
Verification of P4 Programs in Feasible Time
using Assertions

Miguel Neves, Lucas Freire, Alberto Schaeffer-Filho, Marinho Barcellos
Institute of Informatics

UFRGS

ABSTRACT

Recent trends in software-defined networking have extended net-

work programmability to the data plane. Unfortunately, the chance

of introducing bugs increases significantly. Verification can help

prevent bugs by assuring that the program does not violate its re-

quirements. Although research on the verification of P4 programs

is very active, we still need tools to make easier for programmers to

express properties and to rapidly verify complex invariants. In this

paper, we leverage assertions and symbolic execution to propose

a more general P4 verification approach. Developers annotate P4

programs with assertions expressing general network correctness

properties; the result is transformed into C models and all possi-

ble paths symbolically executed. We implement a prototype, and

use it to show the feasibility of the verification approach. Because

symbolic execution does not scale well, we investigate a set of tech-

niques to speed up the process for the specific case of P4 programs.

We use the prototype implemented to show the gains provided by

three speed up techniques (use of constraints, program slicing, par-

allelization), and experiment with different compiler optimization

choices. We show our tool can uncover a broad range of bugs, and

can do it in less than a minute considering various P4 applications.

CCS CONCEPTS

· Networks → Programmable networks; · Software and its

engineering → Software verification and validation;

KEYWORDS

P4; Verification; Programmable Data Planes

ACM Reference Format:

Miguel Neves, Lucas Freire, Alberto Schaeffer-Filho, Marinho Barcellos.

2018. Verification of P4 Programs in Feasible Time using Assertions. In

The 14th International Conference on emerging Networking EXperiments and

Technologies (CoNEXT ’18), December 4ś7, 2018, Heraklion, Greece. ACM,

New York, NY, USA, 13 pages. https://doi.org/10.1145/3281411.3281421

1 INTRODUCTION

Data plane programmability allows operators to quickly deploy new

protocols and develop network services. Through programming

languages such as P4 [2], it is possible to specify in a few instructions

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

CoNEXT ’18, December 4ś7, 2018, Heraklion, Greece

© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-6080-7/18/12. . . $15.00
https://doi.org/10.1145/3281411.3281421

which packet headers should be manipulated, and how, by different

forwarding devices in the infrastructure. Despite the flexibility, this

paradigm also increases the chance of introducing bugs into the

network due to incorrect implementations.

Testing/debugging, verification and enforcement are comple-

mentary approaches that can help solve this problem. During devel-

opment, data plane programs can be debugged and tested, providing

a wide range of inputs and checking if the corresponding outputs

match the expected behavior. Verification, on its turn, can be used

on programs to find bugs that would violate any of the properties

stated by their requirements, including bugs that are hard to re-

produce in testing. Lastly, with enforcement, the data plane can be

monitored during execution to trap and block actions that would

result in property violations.

In this paper, we focus on verification: we propose an approach to

model and check (at compile time) general security and correctness

properties of P4 programs, and implement it in a tool that provides

network verification in feasible time. Several approaches have been

developed to check if a given fixed-function (non-P4) data plane

satisfies a set of intended properties [8, 25, 29, 32]. Moreover, verify-

ing P4-programmed data planes is an active area of research, with

recent projects proposing verification techniques based on SMT

solving [24, 27] and custom symbolic execution [33]1. In contrast,

this work shows how to efficiently verify P4 programs leveraging a

popular, off-the-shelf symbolic execution engine [4].

We propose an expressive assertion language (highly influenced

by P4) that enables programmers to specify their intended prop-

erties by annotating their P4 code. Once annotated, a program is

symbolically executed, with assertions being checked while all its

paths are traversed. Given that the time taken to perform the sym-

bolic execution grows exponentially with the program complexity,

we show how a variety of speed up techniques can be employed to

reduce the verification time and number of executed instructions.

These techniques consist of using annotations in code to constrain

the paths to be traversed according to properties and/or protocols

of interest, program slicing to reduce the complexity of the model

under verification, and parallelization of symbolic execution. Be-

sides, we experiment with code optimization features offered by

current compilers.

To evaluate our approach, we built a prototype using KLEE [4]

and the P4 Reference Compiler [20] for the current language version,

P416. We applied it to four real P4 applications collected from the

literature: Switch [21], NetPaxos [5], Dapper [11], and DC.p4 [31].

