and comfort sub-modalities, residential vs. of-
fice, simulation vs. field study, temporal and spatial scales of the
studies) by categorizing the efforts according to their contexts.
Identifying the data requirements for objective and quantified
comparison between different studies.

Quantitatively assessing the performance of HITL HVAC operations
with respect to their contextual information (similar to the process
for sensing technologies).

Qualitatively evaluating the technology implementation state using
a Hype cycle model.

This paper is structured as follows. In Section 2, we have presented
the methodology for the structured literature review. We compared our
review article with previous review articles in this field in Section 2.1 to
articulate the novelty and contributions of our study. To answer the



W. Jung and F. Jazizadeh

aforementioned questions, we adopted a structured literature review
approach (as elaborated in Sections 2.2 and 2.3) through which we
have extensively collected, carefully selected, and rigorously classified
the relevant literature associated with HITL HVAC operations. Sections
3 and 4 present the systematic review and performance assessment of
the major modalities for HITL HVAC operation, namely, occupancy-
driven and comfort-aware, by leveraging our proposed taxonomy. In
the first subsections of Sections 3 and 4, we have provided the major
research directions and overall processes of each modality, and then
presented the details and research gaps for each component (data ac-
quisition and modeling methods as well as HVAC operational strate-
gies) in the following subsections. In Section 5, we presented a quali-
tative evaluation of the research efforts and further comment on future
research needs. To this end, we followed the logic, used by the Hype
cycle model [17], which describes the maturity of technology adoption
in five stages: (1) early adoption due to the potential, (2) growing high
expectations, (3) revealing difficulties, (4) proposing remedies, and (5)
assessing actual viability. Section 6 concludes by summarizing the
contributions and findings of this study.

2. Structured literature review methodology
2.1. Previous review articles

We compiled the existing review articles (elaborated in Table 1),
which presented reviews on occupant-related features that could fa-
cilitate the advanced operations of HVAC systems. Although these
studies have presented reviews on concepts that could be used as
building blocks for enabling HITL HVAC operations, none of the studies
have presented a systematic review that covers the entire properties of
HITL HVAC operations. Specifically, the performance assessment of the
HVAC systems, improved by the HITL integration, has not been assessed
comprehensively despite the fact that it is a major goal in the HVAC
research community. Moreover, a comparative and quantitative per-
formance assessment on both sensing/inference systems and the HVAC
operations, specifically by comparing the reported performance in
consideration of contexts, has not been presented in these previous
studies.

As examples, Chen et al. [28] and Mulia et al. [24] have performed
review studies on occupancy detection and counting (part of the re-
quired functionalities for HITL HVAC operations). Although the topic
appears to have some overlaps with part of the content in our study, our
assessment differentiates itself by focusing on (1) evaluating sensing
technologies in consideration of context, represented by building type,
application, etc., (2) quantifying performance variations with respect to
sensing technology and experimental setup, (3) interdependence of
occupancy characterization methods and HVAC system performance,
and (4) characterization of data requirements for benchmarking and
cross-study comparison. Moreover, some of these review studies have
solely focused on the thermal comfort dimension in buildings, which is
not at the intersection of ICT and HITL-based operations. As examples,
Antoniadou and Papadopoulos [25] reviewed different aspects of
comfort in the indoor environment, including thermal, visual, acoustic,
and air quality, as well as methods for qualitative and quantitative
evaluations of thermal comfort. Similarly, Rupp et al. [21] have pre-
sented a comprehensive literature review on different dimensions of
thermal comfort standards by looking at the experimental and field
studies of thermal comfort in diverse built environment settings (e.g.,
schools, kindergartens, etc.), by accounting for different human attri-
butes.

By relying on the existing review articles, which have covered topics
that are related to HITL HAVC operations, one needs additional pro-
cessing to identify comparative performance benchmarking with re-
spect to the context of individual studies. In this review article, thereby,
with the objective of paving the way for improved benchmarking, we
have adopted an approach to account for different dimensions (i.e.,
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sensing and data acquisition, human dynamics inference and quantifi-
cation, and HVAC control integration), required for realization of HITL
HVAC operations. Moreover, in this study, we have proposed a struc-
tured method for reviewing the studies in this field so that it could
enable the research/development communities to move towards for-
malization of benchmarking.

2.2. Literature compilation and selection process

We focused our efforts on academic publications in HITL HVAC
operations. Many articles have not used the term “human-in-the-loop”
directly, and thus, we have used various search keywords to ensure that
the studies covered herein represent the breadth of HITL HAVC sys-
tems. The compiltaion process was as follows:

e The articles were compiled through an extensive search of literature
databases/libraries using search engines and journal web pages in
Elsevier, American Society of Civil Engineers (ASCE), Institute of
Electrical and Electronics Engineers (IEEE), Association for
Computing Machinery (ACM), and Google Scholar.

The following search terms were used in our search:

o “HVAC system” (in conjunction with other terms like “human- or
“user-centered,” “smart,” “decentralized,” “distributed,” “occu-
pancy-based” or “~driven,” “user-” or “demand-driven,” “comfort-
aware,” or “energy efficient”),

“occupancy” (standalone or in conjunction with other terms such
as “detection,” “recognition,” “counting,” “pattern,” “profile,”
“density,” “monitoring,” “prediction,” and “model”),

“thermal comfort” (standalone or in conjunction with other terms
such as “personalized,” “individual,” “profile,” “model,” “re-
sponse,” “sensation,” “perception,” “preference,” “satisfaction,”
“sensitivity,” and “feedback”),

“thermoregulation” or “physiological response” (as a reflection of
heat exchange between the human body and environment; e.g.,
“skin temperature,” “heart rate,” or “respiration”),

“the predicted mean vote (PMV) model,” “the predicted percen-
tage of dissatisfied (PPD)”

“sensor” (standalone or in conjunction with “wireless,” “net-
work,” “distributed,” “wearable,” “non-intrusive or —obtrusive,”
“environment,” “occupancy,” and “vision”),

“energy” (standalone or in conjunction with “consumption,”
“performance,” “use,” “efficiency,” “savings”),

“management,” “optimization,” “thermostats” (standalone or in
conjunction with “smart,” “adaptive,
grammable”),

“human activity recognition,” “clothing insulation,” “indoor po-
sitioning” (standalone or in conjunction with “localization,” “lo-
cation”),

o “smart home” or “smart buildings.”

We also compiled studies, cited by collected papers, as the second
step in keeping track of previous studies and further explored the
authors’ Google scholar pages to ensure that all relevant papers are
included in this study.

We concentrated on studies, published in the last decade (mostly
from 2008) since we observed that extensive utilization of “ICT” for
“HVAC” operations began around that time. Where necessary, we
have included studies that define the milestones in this field (e.g.,
the studies related to PMV-PPD model).

” «

” o« ” o« ” o«

” o« ” o«

” o«

” « ” o«

” s

intelligent,” and “pro-

” «

After compilation, we filtered the studies using the following ex-
clusion/inclusion criteria:

e Included any study with the objective of improving HVAC system
performance by implementing the dynamics of occupants even if the
study did not cover HVAC operation in its analysis.

e Excluded any study that used ICT and sensing technologies for other
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Table 1
State-of-the-art review articles covering the topics (or subtopics) that are related to human-in-the-loop HVAC systems.

Ref. Year Subject
Coverage

Guo and Zhou [15] 2009  Advanced HVAC system operations using neural networks, fuzzy rules, and wireless sensor networks that enable thermal comfort-
aware and energy-efficient HVAC operations
Office and residential buildings

Chua et al. [18] 2013  HVAC systems’ efficient energy consumption derived from innovative cooling systems and operational strategies
Office and residential buildings

Yang et al. [19] 2014 Occupant thermal comfort (primarily focused on the predicted-mean-vote (PMV) and adaptive models including their extensions)
and its implications for energy saving
Office, residential buildings, school, university, etc.

Kwong et al. [20] 2014  Energy saving potentials in regions with tropical climates by considering occupants thermal comfort
Office and residential buildings

Mirakhorli and Dong [16] 2015  Occupancy-based rule-based and model predictive control for HVAC operations
Office buildings and laboratory

Rupp et al. [21] 2015 A comprehensive review paper on different dimensions of thermal comfort standards; this paper has presented a review of the
papers by looking at the experimental and field studies of thermal comfort in diverse built environment settings (e.g., schools,
kindergartens, etc.), as well as different human attributes
Office, residential buildings, school, university, kindergarten, etc.

Yan et al. [22] 2015 Occupant behavior modeling for building energy simulation including monitoring, data collection, modeling, evaluation, and
implementation
Office and residential buildings

Ortiz et al. [23] 2017 Occupant comfort (e.g., thermal, acoustic, visual, and air quality) across different disciplines (e.g., healthcare, and ergonomics) and
their association with energy use in buildings
Residential buildings

Mulia et al. [24] 2017  Occupancy detection and occupant counting
Office and residential buildings

Antoniadou and Papadopoulos [25] 2017  Occupant comfort (visual, thermal, acoustic, and indoor air quality), as well as quantitative and qualitative methods for
characterization of occupants’ comfort
Office buildings

D’Oca et al. [26] 2018  Human dimensions in energy use: the needs (research gaps)/advancements from the perspective of each stakeholder in the built
environment (e.g., architects, engineers, etc.)
Office and residential buildings

Balvedi et al. [27] 2018 Development of energy-related occupant behavior models (e.g., occupancy, window and blind control, and heating and cooling
system control) and the use of such models for simulating building energy performance.
Residential buildings

Chen et al. [28] 2018 Occupancy detection and occupant counting (including the description of the sensing technologies)
Office and residential buildings

Happle et al. [29] 2018  Occupant behavior modeling (e.g., presence, lighting control, and appliance use) in consideration of urban-scale building energy
models by covering, for example, multi-districts (residential and office at the same time) or several buildings.
Office and residential buildings

Zhang et al. [30] 2018  Energy-saving potentials associated with occupant behavior (e.g., interaction with door and windows, thermostats, etc.) | They
focus on energy as a whole not specifically HVAC system energy consumption
Office and residential buildings

Guyot et al. [31] 2018  Demand-driven ventilation system based on occupancy and ambient conditions.

Residential buildings

building systems’ operations (e.g., lighting).

e Excluded any study that did not address occupants’ aspects for en-
hanced HVAC performance (e.g., suggesting a new HVAC opera-
tional strategy that does not account for occupants).

e Excluded any study considering occupants’ behavior that is not re-
levant to occupancy and comfort, ahich are the primary interests of
this study (e.g., occupants’ energy-use patterns).

Using the aforementioned criteria, we narrowed down the articles to
221 out of 411 compiled articles.

2.3. Taxonomy development

Upon review of the selected literature, we developed a five-tier
hierarchical taxonomy, as presented in Fig. 1, to explore the selected
literature and to classify them for further assessments, including clas-
sification and performance assessments. As this figure shows, we have
accounted for the modality (i.e., type) of the HITL operations, building
type, measurement techniques, sensing performance, and performance
of HVAC operation.

For the first criterion in classifying the reviewed studies, we have
categorized two high-level HITL HVAC modalities as presented in
Fig. 2: occupancy and thermal comfort. We will simply call them “oc-
cupancy” and “comfort” modalities hereinafter. The former refers to an
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HVAC performance
Test-bed characteristics and
performance evaluation

Sensing performance
Detection, modeling, prediction, and their
performance evaluation

Measurement techniques
Ambient sensing, survey, etc.

Building type

Residential or office buildings

Fig. 1. Hierarchical taxonomy for this study.

operational strategy that leverages occupancy-related features, such as
presence, and the latter aims to provide occupant-specific indoor en-
vironments. We then identified the subclasses for each modality: (1)
presence, count, and position for occupnacy and (2) personalized and
collective conditioning strategies for comfort. As the next step, we have
identified the parameters of interest in each modality. In the previous
classifications (by Melfi et al. [32], Labeodan et al. [33], and Feng et al.
[34]), occupancy modalities cover presence, count, identity, activity,
location, and tracking. We merged location and tracking into position,
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Fig. 2. Human-in-the-loop HVAC modalities of occupancy and comfort along with their parameters of interest.

given that tracking can be derived from indoor localization techniques.
In addition, we considered occupants’ activity as a parameter of interest
under comfort modality (i.e., physical processes). It is worth noting that
parameters of interest directly relate to the adopted sensing and data
acquisition technologies under the third tier in our taxonomy. The re-
maining tiers of the proposed taxonomy are as follows:

e In the second tier, we identified building type as the higher-level
context for each study. There are studies that were conducted in
unique environments, such as laboratories, educational buildings,
and banks [11,35-37]. However, the majority of these studies were
conducted in residential and office building environments.

The third tier supports the assessment of the measurement techni-
ques to elaborate on their operational mechanisms and limitations
(research question #2).

The fourth tier is used in the assessment of the inference and
modeling techniques and their performance with respect to occu-
pancy or comfort. Using this rationale, we have assessed the per-
formance of each method in the context of the experimental setup
(e.g., sensor deployment strategy). In doing so, we have relied on
the reported performance indicators (e.g., accuracy) and have dis-
cussed the takeaways.

Lastly, by using the fifth tier, we have organized the proposed HITL
HVAC control strategies and assessed the reported HVAC perfor-
mances with respect to their (1) evaluation setting (simulation, ex-
perimental, or field studies) and (2) scale of the testbeds. We dis-
tinguished simulation-based performance analyses from the others
to shed light on the actual viability of each HVAC modality/tech-
nology. Moreover, since the complexity of occupants’ dynamics in-
creases in larger testbeds [38], we assessed the studies according to
the characteristics of the testbeds.

In the following sections, and for each modality, we presented major
research directions to provide a holistic picture before getting into the
details of technology description and performance assessment for each
major direction.

3. Occupancy-driven human-in-the-loop HVAC modality

3.1. Major research directions

Occupancy is a key parameter in driving demands in building
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operations [39], and the occupancy-driven HVAC operation modality
has gained extensive attention in the last decade, mainly inspired by
successes in occupancy-based energy management of lighting systems.
As a result, the American Society of Heating, Refrigerating and Air
Conditioning Engineers (ASHRAE) Standard 90.1 [40] and European
Standards [41] currently call for occupancy-sensing control of lighting
systems. However, occupancy-driven HVAC operation has not been
formalized in standards except for specific cases such as guest rooms in
hotels. Given that HVAC energy consumption surpasses that of lighting
[2] and that legacy HVAC systems do not account for occupancy states
of a given environment, studies have explored the potentials of occu-
pancy-driven HVAC operations.

Upon review and categorization of the selected studies, we have
developed a holistic process map of the occupancy-driven HVAC op-
erations, as presented in Fig. 3. Some of these studies have solely fo-
cused on occupancy inference and occupancy modeling with the po-
tential for integration into HVAC systems, while the rest have also
explored the performance of occupancy-driven HVAC operations.

This process map includes three components. The components (from
left to right) correspond to the third, fourth, and fifth tiers of our pro-
posed taxonomy, respectively. The first component represents occu-
pancy data acquisition that could be either directly used for occupancy
inference (presence, count, and position) or buffered for spatiotemporal
occupancy pattern modeling in a given space. In this direction, we have
synthesized the type of sensing technologies implemented for occu-
pancy-driven HVAC operation. By doing so, we sought to answer (1)
which measurement techniques have been investigated as a single-
sensing method and (2) what combinations in the form of multi-sensor
nodes (i.e., sensor fusion) or sensor network have been implemented.
We also reflected on the distribution of studies in different building
types.

The second component focuses on methods used for inference and
spatiotemporal pattern modeling of occupant presence, number, or
position (i.e., sub-modalities for occupancy-driven HVAC operations).
Information in each sub-modality could be used for different opera-
tional strategies:

e Occupant presence
- Adjusting setpoint and setback temperatures based on occupancy
of spaces or thermal zones (i.e., contextual heating/cooling op-
eration)
- Space preconditioning before occupant arrival
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Fig. 3. Process map of occupancy-driven HVAC operations.

e Occupant counting
- Adjusting ventilation load (i.e., contextual ventilation operation)
- Optimizing setpoint temperature based on occupant thermal pre-
ferences
e Occupant positioning
- Activating local HVAC units in a large space
- Creating localized indoor conditions
- Providing personalized comfort zones across different spaces

Various machine-learning and inference methodologies have been
used in conjunction with different sensing technologies. We have
evaluated the performance of these approaches in the context of sensing
(i.e., sensor type (e.g., Co, sensors) and sensor use mode (e.g., single-
sensing or multi-sensing)) and contextual information (e.g., single-oc-
cupancy spaces vs. multi-occupancy spaces). It is worth stating that, as
illustrated in Fig. 3, some studies introduced occupancy models with
the aim of enhancing building energy simulations (e.g., Page et al. [42]
and Duarte et al. [43]). Given the fact that our review article addresses
the operation aspect of HVAC systems, we excluded such studies in
presenting the results.

The third component focuses on leveraging occupancy information
for the occupancy-driven HVAC operation. Two main operational
strategies exist: (1) the reactive operation is the mode, in which HVAC
systems respond to an occupancy event in a given space, e.g., changes
in the presence of occupants, the number of occupants, or the location
of occupants; (2) the predictive operation is the mode, in which HVAC
systems employ a proactive strategy for space-preconditioning to pre-
pare setpoint temperatures at the time of occupant arrival or flagging
vacancy as temporary for continuous conditioning.

Using the structure of this process map as a guideline, the following
subsections present the results of our syntheses and performance as-
sessments. We organized the details of all reviewed studies in the fol-
lowing sections as supplementary material in Tables 1-3.

3.2. Occupancy data acquisition

Data acquisition for occupancy characterization: A variety of
sensing technologies has been investigated for occupancy identifica-
tion/quantification in two modes of operation: (1) single-sensing mode,
in which one sensor is used per space for measurement, and (2) multi-
sensing (i.e., sensor fusion) mode, in which either multiple sensing
technologies are combined in one sensing node or in a network of
sensors. Conventionally, as a single-sensing mode for occupancy de-
tection, passive infrared (PIR) or ultrasonic motion sensors are the most
commonly used technologies [44]. However, this method has shown a
number of limitations:

® PIR sensors require a direct line of sight and sufficiently detectable
movements from occupants for detection [41].

e Ultrasonic motion sensors often result in false triggers due to their
high sensitivity [41].

e Due to the discrete nature of motion, uncertainty is associated with
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occupancy state detection by PIR and motion sensors. A widely
implemented mitigating strategy to address this uncertainty is to
apply a 20-30-minute delay before turning off a system after the last
motion is detected, which often results in a waste of energy [41].

e This sensing method cannot be used for occupant counting or po-
sitioning [41].

