216

IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 66, NO. 1, JANUARY 2019

Selective Hardening for Neural Networks in FPGAs

F. Libano

Abstract—Neural networks are becoming an attractive
solution for automatizing vehicles in the automotive, mil-
itary, and aerospace markets. Thanks to their low-cost,
low-power consumption, and flexibility, field-programmable gate
arrays (FPGAs) are among the promising devices to implement
neural networks. Unfortunately, FPGAs are also known to be
susceptible to radiation-induced errors. In this paper, we evaluate
the effects of radiation-induced errors in the output correctness of
two neural networks [Iris Flower artificial neural network (ANN)
and Modified National Institute of Standards and Technol-
ogy (MNIST) convolutional neural network (CNN)] implemented
in static random-access memory-based FPGAs. In particular,
we notice that radiation can induce errors that modify the
output of the network with or without affecting the neural
network’s functionality. We call the former critical errors and
the latter tolerable errors. Through exhaustive fault injection,
we identify the portions of Iris Flower ANN and MNIST CNN
implementation on FPGAs that are more likely, once corrupted,
to generate a critical or a tolerable error. Based on this analysis,
we propose a selective hardening strategy that triplicates only
the most vulnerable layers of the neural network. With neutron
radiation testing, our selective hardening solution was able to
mask 40% of faults with a marginal 8% overhead in one of our
tested neural networks.

Index Terms— Field-programmable gate array (FPGA),
hardening, neural networks, reliability.

I. INTRODUCTION

EED-FORWARD neural networks are computational

approaches that have increasingly been adopted in many
fields, including pattern recognition, high-performance com-
puting, and data mining [1]. In addition, artificial neural
networks (ANNSs) and, more specifically, convolutional neural
networks (CNNs) are extremely attractive for safety-critical
applications, such as space exploration [2], autonomous
driving [3], and military applications, such as unmanned aer-
ial vehicles. These applications utilize a number of pattern
recognition algorithms to identify and classify objects based

Manuscript received October 15, 2018; revised November 25, 2018;
accepted November 28, 2018. Date of publication November 30, 2018;
date of current version January 17, 2019. This work was supported in part
by CAPES Foundation, Ministry of Education, in part by CNPq Research
Council, Ministry of Science and Technology, in part by the Department of
Energy of the United States, and in part by the Science and Technology
Council, Oxfordshire OX11 0QX, U.K.

F. Libano and P. Rech are with the Institute of Informatics, Federal
University of Rio Grande do Sul, Porto Alegre 90040-060, Brazil (e-mail:
fplibano @inf.ufrgs.br; prech@inf.ufrgs.br).

B. Wilson, J. Anderson, and M. J. Wirthlin are with Brigham Young
University, Provo, UT 84602 USA (e-mail: brittany.wilson@byu.edu;
jordan.anderson@byu.edu; wirthlin@byu.edu).

C. Cazzaniga and C. Frost are with the Science and Technology Facility
Council, Oxfordshire OX11 0QX, U.K. (e-mail: christopher.frost@stfc.ac.uk;
carlo.cazzaniga@stfc.ac.uk).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TNS.2018.2884460

, B. Wilson, J. Anderson, M. J. Wirthlin

, C. Cazzaniga™, C. Frost“, and P. Rech

on captured frames or signals. Most of these algorithms can
be solved using ANNs and CNNs.

Due to the intrinsic parallelism between neurons and
layers, the neural networks can be efficiently implemented
on field-programmable gate arrays (FPGAs) [4]. Thanks to
their low cost, low power consumption, and flexibility,
FPGAs are an attractive solution for object detection in
safety-critical applications. Unfortunately, FPGAs have been
shown to have high-radiation sensitivity [5]. In particular,
static random-access memory (SRAM)-based FPGAs may
experience single-event upsets (SEUs) in the configuration
memory that can change the configuration of a routing con-
nection, the configuration of a Lookup table (LUT), or the
configuration of a Block RAM (BRAM).