Our results show that the proposed verification process can uncover

a broad range of bugs either in the data plane program itself or in its

control plane configuration. A detailed performance analysis also

shows that, although the verification time grows exponentially with

1[24, 33] were independently developed at the same time as this work.

73

Verification of P4 Programs in Feasible Time using Assertions CoNEXT ’18, December 4ś7, 2018, Heraklion, Greece

Control Blocks. Since a control block in P4 also includes its

action and table declarations, each block is translated to multiple

C functions. Local scope variables in control blocks are declared

as global variables in the model to allow them to be referenced by

any table and action in the block. Given that the global variables

are uniquely named in the model, and that they are not reused

across different packets, this modeling approach does not cause

side effects on the verification result. Finally, the block body usually

contains invocations to tables and actions, which are modeled as

their corresponding C function invocations.

Parser. Parsers are translated to multiple C functions: one for

the parser declaration itself and another for each of its states. Since

local parser parameters and variables can be accessed by any state

in its scope, both structures are modeled as global variables in C.

Parser output parameters, which represent the packet headers, are

modeled as symbolic variables, as they correspond to inputs in the

model.

Assertions. Each assertion element is modeled in C using a par-

ticular approach. Numeric and boolean expressions, as well as the

if()method, are directly translated to their equivalent statements in

C. To model location-unrestricted methods, we use boolean values

that are set at different places depending on the method, and tested

when getting to its final state.

To model methods extract_header(), emit_header(), and tra-

verse_path(), a global boolean value is created for each one of

their occurrences in the P4 program. Such variables assume an

initial false value, and are assigned to true at different model loca-

tions depending on its corresponding method. In occurrences of

extract_header(x), the assignment is made just after an extract()

method invocation, which receives the header x as a parameter

in the P4 program. Similarly, the assignment corresponding to

emit_header(x) is made immediately after an emit() invocation (as-

sociated to the packet_out basic type) containing header x as a

parameter. For traverse_path(), the assignment occurs just before

the assertion that declares it. Method forward() is modeled with

a single boolean value initially set to true. Its value is assigned to

false inside the drop action and reject parse state. constant(f) is

translated by storing the field f in a C variable right after (or before)

an assertion, and testing if the variable value remains the same at

the end of the symbolic path.

External objects. This type of structure is specific to each for-

warding device, and P4 programs only interact with their interfaces.

For this reason, the behavior of each external object should be

previously known. In practice, this means integrating its corre-

sponding model into the translator by using libraries, for example.

This limitation is inherent to the design of P4, which consists of

both architecture-dependent and architecture-independent code. In

this work, we support the external objects necessary to translate the

examples presented in ♯5 (e.g. counters and meters of the standard

architecture).

3.3 Symbolically executing program models

After being generated by the process described in the previous sec-

tion, the C model of a P4 program is verified by a symbolic engine.

The symbolic execution of a program requires that all its possible

control flows (i.e., its execution paths) are evaluated through sym-

bolic input variables. To this end, the implementation described in

this paper uses the KLEE symbolic engine [4].

Essentially, P4 programs describe how a data packet should be

processed when entering a forwarding device, potentially leading

to the emission of an output packet. In this scenario, the incoming

packet headers entering the device are treated as inputs to themodel

and thus are always assigned to symbolic values. The number of

execution paths of a P4 program, in turn, is essentially given by its

packet processing pipeline structure. Whenever a table can only be

accessed under some condition (e.g., depending on the used proto-

col), a new execution path is created. The same happens whenever

multiple actions can be invoked by the same table, generating a

new branch for each possibility. This leads to the łpath explosion

problemž, as the number of paths increases exponentially with pro-

gram size. In ♯4, we investigate approaches to speed up symbolic

execution in the specific context of our proposal, P4 programs.

3.4 Prototype implementation

We have prototyped our approach in a tool to show its feasibility

and to investigate the gains in performance given by different speed

up strategies. The tool uses a set of Python and shell scripts, and

is based on the KLEE symbolic execution engine and the LLVM

Compiler Infrastructure [22].

As shown in Figure 3, the tool first converts the annotated P4

program to its JSON representation, and it does so using the refer-

ence compiler for P416 provided by the P4 Language Consortium. It

then translates the JSON representation (a DAG) to a corresponding

model in C language, as detailed in ♯3.2. The implementation of

the translation process is straightforward and takes approximately

950 lines of Python code. The C model is symbolically executed by

KLEE, which first uses the LLVM compiler (version 3.4) to trans-

late the C program to a corresponding LLVM assembly language

representation.