To address these limitations, the studies leveraged diverse types of
sensing technologies and other data sources, as summarized in Table 2.
In the first column of Table 2, we categorized the sensing technologies
into methods that (1) rely on occupants’ movements, (2) benefit from
occupants’ visual (RGB, depth, or infrared thermal) representations, (3)
measure variations in ambient conditions triggered by the presence of
occupants, (4) monitor communication between occupants’ portable
devices and local communication networks, and (5) rely on occupant-
environment interactions, such as door openings or use of office ap-
pliances. In the second column, specific sensing technologies were
provided. Further, we have described the measurement mechanisms
(third column) and limitations (fourth column) for each method using a
synthesis of discussions in the literature. In the fifth column, we orga-
nized the application fields that each sensing technology has been im-
plemented for in the context of occupancy modality.

The combined sensing technologies have been used to compensate
the drawbacks in the single sensing mode. Fig. 4 illustrates the use of
sensors/data sources for occupancy characterization either in the
single-sensing (left column) or multi-sensing (right column) mode. To
improve the performance of occupancy detection or to enable occupant
counting, numerous studies have utilized alternative and supplemen-
tary technologies in the multi-sensing (sensor fusion) mode. A majority
of the studies have used sensor fusion or multi-sensing mode in occu-
pancy characterization. However, they have also reported the inference
of different occupancy features on the data from each individual sensor.
Therefore, we have interpreted those scenarios as single sensing mode.
By using arrows in Fig. 4, we show how and how frequent sensors were
used in the fused mode. Most studies do not specify motion sensor type
(either infrared, ultrasonic, or microwave), so we use the term “motion
sensors” hereinafter to indicate both.

For occupancy detection, various sensors/data sources have been
investigated in the single-sensing mode. PIRs [32,43,58,64-66], motion
sensors (not specified) [42,67,68], and Doppler radar sensors [69,70]
were used for motion sensing; sensors for measuring variations in air
temperature, CO,, particulate matter, sound, and light [58,64,71-75]
were used for ambient condition monitoring; RGB cameras [66] were
used for vision-based sensing; appliance use monitoring (e.g., keyboard
and mouse) [32], door counter sensors [35], chair sensors [63], and
electricity load monitoring [61,62] were used for contextual condition
monitoring; and Wi-Fi networks [52,76], RFID transmitters and re-
ceivers [77], and GPS-enabled devices [55,78,79] were used as com-
munication-network-based methods.

In the multi-sensing mode, to augment the performance of PIR and
motion sensors, these sensors were either used in the form of a sensor
network [43,60,80,81] or supplemented with other technologies such
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Table 3

Applied Energy 239 (2019) 1471-1508

Use of sensors for occupancy inference in residential and office buildings.

Category Application Detection Counting Positioning
Sensors/Data Source Residential ~ Office | Residential Office | Residential Office
Motion PIR 5 14 10
Motion (unspecified 4 7 3
type)
Ambient Ambient condition™ 7 9 1 10
condition
monitoring
Vision RGB or gray-scale 3 6
camera
Depth camera 3 1
Infrared thermal camera 3
PTZ camera 2
Com. Wi-Fi™* 1 6 1 1
network BLE 1 1 2
monitoring { RFID 1 1 1 1 1
Ultra-wideband 1
GPS-enabled devices 4 2
iBeacon 1
Contextual : Electricity load 2 1 1
condition Door reed switches 1 8 3
monitoring i Door counter 1 5 2 !
Office appliance use 4
Chair 2
Total 26 59 1 44 4 9

EEES

Boldface shows the use of occupant-appliance interactions for occupancy inference

**Ambient condition represents the sensors that measure air temperature, relative humidity, CO,, CO, particulate

matters, sound, dew point, and light.

Background colors differentiate the representative sensing technologies that are most commonly used in each

category as identified in the first column.
Com.: Communication

as contextual condition sensing (door reed switches [7,14,71,82], ap-
pliance use [60], or BLE-based methods [83,84]). Ambient condition
sensing (measuring CO,, light, sound, temperature, humidity) has often
been used in the multi-sensing mode [71,74] and was integrated with
motion-sensing techniques [38,64,71,85-89], door sensors [71], and
contextual-sensing techniques [51,71,88,90-92]. Other attempts have
used the combination of RGB cameras and contextual condition sensing
(use of keyboard and mouse) [65], and communication network (Wi-Fi)
and contextual condition-sensing (personal computer activity and user
calendar checking) [76].

For occupancy counting, the multi-sensing mode comprises the
majority of efforts. In contrast to occupancy detection, PIR sensors were
used in a supporting role such as (1) occupancy confirmation [47] (this
study looks at transition across sub-spaces by using a camera sensor
network, which could suffer from a cumulative counting error) or (2) a
power trigger for vision-based techniques (e.g., through thermal arrays
and cameras) to save sensing energy demand [93,94].

Vision-based techniques (e.g., gray-scale cameras) were often de-
ployed at a corridor and identified transitions of occupants [4,5,95,96].
In other efforts, the following combinations were commonly explored:
(1) motion and ambient condition sensors [71,97-100], (2) ambient
(temperature, humidity, CO,, light, sound) and contextual condition-
sensing techniques (door reed switch and door counter) [71], and (3)
motion, ambient, and contextual condition-sensing techniques [71].

As a single-sensing mode, CO, sensors were the most frequently
used sensors [33,71,73,101,102]. However, the efficiency of other
ambient conditioning sensors, such as light, temperature, and humidity,
in isolation have been also investigated [71]. Depth sensors
[45,103,104], RFIDs [57], chair sensors [33], door counter sensors
[59], and Wi-Fi activities [32] are among the single-sensing sources
that have been used for occupancy counting.

In the case of occupancy positioning, the main focuses have been
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on the techniques that use communications between access points in
network communications and devices carried by occupants. Indoor lo-
cation sensing is a mature field of research, and numerous research and
development efforts in this field were not presented in our study. The
focus in this article is on efforts that used positioning to control HVAC
operations. Wi-Fi [52,76], RFID, BLE, and Ultra-wideband are the
communication technologies that have been used as a single data
source in this domain. On the other hand, depth sensors and pan-tilt-
zoom (PTZ) cameras have been used in the form of sensor networks.

Sensor use and building types: Table 3 presents the use of sensing
technologies in offices versus residential buildings to provide insight on
their distribution. In this table, each row represents one sensor/data
source even if one study has used a multi-sensing mode. This means that
the sum of the numbers, presented in this table is higher than the total
number of studies in this domain. According to Table 3, investigating
occupancy characterization in office buildings comprises the majority
of studies compared to those in residential buildings. The ease of access
to office buildings for sensor installation, mainly on university cam-
puses, could be a major driving factor for this tendency. However, the
dire need for automation in office buildings (due to inaccessibility to
control systems and lack of motivation for building occupants for op-
timal control) could also play a part in this tendency. In other words,
the studies demonstrated more interest in implementing occupancy-
driven HVAC operations in office buildings. In case of occupancy
counting, almost all studies have focused on office buildings with the
exception of one.

As this synthesis shows, using sensors for detecting movements/
motions (highlighted by yellow), monitoring ambient/contextual con-
ditions (highlighted by green), vision-based techniques (highlighted by
orange), and detecting activities on Wi-Fi networks (highlighted by
blue) comprised the most commonly used methods for occupancy
characterization. Therefore, observations in the selected studies could
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Occupancy detection
Single sensing Multi sensing

PIR or Motion
Doppler radar

PIR or Motion sensor network

PIR or Motion + Door reed
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i \\y/ condition
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. PIR or Motion + Door reed
switch/Door counter +
Ambient

Occupancy positioning

Single sensing Mulii sensing

Wi-Fi PTZ camera sensor
RFID network
BLE

Ultra-wideband
Light barrier
Depth

Ambient: Temperature, humidity, CO,, CO, Particulates, sound, dew point

PIR: Passive infrared sensor, RFID: Radio frequency identification,
RGB: Red, green, and red camera, p1z: Pan-tilt-zoom
GPS: Global positioning system,

Fig. 4. Use of sensors for occupancy modality.

give us a relatively comprehensive/collective understanding of the
performance of these monitoring methods. Although RGB cameras have
been used in office environments for occupancy characterization pur-
poses, associated privacy concerns with these sensors render them as
the least popular approach unless they are used in areas, where sur-
veillance cameras are used by default. Other vision-based techniques
(i.e., the use of thermal cameras or depth sensors) have not been ex-
plored in residential buildings despite the fact that they raise fewer
privacy concerns. Another direction of efforts has focused on the use of
furniture/computer accessories (keyboards and mouse as well as chairs)
as indicators for occupancy detection and counting in office
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environments and conference rooms [60,63,65,76,105].

Need for new sensing infrastructure: A large number of build-
ings/facilities have not been equipped with the infrastructure for
monitoring occupancy dynamics. The need for new infrastructure (and
the challenges associated with it) has raised the question of whether we
could use existing infrastructure for enabling occupancy-driven HVAC
operations. To this end, some studies have investigated the potential of
using implicit/opportunistic sensing (i.e., using existing building in-
frastructure systems). As Table 3 shows in boldface, the use of occu-
pant-appliance interactions (e.g., computer accessories such as key-
board or mouse) and the changes in data packets over Wi-Fi networks
[32] have been explored as opportunistic sensing methods to char-
acterize occupancy. However, the implementation of specialized in-
ference methods is a requirement [52,60,65,106,107], and some studies
stated the difficulties of utilizing existing ICT infrastructures due to
hidden capital and labor cost [65,108]. Therefore, exploring the pos-
sibility of opportunistic sensing, and devising robust and reliable al-
gorithmic techniques for using such methods, is an open direction of
research that could alleviate the need for additional infrastructure. It is
worth noting that, as shown by the majority of the studies, additional
sensing systems would be required even for detecting occupants’ pre-
sence (the simplest functionality in occupancy modality). Although
retrofitting for occupancy-driven lighting control has gained attention
in recent years, adding new sensing infrastructure to existing buildings
for occupancy-driven HVAC operations is subject to the owner’s will
and sufficient maturity of the technologies.

Future Research Directions: Although research studies have ex-
plored various sensing systems for occupancy detection, the majority of
the efforts appear to be focused on technologies that call for specialized
infrastructure for occupancy detection. As the performance assessment
reviews (in the following sub-sections) show, the use of motion and
ambient sensing with high resolution could improve the performance.
However, the trade-off between cost and performance is an important
factor that needs to be considered. By reviewing the frequency quan-
tifications in Table 3, we could pinpoint the gaps in the use of sensing
technologies for HITL HVAC operations. The use of opportunistic sen-
sing (e.g., interaction between user-carried devices with communica-
tion networks, the human-appliance interaction, etc.) is among the
areas that have been less explored. Moreover, the research community
needs to combine efforts towards formalization of sensor placement
that enable effective sensing for different geometrical conditions (e.g.,
open areas versus close rooms).

As Table 3 shows, despite the potentials of occupant counting in the
control of HVAC systems (mainly by adjusting the ventilation loads), it
is a topic that is less explored, compared to occupancy detection. It
could also be seen that occupant counting has not been explored in
residential buildings. This observation could stem from the following
facts: (1) the occupancy count has been considered a more predictable
parameter in residential buildings, and (2) the need for more advanced
control and specialized equipment for airflow control could be con-
sidered as a barrier. However, with single thermal zone configurations
(the most common in the residential buildings [15]), ventilation load
adjustment as a contextual/adaptive operation strategy could poten-
tially result in high energy efficiency given that not all the areas in
residential units are always fully occupied.

Although occupant positioning is a well-studied research area, as
Table 3 shows, its application in the context of HVAC operations is in
the early stages of technology implementation. The use of occupant
positioning in this area calls for more flexible and localized air con-
ditioning. Therefore, it is an area that has the potential for future ex-
plorations. In this category, the methods based on communication
networks’ activity monitoring are among the more explored topics,
compared to vision-based systems and contextual condition monitoring.
However, the trade-off among fidelity, privacy, and cost of im-
plementation are the factors that should be considered in future
explorations.
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Fig. 5. Synthesized reported performances of occupancy detection for single- (upper) and multi-sensing (lower) modes.

Moreover, considering the necessity of new ICT infrastructure, life-
cycle cost analyses of the HILT HVAC operations can shed light on the
economic impact on the built environment. Specifically, cost-benefit
analyses to compare implementation/operational costs and economic
benefits from HITL HVAC operations could potentially bring about a
positive perspective on adopting new ICT infrastructure.

3.3. Occupancy inference and modeling

Pattern recognition for inferring occupancy either as an occupancy

state or occupancy profile has led to a wide variety of research efforts
on the use of machine learning and probabilistic modeling for pattern
recognition. These models have used data from single- or multi-sensing
modes, and efforts have been more focused on feature analysis given
that a wide range of standard classifiers has been used for the analysis.
We have organized the findings according to different application do-
mains, namely, sub-modalities (detection, counting, and positioning),
as well as occupancy pattern modeling. In presenting the results, we
have delved into the details of studies and looked into individual ex-
perimental scenarios rather than reflecting on an entire article as one
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data point. Note that we have not presented the details and specifics of
algorithms for feature analysis and pattern recognition to emphasize
the focus on sensing and contextual attributes. More specific criteria of
our review process are given in each subsection.

3.3.1. Occupancy inference

Occupancy detection:

Synthesis Criteria: In synthesizing performance, we have classified
the studies according to:

e Mode: single- vs. multi-sensing

e Sensing category and type as elaborated in Table 2

e Occupancy mode: single-occupancy space vs. multi-occupancy space
(it has been shown that this factor affects the performance of oc-
cupancy inference systems [71])

A number of studies, which did not sufficiently specify sensing ca-
tegory and type (e.g., [32,66,72,92]) or did not associate the reported
performance with single- or multi-occupancy rooms [7], were excluded
from the visualizations. In addition to the aforementioned criteria, the
following considerations were used in assessing the performance of
different efforts:

e We have used the accuracy as the main performance indicator since
it is the commonly reported factor across all studies. Some studies
[60,64,71,74,77] have not reported the other metrics such as false-
positive rate (incorrectly recognized as occupied — energy waste) or
false-negative rate (incorrectly recognized as unoccupied - dis-
comfort) and their relevant derived metrics such as precision, recall,
and F-Measure.

Studies have used different time intervals for occupancy measure-
ment/quantification that has a significant influence on performance
assessment (i.e., the shorter the time interval, the more difficult to
get a high performance). Fifteen [7,52,62,77], 10 [109], 5 [14], 3
[51], and 1 minute(s) [61,74,76,92,110], 20 [60], and 1 second(s)
[66,80] are the time intervals that have been used in different stu-
dies. We synthesized the performances without accounting for such
differences so that we could provide a comprehensive comparison.
Unless it was necessary, we have not accounted for different feature
extraction methods and inference algorithms, but rather have fo-
cused on the type of sensors in pursuit of simplicity. Some studies
used a number of features from the same type of sensors (e.g., the
average and root mean square values from sensors [64] or the count
features that indicate the number of times that a sensor is triggered
in the last minute [71]), and several studies have employed several
inference algorithms (i.e., machine-learning and statistical methods)
to obtain the best performance from their datasets
[71,74,97,98,111].

Several studies (e.g., [60,74,76,81,109]) have included time-related
features (e.g., weekday/weekend or time of day) as part of their
features, but we did not use those attributes in categorizing per-
formance assessments in pursuit of simplicity.

Using these criteria and considerations, we have processed the re-
ported performances across different studies into box-plot visualiza-
tions as presented in Fig. 5. As a reference for the readers, Table 4
presents references that have been used in creating Fig. 5. The x-axis
indicates the sensing technology category and type, and the y-axis re-
presents accuracy. To provide the context for the range of observations
in this graph, we have elaborated on the circumstances for each range.

Single-sensing Mode: as noted, in some of the studies, although multi-
sensing mode was the main focus, the performance of individual sensors has
been reported. The following discussions reflect those cases as well.

® PIR motion sensor: It has been noted that the performance of the PIR
sensor is highly dependent on the (1) deployment arrangement (i.e.,
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Table 4
Contributing studies in generating the visualization in Fig. 5.

Sensing mode Sensing technology References

Single-sensing PIR [58,64,65,71]
mode Air temperature [71,74]
Light [64,71,74]
CO, [64,71,73,74],
Humidity [71]
Sound [58,64,71,74],
Particulate matter [75]
Wi-Fi [76,52]
Door reed switch [71]
Electricity load [61,62,64,105]
Chair [33]
Multi-sensing PIR or motion sensor network [60,80,81,109]
mode PIR or motion + door or office appliance [14,60]
use
PIR or motion + ambient condition [58,64,71]
Ambient condition + contextual [64,71]
Ambient condition [71,74]
Wi-Fi + office appliance use + calendar [76]
RGB + office appliance use [65]
Door + motion + ambient condition [71,64]

the line of sight), (2) sensitivity, and (3) time interval of measure-

ments. Hailemariam et al. [64] have used a PIR sensor at the front of

an occupant and achieved 98% accuracy using the decision tree
algorithm with a time interval of one minute. However, Zikos et al.

[58] and Newsham et al. [65] experienced line-of-sight problems,

which resulted in lower performances (74-76%). Zhao et al. [60]

stated that the PIR sensors are not capable of catching occupants’

subtle motions (reported an accuracy of 62% for a time interval of

20 ), but the accuracy can be increased by 95% with a large time

interval (15 min) at a risk of having a false positive rate. Yang et al.

[71] used two features from the motion data (binary motion values

and count values) and reported accuracies of 67% (using binary

motion values) and 76% (using count values). They have discussed
that, in multi-occupancy spaces, the information, gained from mo-
tion sensors, drops due to artifacts from occupants’ movements.

e Ambient conditions sensing (air temperature, light, CO,, humidity,
sound, and particulate matter): Reported performances from single
ambient sensors show a considerable variance across different stu-
dies [64,71,74,75]. Overall, the CO, and sound sensors demon-
strated a more robust performance throughout the studies
[64,71,73]. CO, sensors appear to perform better in a multi-occu-
pancy space. This observation could be associated with the pace of
CO,, concentration build-up in crowded spaces.

o Temperature/humidity sensors, in isolation, appear not to be a
reliable source of occupancy detection for both single- and multi-
occupancy conditions given the performances reported by Yang
et al. [71]. The temperature sensor showed 65% accuracy in a
single-occupancy space and 61% in a multi-occupancy space, and
the humidity sensor had 57% accuracy in a multi-occupancy
space. Even though the effect of both sensors was reported to be
significant in multi-occupancy spaces [71], they could not reflect
the varied dynamics as a single data source.

