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A key aspect of the neural coding problem is understanding how repre-
sentations of afferent stimuli are built through the dynamics of learning
and adaptation within neural networks. The infomax paradigm is built
on the premise that such learning attempts to maximize the mutual in-
formation between input stimuli and neural activities. In this letter, we
tackle the problem of such information-based neural coding with an eye
toward two conceptual hurdles. Specifically, we examine and then show
how this form of coding can be achieved with online input processing.
Our framework thus obviates the biological incompatibility of optimiza-
tion methods that rely on global network awareness and batch processing
of sensory signals. Central to our result is the use of variational bounds
as a surrogate objective function, an established technique that has not
previously been shown to yield online policies. We obtain learning dy-
namics for both linear-continuous and discrete spiking neural encoding
models under the umbrella of linear gaussian decoders. This result is en-
abled by approximating certain information quantities in terms of neu-
ronal activity via pairwise feedback mechanisms. Furthermore, we tackle
the problem of how such learning dynamics can be realized with strict
energetic constraints. We show that endowing networks with auxiliary
variables that evolve on a slower timescale can allow for the realization of
saddle-point optimization within the neural dynamics, leading to neural
codes with favorable properties in terms of both information and energy.

1 Introduction

In computational neuroscience, a fundamental concern is to deduce how
neurons represent sensory stimuli via their responses. This coding prob-
lem has been examined for over a half-century (Barlow, 1961; Attneave,
1954) and is still popular in neuroscience (Brette, 2017). To understand
the mechanisms of neural coding, many normative theories have been
constructed that start from an optimality hypothesis and criterion, then
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predict how neural coding should be enacted. One well-accepted hypoth-
esis, infomax (Linsker, 1988, 1989; Park & Pillow, 2017), posits that the
neural system adapts its encoding model by maximizing the information
transmission—mutual information (MI), between stimuli and the ensu-
ing neural response. Infomax has been widely adopted to explain various
neural experimental data or make quantitative predictions of neural cod-
ing mechanisms, including population coding (Tkačik, Prentice, Balasubra-
manian, & Schneidman, 2010), spatial-temporal correlation coding (Pillow
et al., 2008), redundancy-reduction (decorrelation) coding (Pitkow & Meis-
ter, 2012), and on-off pathway splitting (Gjorgjieva, Sompolinsky, & Meis-
ter, 2014). Furthermore, infomax-based learning has been proposed as a
self-organization principle for sensory neural systems (Linsker 1988, 1989)
and has been adopted as an objective function in feature learning, notably
for independent component analysis (Bell & Sejnowski, 1995). In this letter,
we build on the infomax paradigm by showing how optimal neural codes
can be learned through pairwise interactions between units by processing
streaming input while also satisfying strict energetic constraints.

1.1 Challenges of Infomax Learning. From a computational perspec-
tive, optimizing mutual information (MI) is intractable for all but special
cases, such as gaussian or finite discrete-state stimuli. This is because com-
puting MI requires marginalization of the stimulus distribution, a cum-
bersome procedure for high-dimensional data with complicated distribu-
tions. Moreover, the exact stimulus distribution is not known in advance,
since sensory inputs are encountered in an online fashion. Thus, enacting
infomax in a neural circuit presents several challenges: (1) representations
should be obtained online, with only sample-by-sample processing of stim-
uli, (2) learning (e.g., via synaptic plasticity) should rely on primarily local
(pairwise) neural interactions, and (3) learning and the ensuing obtained
representation should not be energetically wasteful.

1.2 Approximation Methods for Infomax. The computational chal-
lenges are incompletely addressed by current infomax learning frame-
works. With an as-if gaussian approximation, Linsker (1992) proposed lo-
cal learning rules for the case of a linear encoder and gaussian stimuli.
Brunel and Nadal (1998) proposed approximating the mutual information
with Fisher information, an approximation that has recently been refined
by Huang and Zhang (2018). A similar Fisher information approximation
was also adopted in Wei and Stocker (2016) and Karklin and Simoncelli
(2011). However, the learning rules based on gaussian approximation or
Fisher information are batched algorithms since the full stimulus data are
needed in computation. Online learning rules for information preservation
have been proposed for recurrent networks (Tanaka, Kaneko, & Aoyagi,
2009; Liu & Ching, 2017) when both the stimuli and the neural response are
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discrete state variables, but these cannot be trivially extended to the case
when stimuli are continuous.