We make the source code and data sets used in this evalua-

tion publicly available2. As such, the tool may be used by other

researchers to reproduce our results (see ♯5).

4 SPEEDING UP P4 VERIFICATION

Because our approach is based on symbolic execution, we inherit

both its benefits and its limitations, including the path explosion

problem. While many P4 programs currently found in the literature

are fairly small [6, 10, 11, 13, 23, 30], real-world P4 programs are ex-

pected to become larger and more intricate, specially when having

to deal with several protocols (e.g. programs DC.p4 and Switch.p4).

To address this limitation, we investigate optimization tech-

niques to speed up our verification tool. The number of paths to be

traversed in a single execution can be reduced by means of packet

and control flow constraints and program slicing, and implicitly

by means of compiler optimizations. The paths that still need to

be traversed can be examined concurrently, with advantages when

executing on top of a parallel architecture.

2https://github.com/gnmartins/assert-p4

77

CoNEXT ’18, December 4ś7, 2018, Heraklion, Greece Miguel Neves, Lucas Freire, Alberto Schaeffer-Filho, Marinho Barcellos

known bugs, reported on its repository. The first one is the modi-

fication of a field of an invalid header.4 This bug is replicated by

testing with an assertion if the header is valid before setting its

fields. The second bug is related to tunnel encapsulation5, where

encapsulated headers are overwritten whenever multiple nested

levels are present. We included an assertion to test if the inner head-

ers are not valid before performing the encapsulation. The assertion

failed, confirming that encapsulated headers can be overwritten

and their original contents, discarded.

5.2 Language expressiveness

To evaluate our assertion language, we assessed its expressiveness

in terms of the properties we can specify for different P4 programs:

VSS, MRI, TS switching, sTag, Dapper, NetPaxos and DC.p4. Table 1

shows a subset of the properties we tested for each P4 application.

The table demonstrates the use of a wide set of properties, both

program-dependent (e.g., the ones testing if registers are correctly

manipulated in Dapper) and generic ones (e.g., testing whether

headers have been removed from packets or not). Furthermore,

both security and correctness properties can be specified, such as

header integrity and well-formedness, respectively.

5.3 Performance analysis

We assessed how our verification approach scales according to dif-

ferent characteristics of P4 programs. We performed experiments

with and without the speed up strategies described in ♯4. This sub-

section shows the performance values obtained originally, without

the optimizations.

We used the Whippersnapper [7] benchmark to generate data

plane programs, and measured the impact of multiple parameters

in verification times: (i) tables in the packet processing pipeline;

(ii) actions associated with each table; (iii) forwarding rules used to

configure a program; and (iv) number of assertions used to express

properties.

Figure 9 shows the results, considering average verification time

in seconds for various number of tables, assertions, rules per table

and actions per table. Note that the first two plots have y presented

in log scale. We adopted the following default values for parameters:

no forwarding rules and assertions, 1 table in Fig. 9(b), 2 tables in

Figs. 9(c) and 9(d), and 3 actions in the first table and 2 actions in

every subsequent table.

The results show that verification time grows exponentially with

all the factors, with the exception of the number of assertions, which

grows linearly after an initial exponential growth. We can observe

that verification time increases rapidly with the number of tables

(Fig. 9(a)), actions per table (Fig. 9(d)), and rules per table (Fig. 9(c)).

The number of assertions presented both the quickest and slowest

growth in execution time, with a change in trend after 14 assertions

(Fig. 9(b)).

Our approach was able to verify within a few seconds most of

the programs in ♯5.1 and ♯5.2. However, the plots show clearly

that our non-optimized version does not scale well, and that the

verification of larger programs, with more tables and assertions, is

4https://github.com/p4lang/switch/pull/102
5https://github.com/p4lang/switch/issues/97

Table 1: Examples of assertion language being used to spec-

ify different properties in several P4 applications

Program Properties / Assertions

VSS [18] Packets with zero TTL values are dropped

if(ipv4.ttl == 0, !forward())

Marked to drop packets are not forwarded

if(traverse_path(), !forward())

MRI [19] Switch IDs added to packets are authentic

constant(id)

Added IDs are not removed

if(extract_header(id), emit_header(id))

Timestamp

switching

[10]