Light sensors, in isolation, have been investigated in a number of

studies. Hailemariam et al. [64] demonstrated a maximum accu-

racy of 81% with a light sensor for a single-person detection. In
contrast, in a multi-occupancy space, Candanedo and Feldheim

[74] have reported a maximum accuracy of 99% with a light

sensor. These gaps could be associated with different sensor de-

ployment strategies (although it is difficult to compare them due
to the limited descriptions) and occupant behavior. It can be
presumed that the participants in the study of Candanedo and

Feldheim [74] were highly responsible in control of the lighting

system at arrival and departure. In this stduy, a 99% of accuracy
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was achieved by using the light sensor for occupnacy detection
even with a window close to the sensor. The experiment was
conducted in an office space with two participants. As the ex-
maple implies, the experimental procedures and the behavior of
human subjects, who participate in these experiments, could af-
fect the performance of light sensors significantly. Moreover, the
presence of natural light could mask the artificial light during the
day. Jazizadeh et al. [112] and Jazizadeh and Becerik-Gerber
[113] have addressed this challenge in a number of studies by
proposing feature extraction [114] in both time and spectral do-
main to isolate artificial light operations.

o Weekly et al. [75] attempted to use particulate matter measure-
ments at a corridor (a multi-occupancy space) for occupancy de-
tection, and the performance was not promising (66%). The
adopted thresholding method in their study could be an obstacle
to demonstrating the actual viability of this approach. Moreover,
the approach needs to be also evaluated in a more confined en-
vironment (like a private office) to evaluate its feasibility.

Wi-Fi communications: As noted, the Wi-Fi-based occupancy-detec-
tion methods primarily used packet traffic of an access point. Since
an access point has a range that normally covers several rooms or
thermal zones [52], the detection of room-level location could be
challenging. These challenges have been reflected in the results (a
61% accuracy) reported by Ghai et al. [76]. Balaji et al. [52] aug-
mented the approach with rule-based methods to overcome part of
the challenges in occupancy inference. As an example, they assumed
that a private office is occupied if the packet from the specific office
occupant is observed. This rule might fail in the case that he/she is
in an adjacent space covered by the same access point. Accordingly,
they achieved 86% of accuracy in the private offices. The use of such
augmentations has resulted in the observed wide range of accuracies
across different studies.
Door reed switches: Yang et al. [71] have explored the use of these
sensors in isolation for both single-occupancy (79% accuracy) and
multi-occupancy (56% accuracy). The main shortcoming in this di-
rection will be in the cases that the door is not operated (closed/
opened) while occupants pass through the door. Door counter sen-
sors could address this shortcoming.
Electricity load: By leveraging the occupants’ interactions with ap-
pliances, it has been hypothesized that the electricity load could be
used to infer the presence of occupants. In a small-scale examina-
tion, by installing appliance-level sensors, Hailemariam et al. [64]
and Akbar et al. [105] monitored the electricity use of office ap-
pliances from specific participants and reported 94-96% accuracies
for occupnacy detection. In residential buildings with multiple oc-
cupants, the aggregate electricity load data from smart meters has
been used to monitor occupancy, and a median accuracy of 85% was
observed [61,62]. The context of experiments plays an important
role in interpreting the reported performances. Inferring the inter-
actions of occupants and appliances from aggregate loads could be a
challenging task as the contribution of individual loads is not
known. Non-intrusive load-monitoring techniques have been ex-
plored in the past few decades to disaggregate the whole-house/-
building power time series (e.g., obtained from smart meters) into
appliances’ contributions [115,116]. However, the need for training
the algorithms [117,118,119] has remained a challenging aspect of
these class of techniques.
Chair sensor: Leveraging the specific patterns of occupants-environ-
ment interactions in office buildings, the use of chair sensors has
been proposed. Labeodan et al. [63] implemented (1) vibration, (2)
strain, and (3) mechanical-switch sensors on a chair to identify the
better option and reported that the use of mechanical-switch sensors
has resulted in 87 — 99% accuracy. The movements of occupants
while they are sitting on a chair could be the main source of artifact
in inference.
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Multi-sensing Mode: Looking at the general trends presented in
Fig. 5 (the lower graph), it is observed that multi-sensing methods
manifest a more robust performance for single-occupancy rooms com-
pared to the considerable variations in multi-occupancy rooms. Al-
though the context of these investigations is important, these general
trends represent the general challenges that we could observe in rea-
listic scenarios. As noted, we have looked at contexts across the studies
and combined similar experimental contexts to reflect the performances
of the sensing technology groupings.

® PIR sensor network: To compensate for challenges associated with the
line of sight, Dodier et al. [80] and Zhao et al. [60] explored the
potentials of using multiple PIR sensors, coupled with stochastic
models (the Bayesian belief networks and expectation-maximization
algorithm), in a number of private offices and achieved 98% and

91% accuracies, respectively. In these experiments, each room was

equipped with multiple PIR sensors, three on the north, south, and

east walls [80] and two on the ceiling and front wall [60]. In other
words, the sensor network covered a larger area and addressed the
challenges associated with line of sight limitations, hence, the re-
ported performance improvement.

® Motion sensor network: Soltanaghaei and Whitehouse [81] utilized a
number of motion sensors in the hallways of each unit in a re-
sidential building and inferred occupants’ sleeping or vacancy. The

thresholding method and hidden Markov models were used with 95

- 96% accuracy with a time interval of 10 min.

® PIR in conjunction with contextual data: PIR sensors have been com-
bined with contextual data sources to compensate for their limita-
tions:

o Zhao et al. [60] demonstrated that the performance of occupancy
detection can be improved by fusing data from the PIR sensors
and interactions with keyboard and mouse to account for the
moments when occupant motions are not detected by PIR sensors.

o Zikos et al. [58] deployed a PIR and sound sensor and reported
that the combination of both sensors outperformed an individual
sensor’s performance (when the sound sensor does not recognize
silent occupants and when the PIR sensor misclassifies the occu-
pants who passed by the testbed). This combination of technolo-
gies is commonly used in practice as a dual-technology sensor.

® PIR in conjunction with ambient and contextual condition data: In these
methods, PIRs are coupled with the ambient/contextual condition
sensing to augment their performance:

o Yang et al. [71] used the data from a sensor box that includes
ambient condition sensors (light, sound, CO2, relative humidity,
and temperature), motion, door reed switch, and door counter
sensors in single-/multi-occupancy spaces and reported the ac-
curacy of the individual sensors and the combinations of them.
They mentioned that the best performances were observed when
the data from all sensors were used. The authors have stated that
differences in occupant behavior in single and multi-occupancy
spaces influence the sensor readings (e.g., states of operable
building components such as doors show higher irregularity).

o Hailemariam et al. [64] used the combinations of PIR, CO,, light,
and sound sensors, as well as power meters on occupants’ personal
office appliances such as computers in cubicles, and demonstrated
that the combination of PIR, CO,, and sound sensors had the best
performance (98%) among multi-sensing methods. They used
multiple features from a single PIR sensor to achieve that per-
formance. It is worth noting that the physical configuration,
provided in the article, indicates that these sensors were in close
vicinity (in the cubicles) of the human subjects.

o Newsham et al. [65] combined two PIRs, one radar motion, sonar,
infrared thermal, four ambient condition sensors (light, sound,
temperature, humidity), as well as one webcam. They also mon-
itored the use of keyboard and mouse and indicated that the
combination of features from webcam and the computer accessory
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use had the best performance (accuracy of 92%). The experiments
were conducted on human subjects in either private offices or
cubicles.

e Wi-Fi and contextual data: Ghai et al. [76] demonstrated that the Wi-
Fi-based occupancy detection (with a 61% accuracy in their study)
could be improved by combining contextual information (occu-
pants’ laptop activity, instant messaging client, and calendar) to
90%. It has been stated that such features confirmed the presence of
occupants. However, the practical use of such combinations calls for
access to these data sources, which could be challenging.

e Ambient condition sensors: Candanedo and Feldheim [74] recorded
the best performance (up to 99%) among all studies with only am-
bient condition sensors (light, sound, air temperature, CO,, and
humidity). They underlined the importance of the sensors’ locations
and associated their outstanding performance with this factor. An-
other important factor is the way that occupants interact with an
environment. The experimental procedures could create a bias in
conducting the studies specifically in experiments with a short
period of data collection.

Occupancy counting:
Synthesis Criteria: In synthesizing the performance, we have
classified the studies according to:

e Mode: single- vs. multi-sensing

® Sensing category and type in Table 2

e Number of occupants: spaces with up to five occupants vs. spaces
with more than five occupants; this threshold was heuristically
identified based on challenges associated with identifying the
number of occupants in high-capacity multi-occupancy spaces [58].

Similarly, we used accuracy as the primary metric for comparison
because it has been the most widely used throughout all the studies.
The root-mean-square deviation (RMSE) has also been often employed
[71,90,111], but some of those studies did not specify the maximum
number of occupants in their testbeds [32,93]; thereby, it is infeasible
to compare their performances against those of others. Hence, we ex-
cluded the studies that used occupancy density or level (e.g., empty:
0%, low: 0-25%, medium: 25-50%, high: 50-75%, full: 75-100%) in-
stead of using actual number of occupants to calculate accuracy
[58,120]. Moreover, we also excluded efforts that used a tolerance in
their calculations (e.g., considering an error of two occupants as ac-
ceptable [102,121]). Nonetheless, it has been discussed that con-
sidering a tolerance in occupancy counting could be an acceptable ra-
tionale given that the exact numbers might not be necessary for
adjusting the operational settings of HVAC systems [90,121].

Fig. 6 presents the reported performances of occupancy counting for
different sensing and contextual conditions. The x-axis represents dif-
ferent sensing categories, and the y-axis shows accuracy. To provide the
context for the range of observations in this graph, we have elaborated
the circumstances for each range. Table 5 presents the references that
have been used in creating Fig. 6 so that the reader can see how many
studies contributed to identifying the ranges of the observations.

Single-sensing mode: Similarly , in this case, the performance as-
sessment of individual sensors in multi-sensor boxes was presented in this
category:

® CO, sensor: carbon dioxide sensors could be considered as one of the
most well-known ambient sensing technologies for occupancy
counting. Synthesis of the findings in different studies could provide
an insight into the efficacy and potential causes for varied ob-
servations:

o Studies have shown a considerable variance in the performance of
CO,, sensors in inferring the number of occupants (accuracies from
46% to 81% [33,73]).

o Cali et al. [73] demonstrated that in spaces with 2-3 occupants,

1483

Applied Energy 239 (2019) 1471-1508

the performance of the CO, sensor is highly dependent on the
deployment strategy (optimal vs. non-optimal) and use of addi-
tional contextual features (e.g., the states of doors and windows as
well as infiltration rate). The importance of contextual features
was also highlighted by Gruber et al. [124], who used mass bal-
ance equations for occupancy inference. An important attribute of
optimality is the distance between sensors and occupants.
The need for optimal sensor location has been highlighted in
different studies. Several articles have stated the slow detection
for CO, sensor as a limitation (e.g., [33,123]), which could be
interpreted as the problem of location and challenges associated
with air mixture when doors or windows were open during
measurement. Evidence of these challenges has been reported in
some studies. Gruber et al. [124] stated that placing a CO, sensor
inside a room could lead to inconsistent performances. They have
reported improved performance by locating the sensor in the ex-
haust air duct. Jiang et al. [102] used the feature-scaled extreme-
machine-learning algorithm with a single CO, sensor at the center
of an open office space with a maximum of 35 occupants and a
time interval of one minute and demonstrated 50% accuracy.
Open spaces could be a challenging case for the use of CO, sen-
sors. Moreover, this performance could be also related to general
challenges associated with detecting more than five occupants in
an environment (see Fig. 6).
® RFID technology: Li et al. [57] evaluated the potentials of using RFID
for occupant counting and performed five experimental scenarios
with six subjects. As indicated in Fig. 6, a large variation in per-
formances was observed, which was reported as occasional sys-
tematic malfunctions by the authors of the study. It was also re-
ported that detecting mobile occupants (62% accuracy) was more
challenging than detecting stationary occupants (88%). Given that
the use of RFID requires readers, antennae, as well as tracking and
reference tags, the practical use of this method could be challenging.
® Depth sensor: The application of depth sensors has been twofold: (1)
capturing transitions of occupants from outside of a space
(97-100%) [45,103] and (2) extracting the number of occupants
from the view (95%) [104]. As mentioned in Table 2, a transition-
based counting method causes a cumulative error problem, but the
studies that used depth sensors for capturing transitions did not
address such a problems [45,103].
Chair sensors: The excellent performance of 100% accuracy was re-
ported by using switch-sensor-equipped chairs in a conference room
(for one day with up to 13 people) where occupants are highly likely
to sit on chairs [33]. The testbed context is an important factor in
such studies.
® Door counter sensors: As reported by Urgessa et al. [59], the door
counter sensors could result in a good performance for detecting
transitions (96%) from one space to another. However, the chal-
lenges of cumulative errors should be considered. Similarly, testbed
context and experimental scenarios are important.

Multi-sensing mode: To address limitations and challenges asso-
ciated with occupancy counting, multi-sensing methods have been used
either as sensor networks or as multi-sensing technologies. The fol-
lowing points describe the results of our synthesis:

® Gray-scale camera sensor network: The use of a 64 X 64 pixel gray-
scale camera sensor network (16 sensor nodes), on the ceiling in
corridors of an office building, has shown an accuracy of 80% in
inferring the transitions of occupants between different spaces
[95,122]. The authors of these studies have mentioned that this
system utilizes hardware with limited computational power, so ac-
curacy could be improved with more powerful gadgets [95].

® PIR coupled with ambient and contextual data sensing: As Fig. 6 shows,
the coupling of data from motion sensors with ambient and con-
textual sensing methods was investigated for occupant counting
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Fig. 6. Synthesized reported performances of occupancy counting for single- and multi-sensing modes.

Table 5
Contributing studies in generating the visualization in Fig. 6.
Sensing mode Sensing technology References
Single-sensing mode  CO» [33,73,102]
RFID [57]
Depth [104]
Chair [33]
Door counter (transition) [59]
Depth (transition) [45,103]
Multi-sensing mode  Gray-scale camera [4,95,122]
PIR + door counter [58]
Sound + door counter [58]
PIR + infrared imaging [49]
PIR or motion + ambient condition [89,97,98,99,100,123]
Motion + ambient [111,58]

condition + contextual

with improved performance compared to the use of CO in isolation.
Again, it is important to consider the context of the experiments for
exact comparison. However, the addition of sensors shows improved
performances, specifically for spaces with more than five occupants.
Nonetheless, the robustness of these methods for different scenarios
is still a remaining challenge.

o Ekwevugbe et al. [89] deployed six sensing platforms (each con-
tained CO,, air temperature, light, relative humidity, and motion)
in an open-plan office, collected data for 7 days, and developed an
occupant-counting estimation model which had a 70-72% accu-
racy on weekdays (11 occupants at maximum) and 68-85% on
weekends (one occupant at maximum). This study also shows a
drop in the performance when occupancy inference technology is
applied in multi-occupancy spaces.

Zikos et al. [58] placed PIR, door counter, sound, and CO, sensors
in a space that could accommodate up to 16 people. They have
reported that the combination of door counter and sound sensors
had the highest accuracy (77.9%) and that having a CO, sensor as
part of a multi-sensing system did not improve performance due

1484

to slow response.

o Three studies (Yang et al. [90], Yang et al. [71], and Mamidi et al.
[111]) used the same sensing system, including light, sound, CO-,
air temperature, humidity, PIR, motion, door reed, switch, and
door counter sensors in the same testbeds (two office spaces with
up to 10 occupants). Using different features and algorithms
(decision tree, ANN, regression, Gaussian process, and SVM), they
have shown a range of accuracies with 98% reported as the
highest using a decision tree [71]. In general, they have demon-
strated that by integrating data from more sensors and features,
the performance could be improved.

o PIR and infrared imaging: An experimental study was performed with
three human subjects using a PIR sensor and an infrared camera
[49]. This sensing system uses the PIR sensor to trigger the infrared
camera to infer the number of occupants within the range, which
demonstrated 83% accuracy.

Occupant-positioning:

Unlike occupancy detection and counting, a limited number of ef-
forts on the use of occupant positioning for HVAC operations has been
made. Indoor location sensing is a mature field of study, and readers are
referred to the specialized review papers (e.g., [125;126]). As some
efforts have described, the position of occupants could be used to create
local climates [127]. Pursuing this concept, iBeacons have been used in
three studies [56,128,129] with different resolutions to find the loca-
tion of occupants using a grid of patches (sub-area units of the entire
area).

Discussion on the occupancy inference:

Challenges in performance assessment: The inconsistency of
data/information representation throughout the reviewed studies re-
sulted in difficulties for the performance assessment. To tackle these
challenges during our assessments and synthesis studies of different
sub-modalities (presence, number, and positioning), we carefully de-
veloped a number of criteria for inclusion/exclusion of the reviewed
studies (with the aim of minimizing the information loss from the re-
viewed articles). However, the following factors constrained the
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Table 6

Required attributes for occupancy data representation in addition to primary data.

Applied Energy 239 (2019) 1471-1508

Attribute Data

Contextual data

Sensor metadata Type (e.g., PIR sensor)

Temporal information Time of measurement (e.g., time of day)

Duration of study

Spatial information Testbed dimensions (length, width, height)

Occupants’ characterization General information of participants

Total number of participants

Experimental instructions for participants

Specifications (including accuracy, resolution, range, field of view, power consumption)
Measurement frequency (including sampling rates for raw data) (e.g., a 15-min interval)

Time of study (e.g., weekdays versus weekends or holidays versus working days)

Testbed type (e.g., private versus multi-occupancy spaces)
Sensor deployment information (sensor density) or plan (floor plan and cross-section views)

Participants’ normal activities (e.g., sitting, standing, sleeping, etc.)