1.3 Infomax with Energetic Constraints. The issue of energetic effi-
ciency is less well studied in the context of infomax, despite the intuitive
premise that neural circuits balance computational efficiency with energy
costs (Levy & Baxter, 1996; Laughlin, 2001; Gershman, Horvitz, & Tenen-
baum, 2015). Results in this domain include Wang, Wei, Stocker, and Lee
(2016), which derived infomax-based efficient neural coding with a hard,
energetic constraint for a two-neuron case with an analytic method. Fur-
ther, Karklin and Simoncelli (2011) added energy regularization and per-
formed computations using gaussian approximation and batched gradient
algorithms. However, whether infomax neural coding with hard energy
constraints is achievable through online learning is not known.

1.4 Contributions. In this work, we address the online learning of in-
fomax neural coding through pairwise neural interactions by combining a
variational mutual information approximation and a sampled-based gra-
dient approximation with neural activities. We adopt the variational lower
bound of MI proposed in Barber and Agakov (2003) and propose a gradient-
based online learning scheme with streaming stimuli samples in section 2.
The variational MI is introduced by using a variational decoder distribu-
tion as an approximation of the true Bayesian posterior. The variational de-
coder can be used for probabilistic reconstruction of stimuli given the en-
coder neural responses and, hence, models how downstream neurons use
the coded sensory information. However, the gradient of the variational
MI may still contain nonlocal terms (i.e., overall synaptic weights). To over-
come this obstacle, we replace nonlocal terms with sample-based approx-
imations derived from encoder and decoder neurons’ activities, such that
the derived learning rules are only based on pairwise neural interactions.
With the gradient-based online learning scheme and a gaussian linear de-
coder, we obtain a learning rule for a rate-based linear gaussian encoder in
section 3. In section 4, we derive a multiple timescale online learning rule
for infomax when an energetic constraint is imposed on the response of
the linear gaussian encoder. We obtain the learning rule for a discrete-state
binary spiking encoder in section 5. The efficiency of the learning rules is
demonstrated through several numerical examples.

2 Neural Coding with Infomax and Online Variational Learning
Scheme

In this section, we introduce the problem of efficient neural coding with
infomax and then present our online learning scheme based on variational
methods.
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2.1 Efficient Neural Coding with Infomax. Consider a stimulus x ∈ R
N

from a real-valued high-dimensional space R
N following an unknown dis-

tribution p(x). The neural system response r to this stimulus, which is here
assumed to be a continuous random variable, is modeled with a constrained
conditional probability density function p(r|x; θ ). That is, p(r|x; θ ), known
as the neural stimuli-response function or encoder model, comes from a
specified family of distributions with the encoding parameter θ .

Infomax neural coding hypothesizes that the neural system finds the pa-
rameter θ by optimizing the information transmission between the stimuli
x and the response r,

max
θ

I(x, r), I(x, r) = H(x) − H(x|r) = KL(p(x, r), p(x)p(r)), (2.1)

where

H(x) = −
∫

x
dxp(x) log p(x), (2.2)

H(x|r) = −
∫

r
drp(r)

∫
x

dxp(x|r) log p(x|r), (2.3)

KL(p(x, r), p(x)p(r)) =
∫

x

∫
r
dxdrp(x, r) log

p(x, r)
p(x)p(r)

. (2.4)

Here, H(x) is the entropy of x, H(x|r) is the conditional entropy of the pos-
terior, and KL(p(x, r), p(x)p(r)) is the Kullback–Leibler divergence between
p(x, r) and p(x)p(r). Notice that

p(r) =
∫

x
dxp(x, r) =

∫
x

dxp(x)p(r|x; θ ) (2.5)

and

p(x|r) = p(r|x; θ )p(x)
p(r)

. (2.6)

Since p(x|r) is the posterior of the stimulus given the neuron response, neu-
ral coding with infomax falls within the Bayesian brain premise that the
brain forms perception and cognition in a Bayes optimal manner (Park &
Pillow, 2017; Doya, 2007).