Out of range timestamps are not forwarded to

receivers

if(forward(), rtp.ts < max_timestamp)

sTag [25] Hosts connected to ports of different colors cannot

communicate

if(ingress_port == color_a &&

ipv4.dstAddr == color_b_host, !forward())

Dapper [11] Only SYN packets register new flows

If(traverse_path()*, tcp.ack == false)

*path that register new flows

Load flow registers when is Ack packet

if(tcp.ack= 1, traverse_path()*)

*path that load registers

NetPaxos [6] Acceptor correctly votes according to paxos phase

if(traverse_path()*, paxos.msgtype == 1A)

*at the handle_1a action

Leader increases round number at each instance

if(traverse_path()*, paxos.msgtype == 2A)

*at the increase_instance action

DC.p4 [31] L3 ACL is effective

if(ipv4.dstAddr == blocked_addr, !forward())

Cloned and original packet have different output

ports

! (cloned_outport == original_port &&

constant(cloned_outport))

likely unaffordable. This prompted us to investigate the adoption

of optimization strategies to the context of P4 program verification.

5.4 Benchmarking optimization strategies

The benchmarks shown in ♯ 5.3 can be re-executed in combination

with some of the optimization techniques proposed in Section 4. The

parallelization and compiler optimizations are general techniques

that are suited to be analyzed with synthetic programs generated by

the Whippersnapper benchmark, whereas the results of applying

the other optimization techniques are tightly coupled to a particular

program and the properties of interest. Therefore, we compare

the original benchmark results with their execution alongside the

parallelization and compiler optimization techniques in Figure 10,

where O3 and Opt represent the LLVM and KLEE optimization flags

respectively.

80

Verification of P4 Programs in Feasible Time using Assertions CoNEXT ’18, December 4ś7, 2018, Heraklion, Greece

(e.g., because of restrictions at the controller code). Finally, using

constraints to model the behavior of the control plane yields a more

precise solution, but potentially requires a non-negligible program-

ming effort for capturing and correctly specifying the control plane

semantics. Possible alternatives to the burdens identified in the

solutions above include automatically capturing the semantics of

the control plane, checking for false positives or using customized

data structures to store verification state (e.g., in line with tools like

VeriFlow [16] or DeltaNet [12]). We leave these investigations as

future work.

Validation of Cmodels. To increase confidence in the accuracy

of our P4 to C translator, we validate its generated models using

input-output tests. More specifically, we select a set of packets P

and use it as input to both the BMv26 switch (configured with the

P4 program under test) and the associated model. We then compare

both outputs to check if there is any discrepancy. Our ongoing work

aims to automate this process, where we use a packet generator

(e.g., p4pktgen [28]) to systematically generate test cases.

Stateful verification. P4 programs may contain persistent state

(i.e., state that depends on a sequence of packets) in the form of

registers, meters, counters and other types of extern objects. While

reasoning about stateful networks or network functions is unde-

cidable in the general case [35], the fact that P4 programs have

bounded state (i.e., the amount and nature of the information that

can be stored is known a priori) makes the problem tractable. To

verify programs that contain registers, for example, we first model

them using equivalent data structures in C, and then leave the verifi-

cation proceed in one of two different ways: i) assume that registers

can take any value, which is equivalent to making them symbolic;

or ii) restrict their domain to a particular set. This approach is

similar to [8].

Unsupported features.Although our prototype supportsmany

of the P4 constructs, others still remain to be implemented. Ex-

amples of features our tool cannot handle at the time of writing

include variable length fields, ternary matching keys (when for-

warding rules are used), parsing exceptions, and parser value sets.

Checksums are a special case because they cannot be calculated

when headers are symbolic, situation in which we assume they are

correct by default. We intend to pursue full compliance with the P4

specification in the future.

7 RELATEDWORK

Network verification. Many tools were proposed for verifying

correctness and security properties in computer networks over

the last few years. They are based on a myriad of techniques and

address different properties and/or network architectures. While

the types of properties vary across the literature, they are mainly

related to host reachability, including isolation, absence of black

holes, and loop-freedom. Some focus on the control plane, while

others, on the data plane.