Participants’ habits in interaction with the environment

Modality-specific data (occupancy)

Occupancy (presence)
Predicted occupied versus unoccupied
Occupancy (count)
Predicted number of occupants
Occupancy (position)
Predicted position of occupants

Specifications for measuring actual positions

Actual number of occupants (i.e., ground truth)

Actual position of occupants (i.e., ground truth)

Actual occupied versus unoccupied state (i.e., ground truth)

Data analysis

Feature extraction method(s) Time domain versus spectral domain features

Feature extraction algorithms
Pattern recognition algorithms

Important hyperparameters of models
Training requirements

Performance metrics
Positioning]

Feature representations (e.g., instantaneous versus cumulative measures)
Model type (e.g., support vector machine or Markov model) and characteristics (e.g., limitations)
Model training requirements (e.g., number of data points)

Confusion matrix (true positive/negative rates, false positive/negative rates, accuracy, precision, recall, F-measure) [Detection, Counting,

Normalized root-mean-square-deviation (NRMSD) [Counting]
Average distance from the ground truth [Positioning]

performance assessment of the reviewed articles:

As noted, we adopted the use of accuracy as the core performance
indicator in our assessments as it was the only metric, which most of the
reviewed studies in this field had commonly used. Nonetheless, other
performance indicators like precision, recall, and F-Measure that pro-
vide more in-depth information on the performance are critical in im-
plementing the occupancy-driven HVAC operation. The use of accuracy
for unbalanced datasets could result in biased and unrealistic results in
occupancy studies (e.g., if the unoccupied time is 18 h and the algo-
rithm predicts the space as unoccupied for the entire day, a 75% of
accuracy is reported even though this is an entirely undesirable per-
formance). The use of a confusion matrix for occupancy characteriza-
tion will help drive several other measures, i.e., true positive/negative
rates, false positive/negative rates, accuracy, precision, recall, and F-
measure. Similarly, establishing a standardized resolution (e.g., a grid
of points located one meter by one meter) for occupant positioning will
help formalize the performance comparisons across different studies.
Given the difference in the maximum number of occupants in different
experiments, in case of occupancy counting, the use of normalized root-
mean-square deviation (NRMSD) is also recommended:

“‘ZT=1(’72 —np)?
NRMSD = r
(@)

Nmax — Npmin

where 77; is the predicted number of occupants at a time ¢, n, is the
actual number of occupants at a time ¢, andn,,, and n,; are the
maximum and minimum number of occupants during the whole ex-
periment, respectively. We tried to calculate NRMSE using the data
from the reviewed studies, but the absence of required information for
such calculations was a barrier.

Regardless of the evaluation metric, a comparison between the

1485

efficacy of sensing methods calls for a close understanding of the eva-
luation contexts. The importance of the contextual information could be
observed in the results presented by Yang et al. [71] and Candanedo
and Feldheim [74]. Both studies have measured ambient condition
variations from multiple sensors in multi-occupancy spaces, but up to
40% of the difference in the reported accuracies is observed while they
both have utilized common machine-learning algorithms. Despite the
importance of contextual information, it was noticed that most studies
did not describe the physical configuration of their testbeds in detail.
The spaces were mostly described by the occupant-related terms (e.g.,
private offices or multi-occupancy spaces) without elaborating on the
physical dimensions and the sensor deployment strategies. For example,
the location of sensors, a core attribute for performance evaluation, is
often approximately presented (e.g., on the front wall [60]), which
limits the understanding of challenges (e.g., which angle was having a
line of sight problem [58,65]).

The impact of the context on the sensing performance could be
derived from (i) building type, (ii) space characteristics (e.g., dimen-
sions and type (e.g., private vs. multi-occupancy spaces)), (iii) building
system type (e.g., naturally ventilated vs. a mechanically conditioned or
mixed mode) and its influence on measurement techniques (e.g., the
use of CO, sensors in buildings with mixed natural and mechanical
ventilation systems), (iv) time of the data collection (e.g., holidays vs.
working days or weekdays versus weekends), and (v) occupants’ be-
havioral characteristics (e.g., level of irregularity in occupancy, energy
use behaviors, etc.). Accordingly, when it comes to performance eva-
luation through field studies, an elaborated description of testbeds and
occupants could lead to a better understanding of the actual viability of
the sensing mode and provide the ground for formalized benchmarking.

Occupancy data representation: Given the importance of bench-
marking, by evaluating the breadth of the information, presented in the
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selected articles, we have proposed the outline of a schema for re-
porting the findings of a study, as well as creating databases/sets for
occupancy characterization to facilitate the benchmarking in assess-
ment of the studies. This schema is composed of three information
categories: contextual, occupancy, and analysis as characterized in
Table 6. The contextual data elaborates on experimental setup speci-
fications, which include sensing system metadata, temporal and spatial
attributes of the data collection, and occupants’ information. The oc-
cupancy data includes the predicted and ground truth data. In this
category, a critical factor is the reliability of the ground truth data
collection [104], which is a time-consuming process and could be a
barrier in investigating occupancy characterization methods in reality
[60]. Three methods have been used for this objective: using RGB or
infrared cameras for visual labeling by human users
[4,35,51,66,74,75,80,89,92,123], relying on participants to document
their occupancy [62,76,77], or monitoring and documenting occupancy
patterns by an experimenter [7,52,80]. Identifying the most effective
approach is yet to be determined and will depend on experimental
setup and logistics. Utilizing cameras entails privacy concerns [44],
using participants’ data logs raises reliability concerns [51], and relying
on experimenters to collect ground truth data is time-/cost-intensive
and raises privacy concerns as well. The data analysis information
elaborates the details of feature extraction methods, the characteristics
of the pattern recognition algorithms, and the adopted performance
metrics.

Future research directions: As the quantitative assessments in
Fig. 5 show, the best performances of occupant detection were de-
monstrated in case of using the PIR/motion sensors in a network set-up
and PIR/motion in conjunction with ambient condition sensing. How-
ever, high variations in performance have been reported for multi-oc-
cupancy spaces. The high variations are also observed in occupancy
counting, specifically, when the number of occupants increases. In real-
world scenarios, accounting for the higher number of occupants is an
important factor for effective energy conservation. Therefore, further
research is required to improve the robustness of occupancy detection
and counting in multi-occupancy spaces. Innovative feature extraction
and inference methods should be explored in close linkage with in-
novative sensing methodologies. Leveraging the interaction between
the occupants and indoor environments could provide opportunities to
increase the robustness of sensing methods. Similar to investigations on
sensing methods, exploring the formalization of the inference methods
with respect to the contextual information is an important direction of
research. As an example of such efforts, Zikos et al. [58] have presented
a matrix format to enumerate the factors of critical importance, which
include (1) space type, (2) sensor combination, (3) occupancy type
(e.g., presence or number), (4) cost efficiency, (5) privacy efficiency,
(6) obtrusiveness, and (7) performance efficiency. Researchers in this
field should combine efforts to explore further formalization.

Compared to occupancy detection research efforts, studies on oc-
cupant counting have been rather limited. Regardless of the parameter
of interest, understanding the actual viability of a technology requires
experimentations under different conditions and different experi-
mental/field study setups. Therefore, further studies with current sen-
sing technologies and inference methodologies under different condi-
tions are important to provide a better understanding of the limitations.
Under a formalized method of assessment, such studies will provide
insight towards improvement in robustness and reliability.

Another important aspect in this line of research is the assessment of
generalized models or at least methods that are less dependent on in-
situ configuration. As pointed out by Yang et al. [90], developing
generalized (or universal) occupancy characterization models is a non-
trivial task due to the diversity in the characteristics of different spaces.
Generalized models are trained according to the data in a selected
number of spaces and are used in new environments. In a later study
[130], they have noted three influential factors that drive the perfor-
mance of occupancy detection models: (1) the level of real-time
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occupancy variation, (2) the degree of long-term occupancy differences
between rooms, and (3) the difference between indoor and outdoor
temperature. Given that these observations were based on a specific
setup, they could be used as a point of departure for further in-
vestigations in this direction.

As a generic theme in the aforementioned future research directions,
the context of the measurements plays a critical role in driving the per-
formance of the methodologies. Therefore, moving towards formalizing
the characteristics of the context by introducing a standardized re-
presentation of the context is of critical importance in this domain.

3.3.2. Occupancy pattern modeling

Occupancy modeling refers to the generation of models of spatio-
temporal occupancy patterns (i.e., the state of occupancy in different
spaces at different times (daily, weekly, monthly, or seasonal)) for ei-
ther real-time HITL HVAC operations [108] or more representative
energy simulations [55]. Studies [131,132] have shown that reflecting
realistic (i.e., contextual) occupancy patterns, compared to ASHRAE-
recommend deterministic models [133] could potentially bring about a
considerable difference between the predicted and actual energy use.
Occupancy modeling has been explored through different research ef-
forts to address challenges associated with operational strategies. A
synthesis of the methodologies for model generation and performance
assessment used in these efforts have been presented in Table 7. A
majority of these efforts (71%) have focused on office buildings, in
which the HVAC operates according to a fixed schedule.

In residential buildings, a common approach for occupancy mod-
eling relies on predicting occupants’ time of departure from and arrival
at their homes. In pursuing this objective, studies have either used
publicly available datasets [134] as well as real-world travel data
captured through GPS devices in participants’ vehicles. Studies have
used different timeframes including 1-2weeks [14,55], 1-2 months
[77,135], and 4 months [55]. Deterministic and probabilistic modeling
were both used for pattern recognition.

The most commonly used frameworks for modeling occupancy
patterns [5,47,51,93,95,96,104,137,138] have employed a variant of
Markov models, which infer changes in occupancy states (e.g., occupied
or unoccupied) at discrete steps under the assumption of Markov
property. In these models, the future state of occupancy for a given
space is inferred from its current state. The historical occupancy data is
used to create transition probability matrices used in inferring the fu-
ture states of occupancy. Lu et al. [14] have explored the use of Hidden
Markov Models (HMM) for predicting the occupancy of subspaces (e.g.,
front door, bedroom, kitchen, etc.) in eight residential units by using
data from door and motion sensors, augmented with time of day and
achieved an accuracy of 88%. On the other hand, a diverse set of
Markov models have been explored in office buildings. In doing so,
studies have explored such modeling by using the ground truth occu-
pancy data (captured by cameras and processed manually) [5,95,96],
depth sensor data [104], as well as the outcome of occupancy detection
from contextual and ambient sensing [51,137]. These efforts have been
implemented on a number of rooms in educational buildings for dif-
ferent durations of data collection. Erickson et al. [4] used the occu-
pancy data over 5days. Longer-term studies have been explored for a
limited number of rooms, for example, a conference room for 3 months
[137] and three rooms over 6 months [51]. Given the challenges of
labeling the data, the latter has used the outcome of the occupancy-
detection models, and thus the performance reflects the errors of oc-
cupancy detection as well. Considering that these studies have used
different methods for presenting the performance of the proposed
models (see Table 7 for the diversity of the metrics), an objective re-
porting and comparison of the performances was not feasible. This is
another aspect that needs to be formalized by the research community
to enable benchmarking. Erickson and Cerpa [5] and Chen et al. [138]
stated the limitations of employing the Markov models for occupant
modeling. Specifically, when modeling at a building scale that includes
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Table 7
Occupancy models’ categories, modeling method, performance indicators, building type, and objective.

Building type  Operational objective ~ Modeling technique Performance indicator Reference

Residential Predictive operation Optimization between unconditioned and miss time based on historical [134]
departure/arrival time data
Use of traveling time (e.g., minimum or average) [55,136,136]
Use of probabilistic schedule (e.g., thresholding) [135,136]
Use of historical arrival time (e.g., minimum or average) [14,136]
kNN Accuracy [77]

Reactive operation Hidden Markov model [14]
Office Predictive operation Blended Markov models Occupancy variability and flow, and  [95,96]
JSD
Markov and semi-Markov models NRMSE [104]
Reactive operation Semi-Markov model (occupancy duration) [137]
Moving window Markov models Accuracy [5]
Blended Markov models Occupancy variability and flow, and  [47,93,95,96]
JSD

Inhomogeneous Markov model NRMSE, KLD [138]
Non-homogeneous Poisson process model [139]
Multivariate Gaussian model, agent-based model RMSE, NRMSE [4]
Agent-based model, covariance graph model Mean and SD of error, NRMSE, KLD  [140,141]
Genetic programming Accuracy [67]
ARMA Time-series model, ANN, Markov chain Accuracy [51]
K-means and classification and regression tree [142]

SD: Standard deviation
JSD: Jensen-Shannon divergence
KLD: Kullback-Leibler divergence
ANN: Artificial neural network

several spaces with multi-occupancy, the number of states in the
Markov model increases exponentially. Another problem derives from
the conditions, not represented in the historical data (e.g., a transition
from occupancy to vacancy at 3:00pm in room #1). Studies have
proposed different remedies for these conditions, including the use of a
moving window, blended, and closest distance Markov models [5,95].

Stochastic process modeling (e.g., by using a non-homogeneous
Poisson process [139] or an auto regressive-moving average modeling
[51]), agent-based modeling [4], and other machine-learning algo-
rithms (e.g., an artificial neural network (ANN) [51] or genetic learning
(with an accuracy of 80-83%) [67]) are among other methods that have
been explored in occupancy modeling for office buildings. Despite
achieving a best performance of 95-97%, Yang and Becerik-Gerber [51]
described the drawbacks of ANN and ARMA models, including the
difficulty of interpreting the outcome and model variations depending
on the initial states (for ANN), as well as assuming a linear relationship
between the occupancy and contextual (or ambient) data (for ARMA).
The improved performance of ANN compared to genetic learning could
be associated with the fact that abnormal occupancy patterns were
eliminated in [51]. In general, the variation in occupancy behavior,
which results in abnormal behavior, could dramatically affect the per-
formance of occupancy models [84].

Agent-based modeling (ABM) refers to the class of techniques that
use the simulation of actions and interactions between autonomous
agents. Using raw occupancy data [4] or occupancy probability profiles
[140,141], agent-based simulations have been adopted to create oc-
cupancy pattern models, in which human agent behavior is defined to
infer the profiles of space use. Using the data over 5 days, the overall
RSME of 10.4 (3.8 and 7.6 in two office spaces, respectively) has been
reported for ABM occupancy modeling [4].

Future research directions: Similar to occupancy status inference
studies, in the field of occupancy pattern modeling, accounting for the
context and benchmarking are important directions of research that
should be further explored. As an example of such need in Table 7, one
could see that studies tend to use different metrics of measuring per-
formance (e.g., Kullback-Leibler divergence (KLD) and Jensen-Shannon
divergence (JSD), and Normalized Root Mean Square Error (KRMSE)),
which does not provide a common ground for enhancing the algorithms
and comparison across different studies. The study of the cascading
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RMSE: Root mean square error

NRMSE: Normalized root mean square error
KkNN: k-nearest neighbor

ARMA: Auto regressive-moving-average

error impact on the accuracy of the prediction model is another di-
rection that is worth exploring. In another observation, even though
residential buildings play a major role in driving the energy demand,
occupancy pattern modeling has been less explored in residential
buildings. In addition to modeling the departure from or arrival to a
residential unit, given the single thermal zone model of residential
buildings, exploring occupancy pattern modeling between subspaces of
a residential unit is another direction of research that is worth ex-
ploring. As the content of the next section shows, such information,
coupled with innovative flexible control strategies, such as the use of
smart vents, could provide more potentials for energy conservations.

3.4. Occupancy-driven HVAC operation (occupancy modality)

Occupancy modality utilizes occupancy characterization (i.e., de-
tection and counting) for context-aware HVAC system operation as
follows:

o Context-aware heating and cooling operations: Adjusting setpoint and
setback temperatures in response to the presence and absence of
occupants.

e Context-aware ventilation operations: Adjusting ventilation loads
based on the number of occupants in a thermal zone.

Compared to conventional prescheduled operations (e.g., during
official work hours) that assign a predefined temperature setpoint with
the maximum ventilation rate, these contextual operations offer op-
portunities to conserve energy when (1) the actual occupancy time is
shorter than the prescheduled time and (2) the number of occupants is
fewer than the maximum capacity. Fig. 7 shows how different sources
of information could play a role in achieving occupancy-driven HVAC
operations.

The most intuitive operational strategy is the occupancy-reactive
operation, which adjusts the operational settings of an HVAC system
when a change in the occupancy state of a space is observed. Compared
to the prescheduled operation, it is an adaptive strategy which follows
occupants’ dynamics. However, this strategy could result in occupants’
discomfort at the time of arrival due to the recovery time (or ramping
time) needed to adjust the temperature from a setback to a setpoint
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Fig. 7. Occupancy-driven HVAC operations for
energy efficiency.
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Fig. 8. Undesirable circumstances due to inaccurate occupancy prediction: (a) early arrival — discomfort, (b) late arrival — energy waste, and (c) unexpected arrival

(e.g., due to false positives) — discomfort.

during occupancy. Accordingly, the occupancy-predictive operation
has been introduced to prevent this initial discomfort by leveraging the
knowledge of the expected arrival time as a trigger to preconditioning.
Depending on real-world events in buildings, a number of scenarios
could affect the trade-off between comfort and energy consumption.
Fig. 8 illustrates the potential scenarios that could occur in case of er-
rors in the prediction of the actual arrival time. Due to these observed
potential challenges, a number of predictive operational strategies have
been proposed in the literature:

o The basic predictive operational strategy uses a relaxing and re-
covery time for moving from a setpoint to a setback and vice versa
(Fig. 9-a). This strategy has a high potential for the occurrence of
miss time (illustrated in Fig. 8). Miss time refers to the mismatches
between the time of arrival and the time needed for recovery, which
could result in discomfort (i.e., late recovery) or energy waste (i.e.,
early recovery) [134]. A miss time could also occur when a temporal
vacancy is inferred as a prolonged one due to false positives.

A second approach is to use an adaptive strategy for the temperature
setback depending on the expected length of vacancy. For example,
Gupta et al. [55] made use of occupants’ commuting time to decide
the level of setback temperature (Fig. 9-b). In an alternative ap-
proach, Lu et al. [14] utilized two setback temperatures, namely,
shallow and deep. This strategy deeply relaxes the setpoint tem-
perature at the beginning of the vacancy and then recovers to a
shallow setback temperature at the earliest expected arrival to
minimize discomfort (Fig. 9-c).