In the previous equations, the probability density function p(r|x; θ ) can
be changed to the probability mass function P(r|x; θ ) when the neural re-
sponse r is a discrete-state random variable and the corresponding integral
becomes a sum. We will use this modification in section 5, where a discrete
neural response model is adopted.
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A key challenge in handling equation 2.1 comes from the computation of
the posterior in equation 2.6, which is needed in equation 2.3. Moreover, the
distribution p(x) is not known in advance by the encoder neurons. Even if
p(x) could be approximated by its empirical distribution (which inevitably
leads to batched algorithms), marginalization over x in equation 2.3 is still
intractable when x is high dimensional, and there is still no closed form of
equation 2.3. To overcome the obstacle, we introduce our online learning
scheme by variational methods.

2.2 Online Learning Scheme with Variational Mutual Information.
Given any distribution q(x|r),

KL(p(x|r), q(x|r)) = ∫
x dxp(x|r) log p(x|r)

q(x|r)

= ∫
x dxp(x|r) log p(x|r) − ∫

x dxp(x|r) log q(x|r) ≥ 0.
(2.7)

Therefore,

−H(x|r) = ∫
r drp(r)

∫
x dxp(x|r) log p(x|r)

≥ ∫
r drp(r)

∫
x dxp(x|r) log q(x|r) = ∫

x,r dxdrp(x, r) log q(x|r).
(2.8)

Therefore, given the encoder model p(r|x; θ ) parameterized with θ , and a
family of variational distributions q(x|r;φ) parameterized with φ, we have
the following variational lower bound of MI:

I(x, r) ≥ H(x) +
∫

x
dxp(x)

∫
r
drp(r|x; θ ) log q(x|r;φ) � Ĩ(x, r). (2.9)

Instead of optimizing the exact I(x, r) defined in equation 2.1, we optimize
Ĩ(x, r) in equation 2.9. Notice that H(x) is independent of parameters θ ,
φ; hence, infomax neural coding is solved by the following optimization
problem:

max
θ∈�,φ∈�

∫
x

dxp(x)
∫

r
drp(r|x; θ ) log q(x|r;φ). (2.10)

The lower bound in equation 2.9 is called the variational mutual infor-
mation (VMI), first proposed in Barber and Agakov (2003). Here, q(x|r;φ) is
a variational approximation for p(x|r) in equation 2.6. Since p(r|x; θ ) trans-
forms stimuli to neural representation, it is called an encoder; similarly,
q(x|r;φ) is called a decoder. The constraint θ ∈ �,φ ∈ � is introduced be-
cause p(r|x; θ ) and q(x|r;φ) are usually limited within specific families of
distributions.

The variational method has been shown to be an efficient computational
method when Bayesian inference is involved as a subroutine and has been
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verified recently in deep learning applications (Kingma & Max, 2013; Shakir
& Rezende, 2015; Chalk, Marre, & Tkacik, 2018; Rezende, Wierstra, & Ger-
stner, 2011). If q(x|r;φ) is endowed with condition ∀θ, ∃φ, q(x|r;φ) = p(x|r),
then the variational bound Ĩ(x, r) is exactly the same as I(x, r), in con-
trast to a Fisher information approximation, which is only exact asymp-
totically(Brunel & Nadal, 1998; Huang & Zhang, 2018).

Although algorithms have been developed for VMI optimization, most
of them are nonlocal or batched. For example, Barber and Agakov (2003)
maximized the lower bound Ĩ(x, r) by alternatively optimizing p(r|x; θ ) and
q(x|r;φ) with respect to θ and φ when a batch of stimulus data is given.
Similar batched algorithms are adopted in Chalk et al. (2018) and Shakir and
Rezende (2015). In contrast, we propose the following online variational
learning scheme with streaming stimuli (see algorithm 1).