Efforts that focus on the data plane are more similar to our

approach. They operate by verifying if a particular snapshot of the

data plane satisfies the network-wide properties. This strategy can

be traced back to Anteater [26], which models the data plane as

boolean functions that are analyzed with a SAT solver to check for

6https://github.com/p4lang/behavioral-model

reachability, network loops, black holes, and consistency. Similarly,

Header Space Analysis (HSA) [15] proposes header space algebra

as a technique for checking reachability, isolation of network slices

and packet leakage. Based on HSA, NetPlumber [14] incrementally

updates the network model as changes occur in the data plane. This

allows efficient verification in real time. Other tools that perform

real time verification of the data plane are VeriFlow [16], DeltaNet

[12], and Flover [32]. VMN [29] focuses on verifying reachability

and isolation in networks containing stateful middleboxes. NOD

[25] uses Datalog to model both the network and its reachability

properties. A solution that translates P4 programs to Datalog and

verifies reachability and well-formedness was proposed in [27].

Further, p4v [24] converts P4 programs into Guarded Command

Language (GCL) models and uses a theorem prover (i.e., Z3) to show

that various safety, architectural and program-specific properties

hold. p4v optimizes the constraints passed to Z3 using techniques

such as constant propagation and dead code elimination in order

to scale the verification to larger programs.

The symbolic execution technique has been previously used to

verify data planes. [8] proves that pipelines composed of Click ele-

ments satisfy crash-freedom, bounded execution, and packet filtering

properties. The authors try to handle the path explosion problem

by symbolically executing the Click elements separately. p4pktgen

[28] uses symbolic execution to generate test cases for P4 programs.

It applies backtracking techniques to prune unfeasible paths during

the execution and thus reduce the search space. Symnet [34], in turn,

is a verifier of data plane models built using the SEFL language, also

proposed by the authors. This language contains instructions that

simplify its symbolic execution, allowing the efficient verification

of complex programs.

Vera [33] extends Symnet to support the verification of P4 pro-

grams. It automatically inserts checks that capture general safety

bugs (e.g., invalid memory accesses) and also provides a property

specification language based on Computation Tree Logic (CTL)

for checking program-specific invariants. We believe our assertion

language provides a more accessible way for P4 programmers to

express intricate properties compared to temporal logic or even

first-order logic. For example, domain specific methods such as

extract_header and emit_header benefit from being largely drawn

from the same language as the program under test (i.e., P4). Devel-

oping automatic ways to instrument P4 programs with assertions

as well as providing a detailed performance comparison between

our tool and Vera are interesting research directions for our work.

Assertion language. Beckett et al. [1] present an assertion lan-

guage to verify SDN applications. It enables expressing properties

that the data plane should satisfy at different points of a control

program. The assertions are verified using the VeriFlow [16] tool,

which, like Flover, acts over forwarding rules instantiated in Open-

Flow devices. While the language Becket et al. propose is used in

SDN applications, our approach is to directly annotate a data plane

program to prove properties of interest.

8 CONCLUSION

We presented in this work an assertion language that can be used

by P4 programmers to express correctness and security properties

of a specific implementation. Our solution is more expressive than

83

CoNEXT ’18, December 4ś7, 2018, Heraklion, Greece Miguel Neves, Lucas Freire, Alberto Schaeffer-Filho, Marinho Barcellos

other data plane verification approaches, being the first work to

allow proving properties specific to P4 source code and optionally

the forwarding rules used by its tables. Our mechanism verifies the

assertions using symbolic execution over C models automatically

generated from the program and assertions.

We evaluated our approach by finding a broad range of bugs in

real P4 programs found in the literature. The performance analysis

of the proposed mechanism revealed that despite its efficiency in

verifying small programs, the execution time grows exponentially

with relation to the number of tables, actions, forwarding rules,

and assertions. Thus, alongside our tool, we presented a range of

techniques that can be used to speed up the verification time of

complex programs. We also demonstrated in our experiments that

combining the proposed optimization techniques we can reduce

the verification time of non-trivial P4 programs in 81 percent.

As future work, we intend to explore the application of our ap-

proach in verifying network-wide properties of networks composed

of P4 programs. The assertion language can also be investigated

with the goal of providing the automatic insertion of assertions.

These assertions could be used to verify general properties such as

reading fields of invalid headers or checking the bounds of arrays.

The P4 to C translation can be improved by proving the correctness

of the process, as well as increasing the number of external objects

modeled. Finally, the compiler flags and program slicing optimiza-

tion techniques can be fine-tuned to our proposal by investigating

optimization passes and slicing approaches optimal to our use cases.