In this paper, we analyze the reliability of neural net-
works implemented in SRAM-based FPGAs. As case studies,
we consider an Iris Flower ANN, which classifies flower
subspecies, and a Modified National Institute of Standards and
Technology (MNIST) CNN, which recognizes handwritten dig-
its. Although neither of these networks is used in safety-critical
applications, they share the same topology and the same
computational flow with more complex object detection frame-
works. The Iris Flower ANN is a fully connected network
used to make decisions based on the preprocessed information
(object attributes). The MNIST CNN has, in addition to the
fully connected part, a few convolution and pooling layers
beforehand, in order to extract pertinent attributes from the raw
input image. Because of this, the MNIST CNN is the kind of
network used in autonomous vehicles to process images and
detects objects. In our case study, the MNIST CNN processes
a data set of handwritten digits.

Our results show that not all the faults that reach the
network output have a significant impact on the application.
Thanks to the intrinsic approximate nature of neural network
computation, some output errors are sufficiently close to the
expected value that the application treats them as correct.
Through extensive fault-injection campaigns, we identify the
causes of folerable and critical errors (i.e., the circuit portions
that, once corrupted, are likely to significantly modify the
network’s answer).

Although the majority of errors are tolerable, for some
applications, it could be essential to reduce as much as
possible the probability of critical errors. Triple modular
redundancy (TMR) has already been shown to be a very
effective hardening solution for FPGAs. However, the very
high amount of LUTSs required to implement neural networks
in FPGAs significantly reduces the extra resources that could
be used to apply TMR. Moreover, as most of the errors are
tolerable, simply applying TMR to the neural network as a

0018-9499 © 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0002-0638-1102
https://orcid.org/0000-0003-0328-6713
https://orcid.org/0000-0002-3110-0253
https://orcid.org/0000-0003-3541-6527
https://orcid.org/0000-0002-0821-1879

LIBANO et al.: SELECTIVE HARDENING FOR NEURAL NETWORKS IN FPGAs

whole could result in a very inefficient solution. With that
in mind, we design and apply selective TMR only to those
layers in the networks that have been found to be more
vulnerable (i.e., their corruption is more likely to generate
an error). As discussed in the paper, we find that, for both
networks, each layer has its own vulnerability. In fact, this
was already observed in prior work with graphics processing
units (GPUs) [6], but, to the best of our knowledge, it is
a new finding for neural networks in FPGAs. In particular,
we can identify a subset of layers that are more likely
to generate critical output errors, thus becoming targets for
the selective hardening. We validate our hardening solution
through controlled neutron beam experiments. One of our
selectively hardened ANNs masked 68% of faults with a 45%
area overhead, while the other achieved 40% fault masking
with only 8% overhead. Thus, we see that alternatives to full
TMR can offer better tradeoffs.

The remainder of the paper is organized as follows.
Section II provides a background on neural networks in
general and discusses the data sets and topologies of our two
case studies. Section III mentions the tested devices, discusses
the details on both fault injection and beam experiments, and
introduces the concept of error criticality. Section IV presents
our proposed selective hardening strategy, while Section V
shows our experimental results, where we validate and com-
pare the effectiveness of our hardening approach to more
traditional methods. Section VI concludes the paper and briefly
mentions our plans for future work.

II. BACKGROUND
A. Artificial and Convolutional Neural Networks

An ANN computes a solution by propagating data through
layers of neurons connected and interacting via synapses
(similar to the way a biological brain solves problems). Data
streams from input to output, without feedback. A CNN is
an ANN that performs filter operations to extract information
from the input data. The ANNs need to be trained using a
sufficiently complex and representative set of data instances.
During the training phase, the weights of every connection
between the neurons and the weights of filters (when used)
are tuned. Then, when a new input is given, the network
computes a solution based on the weights learned through
training. We should highlight that our models were trained
using the Caffe framework [7].

Neural networks are organized as the layers of connected
neurons. For CNNs, before the fully connected layers, there
are convolution layers (multiply and sum), pooling layers (only
some elements are selected to propagate), and activation layers
(to add nonlinearity to the model and to normalize data). In
this paper, we consider a simple two-layer ANN and a much
larger seven-layer CNN with two convolutional layers, two
pooling layers, two inner product layers (i.e., traditional fully
connected layers), and one activation layer (ReLU). To put
them in perspective, the Iris Flower ANN has 19 weights,
while the MNIST CNN has 1848 weights. Their respective
topologies are described in Sections II-B and II-C.