Here, P�(x) is the projection of x onto the set �: P�(x) = arg miny∈� ||x −
y||. From an optimization perspective, the proposed learning scheme can be
viewed as a stochastic gradient algorithm. In fact, the objective function in
equation 2.10 is

Ex

[∫
r
drp(r|x; θ ) log q(x|r;φ)

]
. (2.13)

Instead of optimizing with the exact gradient ∇Ex[
∫

r drp(r|x; θ ) log q(x|r;
φ)], we can utilize a sample xk ∼ p(x) to estimate the gradient
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∇Ex[
∫

r drp(r|x; θ ) log q(x|r;φ)] = Ex[∇ ∫
r drp(r|x; θ ) log q(x|r;φ)]

≈ ∇ ∫
r drp(r|xk; θ ) log q(xk|r;φ). (2.14)

Our scheme follows by updating θ and φ with the approximated gradient
of

∇
∫

r
drp(r|xk; θ ) log q(xk|r;φ).

But if a batch of stimulus data {x1, . . . , xT} are given as independent
and identically distributed (i.i.d.) samples of the unknown distribution
p(x), then we can approximate p(x) with the empirical distribution p(x) =
1
T

∑T
k=1 δ(x − xk). In this case, equation 2.10 becomes

max
θ∈�,φ∈�

1
T

T∑
k=1

∫
r
drp(r|xk; θ ) log q(xk|r;φ). (2.15)

Note that for an optimization problem with a sum of objective functions,
minx∈�

∑N
i=1 fi(x), instead of utilizing gradients of all fi(x) at each iteration,

the incremental gradient method (Bertsekas, 2011) picks one fi (denoted,
fik ) and updates as xk+1 = P�(xk − ηk∇ fik (xk)). Therefore, algorithm 1 can
also be treated as an incremental gradient method for equation 2.15.

The proposed scheme is able to process streaming stimuli in an on-
line fashion. However, we still seek a gradient computation or approxi-
mation in equations 2.11 and 2.12 that is implementable with pairwise in-
teractions. To obtain such an approximation, we introduce the variational
distribution or decoder, q(x|r;φ), that will be used. Decoder neurons take
the encoder neuron response r as input and then provide a probabilistic
“reconstruction” of input stimuli. In this letter, we use a linear gaussian
decoder q(x|r;φ) = N (Ur,	), even though the stimulus distribution and
the encoder need not be gaussian. Suppose there are m encoder neurons;
then U = [u1, . . . , uN]T = [ui j] ∈ R

N×m and ui = (ui1, . . . , uim)T ∈ R
m is the

synaptic weight from all encoder neurons to the ith decoder neuron. The
decoder parameter φ corresponds to the synaptic weights {u1, . . . , uN}. 	 =
diag{λ1, . . . , λN} is a diagonal matrix with positive diagonal elements λi > 0.
Hence, the ith decoder neuron follows a gaussian distribution q(xi|r;φ) =
N (uT

i r, λi). We impose the following constraint on the decoder synaptic
weight vector:

||ui||2 ≤ 1, i = 1, . . . , N. (2.16)

Further, we denote the unit norm ball in R
m as Bm

2 = {x ∈ R
m| ||x||2 ≤ 1},

and the constraint that φ ∈ � is ui ∈ Bm
2 , i = 1, . . . , N.
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Remark 1. In this work, we only consider an �2 constraint, equation 2.16,
on the decoder parameter. This constraint implies that the overall synaptic
weights of each decoder neuron should not be overly strong and the sum
of squared incoming synaptic weights should be less than 1. The projection
onto the unit norm ball, PBm

2
, required in equation 2.12 (ui ← ui

||ui||2 when
||ui||2 > 1) can be performed in a local manner. In fact, the decoder neu-
ron i can first calculate ||ui||2 and send the signal back to each synapse ui j,
since it knows all the incoming synaptic weights ui j, j = 1, . . . , m. Sparsify-
ing constraints on decoder parameters, such as ||ui||0 ≤ l0, could similarly
be considered.

3 Linear Gaussian Encoding Model

In this section, we give a local learning rule for the encoder based on the
proposed online learning scheme and sample-based gradient approxima-
tion techniques.