ACKNOWLEDGMENTS

We are grateful to our shepherd, Cole Schlesinger, and the anony-

mous reviewers for their constructive feedback. This work has

been supported by grants from RNP/CTIC (P4Sec), FAPERGS (APE),

CNPq (201481/2017-0, 310408/2017-2 and 311088/2015-5), and also

by CAPES/Brazil ś Finance Code 001.

REFERENCES
[1] Ryan Beckett, Xuan Kelvin Zou, Shuyuan Zhang, Sharad Malik, Jennifer Rexford,

and DavidWalker. 2014. AnAssertion Language for Debugging SDNApplications.
In Proceedings of the Third Workshop on Hot Topics in Software Defined Networking
(HotSDN ’14). ACM, New York, NY, USA, 91ś96. https://doi.org/10.1145/2620728.
2620743

[2] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKeown, Jennifer
Rexford, Cole Schlesinger, Dan Talayco, Amin Vahdat, George Varghese, and
David Walker. 2014. P4: Programming Protocol-independent Packet Processors.
SIGCOMM Comput. Commun. Rev. 44, 3 (July 2014), 87ś95. https://doi.org/10.
1145/2656877.2656890

[3] Stefan Bucur, Vlad Ureche, Cristian Zamfir, and George Candea. 2011. Parallel
Symbolic Execution for Automated Real-world Software Testing. In Proceedings
of the Sixth Conference on Computer Systems (EuroSys ’11). ACM, New York, NY,
USA, 183ś198. https://doi.org/10.1145/1966445.1966463

[4] Cristian Cadar, Daniel Dunbar, and Dawson Engler. 2008. KLEE: Unassisted and
Automatic Generation of High-coverage Tests for Complex Systems Programs.
In Proceedings of the 8th USENIX Conference on Operating Systems Design and
Implementation (OSDI’08). USENIX Association, Berkeley, CA, USA, 209ś224.
http://dl.acm.org/citation.cfm?id=1855741.1855756

[5] Huynh Tu Dang, Marco Canini, Fernando Pedone, and Robert Soulé. 2016. Paxos
Made Switch-y. SIGCOMM Comput. Commun. Rev. 46, 2 (May 2016), 18ś24.
https://doi.org/10.1145/2935634.2935638

[6] Huynh Tu Dang, Daniele Sciascia, Marco Canini, Fernando Pedone, and Robert
Soulé. 2015. NetPaxos: Consensus at Network Speed. In Proceedings of the 1st ACM
SIGCOMM Symposium on Software Defined Networking Research (SOSR ’15). ACM,
New York, NY, USA, Article 5, 7 pages. https://doi.org/10.1145/2774993.2774999

[7] Huynh Tu Dang, Han Wang, Theo Jepsen, Gordon Brebner, Changhoon Kim,
Jennifer Rexford, Robert Soulé, and HakimWeatherspoon. 2017. Whippersnapper:
A P4 Language Benchmark Suite. In Proceedings of the Symposium on SDNResearch

(SOSR ’17). ACM, New York, NY, USA, 95ś101. https://doi.org/10.1145/3050220.
3050231

[8] Mihai Dobrescu and Katerina Argyraki. 2014. Software Dataplane Verification.
In 11th USENIX Symposium on Networked Systems Design and Implementation
(NSDI 14). USENIX Association, Seattle, WA, 101ś114. https://www.usenix.org/
conference/nsdi14/technical-sessions/presentation/dobrescu

[9] Seyed K. Fayaz, Tianlong Yu, Yoshiaki Tobioka, Sagar Chaki, and Vyas Sekar.
2016. BUZZ: Testing Context-Dependent Policies in Stateful Networks. In 13th
USENIX Symposium on Networked Systems Design and Implementation (NSDI
16). USENIX Association, Santa Clara, CA, 275ś289. https://www.usenix.org/
conference/nsdi16/technical-sessions/presentation/fayaz

[10] Tomas G. Edwards and Nick Ciarleglio. 2017. Timestamp-Aware RTP Video
Switching Using Programmable Data Plan. Industrial Demo. In ACM SIGCOMM.