Preliminary works have evaluated the reliability of CNNs
executed in specific hardware (ASIC) [8], [9] and GPUs [6].

217

Sepal Length
Itis Setosa

Sepal Width

Iris Versicolour

Petal Length

Iris Virginica
Petal Width
Hidden Output
Layer Layer
Fig. 1. Iris Flower ANN’s topology.

These studies show that CNNs’ layers have considerably
different levels of sensitivity and, thus, should be treated
accordingly when applying hardening techniques. This paper
focuses, within other topics, in evaluating the sensitivity of
the neural networks’ layers in FPGAs, an aspect that has not
been investigated, yet. We also design and validate a selective
hardening strategy to efficiently improve neural networks
reliability in FPGAs.

B. Iris Flower

The Iris Flower data set quantifies the morphologic variation
of three related species: Iris Setosa, Iris Versicolor, and Iris
Virginica [10], [11]. Each instance in the input correlates
physical characteristics of a given flower to its species. This
relation is modeled by the ANN illustrated in Fig. 1.

We should highlight that, due to its small topology, the Iris
Flower ANN is not used in a safety-critical application.
Nonetheless, we have decided to evaluate its reliability, as a
supplementary case study, since it provides useful insights into
the effectiveness of selective triplication.

A value is generated for each output, and the output with the
highest value identifies the species classification. We should
point out that the neurons represented in the hidden and output
layers compose the two fully connected layers.

C. MNIST

The MNIST is a data set of 28 x 28 pixel images of
handwritten digits (ranging from 0 to 9) [12]. The MNIST
CNN receives a matrix of 28 x 28 inputs (one for each
pixel) and produces 10 outputs (one for each digit). It uses
convolution to extract specific information from the input
image. Some parameters of the CNN, such as the number
and size of convolutional filters can be adjusted to improve
accuracy. Our tested CNN has an accuracy of about 94%,
utilizing the following topology (also illustrated in Fig. 2):

1) Input = 784 pixels;

2) ConvLayerl (one 4 x 4 Filter);

3) PoolLayerl (3 x 3 Filter);

4) ConvLayer2 (three 4 x 4 Filters);

5) PoolLayer2 (2 x 2 Filter);

6) InnerProductl (48 Inputs, 30 Outputs);

7) ReLU1 (30 Inputs, 30 Outputs);

8) InnerProduct2 (30 Inputs, 10 Outputs); and

218

Cornvelution

Input Image Pooling

28x28=784 pixels

Convolution

Fig. 2.

MNIST CNN’s topology.

TABLE I

ZYNQ-T7000 AND ZYNQ ULTRASCALE+ RESOURCE UTILIZATION
TO IMPLEMENT THE IRIS FLOWER ANN AND THE
MNIST CNN, RESPECTIVELY

Zynq Device Hardening FF DSP LUT
7000 Unhardened 3,5k (4%) 56 (25%) 16k (30%)
(Iris Flower) Selective TMR 3,7k (4%) 56 (25%) 25k (47%)
Full TMR 4,1k (4%) 168 (75%) 43k (81%)
Unhardened 21k (4%) 0 (0%) 193k (70%)
U(]l\ndalec;lg Selective TMR 21k (4%) 0 (0%) 206k (75 %)
Full TMR - - _

9) Output = the highest value between the last 10 outputs
is the digit’s classification (0, 1, 2, 3,4, 5,6, 7, 8, 9).

III. EXPERIMENTAL METHODOLOGY

We implemented the Iris Flower ANN on a 28-nm
Zyng-7000 (CLG484 XC7Z020) [13], which is composed of
a processing system (PS) formed around a dual-core ARM
Cortex-A9 processor and programmable logic (PL) based on
a Xilinx Artix-7 FPGA. For the MNIST CNN, which requires
about five times the resources as the Iris Flower, we use the
16 nm FinFET Zynq Ultrascale+ multiprocessor system-on-
chip (ZU9EG), also composed of a PS and a PL. The details
about resource utilization by the two neural networks in their
respective devices can be seen in Table I. We should point
out that the training phases for both of our networks were
performed before the experiments, in a fault-free environment.
In other words, the neural network training was not affected
by any upsets.