Energy-saving potential: To provide an insight into how effective

these strategies are in reducing the energy consumption of buildings,
we have synthesized the literature using the following criteria:

e Occupancy sub-modality: detection, counting, and positioning,
e Operational strategy: reactive vs. predictive,

® Baseline operation: all-time-on vs. a predefined schedule,

e Spatial scale of the testbed, and

e Type of analysis: simulation vs. field study.

The categories and distribution of studies in this field have been
presented in Table 8. In doing so, a number of studies were excluded:
(1) when spatial [44,45,93,100,106] or temporal scale [101] of the
experiments were not clearly presented (e.g., when the description was
ambiguous due to the use of terms like “several offices”), (2) when non-
conventional strategies were used, e.g., the room-based zoning control
[143], user decision-support system (i.e., providing eco-feedback)
[83,84,144], room reassignment based on personalized occupancy
patterns [91], or adjustable airflow operation [127], (3) when energy-
saving potentials are presented as a combination of both field and si-
mulation results [145], (4) if a study is a demo [94,146], and (5) when
the baseline (or control) scenarios have not been clearly described [82].
In Table 8, and the following figures (Figs. 10 and 11), we have counted
every individual case/scenario in each study. As Table 8 shows, studies
almost equally employed simulation and field study for energy im-
plications of operations (simulation 48% and field study 52%), but si-
mulations enabled more diverse scenario analyses (91.7%). Further-
more, the all-time-on baseline was only used in the simulation analyses
as it is not a common strategy in real-world scenarios.

Occupancy detection: Fig. 10 summarizes the reported energy-saving

a) Basic b) Adjustable setback strategy c) Deep setback strategy
A A
o Setpoint o Setpoint o Setpoint Shallow setback
g temperature % temperature % temperature temperature
I Setback g g |
IS temperature IS Quickreturn £ | .
RS 0 o) | Earliest
Vacancy Expecte Vacancy Lengthy return ™~ Vacancy Deep | expected AC,TUCH
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Fig. 9. The occupancy-predictive HVAC operation strategies in [14,55,134].
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Number of reported performances (and papers) of occupancy-reactive and -predictive operations.

Building type Baseline Occupancy-reactive operation Occupancy-predictive operation
Detection Counting Positioning Detection Counting Positioning
Residential All-time-on S 40 (1) 229 (1)
F
Pre-scheduled S 2(2)
F 11 21 (5) 1)
Office All-time-on S
F
Pre-scheduled S 46 (3) 56 (2) 67 (3) 2(2)
F 16 (3) 23 (5)

* The number in parentheses indicates the number of papers, S: Simulation, F: Field study.

potentials by using occupancy detection for HVAC system control, and
Table 9 shows the references used in creating Fig. 10. This graph il-
lustrates the general trend of energy-saving potentials for different
contextual conditions.

In the reactive operation mode, most studies demonstrated pro-
mising energy-saving potentials. However, as the scale of the testbed in
real-world studies increases, negative energy savings (—5.4 and
—0.2%) have been also reported (these observations are from a field
study based on 37 rooms in an office building during March in Southern
California reported by [92]). Li et al. [92] have associated these results
with the relationship between the setpoint and outdoor temperatures —
the smaller the gap, the less conditioning load required. On the other
hand, Newsham et al. [65] have shown the highest energy-saving po-
tentials by using a reactive strategy for one single room, which was up
to 64% (the first column in the field study category). These authors
justified the reported high performance with occupancy patterns of the
selected testbed. Goyal et al. [147] also showed high-energy-saving
potentials (39-40%) for a single office. That is, in general, when a
testbed scale is small (e.g., one thermal zone) and the occupancy period
is shorter than predefined schedules, high energy saving potentials have
been reported.

Yang and Becerik-Gerber [91], Erickson et al. [95], and Erickson
et al. [47] conducted simulations of relatively large office environ-
ments. Table 10 describes the context of these simulations. According to
annual analyses from Erickson et al. [95] and Erickson et al. [47], it has
been demonstrated that in general spring and winter (November —

April) have higher potentials for energy savings through occupancy-
driven operations. Although Yang and Becerik-Gerber [91] have used
the same season in their analysis, lower energy savings have been re-
ported (the median of 9%; 5th column in Fig. 10). This could be asso-
ciated with the insignificant difference between baseline and actual
occupancy, as well as the short baseline operation time compared to the
cases in Erickson et al. [47] (Table 10). Furthermore, it is often ob-
served that among the studies based on simulation, the occupancy data,
collected in a short period, is applied to an energy analysis of a long
period, which might be infeasible to demonstrate actual viability in
real-world scenarios. It appears that a normalization of energy con-
sumption (or savings) based on occupancy time is required for an ob-
jective comparison between results. The larger real-world testbeds (e.g.,
the cases from Li et al. [92]) represent a more realistic scenario, as they
represent scenarios closer to actual occupant interactions with the en-
vironment.

If compared in similar contexts, the predictive operation mode
results in less energy savings compared to the reactive operation.
Specifically, by looking at the cases in the first two columns in Fig. 10,
reported by [136], the median values dropped to 9% from 13% for the
apartment and to 8% from 13% for the house. However, higher energy
savings by the predictive strategy have been reported by Erickson et al.
[47] and Erickson et al. [95] (third and fourth columns in the reactive
and predictive operation categories in Fig. 10, respectively). Although
these studies have reported that the predictive operation had a longer
conditioning time on average (1.2h longer), they have associated the
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Fig. 10. Energy-saving potentials reported by studies using occupancy detection to control HVAC systems.
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Fig. 11. Energy-saving potentials reported by studies using occupancy counting and positioning HVAC sub-modality.

increase in savings with small differences between the setback and
setpoint temperatures in predictive mode. Reported by Woolley et al.
[87] from their field study, the energy-saving potential diminishes
when a short period of relaxing time is provided (i.e., when the system
does not completely get to the setback temperature). Therefore, eval-
uating the energy saving potential of the predictive operation mode
requires further validation by field studies. This is specifically im-
portant given the absence of important parameters in simulation-based
analyses. Li et al. [92] have pointed out that in simulations the delay
time that HVAC systems need to switch from the occupied mode to the
vacant mode is not often considered and is reflected in energy-saving
potentials.

Kleiminger et al. [136] investigated the impact of insulation and
weather conditions with respect to the occupancy-predictive operations
through simulation and reported that (1) weather conditions highly

impact energy-saving potentials and (2) poorly-insulated buildings can
better benefit from occupancy-driven operations. The lower saving
potentials (the first two columns of Fig. 10) were observed in their
studies compared to other simulation efforts and can be associated with
higher occupancy duration (17 h and 40 min on average).

The last two columns of Fig. 10 represent a large-scale field study in
a student housing building with 110 rooms [38,87], with a median
accuracy of 4% in [38,87] and 28% in [38]. The predictive operation
was used during the academic year (high-rate of occupancy) and
summer (low-rate of occupancy). The results revealed higher energy-
saving potentials by using the predictive operation during the summer
period with lower occupancy rates. During the academic year, they
reported cases in which no energy savings from predictive operation
was observed [38,87]. As another example of insignificant energy
savings from the predictive operation, Scott et al. [77] showed negative

Table 9
References used in creating the visualization in Fig. 10.

Occupancy sub-modality Operation mode Simulation/field study Scale Reference

Occupancy detection Reactive Simulation An apartment (52 m?) [136]
A house (176 m?) [136]
An office building (2772 m?; nine zones) [95]
An office area (585 m?; six zones) [47]
An office area (462m?; 16 zones) [91]
An office area (20 zones; 30 rooms) [71]1

Field study An office room [65,147]
An office area (12 zones | a half floor | 37 rooms) [148,7,92]
Predictive Simulation An apartment (52 m?) [136]
A house (176 m?) [136]
An office building (2772 m?; nine zones) [95]
An office area (585 m?; six zones) [47]
An office building (910 m?; nine zones) [149]
An office building (4,982 m?; 15 zones) [149]
An office building (46,320 m?; 61 zones) [149]
Field study A house | Two and five residential units [77,86]

39 houses, 110 bedrooms (academic-period) [87,38]
110 bedrooms (non-academic period) [38]
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Contextual information of three simulation studies on reactive occupancy-driven control of office buildings.

Ref. Baseline time Location Energy analysis duration Occupancy data collection time
[95] 7:00 am to 22:00 pm Fresno, Miami, Chicago 1year 5 days

[47] 6:00 am to 1:00 am California (simulating a real building) 1 year 2 days

[91] Weekdays: 6:30 am to 21:30 pm Southern California (simulating a real building) 4 months (from January to April) 28 days

Weekends: 7:00 am to 21:00 pm

energy savings (—5% and — 1%) in a number of residential units (with
predefined schedules) which they associated with having a single
thermal zone in these units. It should be noted that this study used
testbeds in the US and the UK, and that negative savings were observed
in US residential units. In the UK, residential buildings had room-level
thermal zones.

Learning from observations in these studies, we have synthesized
the main insights from the reactive and predictive operational strategies
in Table 11.

Occupant counting: Fig. 11 summarizes reported energy-saving po-
tentials by using occupant counting for HVAC system operation, and
Table 12 shows the references used in creating Fig. 11.

Energy-saving potentials by applying occupant counting have been
mostly assessed by simulations with the exception of one single-field
study [99]. According to our synthesis, the energy-saving potentials
from the two operating modes are in the similar range: the medians of
14-30% for the reactive and 20-37% for the predictive with the ex-
ception of cases reported by Goyal et al. [150] and Goyal et al. [151]
with a median of 56% (the first column in Fig. 11). As noted before, the
use of a testbed of a sibgle office zone could be the reason for having
such high potentials compared to other studies.

According to the simulation analyses by Erickson et al. [95]
(2772 m? with 9 zones) and Erickson et al. [47] (585 m? with 6 zones),
HVAC operation according to occupant counting has shown a higher
energy-saving potential due to the context-aware ventilation operation,
compared to results from operations based on occupancy detection.
Specifically, their reported medians of energy savings have increased by
7% and 5% compared to results derived from the occupancy-detection-
based reactive operation, respectively (Figs. 10 and 11). The only field
study case with 18% of energy savings has not clearly specified the
impact of the context-aware ventilation operation or practical chal-
lenges associated with real-world implementation [99].

Occupant-positioning: In our compiled literature, four studies pro-
posed an approach for using occupant position instead of occupancy
detection [127-129,152]. Wang et al. [128] and Liu et al. [152] ex-
plored the possibility of using occupant positions in open office spaces
for energy savings using simulation studies. They have proposed con-
trolling airflow according to occupant location. Wang et al. [128] re-
ported a 20% energy savings by simulation of a real-world, large, open-

Table 11

office space with cubicles. On the other hand, Liu et al. [152] reported
an energy savings of only 1.59% based on the simulation of a small
office space.

Miscellaneous operational strategies: Some studies attempted alter-
native operational strategies to save more energy through occupancy-
driven HVAC operation. One method proposes to accommodate occu-
pants, with similar occupancy patterns, in the same thermal zones,
hence, reducing the complexity of occupancy patterns and increasing
the chances of having a vacancy at thermal zone level (an additional 8%
energy savings was reported [91]). Another operational strategy aims
to manage different occupancy states in a thermal zone with multiple
rooms (e.g., two rooms, grouped as the same thermal zone, with un-
occupied and occupied states, respectively) [154]. While maintaining
the minimum supply-air flow in each room, this algorithm prioritizes
occupied rooms for conditioning. Through a field study (three thermal
zones for a week in February), this study demonstrated energy-saving
potentials of 29-80%. As an attempt to decentralize a single thermal
zone in residential buildings (as noted, the single thermal zone is widely
applied in residential buildings [15]), Sookoor and Whitehouse [143]
simulated a room-based conditioning to better adapt the dynamic
nature of occupancy and indicated the energy-saving potentials of 15%
could be achieved. Lastly, the user decision support system has been
introduced [83,84,144]. This system suggests several setpoint schedules
derived from users’ occupancy patterns. Users can also select the mode
that prioritizes energy use or comfort. Pisharoty et al. [83] showed that
this system could reduce energy spending compared to the manual
programmable and Nest thermostats (4.7% and 12.4%, respectively).
Jia et al. [155] proposed a framework, which optimizes the privacy and
performance losses. They have shown that a higher performance could
be achieved by using personalized information.

Comfort assessment in occupancy-driven HVAC operations:
Most studies assessed occupants’ comfort by monitoring whether ther-
mostats maintained the required setpoint temperature during occu-
pancy. In other words, it was presumed that comfortable conditions are
achieved by having the setpoint temperature [14,38,47,55,71,77,78,
86,87,95].

Energy performance data representation: Similar to the discus-
sion for occupancy characterization methods, an objective comparison
of studies that evaluate the potential for energy savings calls for a clear

Factors that influence the energy-saving potentials of occupancy-driven operations and their associate rationales.

Feature Rationales

Occupancy patterns

® Energy savings is highly correlated with occupancy patterns (the lower the occupancy, the higher the energy savings) [38,86,87,92,136].

® Impact of occupancy on energy savings between two groups (one with larger than 0.55 daily occupancy on average, i.e., more than 13.2 h per day and the
other) was not statistically significant (unpaired right-tailed t-test) [92].
® [rregular occupancy patterns have less potential for energy savings [14]

Climate

® Mild climates manifest less potential for energy savings [87].

Cloudy days reduce energy-saving potentials [136].
Building feature

[38,87,134,143].

Operation

® Relationship between outdoor temperature and setback or setpoint temperatures affects energy-saving potentials [14,87,92,95,136].

Poor envelope insulation increases the potential for energy savings from the occupancy-driven operation [87,136].
Having a larger number of thermal zones results in higher potentials for energy savings (i.e., efficient for adapting the dynamics of occupancy patterns)

Thermal interaction between adjacent zones reduces the chance to have a setback temperature [38].
Individual rooms in a complex building cannot be considered independent [38].

When setback temperature is not achieved, little energy savings can be realized [87].

Energy savings from a short period of vacancy are neutralized by recovery conditioning loads [87].
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Table 12
References used in Fig. 11.
HITL HVAC sub-modality Operation mode Simulation/field study Scale Ref.
Occupant counting Reactive Simulation An office area (25 m?; a single zone) [150,151]
An office area (54 m?; a single zone) [137]
An office area (200 mz; six zones) [128]
An office building (671 m?; seven zones) [5]
Field study An office building (seven zones) [99]
Predictive Simulation An office building (2772 m?, nine zones) [95]
An office building (671 m?; seven zones) [5]
An office area (585 mz; six zones) [47]
Occupant positioning Reactive Simulation An office area (two zones) [152]
An office area (200 m?; six zones) [128]
An office area (four zones) [153]

understanding of the contexts in which the studies have been con-
ducted. Therefore, similarly, in this case, we also have proposed in
Table 13 the outline of a schema for contextual data representation for
energy assessment studies. The importance of each attribute was clar-
ified in the performance assessment of the existing literature. An im-
portant factor that is often ignored is the actual energy savings capi-
talized by using occupancy-driven operations. In most studies, relative
changes according to the baseline energy consumption have been re-
ported. Providing the absolute energy savings could also bring about a
better understanding of the potentials.

Future research directions: Table 8 provides a map of unexplored
areas. As this table shows, the majority of the efforts have been focused
on methods based on occupancy detection. The number of case studies
and scenarios using simulation far exceeds those in field studies. This is
mainly due to the complexities of field studies specifically in active and
operational buildings. Nonetheless, there are unexplored areas in both
residential and office type buildings even through simulation studies.
For example, reactive operations in residential buildings have not been
sufficiently explored. As it could be seen, pre-scheduled operations,
common methods of energy conservation in buildings, have not been
compared to more advanced reactive operations. Furthermore, methods
based on occupancy counting, in general, are less explored. Studies,
including the studies by the Department of Energy, have shown that the
control strategies that leverage occupancy counting has a higher

potential for energy conservation although it is more challenging to be
achieved. Similarly, operations based on occupant positioning (both
reactive and predictive) is a topic that worth exploring although these
directions require more innovative adaptive control strategies in the
building operations.

Review of the literature shows the need for further assessment of
these methodologies through field studies. Although simulation is a
valuable and established tool in this field, the results from simulation
might not reveal the challenges for real-world implementation. As
elaborated in Table 11, diversity in testbeds at different geographical
locations are required to evaluate the actual viability of different
methodologies under diverse conditions. Moreover, the assessment
through simulation studies might not reflect the realistic thermal
comfort of occupants in practice — an important factor in building
systems operations. Some studies have shown that 15-28% of occu-
pants are often dissatisfied with the indoor conditions despite the fact
that they determine the temperature setpoints [12,156]. Therefore, the
aforementioned assumption in the assessment of energy saving poten-
tials, by maintaining the standard-recommended temperature range,
might need to be reconsidered.

Another direction for exploration is the standardization of the
evaluation method when it comes to energy conservation. Proposed
operational strategies should be evaluated by comparing them against a
benchmark setup (e.g., the prescheduled operating hours from 8:00 am

Table 13
Required attributes for assessing energy saving potentials by occupancy-driven HVAC operations.
Attribute Data
Contextual data
Building attributes ® Jocation (e.g., Arlington, Virginia, USA)
® Number of thermal zones and number of spaces included in the zones
® Dimensions (height, width, length, area, and volume)
® Age and physical attributes of the building (e.g., insulation, windows, etc.)
Regional attributes ® Climate
® Outdoor conditions (temperature, humidity, etc.)
Temporal information ® Duration of operation (e.g., 3 months of reactive operation)
® Time of experiments/assessments (i.e., which months or seasons)

Occupant data

Occupancy
the maximum at a given time (9:00 am))

Comfort Occupants’ thermal preference or thermal sensation

Profile type used for energy analysis (e.g., presence (100%) vs. absence (0%) or partial occupancy (30% as in three occupants are present, but 10 is

Operation data

Evaluation method
Operation strategy

Simulation or field study

Relaxing and recovery time
Setback and setpoint temperatures

Baseline operation All-time-on

Thermal condition Indoor thermal condition variations during operation

Occupancy detection, counting, or occupant-positioning
Occupancy-reactive or predictive operation (in the case of predictive, the strategy for setback/setpoint temperature adjustments)

Prescheduled with operation time (e.g., from 7:00 am to 5:00 pm)

Performance analysis

Energy use
Relative energy-saving values (e.g., 30% of saving)

Absolute energy-use value of the baseline and occupancy-driven operation
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to 5:00 pm). However, studies have used varied baselines, which makes
the reporting of energy conservation inconsistent. Such formalizations
will be more meaningful if they will be presented by accounting for the
diversity of geographical locations and contextual conditions.