[11] Mojgan Ghasemi, Theophilus Benson, and Jennifer Rexford. 2017. Dapper: Data
Plane Performance Diagnosis of TCP. In Proceedings of the Symposium on SDN
Research (SOSR ’17). ACM, New York, NY, USA, 61ś74. https://doi.org/10.1145/
3050220.3050228

[12] Alex Horn, Ali Kheradmand, and Mukul Prasad. 2017. Delta-net: Real-time
Network Verification Using Atoms. In 14th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 17). USENIX Association, Boston,
MA, 735ś749. https://www.usenix.org/conference/nsdi17/technical-sessions/
presentation/horn-alex

[13] Theo Jepsen, Leandro Pacheco de Sousa, Huynh Tu Dang, Fernando Pedone, and
Robert Soulé. 2017. Gotthard: Network Support for Transaction Processing. In
Proceedings of the Symposium on SDN Research (SOSR ’17). ACM, New York, NY,
USA, 185ś186. https://doi.org/10.1145/3050220.3060603

[14] Peyman Kazemian, Michael Chang, Hongyi Zeng, George Varghese, Nick McKe-
own, and Scott Whyte. 2013. Real Time Network Policy Checking Using Header
Space Analysis. In Presented as part of the 10th USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI 13). USENIX, Lombard, IL, 99ś
111. https://www.usenix.org/conference/nsdi13/technical-sessions/presentation/
kazemian

[15] Peyman Kazemian, George Varghese, and Nick McKeown. 2012. Header Space
Analysis: Static Checking for Networks. In Proceedings of the 9th USENIX Confer-
ence on Networked Systems Design and Implementation (NSDI’12). USENIX Associ-
ation, Berkeley, CA, USA, 9ś9. http://dl.acm.org/citation.cfm?id=2228298.2228311

[16] Ahmed Khurshid, Wenxuan Zhou, Matthew Caesar, and P. Brighten Godfrey.
2012. VeriFlow: Verifying Network-wide Invariants in Real Time. In Proceedings
of the First Workshop on Hot Topics in Software Defined Networks (HotSDN ’12).
ACM, New York, NY, USA, 49ś54. https://doi.org/10.1145/2342441.2342452

[17] Florent Kirchner, Nikolai Kosmatov, Virgile Prevosto, Julien Signoles, and Boris
Yakobowski. 2015. Frama-C: A Software Analysis Perspective. Form. Asp. Comput.
27, 3 (May 2015), 573ś609. https://doi.org/10.1007/s00165-014-0326-7

[18] The P4.org language consortium. 2016. VSS Example. https://github.com/p4lang/
p4c/blob/master/testdata/p4_16_samples/vss-example.p4. (2016).

[19] The P4.org language consortium. 2017. MRI Exercise. https://github.com/p4lang/
tutorials/blob/master/SIGCOMM_2017/exercises/mri/solution/mri.p4. (2017).

[20] The P4.org language consortium. 2017. P4 reference compiler. https://github.
com/p4lang/p4c. (2017).

[21] The P4.org language consortium. 2018. Switch. https://github.com/p4lang/switch.
(2018).

[22] Chris Lattner and Vikram Adve. 2004. LLVM: A Compilation Framework for
Lifelong Program Analysis & Transformation. In Proceedings of the International
Symposium on Code Generation and Optimization: Feedback-directed and Runtime
Optimization (CGO ’04). IEEE Computer Society, Washington, DC, USA, 75ś.
http://dl.acm.org/citation.cfm?id=977395.977673

[23] Yuliang Li, Rui Miao, Changhoon Kim, and Minlan Yu. 2016. LossRadar: Fast
Detection of Lost Packets in Data Center Networks. In Proceedings of the 12th
International on Conference on Emerging Networking EXperiments and Technolo-
gies (CoNEXT ’16). ACM, New York, NY, USA, 481ś495. https://doi.org/10.1145/
2999572.2999609

[24] Jed Liu, William Hallahan, Cole Schlesinger, Milad Sharif, Jeongkeun Lee, Robert
Soulé, Han Wang, Călin Caşcaval, Nick McKeown, and Nate Foster. 2018. P4V:
Practical Verification for Programmable Data Planes. In Proceedings of the 2018
Conference of the ACM Special Interest Group on Data Communication (SIGCOMM
’18). ACM, New York, NY, USA, 490ś503. https://doi.org/10.1145/3230543.3230582

[25] Nuno P. Lopes, Nikolaj Bjùrner, Patrice Godefroid, Karthick Jayaraman, and
George Varghese. 2015. Checking Beliefs in Dynamic Networks. In 12th USENIX
Symposium on Networked Systems Design and Implementation (NSDI 15). USENIX
Association, Oakland, CA, 499ś512. https://www.usenix.org/conference/nsdi15/
technical-sessions/presentation/lopes