A. Fault-Injection Framework

For the Iris Flower ANN, we use the fault-injection
framework presented in [14], which relies on the internal
configuration access port (ICAP) block of Xilinx FPGAs,
an ICAP controller, and a monitor computer. Using the read
and write capabilities of the ICAP block, we can emulate SEUs
in the configuration memory. For the MNIST CNN, we use
the processor configuration access port of the MPSoC system
and emulate SEUs by inserting upsets through software (SW)
executed on the A53 quadcore processor.

In both experiments, we isolate each of the neural network
layers into separate regions of the device using “Pblocks.”
The location of the injected fault can be correlated with the

IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 66, NO. 1, JANUARY 2019

Inner

Pooling Prodiuct
u

Inner
Product

RelU

10 Qutputs
(decimal digits)

Pblock and, thus, a specific layer of the network. For the Iris
Flower ANN, an exhaustive fault-injection campaign produces
bitflips on all the configuration bits of the injection area, one
at a time. For the MNIST CNN, a fault-injection campaign
randomly injected about 13 million faults.

The fault-injection area is comprised of only the configura-
tion bits related to configurable logic blocks [LUTs, digital sig-
nal processors (DSPs), flip-flops (FFs), and interconnections].
The BRAM configuration bits are not considered. During the
fault injection, a microprocessor analyzes the correctness of
neural network execution, and an error is detected when the
result differs from the expected values. Observed errors are
then classified based on the discussion in Section IV.

B. Neutrons Experimental Setup

Our radiation experiments were conducted at the Los
Alamos Neutron Science Center (LANSCE) (Fig. 3) facility
of the Los Alamos National Laboratory (LANL) and the
ChipIR facility (Fig. 4) at ISIS, Didcot, U.K. Both LANSCE
and ChipIR provide a neutron spectrum that mimics the
atmospheric neutron one and have already been demonstrated
to be suitable to emulate terrestrial neutrons effects in elec-
tronic devices and systems. To avoid any result bias due to
the facility, we tested the Zyng-7000 implementing the Iris
Flower ANN only at LANSCE and the Ultrascale+ MPSoC
implementing the MNIST CNN only at ChipIR.

The neutron flux at LANSCE and ChipIR is about eight
to nine orders of magnitude higher than the terrestrial flux
[l3rm,’(cm2 x h)] at sea level [15], [16]). The Zyng-7000 device
was tested for approximately 40 h at LANSCE, which is
equivalent to about 1.5 million years of natural exposure. The
Ultrascale+ MPSoC was tested for about 20 h at ChiplR,
which is equivalent to more than 2.5 million years of natural
exposure.

C. Error Criticality

As we previously mentioned, when dealing with ANNs and
CNNs whose purpose is to work as classifiers, not every error
is considered critical. This means that, even if the output
is different than the expected one, the classification of a
given instance/image might still be correct. Based on these
considerations we identify two possible error classes on the
tested networks.

LIBANO et al.: SELECTIVE HARDENING FOR NEURAL NETWORKS IN FPGAs

Fig. 3. Radiation experiment at the LANSCE facility of the LANL, USA.

Fig. 4.

Radiation experiment at the ChipIR facility of the Rutherford
Appleton Laboratory, U.K.

1) Tolerable: the network produces outputs different than
the expected ones, but the application’s behavior can still
be considered correct.

2) Critical: the network produces output errors, and they
are severe enough to compromise the instance classifi-
cation.

These concepts can also be expressed in a more formal/
algorithmic way:

if (computedClassification == expectedClassification) then

errorType = tolerable

else

errorType = critical

end if

In Section V, we classify all of our experimental results
with fault injection and radiation errors as Tolerable or Crit-
ical. Although the full circuit TMR would mask all errors
(including the tolerable ones), our selective hardening strategy
is focused on reducing critical occurrences. We then expect
to achieve high reliability without unnecessary overhead.