4. Comfort-aware human-in-the-loop HVAC modality
4.1. Major research directions

The main method for design configuration of legacy HVAC systems
is to use the predicted mean vote (PMV) model to account for the oc-
cupants’ perspective [39]. In addition to environmental factors, this
model utilizes generalized human-related factors in the form of the met
unit for metabolic rates (1 met unit: 58.1 W/m?) and the clo unit for
clothing insulations (1 clo unit: 0.155 Km?W™1), which are assumed
according to standards’ recommendations. The required capability of
HVAC systems is calculated based on this model during the design
phase, when there is no information available about actual occupants.
However, previous studies have enumerated a number of limitations for
the use of the PMV model, including general interpretation of the
neutral state as thermal comfort preference [157] and the use of gen-
eralized human factors, including metabolic rate values, which are
based on average European males [158]. These limitations have re-
sulted in reported discrepancies between the PMV-based and actual
thermal sensations [159].

In the post-occupancy stage, human perspective in the operation of
the HVAC systems is reflected in the temperature setpoints of the
control loop. These setpoints are either controlled by occupants (in
residential buildings) or set by building managers (in office buildings)
based on generic ranges recommended by the standards. However, in-
dividuals have different thermal preferences [157] and respond to
ambient thermal conditions differently [160]. Therefore, by accounting
for contextual information (i.e., thermal comfort preferences of actual
occupants in buildings [161]), studies have sought to enhance the
thermal comfort representation for improved thermal satisfaction and
efficient energy consumption. As a traditional method of contextual
thermal comfort quantification, post-occupancy surveys have been used
in office buildings [162] due to the virtue of direct quantification [163],
although they have been used occasionally and usually in response to
complaints from occupants in buildings [11]. However, by the increase
in the prevalence of the ICT technologies, studies have shifted their
efforts to enable continuous and dynamic sensing and quantification of
thermal comfort in buildings [164].

The synthesis of the selected literature revealed three main objec-
tives in the HITL comfort-aware HVAC operations: (1) facilitating post-
occupancy evaluations, (2) personalized comfort quantification, and (3)
HVAC operation based on personalized or collective thermal pre-
ferences. A holistic process map for comfort-aware HVAC operations
has been presented in Fig. 12. Similar to the one in occupancy modality,
this process map includes three main components that have been
identified reflecting our proposed taxonomy (from left to right, the
third, fourth, and fifth tiers, respectively).

The first component represents the measurement and data-proces-
sing techniques that have been used for the quantification of persona-
lized thermal comfort. In doing so, we have synthesized the studies
according to their parameter of interest (e.g., occupant feedback or
thermophysiological response of the human body) to reflect on the
research trends of (1) occupant voting systems (OVS) and (2) physio-
logical sensing systems (PSS). The former uses ICT to facilitate occupant
feedback data acquisition (e.g., through web-based or smartphone-
based surveys), and the latter employs measurement of physiological
responses from the occupants’ bodies to infer their thermal sensation/
perception.

The second component focuses on inference methods for (1) per-
sonalized thermal comfort prediction, (2) personalized thermal comfort
profiling, and (3) collective thermal comfort profiling for multi-
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occupancy spaces. These methods have been proposed to identify and
leverage distinct characteristics in individual thermal comfort con-
sidering the differences in individual thermal perceptions and pre-
ferences. The third component focuses on integrating the dynamic
personalized/collective thermal comfort information (the outcome of
the second component) in the control loop for comfort-aware HVAC
operations. In the third component, we have also synthesized efforts on
the large-scale comfort evaluation in buildings enabled though ICT-
based surveys.

Following the structure of this process map, the rest of the subsec-
tions include a systematic presentation of the results for our syntheses
and performance assessment. The details of all studies reviewed in the
following sections were presented as supplementary material in Tables
4 and 5.

4.2. Comfort data acquisition

Occupant voting system (OVS): thermal comfort quantification is
a challenging task given that various factors could affect individual
thermal comfort perceptions. Therefore, in the early years of the 21st
century, and by an increase in the use of personal computers, research
studies explored the feasibility of electronic surveys (introduced in
2002 [11]) to directly collect individual thermal comfort perceptions.
This trend was later augmented by context-aware participatory sensing
through the application of smartphones [164]. These efforts comprised
the foundation for OVS integration into HVAC operations and mainly
rely on the ASHRAE definition of thermal comfort as “the condition of
mind that expresses satisfaction with the thermal environment and is
assessed by subjective evaluations” [165]. As the description implies,
the thermal comfort assessment relies on occupants’ subjective input,
which could be collected through a thermal sensation scale for comfort
vote expression — a scale which associates occupants’ votes into a nu-
merical value. The most frequently used thermal sensation scale is the
ASHRAE scale with seven degrees of hot (3), warm (2), slightly warm
(1), neutral (0), slightly cool (—1), cool (—2), and cold (—3). A 5-
degree scale without the votes for slightly warm and slightly cool has
been also implemented in different studies. A variety of different
thermal sensation scales have been introduced over the years, addres-
sing the incorrect notion that having a thermal neutrality vote is as-
sociated with satisfaction [157], and have been adopted in data col-
lection processes. Table 14 presents the formalized scales and a few
examples of studies that combined scales for data collection.

OVS methods call for occupants’ contribution to data collection,
which has shown a number of limitations. One limitation includes the
lack of consistency in the votes submitted by participating occupants.
As an example, the challenges of quantification have been shown in
Fig. 13, which were reported by Jazizadeh et al. [10]. Data presented in
this figure was collected by the same user in the same season over a
period of two months. However, this person manifested different
thermal comfort preferences under the same thermal condition (e.g.,
—20 (wanting to be cool) to 10 (wanted to be warm) at 26 °C — with
more emphasis on preference for a cooler environment) and showed the
same thermal comfort preference at different temperatures (e.g., 0 from
22 to 26 °C). These inconsistencies could stem from different causes: (1)
the insufficiency of thermal sensation scales in quantifying thermal
lingual votes, (2) complexity of perceiving thermal comfort states by
occupants, (3) failure in accounting for other contextual factors, such as
variation in clothing insulation or other physiological/psychological
variations, and (4) inaccurate quantification of indoor thermal condi-
tions such as temperature values at the location of occupants due to
unbalanced distribution of thermal condition. The diversity of the
scales presented in Table 14 reflects the efforts in addressing the
challenges observed in this process. Among these efforts, Jazizadeh
et al. [171] have proposed a combined perception/preference scale
through an experimental study with the objective of designing a sen-
sation scale that increases the consistency of the occupants’ votes under
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Fig. 12. Process map of the HITL comfort-driven HVAC operations.

similar thermal conditions.

Another reported limitation of OVS methods is the need for occu-
pants’ dedication to providing continuous input. The challenges of en-
gaging occupants in the process of data collection have been docu-
mented in the literature: Jazizadeh and Becerik-Gerber [172] used a
stratified sampling approach to engage only motivated participants to
ensure the quality of the data collection; Kim et al. [173] and Jazizadeh
et al. [10] also pointed out that users’ participation was a challenging
task while collecting data to create personalized comfort profiles; Fu-
kuta et al. [174] proposed to reduce end-users’ efforts by managing
intervals between occupant input inquiries; Barbato et al. [175] pro-
posed to benefit from occupants’ interactions with thermostats, as-
suming that setpoint temperatures reflect the preferred conditions. The
latter is the concept that the Nest thermostats [83] have adopted in
learning the preferences of occupants over time in residential units.

Physiological sensing system (PSS): As an alternative and com-
plementary method to OVS and as a result of the prevailing sensing
technologies, the use of physiological response from the human body,
through PSS, has gained momentum in recent years. These efforts have
sought to identify generalized or personalized features from human bio-
signals to reduce or obviate the need for occupants’ interaction with
OVS.

Investigations into the correlation between physiological processes
and thermal comfort have been carried out for more than 5 decades by
the indoor thermal comfort research community [176]. By definition,
thermal comfort is a cognitive inference that depends on physical,
physiological, and other human-related contextual factors (e.g., psy-
chological) [170] and can be achieved when physiological efforts for
thermoregulation are minimized and the core body temperature is kept
within a close range [170]. These processes include an adjustment in
the blood flow to the skin surface through vasodilation for warmer
environments and vasoconstriction for cooler ones. As the temperature
increases, other mechanisms, such as sweating and shivering, get trig-
gered. Inspired by these features, the PSS-based methods have sought to

Table 14
Thermal comfort sensation/preference scales and their representations.
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Fig. 13. The subjective nature of thermal comfort preference ([10]).

use physiological measurements of the human body for real-time
quantification of thermal comfort and as feedback to the HVAC control
loop.

The literature in this domain can be categorized into two groups of
(1) feature engineering and (2) comfort modeling. A majority of efforts
focused on investigating correlations between physiological responses
of the human body in reflection to the ambient thermal condition
variations. As Table 15 shows, the majority of efforts have focused on
establishing a correlation between skin temperature and thermal com-
fort perceptions (e.g., [176-181]). Heart activity, and specifically heart
rate, also a driving factor for metabolic rate [183], has been in-
vestigated in a number of research efforts [184-186]. These studies
have shown a rather moderate correlation between the variations in
heart rate with respect to thermal sensations or ambient conditions.
Specifically, heart rate appears to show correlations in identifying a
three-class thermal comfort assessment [187] compared to more refined
levels of thermal comfort perception. However, no statistically sig-
nificant differences have been reported [177,188]. There have been

Thermal comfort measurement scale Representation

ASHRAE thermal sensation scale [39]
Bedford scale [166]

Mclntyre preference scale [167]
Combined scales

Becker and Paciuk [159]

Zhang et al. [168]

Wong and Khoo [169]

Jazizadeh et al. [170]

[Hot, warm, slightly warm, neutral, slightly cool, cool, cold]
[Much too warm, too warm, comfortably warm, comfortable, comfortably cool, too cool, much too cool]
[Cooler, no change, warmer]

® ASHRAE Scale

® [much cooler, cooler, slightly cooler, no change, slightly warmer, warmer, much warmer]
® [comfortable, slightly comfortable, uncomfortable, very uncomfortable, unbearable]

® 9-point ASHRAE scale (added very hot and very cold)

® [comfortable, slightly comfortable, uncomfortable, very uncomfortable]

® [clearly acceptable, just acceptable, just unacceptable, clearly unacceptable)

® ASHRAE scale for temperature feeling

® Bedford scale for comfort feeling

® Mclntyre scale for preferences

® A binary question for overall acceptability

® A graduated sliding preference scale with snapping degrees for increased consistency of the votes
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Use of sensing technology for thermal comfort assessment or comfort-aware HVAC operations.

Parameter of interest Feature Sensing technology Field study Experimental study
Residential Office
Occupant feedback Thermal sensation/perception or preference Electronic/web-based survey 10
Smartphone-based survey 2 15
Physiological response Skin temperature Thermometer 14
Wearable device - smartwatches 2 1
Infrared imaging 1 2
Heart rate (heart activity) Wearable fingertip/earlobe sensors (smartwatches) 2
ECG (Electrocardiography) 5
PPG (Photoplethysmography) on webcam data 1
Nerve conduction velocity EMG (Electromyography) 1
Brain activity EEG (Electroencephalography) 1
Blood perfusion PPG on webcam data 3
Respiration DRS (Doppler Radar sensing) 2
Physical process Activity PIR 1
Clothing insulation Insulation state Infrared imaging 1

* Includes other types of buildings such as laboratories, banks, courthouses.

Table 16

Variation of contextual conditions and acclimation time considered in the studies — captured form [187].
Measured physiological response Measurement technique Temperature range Acclimation time Reference
Skin temperature, ECG, EEG Thermometer, ECG 21-29°C 60 min [189]
Skin temperature, ECG Thermometer, ECG 21-29°C 40 min [190]
Skin temperature Thermometer 20-30°C 30 min [181]
Skin temperature Thermometer 21-33°C 15-20 min [191]
Heart rate RGB Webcams (PPG) 20-29°C 20 min [192]
Heart rate variability ECG 21-29°C 40 min [184]
Skin temperature, heart rate, blood pressure Thermometer 19-22°C 30 min [188]
Respiration Doppler radar 20-29°C 20 min [193]

studies that used a more sophisticated feature of heart activity in the
form of the ratio of high frequency (0.15-0.40 Hz) to low frequency
(0.04-0.15 Hz) of the electrocardiographic (ECG) signal and showed an
increasing trend once subjects felt discomfort [184,185,189]. In the
majority of these efforts, conducted by the indoor thermal comfort re-
search community, identifying correlations was the main objective,
and, therefore, the feasibility of sensing has been less emphasized. In
other words, wired sensor systems or cost-intensive thermal cameras
have been used. Another important factor that the majority of these
efforts have taken into account is the acclimation. Acclimation time
refers to the time that is considered for the stabilization of the human
subjects' thermoregulation processes. Table 16 presents the spectrum of
the experimental conditions in the representative studies.

To account for the feasibility of using physiological attributes in the
control of HVAC systems, PSS should account for the following factors
[187,194]:

o Applicability: Inferring the correlation of at least one physiological
parameter with the ambient thermal conditions so that thermo-
regulation states could be identified,
Sensitivity: Recognizing subtle variations in physiological re-
sponses corresponding to thermal sensations in a timely manner so
that the system can respond to the discomfort state promptly; the
impact of acclimation time is an important parameter,
Non-intrusiveness: Minimizing interruptions/interference with
occupants’ activities and being acceptable to occupants without
raising privacy concerns, and
e Ubiquity: Being pervasively available to facilitate scalable data
collection processes and enable distributed assessment of thermal
sensations in an environment.

Applicability and sensitivity are interconnected and could be also
interpreted as one factor. As a non-intrusivene method, the feasibility of
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the sensing systems should be evaluated under the constraints of (1)
limited human-body parts that could be instrumented, as well as (2) in
consideration of occupnats' normal daily activities.

Among the research efforts, conducted by the HVAC research
community, the majority of the efforts
[179,181,182,184,185,186,191,194-201] investigated the feasibility of
using physiological features for thermal comfort assessment. Choi [203]
has used bio-signals for HVAC operations by performing an experi-
mental study, in which a thermometer was used to capture participants’
wrist temperatures as feedback to HVAC systems and reported the po-
tentials for comfort and energy management. In recent years, there
have been other efforts, in which smartwatches were used in field
studies for thermal comfort inference and HVAC operations. Infrared
imaging, photoplethysmography (PPG), Doppler radar sensing (DRS),
and smart wearable devices are the emerging methods that have been
investigated for thermal comfort assessment. In Table 17, we have
provided information on the studies that have used these emerging
technologies for thermal comfort assessment as feedback to HVAC
systems. As noted, there exist other studies that have investigated the
correlation between thermal comfort and physiological attributes;
however, their objectives did not include HVAC operations. To provide
a better insight into the content of these papers, we have briefly de-
scribed the use of PPG and DRS. PPG, a commonly used method in
medical applications, leverages changes in image pixel values to esti-
mate variations of blood flow to the skin, from which frequency and
amplitude values are used to infer heart rate and states of blood vessels
(i.e., vasodilation vs vasoconstriction), respectively. DRS systems use
Doppler radar sensors to quantify variations of motions, within certain
frequency bands, which can be used for respiration quantification.

Future research directions: Investigating innovative sensing and
data acquisition systems for the integration of personalized thermal
comfort should be conducted by considering different feasibility di-
mensions. This calls for further experimental and field studies, which
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Table 17

Details of studies that used PSS for comfort-aware HVAC operations.

Ref.

Objective

Region Physiological attribute Temperature setup

# of subjects

Sensing tech.

[203]

Performance of the comfort-aware operation (energy

Personalized setpoint temperatures assigned by participants
savings and comfort)

Skin temperature

18 Wrist

Thermometer

[204]
[205]

Classify the necessity of heating/cooling

Distinguish comfort/discomfort

Two transient temperatures 1) from 20 to 30 °C and 2) from 30 to 20 °C

Three steady-still Temperatures (comfortable, 18, and 29 °C)

Skin temperature

Facial area

15

Infrared imaging

Skin temperature

Facial area

15
12

[206]

Classify thermal preferences (cooler, no change, warmer)

One steady-still condition at 25 °C and two transient temperatures from 22 to

28 °C and from 28 to 22°C

Skin temperature

Facial area

[207]

Classify the necessity of heating/cooling

Field study that participants can adjust setpoint temperature

Skin temperature

Facial, neck, palm

area

30

[192]
[208]
[209]
[187]
[210]

Applicability assessment

Four steady-state temperatures (20, 23, 26, and 29 °C)

Two steady-state temperatures (20 and 29 °C)
Two steady-state temperatures (20 and 29 °C)

Transient temperatures (from 20 to 30 °C)

Heart rate

10 Facial area

PPG

Applicability assessment

Blood perfusion

Facial area

Applicability assessment

Blood perfusion

Facial area

21

Applicability and sensitivity assessment

Blood perfusion

Facial area
Hands

15
16

Applicability and sensitivity assessment

Hands were immersed into 45 °C water for 10 min and the variations were
measured

Blood perfusion

[193]

Applicability assessment

Two steady-state temperatures (20 and 30 °C)

Respiration

Chest & abdomen

area

DRS

[194]

Applicability and sensitivity assessment

Transient temperatures (from 20 to 30 °C)

Respiration

Chest & abdomen

area

[211]

Classifying thermal sensation

Not specified

Skin temperature, heart rate,

Wrist
sweat

Smart-watch

[212]
[213]

Classifying thermal sensation

Field study
Field study

Skin temperature, heart rate

Wrist

Classifying thermal preference

Skin temperature, heart rate

Wrist

23
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will shed light on unexpected challenges (emerging from the field stu-
dies) to facilitate the improvement in technology development and
technology adoption in practice. Given the increasing trend in the
market penetration rate of wearable devices in recent years and the fact
that users utilize physiological response measurement technologies for
health management (e.g., PPG in smartwatches), research in this field
has a promising perspective.