[26] Haohui Mai, Ahmed Khurshid, Rachit Agarwal, Matthew Caesar, P. Brighten
Godfrey, and Samuel Talmadge King. 2011. Debugging the Data Plane with
Anteater. In Proceedings of the ACM SIGCOMM 2011 Conference (SIGCOMM ’11).
ACM, New York, NY, USA, 290ś301. https://doi.org/10.1145/2018436.2018470

[27] George Varghese Nuno Lopes Nikolaj Bjorner Andrey Rybalchenko Nick McKe-
own, Dan Talayco. 2016. Automatically verifying reachability and well-formedness
in P4 Networks. Technical Report.

84

Verification of P4 Programs in Feasible Time using Assertions CoNEXT ’18, December 4ś7, 2018, Heraklion, Greece

[28] Andres Nötzli, Jehandad Khan, Andy Fingerhut, Clark Barrett, and Peter Athanas.
2018. P4Pktgen: Automated Test Case Generation for P4 Programs. In Proceedings
of the Symposium on SDN Research (SOSR ’18). ACM, New York, NY, USA, Article
5, 7 pages. https://doi.org/10.1145/3185467.3185497

[29] Aurojit Panda, Ori Lahav, Katerina Argyraki, Mooly Sagiv, and Scott Shenker.
2017. Verifying Reachability in Networks withMutable Datapaths. In 14th USENIX
Symposium on Networked Systems Design and Implementation (NSDI 17). USENIX
Association, Boston, MA, 699ś718. https://www.usenix.org/conference/nsdi17/
technical-sessions/presentation/panda-mutable-datapaths

[30] S. Signorello, R. State, J. Francois, and O. Festor. 2016. NDN.p4: Programming
information-centric data-planes. In 2016 IEEE NetSoft Conference and Workshops
(NetSoft). 384ś389. https://doi.org/10.1109/NETSOFT.2016.7502472

[31] Anirudh Sivaraman, Changhoon Kim, Ramkumar Krishnamoorthy, Advait Dixit,
and Mihai Budiu. 2015. DC.P4: Programming the Forwarding Plane of a Data-
center Switch. In Proceedings of the 1st ACM SIGCOMM Symposium on Software
Defined Networking Research (SOSR ’15). ACM, New York, NY, USA, Article 2,
8 pages. https://doi.org/10.1145/2774993.2775007

[32] Sooel Son, Seungwon Shin, Vinod Yegneswaran, Phillip Porras, and Guofei Gu.
2013. Model checking invariant security properties in OpenFlow. In 2013 IEEE

International Conference on Communications (ICC). IEEE, 1974ś1979.
[33] Radu Stoenescu, Dragos Dumitrescu, Matei Popovici, Lorina Negreanu, and

Costin Raiciu. 2018. Debugging P4 Programs with Vera. In Proceedings of the 2018
Conference of the ACM Special Interest Group on Data Communication (SIGCOMM
’18). ACM, New York, NY, USA, 518ś532. https://doi.org/10.1145/3230543.3230548

[34] Radu Stoenescu, Matei Popovici, Lorina Negreanu, and Costin Raiciu. 2016. Sym-
Net: Scalable Symbolic Execution for Modern Networks. In Proceedings of the
2016 ACM SIGCOMM Conference (SIGCOMM ’16). ACM, New York, NY, USA,
314ś327. https://doi.org/10.1145/2934872.2934881

[35] Yaron Velner, Kalev Alpernas, Aurojit Panda, Alexander Rabinovich, Mooly Sagiv,
Scott Shenker, and Sharon Shoham. 2016. Some Complexity Results for Stateful
Network Verification. In Proceedings of the 22Nd International Conference on
Tools and Algorithms for the Construction and Analysis of Systems - Volume 9636.
Springer-Verlag New York, Inc., New York, NY, USA, 811ś830. https://doi.org/10.
1007/978-3-662-49674-9_51

[36] Mark Weiser. 1981. Program Slicing. In Proceedings of the 5th International
Conference on Software Engineering (ICSE ’81). IEEE Press, Piscataway, NJ, USA,
439ś449. http://dl.acm.org/citation.cfm?id=800078.802557

85