IV. SELECTIVE HARDENING

TMR is one of the most effective solutions to mitigate
transient errors in FPGAs [17], [18], particularly common for
safety-critical applications [19]. Although TMR is extremely
effective, it also imposes a nonnegligible overhead in terms
of area and static/dynamic power consumption. Our idea is to
improve the efficiency of TMR by protecting only those layers
of a neural network which are most critical. A critical layer

219

M Tolerable Errors

B Critical Erors

10.0

8.0

6.0

3
=
=

4.0

2.0

Hidden Layer Neurons Qutput Layer Neurons

Fig. 5. AVF calculated from fault injection in different layers of the Iris
Flower ANN.

is a layer that, once corrupted, is more likely to modify the
network output in a way that impacts the correct application
execution.

Selective hardening is promising for ANNs and CNNs as
not all the errors at the network output are critical; a corrupted
output can still maintain a correct behavior. To illustrate the
concept of critical errors let us consider the Iris Flower ANN.
If any of the three outputs is different than expected, but the
flower classification is still correct, the error is considered
tolerable, otherwise critical. The same applies to the MNIST
CNN, meaning that a minor difference in any of the 10 outputs
can still maintain the overall classification of the image.

V. EXPERIMENTAL RESULTS

A. Fault-Injection Results

Using the frameworks described in Section III-A, we inject
faults in the networks’ layers in order to comprehend the
propagation of such faults through the connections, allowing
us to rank the networks’ layers by criticality.

Fig. 5 shows the results obtained through our fault injection
in the Iris Flower ANN. They are expressed as architectural
vulnerability factor (AVF), i.e., the percentage of injections
that propagate to the output. We divide the fault-injection
outcomes into tolerable and critical errors, as discussed in
Section IV. Faults were separately injected in the hidden
layer (HL), and output layer neurons of the ANN.

From Fig. 5, it is clear that faults in the HL are more likely
to generate tolerable and critical errors in the output. This is
because when a fault is closer to the input, it has more room to
propagate through the fully connected topology of the ANN.
In addition, the tolerable errors are about four times more
frequent than critical errors.

In Fig. 6, we present the AVF for MNIST CNN layer. Unlike
the Iris Flower ANN, the MNIST CNN is composed of layers
with different functions and sizes. Thus, the sensitivity of each
layer depends on the layer type and the size in addition to its
position within the network.

As shown in Fig. 6, even for the MNIST CNN, the domi-
nance of tolerable errors over critical errors holds, suggesting

220

W Tolerable Emors M Critical Errors

Convi Poalt Convz Pool2 IP1 RelU1 IF2

Fig. 6. AVF calculated from fault injection in different layers of the MNIST
CNN.

that this result could be a general characteristic of pattern
recognition feed-forward neural networks. In addition, it is
evident that a fault in InnerProduct2 (IP2) layer (a fully con-
nected layer) has a considerably greater chance of propagating
to the output, making it a great candidate for our selective
hardening approach.

B. Proposed Selective Hardening

Based on our fault-injection campaigns, we conclude that
the criticality of a given layer in a neural network is determined
by its function, size, and position. In both cases, there is a
considerable gap in vulnerability across the different layers,
which motivates the idea of selective hardening.

We design four configurations of the Iris Flower.

1) Unprotected: the plain ANN, without any hardening.

2) Selective TMR: the ANN, with a triplication of the HL.
alone.

3) Full TMR (HW Voter): the ANN fully triplicated, with
the voter implemented in the PL part (FPGA).

4) Full TMR (SW Voter): the ANN fully triplicated, with
the voter implemented in the PS part (ARM).

We initially chose to evaluate the two voting mechanisms
to see if there was an advantage in terms of reliability,
by delegating the task to the processor (consequently, reducing
resource utilization in the FPGA). However, as we will show
in Section V-C, there was a negligible difference between the
two designs, so we decided not to test the SW Vofer version
with the MNIST CNN.

C. Radiation Experiment Results

With the setup described in Section III-B, we have irradiated
the Zynqg-7000 device for about 40 h, for a total fluence of
1,6 x 10! neutrons,’cmz.

In Fig. 7, we can see the FIT rate of the FPGA executing
the Iris Flower ANN. Statistical error at 95% confidence is
lower than 15% of reported values.