Consider m sensory neurons whose responses are a real-valued vector
r = (r1, . . . , rm)T ∈ R

m. Here, the ith encoder neuron response ri is treated
as a deviation from baseline and thus can assume both positive and nega-
tive values. Given a stimulus x ∈ R

N, the r follows a linear gaussian distri-
bution r ∼ p(r|x; θ ) = N (Wx, �) where W = [w1, . . . , wm]T = [wi j] ∈ R

m×N

and � = diag{σ1, . . . , σN}. wi = (wi1, . . . , wiN )T ∈ R
N can be regarded as the

synaptic weight of the ith encoder neuron and σi > 0 describes its encoding
noise. Here, σi is assumed to be fixed, while W is the encoder parameter
that should be learned via infomax. We also impose a norm constraint on
the encoder synaptic weight:

wi ∈ BN
2 , i = 1, . . . , N, BN

2 = {x ∈ R
N| ||x||2 ≤ 1}. (3.1)

Notice that even though the encoder is assumed to be gaussian, directly
optimizing MI in equation 2.1 is still intractable since the stimulus distri-
bution p(x) is unknown to the neurons and in general nongaussian. In this
scenario, we introduce a synaptic learning rule as follows.

The encoder-decoder structure and information flow of algorithm 2 is
illustrated in Figure 1. Let us examine the learning rules 3.2 and 3.3 to show
that they are indeed updated with pairwise information.

First, note that equation 3.2 can be regarded as a three-term Hebbian
learning rule. Here, (xk − x̂k)T is locally available to each encoder neuron
since the reconstructed sample x̂k is fed backward from the decoder neu-
rons to the encoder neurons. Since uji is the synaptic weight from encoder
i to decoder neuron j, the term U:,i = (u1i, . . . , uNi)T is a vector describing
how the response of encoder i influences the decoder neurons, hence, could
be treated as pairwise interacting information that is available to the ith
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encoder neuron. It is important to note that even through these interactions
are pairwise, the encoder rule itself is not fully local because it relies on
knowledge of pre- and postsynaptic weights (i.e., the issue of weight trans-
port). We elaborate on this further in section 3.2.

For the decoder synaptic weight learning rule, equation 3.3, the jth de-
coder neuron needs only the encoder sample rk and the jth element of
reconstruction error (xk − x̂k) j (not the entire vector xk − x̂k). Since uj =
(uj1, . . . , ujm)T is simply the synaptic weight of decoder j, the last term in
equation 3.3 is locally computable. Moreover, since the variance parame-
ters σi and λ j are fixed, they can be locally held by each encoder or decoder
neuron. Finally, the projection in equations 3.3 and 3.2 can be performed at
the level of individual neurons with locally held synaptic information. A
detailed derivation of learning rules 3.3 and 3.2 is given in the appendix.

3.1 Infomax Learning of MNIST Data Set. We illustrate the rules in
algorithm 2 by showing that an infomax-based efficient representation
can be learned when high-dimensional stimuli are compressed to low-
dimensional encoder neuron responses. Here, we consider the MNIST
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Figure 1: The encoder-decoder structure and information flow.

data set, where each sample is a 28 × 28 image of a handwritten digit.
Hence, the stimulus x is a 784-dimensional real-valued vector: N = 784.
We set the number of encoder neurons m to be 36. During learning, we
sequentially present a randomly selected image (out of 6 × 104 images in
the MNIST database) to algorithm 2. The gaussian noise parameters � =
diag{σ1, . . . , σm} and 	 = diag{λ1, . . . , λN} are randomly drawn from [0.01,
0.02]. Since we have the constraints on synaptic weights W = [w1, . . . , wm]T ,
U = [u1, . . . , uN]T that wi ∈ BN

2 , i = 1, . . . , m and uj ∈ Bm
2 , j = 1, . . . , N and

each pixel of MNIST images is bounded in [0, 1], both of the averaged

signal-to-noise ratios (SNR), 〈wT
i x
σi

〉 and 〈 uT
j r

λ j
〉, will be bounded, even though

we adopt a high-SNR setting. In other words, the learning rule cannot
just increase synaptic weights W , U to combat the neural noise. The ini-
tial synaptic weights of W and U are randomly drawn from [0, 0.001]. The
learning rate is fixed as ηk = 1 × 10−6.