Furthermore, other dimensions could affect thermal comfort per-
ception besides the aforementioned factors, which were the subject of
the main body of research in this field. Psychological factors are
among the parameters that remain to be explored. In an example study,
Oseland [214] reported that subjects felt warmer in their homes in the
same ambient thermal condition with the same clothing insulation
level. The investigation of behavioral interventions and their impact on
thermal comfort perception comprise another important research di-
rection that has not been explored although human behavioral studies
for energy management is a well-studied field. Level of activity is
another factor that could impact the thermal comfort perception and
need for air conditioning. In an example study, Kim et al. [215] used a
PIR-based sensor network to identify occupants’ locations and to infer
their activities (e.g., occupants' movement) and developed an air-con-
ditioning unit that regulated fan speed and operating mode accordingly.
Through an experiment, this study has shown the potentials for using
actual physical activity for human-centered operations. Several studies,
which have investigated human activity recognition (HAR), also
pointed out the potentials for energy management (e.g., [216-218]),
but these articles do not provide details about how HAR can be utilized
for operating HVAC systems. Human activity recognition is a mature
field of study and out of the scope of this review study. In some studies,
higher-level human-related variables such as activity level, met unit,
or clo unit have been required to be provided by occupants through
OVS-based techniques [164,212,213]. However, as noted, the use of
such values provided by occupants might not represent actual values.
Quantification of the exact impact of clothing insulation is not trivial as
it is derived from several different factors such as fabric types, air
layers, and posture [164,212]. However, there has been an effort [220]
to quantify the impact of clothing insulation by using infrared imaging
to estimate temperature inside the clothes without any further use in
HVAC operations.

4.3. Thermal comfort inference and profiling

Using the personalized thermal comfort data to enhance real-time
operational efficiency of the HVAC systems calls for pattern recognition
models that infer personalized thermal comfort in a given thermal
condition. Therefore, moving from generalized thermal comfort models
(e.g., PMV model), studies have sought to create personalized thermal
comfort models either for instantaneous thermal comfort prediction or
thermal comfort profile generation. These models map an input data
point x € R¢, a d dimensional variable to either a class of thermal
comfort perception (e.g., satisfied, feeling warm/hot, feeling cool/cold)
or a thermal comfort satisfaction score (e.g., the probability of being
satisfied). The latter corresponds to thermal comfort profiling techni-
ques that map the thermal conditions to a thermal satisfaction prob-
ability. As Fig. 14 illustrates, due to the stochastic nature of the thermal
comfort modeling and the subjective nature of occupant input, prob-
abilistic inference methods, as well as fuzzy-rule-based modeling
[10,218-220], have been commonly used. Examples of probabilistic
modeling could be found in the work, presented by Daum et al. [161].
They used multinomial logistic models to create personalized thermal
comfort profiles. They have also explored the possibility of using gen-
eralized models for inferring posterior models with minimal training in
the field. Examples of fuzzy-rule-based modeling could be found in the
work of Jazizadeh et al. [221], where they used a Wang-Mendel fuzzy-
pattern recognition algorithm to create non-linear thermal comfort
profiles without assuming an underlying model. The use of machine-
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Fig. 14. Comfort profiling methods: (1) fuzzy-based and (2) probability-based comfort profiles (reproduced from Jazizadeh et al. [221] and Daum et al. [161]).

learning algorithms, specifically classifiers, have also been utilized to
create thermal comfort inference models. A variety of classification
models have been investigated using different combinations of features.
Temperature has been the main feature in almost all analyses and has
been augmented with additional features such as human-related para-
meters [173,206,212,224].

Performance assessment of thermal comfort inference:
Performance assessment in this section refers to the performance of
classification models that sought to predict an instantaneous state of
comfort. By reviewing the literature, we identified the following criteria
for categorizing the efforts in presenting their performance: (i) number
of classes, (ii) type of features, and (iii) type of inference algorithm.

For the first criterion, studies have used the following classifica-
tions: (1) thermal preference (warmer, no change, and cooler), (2)
thermal sensation (cold, cool, neutral, warm, and hot), and (3) ne-
cessity of using more energy for comfort (binary representation). In the
last category, researchers explored whether more energy consumption
is required for comfort. For example, when a space is overcooled be-
yond occupants’ comfort zone, it is classified as unnecessary energy use
[167]. The second criterion focuses on what features have been used for
mapping thermal condition to a comfort index. These features include
environmental factors, commonly temperature in an environment, as
well as human-related features, including either physiological (i.e., skin
temperature or heart rate) or physical (i.e., clothing insulation and
activity) [212]. We have categorized these features into environmental
versus human-related to shed light on the impact of human-related
features.

Fig. 15 summarizes the performance of machine-learning algo-
rithms in inferring thermal comfort states according to the aforemen-
tioned three criteria, and Table 18 shows the references used in Fig. 15
in the order that they have been presented. As noted before, in these
visualizations, we have presented different scenarios from a single
study as different data points. The reported accuracy values, which
were used as the primary performance indicator in all studies, have
been presented in the form of a box plot.

Fig. 15A (the upper part of Fig. 15) represents the studies that
mainly relied on environmental factors as the representative features.
The results in this figure (Fig. 15A) represent the efforts of three se-
parate studies [163,173,213], in which multiple experimental scenarios
were evaluated. The only human-related factor that was used in some of
these efforts is the level of clothing insulation. In general, by con-
sidering median values in the box plots, moderate performances have
been demonstrated. The range is from 61% to 72% [163,173,213]. The
horizontal axis shows the type of classification algorithms or general-
ized thermal comfort models (i.e., PMV [225] and Adaptive Thermal
Comfort [226]). As this figure shows, the integration of clothing in-
sulation attribute has helped slightly improve the performance of the
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models considering the median values for accuracy. More specifically,
the case without clothing insulation attribute has shown a median ac-
curacy of 63% [213] but when it is combined, the median accuracy
increased to 72% with the same machine-learning algorithm [173]. It is
worth noting that this study [163] has used 22 environmental factors as
attributes for the model, including temperature adjustments on the
chairs. Therefore, it is not trivial to identify the causality behind the
observed improvements. Moreover, the use of PMV for inferring per-
sonalized thermal comfort has not been shown to be successful. To use
the PMV model (with a 7-point output), a modified 3-point re-
presentation (too cold: from —3 to —0.5, comfortable: from —0.5 to
0.5, and too hot: from 0.5 to 3) has been used in studies [163,173].

Fig. 15B (the lower part of Fig. 15) represents the efforts that use
parameters from the physiological response of the human body as a
critical component of the features. All studies have relied on skin
temperature and/or heart rate. Skin temperature has been the most
commonly used feature in this category. In general, as more para-
meters, including skin temperature, heart rate, activity level, and
clothing insulation are added, an improvement in performance is ob-
served. Among these efforts, one study [213] has only used human-
related attributes (including wrist skin temperature from a smartwatch,
heart rate, clothing insulation, and activity) without any environmental
attributes that resulted in a median accuracy of 60%. However, they
have demonstrated that by, adding environmental parameters (i.e.,
indoor and outdoor temperatures and humidity, CO,, and window
state), an improved median performance of 79% was achieved. Even
higher performances, median accuracies of 90% and 95%, have been
observed when information on facial skin temperature has been em-
ployed [206,207]. However, an increased number of features (65 and
26 for the two-class [207] and three-class [206] classification problems,
respectively) representing skin temperatures have been used in the
latter analyses. These studies have used thermal imaging from the
hands, neck, and facial skin areas. In the case of the five-class classifi-
cation, six environmental (including indoor and outdoor temperatures,
humidity, CO,, and window state) and four human-related features
(including wrist skin temperature from a smartwatch, heart rate,
clothing insulation, and activity) have been used, and a median accu-
racy of 59% was observed [212].

Thermal comfort data representation: Similar to the studies in
occupancy modality, comparative performance assessment of comfort-
aware HVAC operations highly depends on understanding the context
of the studies. The context description schema (or the outline for re-
porting the findings of a study, as well as for creating a dataset for
personalized comfort characterization) shares many attributes with
studies in occupancy modality. However, it further includes domain-
specific attributes as follows. In the contextual data category, the
specifications of data collection methods for thermal sensation/
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Fig. 15. Boxplot of the reported accuracy of comfort inference.
Table 18
References used in creating Fig. 15.
Figure # of class Parameter Algorithm # of participants Reference
Fig. 15A Three (warmer, no Environmental + clothing insulation ~PMV 67 [163,173]
change, cooler) Adaptive comfort model 34 [173]
Environmental kNN, logistic regression, decision tree, SVM, Bayesian optimal 33 [163]
classifier
Environmental + clothing insulation Decision tree, gradient boosting method, Gaussian process classifier, 33 [173]
SVM, random forest, regularized logistic regression
Environmental Random forest 10 [213]
Fig. 15B  Three (warmer, no Human Random forest 10 [213]
change, cooler) Environmental + human Logistic regression 3 [212]
Random forest 10 [213]
Random forest 12 [206]
Two (Energy use: yes or  Environmental + human Random forest 24 [207]
no)
Five (thermal sensation)  Environmental + human Logistic regression 3 [212]
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preference/satisfaction are added. This information mainly includes the
characteristics of the sensation scales used for collecting occupants’
thermal comfort sensation. Moreover, the assessment of the comfort
studies calls for information on the regional climate (demonstrated to
have an impact [227]), thermal conditioning systems’ specifications,
thermal conditions in the testbed buildings, sensor set-up for human
sensing, and more dimensions for contextual data on human subjects
(e.g., weight, height, clothing insulation, gender, ethnicity, etc.).
Characteristics of human participants [207] and how they experience
the environment (mainly their location in the testbed) [214] could af-
fect their perception of the thermal environment. In the modality-
specific data category, data could include perception, preference, and/
or satisfaction as predicted, as well as ground truth. In the data analysis
category, given the nature of the thermal sensation measurements, the
task of inference could be tackled as a classification problem, and
therefore, a confusion matrix and its associated derived metrics will be
required. In some cases of thermal comfort profiling, relative error and
goodness of fit could be used as alternative metrics for assessment.
Table 19 presents the description of attributes for the proposed comfort
modality data schema.

Future research directions: As the nature of thermal comfort im-
plies, comfort modeling and prediction is a challenging task that often
calls for stochastic methods. This stems from the fact that several fac-
tors could affect thermal comfort perception, but those factors might
not be trivial to measure or quantify. Therefore, one of the future re-
search directions is investigating feature analysis and/or inference
methods that account for those factors while considering the trade-off
between the cost of sensing and efficacy. Although comfort profiles/
models are often developed by using labeled data from the human
subjects, fewer studies (see an example study by Jazizadeh et al. [222])
have investigated the validation of such profiles in the field. Instead,
they rather focused on purely data-driven validation methods like cross-

Table 19
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validation or similar methodologies. Field validation of these models
could provide a more realistic assessment of comfort modeling perfor-
mance on inferring the actual thermal preference/sensitivity. Another
dimension to the knowledge gap is whether personalized comfort pro-
files can account for temporal and contextual variations induced by
either seasonal variations or thermal history of human subjects. These
are the areas that are critical in comfort modeling and profiling for
integration into operational strategies.

Given that comfort votes from occupants act as ground truth in
personalized comfort modeling/profiling, facilitating feedback data
collection process is of dire importance. Therefore, research in the
following directions appears to be necessary: (1) devising methods for
incentivizing occupants, (2) developing data processing techniques that
require minimal data points from occupants, and (3) moving towards
generalizability by accounting for thermal comfort profiling for typical
individuals, characterized by different attributes such as body dimen-
sions, gender, age, etc.

4.4. Comfort-aware human-in-the-loop HVAC operations (comfort
modality)

The thermal comfort perception/preferences of real occupants have
been explored in different sub-modalities: (1) evaluating building en-
ergy management system performance, (2) adopting personalized
comfort profiles in building energy simulation, (3) implementing
comfort-aware HVAC operations with respect to collective perceptions/
preferences, and (4) applying comfort-aware HVAC operations with
respect to personalized perceptions/preferences.

Large-scale HVAC operation assessment in providing comfort:
Access to computing devices, such as desktops, laptops, tablets, smart-
phones, and network connectivity, has provided the opportunity for
large-scale performance assessment of HVAC operations during the

Required attributes for personalized comfort data representation in addition to primary data.

Attribute Data

Contextual data

Data acquisition system metadata

® Sensor type (e.g., RGB sensor, infrared thermal camera, thermometer)

® Sensor specifications (including accuracy, resolution, range, field of view, and power consumption)

® Interface specifications (web-based, smartphone-based, or smartwatch-based)

® Thermal sensation scale type (e.g., formalized scales or custom scales)

® Thermal sensation scale specification (e.g., scale resolution, numeric vs non-numeric, mapping between lingual to numerical

values)
Temporal information

Duration of study

Spatial (including environmental information) Testbed location climate

Measurement frequency (including raw sensing data temporal resolution)
Time of study (e.g., season and time of day)

Testbed dimensions (length, width, height)
Testbed type (open versus closed space | residential versus office space)
Thermal conditioning system specifications (including (1) mode: natural | mechanical | mixed, (2) diffusor(s) and thermostat

(s) locations and (3) thermal condition ranges)

Occupants’ characterization
Total number of participants

Sensor deployment information (sensor location on the body, distance between sensors, and point of measurement)
Thermal conditions of testbed (including temperature, relative humidity, etc.)
General information of participants (e.g., weight and height for Body-Mass-Index, ethnicity, gender, etc.)

Participants’ normal activities (e.g., sitting, standing, sleeping, etc.)
Experimental instructions for participants
Level of clothing at time of experiment

Modality-specific data (thermal comfort)

Actual values
Predicted values

Thermal sensation | preference |satisfaction

Data analysis

Feature extraction method(s)
Feature extraction algorithms

Pattern recognition algorithms

Performance metrics

Time domain versus spectral domain features

Feature representations (e.g., instantaneous versus cumulative measures)

Model type (e.g., Support Vector Machine (SVM) or Markov model) and characteristics (e.g., limitations)
Model training requirements (e.g., number of data points)

Important hyperparameters of the models

® Goodness of fit or relative error values

® Confusion matrix (accuracy, precision, recall, F-measure)
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occupancy stage. Leveraging such opportunities, a number of studies
have focused on understanding the overall performance of HVAC sys-
tems with respect to providing comfort. In a comprehensive effort,
starting with 22 buildings in an earlier study [11], Huizenga et al. [37]
collected 34,169 responses over 4 years concerning 215 buildings lo-
cated in the US, Canada, and Finland. Another example is the study of
Sanguinetti et al. [228], in which they collected 10,315 responses
(2,684 rooms in 183 buildings from 4,471 users) on a university campus
over one year. In addition to demonstrating the feasibility of large-scale
data collection for performance assessment, these studies have revealed
a number of generalized facts about the performance state in buildings.
Huizenga et al. [37] stated that only 11% of buildings out of 215 in
three countries (US, Canada, and Finland) satisfied 80% or more of
their occupants [37]. The 80 percent boundary is commonly used for
measuring the performance of HVAC systems in buildings given the
criterion indicated in ASHRAE standard 90 [39]. These studies have
also reported that overcooling is a common problem [228] and that
access to control interfaces and portable air-conditioning devices (e.g.,
thermostats, operable windows, and portable heaters and fans) plays a
critical role in achieving occupants’ thermal comfort. Another reported
observation points to the configuration of HVAC systems in buildings,
namely, the location of the air-distribution system. Under-floor air-
distribution systems have rendered less satisfied occupants, compared
to overhead air distribution [11].

Apart from understanding the general perceptions of thermal com-
fort in buildings, another contribution of such large-scale surveys is to
make use of the results in other buildings as a benchmark [11,36]. In
other words, such analysis, if accompanied by sufficient contextual
metadata, could be used for establishing benchmarks for best practices.
A rigorous investigation of buildings with a high number of comfort
votes could shed light on the performance of their HVAC system
management and design. As an example, Pritoni et al. [229] have re-
ported an exceptionally high number of complaints (828 votes) from
occupants in one classroom building who voiced their concerns about a
serious and expensive mechanical problem with its HVAC systems.

Use of personalized comfort profiles in building energy simu-
lation: The current state-of-the-practice in building energy simulations
does not reflect the personalized thermal comfort preferences/profiles
of occupants. As noted earlier, this mainly stems from the fact that
occupant preferences are not known at the simulation stage. However,
the impact of personalized preferences could bring about considerable
differences in energy performance of the buildings. Although compared
to occupancy-driven simulations, fewer studies have explored this re-
search direction, these impacts have been demonstrated in a number of
research explorations. Given the dynamic nature of the interactions
between humans and the buildings, accounting for human thermal
preferences has been commonly explored using multi-agent-based
(MAB) simulation techniques [225,226,230]. By simulating a real-
world building, Klein et al. [230] have shown that by accounting for
occupants’ preferences and schedules (collected from the real-world
testbed), a 12% reduction in energy consumption and 5% improvement
in occupant comfort has been observed compared to standard baselines.
The importance of thermal comfort profiles was also reflected in a MAB
simulation study by Jung and Jazizadeh [231], in which it has been
shown that the thermal sensitivity of occupants could significantly
change the thermostat settings of the HAVC systems during operations.
Further explorations in this direction could result in design procedures
for building systems. However, given the possibility of changes in the
future occupancy of buildings, the integration of personalized comfort
profiles during the design should be carried out by accounting for future
scenarios and adaptive operational strategies.

Comfort-aware HVAC operations: We have evaluated the perfor-
mance of the comfort-aware operations using five criteria: (i) sub-
modality, (ii) operational strategy, (iii) operational baseline, (iv) spatial
scale, and (v) simulation vs. field studies. As shown in Fig. 12, two types
of comfort-aware HVAC operations have been demonstrated. The
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personalized conditioning method considers the thermal preference of a
single occupant in a space (i.e., addressing a single personalized com-
fort profile). On the other hand, the collective conditioning method,
which accounts formultiple personalized comfort profiles, more often
occurs in buildings due to the use of thermal zones. In such cases, a
strategy for resolving thermal conflicts [232] and the integration of
personalized thermal comfort is imperative. Review of the literature
shows that this integration has been carried out using four strategies:

i. using occupants’ individual thermal preferences/profiles to calcu-
late temperature setpoints that minimize overall discomfort
[233-235],

using personalized preferences/profiles along with additional tem-
perature sensors at room level to calculate dynamic temperature
setpoints that minimize overall discomfort in a thermal zone
[10,213,221,222],

creating a thermal-zone-scale discomfort or comfort profile to
minimize discomfort in the thermal zone by minimum energy use
[223], and

iv. calculating a context-aware PMV value to optimize setpoint tem-

perature [236].

ii.

iii.