The cross section is the ratio between the number of
observed errors and the received particles fluence. Thus,

IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 66, NO. 1, JANUARY 2019

W Tolerable Errors W Critical Errors

20.0

16.0

FIT

Unhardened Selective TMR Full TMR (HW Voter) Full TMR (SW Voter)

Fig. 7. FIT rate of the Iris Flower ANN using four different hardening
configurations.
B Masked Faults (%) W # Utilized Resources
HL = Hidden Layer HW = Hardware SW = Software
100 50000
80 40000
3 §
@ 60 30000 3
1 $
£ 3
g i
G 40 20000 2
= *®
20 10000

Unhardened

Selective TMR (HL) Full TMR (HW Voter) Full TMR (SW Voter)

Fig. 8. Masked faults percentage and resource utilization of the four different
hardening configurations of the Iris Flower ANN.

the cross section is expressed in a unit of an area (square
centimeters) and is directly proportional to the probability for
an impinging particle to generate an observable error. Mul-
tiplying the cross section by the particle flux that the device
will experience on a realistic application (13n/ (cm? x h) [15])
provides the expected error rate of the device expressed in
failure in time (FIT), i.e., errors per 1 billion hour of operation.

Interestingly, the trends observed in fault injection and
beam experiments (unprotected version) are similar. This may
suggest that the criticality of errors in the ANNs is an intrinsic
property of the network and is not dependent on the source of
error or the probability of data corruption. The trend changes
for the hardened versions, as most faults are masked.

We can clearly perceive, from Fig. 7, that the probability of
error occurrence for the selective hardened version decreases
by 64.2% with respect to the unhardened version. Similarly,
the percentage reductions considering the full TMR configu-
rations are 85.1% and 85.6% for the voter implemented in the
FPGA and in the ARM processor, respectively. A promising
result is that the selective TMR and full TMR with SW voters
significantly reduce the number of critical errors.

The full TMR versions outperform the selective TMR
configurations in terms of pure reliability, which is to be
expected. Fig. 8 also shows the number of used resources
(LUTSs, DSPs, and FFs) for all the different designs. As shown,

LIBANO et al.: SELECTIVE HARDENING FOR NEURAL NETWORKS IN FPGAs

HL = Hidden Layer HW = Hardware SW = Software

3.0

24
z
s
g 18
i
g
g 12
2 1
[1:]
T

0.6

Unhardened Selective TMAR (HL) Full TMR (HW Voter) Full TMR (SW Voter)

Fig. 9. Percentage of the masked faults divided by resource utilization of

the four different hardening configurations of the Iris Flower ANN.

the overhead of a full TMR is much bigger (almost 2x) than
the one of the selective TMR. In other words, with a 45%
increase in resource usage our selective hardening achieves
68% of fault masking, while the traditional TMR approaches
require around a 200% increase in area to reach near 100%
rate of fault masking (94% in this case).

If we consider the tradeoff between the percentage of
the masked faults and the resource utilization, our selective
hardening technique is shown to be more efficient. As shown
in Fig. 9, the ratio between the masked faults and the number
of resources used is 25% higher for the selective TMR.

In the case of the MNIST CNN, our target layer for
selectively applying TMR was the very last one (called IP2).
As an insight from our fault-injection campaign, highlighted
in Fig. 6, the IP2 layer appears as the most vulnerable one in
this neural network.

We then tested two versions of the MNIST CNN in our
beam experiments: the unhardened neural network and the
selective TMR one (with the IP2 layer fully triplicated).
We did not test the full TMR version as we did with the
Iris Flower ANN, simply because it was not feasible resource
wise, meaning that there were not enough available LUTs in
the Zynq Ultrascale+ device to fully triplicate the MNIST
CNN. This fact is showcased on the very last line of Table I,
and it reinforces the importance of selective hardening as a
smarter, more efficient use of additional resources. We have
irradiated the Zynq Ultrascale+ device for about 20 h, with a
total fluence of 3, 0 x 10!!neutrons/cm?.