The algorithm performance is evaluated by epochs, while in each epoch,
1000 randomly selected images are presented to the learning rule one by
one. After each epoch, we first use the current parameters W,U to eval-
uate the VMI Ĩ(x, r), and then reconstruct a testing set from its encoder
representation. To evaluate the VMI, we draw 1000 images for each digit
from the training set and then compute with equation A.1 and the current
encoder and decoder parameters, while the constants in equation A.1 are
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Figure 2: (A) The learning curve of averaged reconstruction error and the angle
error over the testing set, and the variational mutual information at the end of
each epoch. (B) The stochastic encoder neuron representations for 100 images
of each digit after learning.

ignored. We also generate a testing set of 200 images by randomly drawing
20 images for each digit that was excluded from the training set. The recon-
struction of the testing set is based on samples from encoder and decoder
neurons as follows. Given an image x from the testing set, we first sample
from the encoder N (Wx, �) to get a realization of its stochastic represen-
tation r̂, and then sample x̂ from the decoder N (Ur̂,	) by presenting r̂ to
the decoder. We repeat the sampling process 100 times for each image and
average the sampled x̂ to form a final reconstruction of x, denoted x̃. We
can evaluate the reconstruction by the relative error ||x−x̃||

||x|| and also by the
similarity, cos θ = xT x̃

||x||·||x̃|| . The learning curves (see Figure 2A) of VMI and
the two metrics over the testing set show that algorithm 2 has a quick initial
phase and gradually slows down as the synaptic weights approach the op-
timal ones. These curves imply that the MI between encoder response r and
stimuli x is increased due to learning and that the information contained in
the encoder representation r can be well utilized by the downstream neu-
rons (decoder).

After learning, we resample 100 images for each digit from the testing
database to get a new testing set. We reconstruct them with the learned en-
coder and decoder using the same procedure described before. Figure 2B
shows the stochastic encoder representations of every 100 images for each
digit. It is notable that the encoder representation is coherent for each
digit among those 100 images while incoherent across different digits. The
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Figure 3: (A) The randomly selected images from MNIST testing database. (B)
The reconstructed images with the learned linear gaussian encoder and decoder.
(C) Each row of encoder synaptic weight W = [w1, . . . , wm]T ∈ R

36×784 is an en-
coder filter. (D) Each column of decoder synaptic weight U = [u1, . . . , uN]T ∈
R

784×36 is a decoder filter.

averaged reconstruction error 〈 ||x−x̃||
||x|| 〉 of those 1000 images is 0.3767, and

the averaged 〈cos θ〉 is 0.9224. Figures 3A and 3B show 10 randomly se-
lected images for each digit in the testing set and their reconstructed images.
They all verify that the encoder neurons preserve the necessary information
when compressing the high-dimensional images to low-dimensional repre-
sentations, while the decoder can extract the information for downstream
processing. Finally, Figures 3C and 3D show the learned synaptic weight
patterns of encoder and decoder neurons. Each patch in Figure 3C is a visu-
alization of a row of encoder weights W = [w1, . . . ,w36]T ∈ R

36×784 (i.e., an
encoder filter), and each patch in Figure 3D is a visualization of a column
of decoder weights U = [u1, . . . , u784]T ∈ R

784×36.

3.2 Infomax Learning with Fixed Random Feedback Weights. We note
that the encoder learning rule 3.2 in algorithm 2 requires each encoder neu-
ron to know the weights of the synapses to which it is presynaptic. How-
ever, in biological neurons, the synaptic weight is largely determined by
postsynaptic mechanisms (Grossberg, 1987). Therefore, the learning rule
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Figure 4: The learning curve of averaged reconstruction error and the angle
error over the testing set, and the variational mutual information at the end of
each epoch, with random fixed feedback weights in equation 3.4.

requires the weight of the synapse to be transported back to the neurons
presynaptic to it. Biological mechanisms that achieve such “weight trans-
port” are unclear (Lillicrap, Cownden, Tweed, & Akerman, 2016). In this
sense, the proposed learning rule is only semilocal even though the learn-
ing rule relies on only pairwise neural interactions.