In the first strategy, the occupants’ perspectives could be acquired
either through continuous and direct votes from occupants or through
personalized thermal comfort profiles. The temperature setpoint is
therefore adjusted based on an objective function of discomfort. For
example, Murakami et al. [234] used the majority vote from occupants
(e.g., cooler) to adjust the temperature setpoint. An alternative to the
first strategy, described as the drifting operational strategy
[229,233,234], also has been adopted to save energy. This method was
used along with control strategies, in which occupants can adjust the
operation of the HVAC system by sending continuous feedback.
Through this method, the setpoint is adjusted to gradually move to-
wards matching the outdoor temperature and this adjustment is
stopped/reversed upon receiving a discomfort vote from occupants. In
these studies, thermal comfort profiles have not been used, and the
system relies on the continuous engagement of the occupants in an
environment. The concept of drifitng has been illustrated in Fig. 16.

The second strategy not only leverages personalized thermal com-
fort profiles to identify each occupant’s preferred temperature, but also
aims to demonstrate uneven temperature distribution in subspaces,
being conditioned under one thermal zone with single thermostats
(measuring a temperature at an arbitrary location). The third strategy
focuses on multi-objective optimization, minimizing discomfort and
energy use, using the thermal-zone-level discomfort profile, created
from individual comfort profiles. In the fourth strategy, an adaptive
PMV model that reflects real-time values in buildings is used to provide
comfort to occupants.

By adopting the aforementioned strategies, energy consumption
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Fig. 16. Reduced conditioning load by the drifting operation method.
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Table 20
Distribution of cases (and papers) that reported the performance of comfort-
aware HVAC operations in residential and office buildings.

Comfort-aware operation

Personalized conditioning  Collective conditioning

Office Simulation 4(2)
Field study 3(2) 10 (6)
Residential Simulation 1)

Field study

* The number in parentheses shows the number of papers that reported the
cases.

implications have been explored in a number of studies through either
simulation or field studies. Given that thermal zones are configured for
multi-occupancy by default, all studies have explored the use of per-
sonalized thermal comfort information for collective thermal con-
ditioning, and no study explicitly investigated personalized thermal
conditioning by solely relying on HVAC systems. However, some stu-
dies explore thermal zones with a single occupant. We have used those
cases as a proxy to investigate energy implications of the strategies.
Table 20 presents the number of cases that have reported on the per-
formance of comfort-aware HVAC operations (one article could have
more than one case). The majority of these studies focused on office
spaces (94.4%), and the field studies were dominant (72.2%).

The reported energy-saving potentials of comfort-aware HVAC op-
erations have been illustrated in Fig. 17, and Table 21 shows the re-
ferences used in Fig. 17. It is worth noting that we excluded the cases
from Barbato et al. [175] and Pritoni et al. [229], as the former cal-
culated the energy-saving potentials (28%) derived from both occu-
pancy-driven and comfort-aware operations, and the latter did not
specify the number of occupants in their testbeds (20-30% of energy
savings were reported).

As the box plots in Fig. 17 show, the majority of the investigated
cases are related to thermal conditioning according to collective
thermal comfort. We have considered the reported changes in energy-
saving percentages regardless of the metric that was used in each study.
This figure synthesizes performance improvements from different
strategies, as described above, by considering the context of the ex-
periments. According to the results reported in field studies, the in-
tegration of personalized thermal comfort in a number of thermal zones
has shown an average savings of 20% [221-223,235]. However, given
the dependency of the operations on the personal preferences of oc-
cupants in the testbeds, a negative percentage (i.e., increased energy
consumption) has also been reported. Jazizadeh et al. [221] reported
-17% of energy saving in a single thermal zone. As the cases derived
from the single-occupancy thermal zones illustrate, personalized
thermal preferences for some occupants resulted in higher energy
consumption due to the higher needs for thermal conditioning loads
[221]. As Jazizadeh et al. [222] stated, the observed energy savings in
the field study stems from preventing over-conditioning. Research ef-
forts that used discomfort/comfort profiles at thermal-zone-level [223],
drifting [229,233,234], and contextual PMV data [236] have reported
average energy savings of 50% (reflecting energy optimization as well),
21%, and 10%, respectively. Again, it is emphasized that these per-
centages reflect changes observed in different metrics for energy
quantifications (e.g., average daily air flow and calculated energy
consumption).

Most studies did not specify detailed information for testbed char-
acteristics. In some studies, quantitative specifications (e.g., area) were
provided, some provided floor plans, and in some, no detailed specifi-
cations were presented. Therefore, in the categorizations of Fig. 17, the
general descriptions provided by each study were used for synthesis
purposes. The challenges in normalizing the results with respect to the
testbeds’ specifications emphasize the importance of adopting a
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generalized schema, such as the one proposed in Table 19. Studies have
used different metrics in quantifying the energy-saving potentials of the
comfort-aware operations, including daily airflow [221-223,236], cal-
culated energy based on airflow, as well as supply and discharge tem-
peratures [236], and energy [235]. The baseline in all studies has been
set as the energy consumption required for thermal conditioning when
using predefined temperature setpoints. Information about the con-
ditioning schedule (e.g., from 9:00 am to 6:00 pm) is often missing,
which makes normalization challenging. Only a few studies clearly
mentioned the conditioning time on both conventional (i.e., baseline
operations), and comfort-aware HVAC operations [10,222,234].

Comfort assessment in comfort-aware HVAC operations:
Another important factor in the performance assessment of the comfort-
aware operations is the thermal comfort improvement. Through inter-
views with occupants, Jazizadeh et al. [221], Jazizadeh et al. [222],
and Lam et al. [235] have demonstrated that the comfort-aware op-
erations have resulted in considerable improvement in the thermal sa-
tisfaction of occupants. Murakami et al. [234] and Pritoni et al. [229]
have mentioned that feedback from occupants remained similar after
the comfort-aware HVAC operations were implemented, while energy
consumption was reduced.

Future research directions: Understanding the potential of per-
sonalized thermal comfort integration calls for more diverse field stu-
dies. The reported energy saving potentials in the literature have been
demonstrated by the studies, which were performed in a similar climate
region and mostly in small-scale test beds. Hence, diverse analyses on
different regions, scales, and building types (i.e., various contexts) are
required to shed light on the actual viability of comfort-aware HVAC
operation. Energy saving through comfort-driven strategies is based on
the assumption (which has been validated in few studies) that com-
monly used operational settings of building systems are set to be con-
servative. Therefore, if we account for the contextual thermal pre-
ferences, we should be able to conserve energy. Further validation of
this assumption under varied conditions is another direction of research
that is critical in the realization of HITL HAV operations. Moreover,
integrating diverse thermal comfort preferences from different in-
dividuals, who share the same thermal zone, is an ongoing research
topic that requires further explorations. Research in these directions
could be carried out by simulation-based studies first, and consistent
and constructive field studies should be conducted for further viability
evaluations. It is important to note that in this study, we did not include
research efforts on personalized thermal conditioning (i.e., personal
heaters or fans) by using distributed devices given the focus on HVAC
systems. However, following the same rationale, moving towards en-
abling HVAC systems with higher flexibility for targeting individual
preferences is another direction of research that worth exploring.

5. Qualitative evaluation

Upon reviewing and assessing the compiled studies, we have re-
flected on the research directions that could pave the way for further
enhancements in the HITL domain. To this end, in an analogy to the
concept of technology implementation stages of the Hype cycle model,
we have provided a qualitative evaluation of the research in HITL
HVAC operations and have discussed potential directions of explora-
tions. This model describes the adoption cycles that a technology goes
through until the practical viability of the technology is revealed.
Table 22 states different stages of this model, and Fig. 18 graphically
describes each stage.

As a steppingstone for HITL HVAC operations, in the first step, we
have assessed the inference of human dynamics’ attributes, namely,
presence, count, and comfort. In doing so, we considered performance
(i.e., the accuracy of inference). Occupant positioning is excluded in our
qualitative evaluation given that it has not been actively adopted in
HITL HVAC operations. Nonetheless, occupant-positioning techniques
could potentially provide other dimensions of occupancy dynamics
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Strategy #2: Using personalized preferences/profiles along with additional temperature sensors to calculate dynamic setpoint temperature that

minimize the overall discomfort
Strategy #3: Creating a thermal-zone-scale discomfort or comfort profile to minimize the discomfort in the thermal zone by minimum energy use
Strategy #4: Calculating a context-aware PMV value to optimize setpoint temperature

Fig. 17. Reported energy savings percentages from the comfort-aware operation.

(i.e., presence and count) and even could provide higher resolutions for
more refined control strategies. However, benefiting from positioning

calls for methods that could provide high acc

uracy. Therefore, research

efforts could focus on specialized positioning for HITL HVAC opera-

tions.

® Occupancy detection: Based on the synthesized performance of the

research on alternative sensing technologies that could bring about
improved and reliable performance by accounting for privacy con-
cerns is needed. Moreover, investigations on effective sensor sys-
tems’ configurations, including spatial placement and temporal re-
solution of data collection, could improve the current state-of-the-
art sensing technology. This is specifically important for occupancy
detection for multi-occupancy spaces that pose more challenges for

multi-sensing (i.e., sensor fusion) techniques presented in Fig. 5,
although accuracy values higher than 90% have been reported, the
studies have shown a considerable range of variations for different
cases. This is specifically true for multi-occupancy rooms. Therefore,
the conventional challenges, reported from the use of PIR/motion
sensors, have not been completely addressed by the use of these
complementary sensing methods, and further studies for achieving a
robust performance are needed. Consequently, research on occu-
pancy detection appears to be at the intersection of the third to
fourth technology implementation stages. In this category, further

detection.

Occupant counting: Despite the high accuracy values (presented in
Fig. 6), observed from the use of depth and door counter sensors in
identifying transitions across sub-spaces, the challenges associated
with error accumulation have not been sufficiently addressed.
Moreover, the overall median accuracy, derived from multi-sensing
systems, varied between 66 and 83%, which is lower than occu-
pancy detection performance. These models also manifest perfor-
mance variations across different cases, with reduced robustness for
a higher number of occupants. Consequently, research on occupancy

Table 21
References used in creating Fig. 17.
Sub-modality Simulation/field study Scale Operational strategy Ref.
Personalized conditioning Field study An office area (one zone) #2 [221]
Collective conditioning Simulation A classroom (100 m?) #1 [235]
An energy-use simulation model #1 [233]
Field study An office area (seven zones) #4 [236]
An office area (one zone) #1 [234]
An office area (eight rooms; 263 m?) #1 [235]
An office area (one zone) #2 [222]
An office area (one zone) #3 [223]
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Table 22
Technology implementation stages in the hype cycle model [17].
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Technology implementation stages (original terms) Description

Stage #1: Technology adoption (innovation trigger)
Stage #2: Increased expectation (peak of inflated expectations)
Stage #3: Emerging difficulties (through disillusionment)
Stage #4: Overcoming difficulties (slope of enlightenment)
Stage #5: Stabilization (plateau of productivity)

users

Potential of a technology draws attention

A bandwagon comes into effect, so expectation exceeds the actual capability of the technology

Less favorable results emerge, and the expectations drop

Tackling difficulties is explored, and best practices are reported

Real-world benefits are accepted, and the risk of adopting the technology is acceptable to a growing number of

IS
|4

Increased expectation

Visibility

Performance stabilization

Overcoming difficulties

Emerging difficulties

Technology adoption

4
Time

Fig. 18. Graphical representation of each stage in the Hype cycle model.

counting appears to be at the third technology implementation
stage. More reliable sensing techniques in this category, similar to
detection, are needed, and even more research challenges need to be
overcome.

Comfort inference (based on comfort voting and physiological re-
sponses): The inference models, built solely on features derived from
environmental factors, have resulted in median accuracies ranging
from 70 to 80 percent. However, models tend to show a lack of
reliability given the high variations in their performance. Adding
physiological features appears to improve performance. However,
labeling personalized thermal comfort data is a challenging task,
which could be the source of the observed errors. Specifically, as the
resolution in acquiring thermal votes increases (i.e., asking for more
refined perception (warm vs. hot) votes), labeling errors increases.
Based on these observations, personalized comfort modeling and
inference could be interpreted at the third implementation stage.
This category calls for more in-depth research on identifying feasible
sensing solutions that provide a representative measure of perso-
nalized comfort under the constraints of non-intrusiveness, non-
disruptiveness, and ubiquity. A feasible solution in this category
should account for consistent inference of accurate thermal per-
ception/preferences of occupants. An important aspect, which has
not been the subject of research efforts, is the impact of psycholo-
gical factors on thermal comfort perceptions. Activity levels are
another less explored feature of human dynamics when it comes to
context-aware operations of HVAC systems. The level of activity in
indoor environments could affect the perception of occupants about
thermal conditions. One challenge that thermal comfort inference
studies encounter is the process of contextual data collection, which
reflects the realistic scenarios that occupants might experience.
Research on identifying the most effective methods of data collec-
tion that represent the actual experience of occupants will facilitate
studies in this field.

Assessment of the aforementioned categories reveals that, in gen-
eral, larger scale studies are necessary to (1) provide an insight on the
viability of these methodologies for different scenarios, (2) formalize
sensor setup configuration impact on performance, and (3) identify
challenges for practical integration for different components, including
sensing, feature analysis, and algorithm design. Research on developing
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generalized methods for inference, either for occupancy or comfort, is
another direction that has encountered several challenges for practical
implementation of HITL operations. Moreover, as elaborated for each
category, the research community needs to combine its efforts to enable
performance assessment benchmarking towards achieving accumula-
tive contributions.

Similarly, operational strategies have been qualitatively evaluated
according to the context of assessment:

® Occupancy-detection-driven operation: Although field studies on op-
erational strategies based on occupants’ presence have resulted in
energy savings. In some studies, increases in energy consumption
have also been observed. Large-scale studies have better revealed
the challenges of implementation. Therefore, sharing the lessons
learned across these projects could result in the formalization of best
practices. Furthermore, contextual assessment of thermal comfort is
required to ensure that energy savings are not achieved at the cost of
thermal comfort. Accordingly, this operational strategy could be
interpreted at the transition from third to fourth stages of im-
plementation. Larger scale studies in more diverse climates are ne-
cessary for evaluating the real potentials for energy savings and
exchanging lessons learned. The studies do not sufficiently reveal
the efficacy of this strategy for different modes of operations
(cooling vs. heating). Moreover, alternative operational strategies in
lieu of the current binary setback-setpoint might result in higher
energy saving potentials.

Occupant-counting-driven operation: Most results in this category have
been derived from simulation studies. Therefore, insufficient in-
sights have been provided on implementing contextual ventilation
operations for real-world scenarios. Therefore, it appears that this
operational strategy is at the second stage of implementation.
Comfort-aware operation: field studies that proposed operational
strategies for integration of personalized thermal comfort in the
control loop have shown promising results in improving energy ef-
ficiency in buildings. However, the assessments have been con-
ducted in relatively smaller scales, and further explorations in larger
scales and diverse climates are needed to identify better strategies
and associated challenges. Moreover, most evaluations have used
occupants’ voting and profiling as the feedback source and physio-
logical sensing has been less explored. Therefore, this operational
strategy is interpreted to be at the second stage of implementation.

Similarly, an effective benchmarking approach that helps identify
the contributions of each study and assess the causality of different
parameters is deemed necessary.

6. Conclusion

In this study, we have systematically evaluated the current state of
the research on the human-in-the-loop HVAC operations with an em-
phasis on quantitative performance assessment. In doing so, we have
proposed and used a proposed hierarchical taxonomy not only to fa-
cilitate a systematic review of the research efforts, but also to formalize
a benchmarking process. We have presented holistic process maps in
each modality (occupancy-based and comfort-aware) and have
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synthesized the studies according to the operational modality (i.e.,
occupancy-driven and comfort-aware). These efforts shed light on the
overall composition of the studies in the field of human-in-the-loop
HVAC operations, which has not been presented in the prior review
efforts.

Following the aforementioned taxonomy, we presented the state-of-
the-art advancements in sensing/data acquisition as well as control
strategies for enabling human-in-the-loop HVAC operations. In doing
so, we sought to categorize different studies into a number of classifi-
cations according to their sensing, control, and evaluation contexts.
Using these categorizations and treating individual scenarios in each
study as separate data points, we have presented box-plot representa-
tions of the performance for proposed methodologies in different con-
texts. These graphs serve two purposes of demonstrating the median
performance observed across these contexts, as well as the variation of
performance measures for a given approach. The latter factor could be
used as a proxy for assessing the robustness/reliability of the meth-
odologies in different contexts. According to our assessments, the re-
sults from all field evaluation studies showed that occupancy reactive
operations could result in a median of 15% energy savings while the
occupancy predictive operations could bring about a median of 6%
savings, which were lower than expectations from simulation studies
(16% and 10%, respectively). Accounting for the number of occupants
in operations has a higher potential for energy savings (median of
38%), mostly demonstrated through simulations. Occupant voting and
profiling for comfort-aware HVAC operations mostly explored in office
buildings, illustrated a promising median of 20% of energy savings
across all field study evaluations. These values were statistically derived
from previous studies and could be leveraged as performance indicators
for future studies. We also discussed a new trend that leverages occu-
pants’ physiological responses as a new feature to infer occupant
comfort due to commercially and ubiquitously available non-intrusive
and wearable sensors. However, their integration for real-time HVAC
operations has not been thoroughly explored.

Moreover, we presented the required data representation schema
for the studies in this field to encourage constructive performance
evaluations. In other words, we have initiated the discussion by for-
malizing the information need for such normalized objective compar-
ison. This will contribute to the information compiling process with
respect to HITL HVAC operation, which is emerging as a crucial process
in the HVAC research community. Finally, based on these syntheses, we
have also presented qualitative evaluations on technology adoption for
each human-in-the-loop HVAC operation modality. These qualitative
assessments were conducted based on our observations and analyses
made during this study. Inquiring the perceived advancements and
viability of different aspects of human-in-the-loop HVAC operations
from both research and industry communities could be among the fu-
ture directions of this study.
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