Fig. 10 shows the FIT rate of the MNIST CNN. We can
clearly see that the selective TMR reduced the probability of
occurrence of both the tolerable and critical errors (precisely,
14% reduction of the latter). In addition to that, we have
also put Fig. 11 here to highlight the percentage of the
masked faults by each design (benefit, in blue) along with
their absolute number of utilized resources (cost, in red). Note
that our selective hardening approach achieves around 40%
fault masking with a marginal overhead of only 8%. Also,
note that, as we mentioned before, it was not possible to
test the full TMR version, but we completed the graph with

221

W Critical Errors

B Tolerable Errors

Unhardened Selective TMR Full TMR {Theoretical)
Fig. 10. FIT rate of the MNIST CNN using three different hardening
configurations.
W Masked Faults (%) W # Utilized Resources
100 500000
B0 400000
= 8
£ g
= BO 300000 §
=
£ T
B H
% a0 200000 =
=2
= *
20 100000
Unhardened Selective TMR Full TMR (Theoretical)
Fig. 11. Masked faults percentage and resource utilization of the three

different hardening configurations of the MNIST CNN.

25
2.0
g
2 s
=
w
g
g 1.0
g
[1+]
E
0.5
Unhardened Selective TMR Full TMR (Theoretical)
Fig. 12. Percentage of the masked faults divided by resource utilization of

the three different hardening configurations of the MNIST CNN.

theoretical values (near 100% fault masking and with near
200% overhead).

As we did with the Iris Flower ANN, we have added a
hardening efficiency graph for the MNIST CNN (Fig. 12). This
graph was generated simply by dividing the values in Fig. 11,
so it represents the ratio between the benefit and cost of each
hardening strategy. We can see that our selective hardening
approach comes out on top once more, leaving the traditional

222

TMR behind (even if this is a calculated theoretical efficiency
that considers perfect fault masking using full TMR).

VI. CONCLUSION

We have seen that, for both ANNs and CNNs, the tolerable
errors are dominant over critical errors. This means that most
of the masked faults of a full TMR will not jeopardize the
application’s functionality, indicating that this traditional hard-
ening strategy may not be optimal for neural networks. Fur-
thermore, we have noticed that the overhead of full triplication
might even be too high to be feasible, which strengthens our
argument about the importance of determining the most critical
layers in each neural network, and adopting more efficient
hardening solutions. Another interesting insight is that our
selective hardened designs showed considerable reductions on
the probability of occurrence of critical errors, as highlighted
by Figs. 7 and 10.

Overall, we saw that selectively applying TMR to the right
layers of neural networks proved to be an efficient hardening
solution, since it delivers the best tradeoff between reliability
(through fault masking) and resource utilization. In addition
to that, a very promising part of our experimental results is
that our strategy was equally efficient in two very different
neural networks. We should be aware that the topology’s
different parameters are always directly related to the format
and the complexity of the instances in the data set we want
to process. Our case studies (data sets and networks) are con-
siderably distinct from each other; yet, their overall reliability
improvement followed a similar trend as a result of applying
selective TMR. This suggests that the selective hardening
proposed by us seems to be fairly generic, and might bring
the best hardening efficiency in many other neural networks
as well.

As future work, we intend to evaluate the impact of
triplicating not only the most vulnerable layer of a given
neural network but also protecting the second, third, and so
on. We believe that this iterative approach might enhance
the efficiency of our selective hardening. We also plan on
implementing the algorithm-based fault-tolerance techniques
for each type of layer in CNNs since we have seen that this
is a viable option in GPUs for increasing reliability [6].

REFERENCES

[1] S. U. Amin, K. Agarwal, and R. Beg, “Genetic neural network based
data mining in prediction of heart disease using risk factors,” in Proc.
IEEE Conf. Inf. Commun. Technol., Apr. 2013, pp. 1227-1231.

IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 66, NO. 1, JANUARY 2019

[2] G. R. Allen et al.,, “2017 compendium of recent test results of single
event effects conducted by the jet propulsion laboratory’s radiation
effects group,” in Proc. IEEE Radiat. Effects Data Workshop (REDW),
Jul. 2017, pp. 1-9.

[3] V-E. Neagoe, A.-D. Ciotec, and A.-P. Birar, “A concurrent neural
network approach to pedestrian detection in thermal imagery,” in Proc.
9th Int. Conf. Commun. (COMM), Jun. 2012, pp. 133-136.

[4] C.He, A. Papakonstantinou, and D. Chen, “A novel SoC architecture on
FPGA for ultra fast face detection,” in Proc. IEEE Int. Conf. Comput.
Design, Oct. 2009, pp. 412-418.

[5] M. Wirthlin, “High-reliability FPGA-based systems: Space, high-energy
physics, and beyond,” Proc. IEEE, vol. 103, no. 3, pp. 379-389,
Mar. 2015.

[6] F. E. D. Santos, L. Draghetti, L. Weigel, L. Carro, P. Navaux, and
P. Rech, “Evaluation and mitigation of soft-errors in neural network-
based object detection in three GPU architectures,” in Proc. 47th Annu.
IEEEAFIP Int. Conf Dependable Syst. Netw. Workshops (DSN-W),
Jun. 2017, pp. 169-176.

[71 Y. Jia et al. (2014). “Caffe: Convolutional architecture for fast feature
embedding.” [Online]. Available: https://arxiv.org/abs/1408.5093

[8] B. Reagen ef al., “Ares: A framework for quantifying the resilience
of deep neural networks,” in Proc. 55th ACM/ESDA/IEEE Design
Automat. Conf. (DAC), New York, NY, USA, Jun. 2018, pp. 1-6, doi:
10.1145/3195970.3195997.

[91 G. Li et al., “Understanding error propagation in deep learning neural

network (DNN) accelerators and applications,” in Proc. Int. Conf. High

Perform. Comput. Netw. Storage Anal., New York, NY, USA, Nov. 2017,

p- 8, doi: 10.1145/3126908.3126964.

R. A. Fisher, “The use of multiple measurements in taxonomic prob-

lems,” Ann. Eugenics, vol. 7, no. 2, pp. 179-188, Sep. 1936.

E. Anderson, “The irises of the gaspe peninsula,” Bull. Amer. Iris Soc.,

vol. 59, pp. 2-5, 1935.

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based

learning applied to document recognition,” Proc. IEEE, vol. 86, no. 11,

pp. 2278-2324, Nov. 1998.

Xilinx. Zyng-7000 All Programmable SoC. Accessed: Nov. 2018.

[Online]. Awvailable: https://www.xilinx.com/products/silicon-devices/

soc/zyng-7000.html

1. Tonfat, L. Tambara, A. Santos, and F. Kastensmidt, “Method to

analyze the susceptibility of HLS designs in SRAM-based FPGAS under

soft errors,” in Proc. Int. Symp. Appl. Reconfigurable Comput., vol. 9625.

Berlin, Germany: Springer-Verlag, 2016, pp. 132-143.

Measurement and Reporting of Alpha Particle and Terrestrial Cosmic

Ray Induced Soft Errors in Semiconductor Devices, JEDEC Stan-

dard JESD89A, 2006. [Online]. Available: https://www.jedec.org/

sites/default/files/docs/jesd89a. pdf

C. Cazzaniga and C. D. Frost, “Progress of the scientific commissioning

of a fast neutron beamline for chip irradiation,” J. Phys. Conf.

Ser, vol. 1021, no. 1, p. 012037, May 2018. [Online]. Available:

http://stacks.iop.org/1742-6596/1021/i=1/a=012037

S. D’Angelo, C. Metra, S. Pastore, A. Pogutz, and G. R. Sechi, “Fault-

tolerant voting mechanism and recovery scheme for TMR FPGA-based

systems,” in Proc. IEEE Int. Symp. Defect Fault Tolerance VLSI Syst.,

Nov. 1998, pp. 233-240.

L. Sterpone and M. Violante, “Analysis of the robustness of the TMR

architecture in SRAM-based FPGA.” IEEE Trans. Nucl. Sci., vol. 52,

no. 5, pp. 1545-1549, Oct. 2005.

I. R. Azambuja, F. Sousa, L. Rosa, and F. L. Kastensmidt, “Evaluating

large grain TMR and selective partial reconfiguration for soft error

mitigation in SRAM-based FPGAs,” in Proc. 15th IEEE Int. On-Line

Test. Symp., Jun. 2009, pp. 101-106.

[10]
(1]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

http://dx.doi.org/10.1145/3195970.3195997
http://dx.doi.org/10.1145/3126908.3126964

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