Recently, a strategy has been proposed to obviate the weight transport
conundrum through a strategy referred to as as feedback alignment (Lilli-
crap et al., 2016). The key idea here is that rather than using exact parame-
terization of synaptic weights in terms of postsynaptic targets, a random
projection of the error is used. We explored this strategy in our context,
through modification of learning rule 3.2 of algorithm 2 to the following
one:

wi ← PBN
2

{
wi + ηk

[(
u f

1i

λ1
, . . . ,

u f
Ni

λN

)
(xk − x̂k)

]
xk

}
. (3.4)

Here (u f
1i, . . . , u f

Ni) are randomly generated but fixed feedback weights. In
this case, the error signal is projected onto a random vector and sent back
to encoder neurons; therefore, there is no need for weight transport.

To verify the infomax learning with random feedback weights, we adopt
the same experiment setting as in section 3.1 but change the encoder learn-
ing rule, equation 3.2, of algorithm 2 to equation 3.4. The learning curves
(see Figure 4) of VMI and the two metrics over the testing set show that
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Figure 5: (A) Randomly selected images from MNIST testing database. (B) Re-
constructed images with the encoder/decoder learned in section 3.1 with the en-
coder learning rule 3.2. (C) The reconstructed images with the encoder/decoder
learned with the encoder rule 3.4, which uses fixed random feedback weights.

even with random feedback weights, algorithm 2 with the encoder learn-
ing rule, equation 3.4, can still increase the variational mutual information
and the downstream neurons (decoder) can still improve the reconstruc-
tion of the original stimulus from its encoder representation. After learn-
ing, we resample 100 images for each digit from the testing database to
get a new testing set. We reconstruct them with the encoder or decoder
learned with the encoder rule, equation 3.4, that utilizes fixed random feed-
back weights. The averaged reconstruction error 〈 ||x−x̃||

||x|| 〉 of those 1000 im-
ages is 0.4700, and the averaged 〈cos θ〉 is 0.8782. Figures 5A to 5C show 10
randomly selected images for each digit in the testing set and their recon-
structed images with the encoder and decoder learned with equations 3.2
and 3.4, respectively. Compared with the encoder/decoder learned in sec-
tion 3.1, the encoder/decoder learned with fixed random feedback weights
only slightly deteriorates algorithm performance. This shows neurons with
random feedback weights can achieve fast but efficient infomax learning.

3.3 Adaptive Infomax with Samples of Dynamical Stimuli. In the nat-
ural world, the distribution p(x) (i.e., the underlying stimulus statistics)
changes persistently. Sensory neural circuits show strong adaptivity for
such dynamic stimuli (Fairhall, Lewen, Bialek, & van Steveninck, 2001). By
virtue of its online nature, our algorithms should demonstrate such adap-
tivity when stimuli are sampled from time-varying distributions.

We proceed to verify the adaptivity of algorithm 2 with the MNIST data
set. The algorithm setting is the same as section 3.1, except that the stimulus
distribution changes at some time point. Initially, we sample only images of
the digits 1, 7, and 9 from the testing database and present them to algorithm
2 one by one. The learning is divided into epochs, while each epoch contains
100 images per digit. After 600 epochs, we start to sample images of all
digits from the testing database and present them to algorithm 2 one by one.

https://www.mitpressjournals.org/action/showImage?doi=10.1162/neco_a_01182&iName=master.img-002.jpg&w=312&h=88
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Figure 6: (A) Reconstruction of images with learned encoder/decoder at the
600th epoch. Note that only digits 1, 7 and 9 are presented. (B) Reconstruction of
images with learned encoder/decoder at the 1200th epoch. (C) Learned encoder
filters of W at the 600th epoch. (D) Learned encoder filters of W at the 1200th
epoch.

Therefore, the underlying stimulus distribution changes, and the learning
continues for another 600 epochs.

We compare the learned encoder/decoder at the 600th and 1200th
epochs by reconstructing a set of test images, which contains 100 images
for each digit. The averaged reconstruction error 〈 ||x−x̃||

||x|| 〉 is 0.4378 at the
600th epoch but 0.4017 at the 1200th epoch. Figures 6A and 6B show the
reconstructed images for 10 randomly chosen images of each digit with the
learned encoder/decoder at the 600th and 1200th epochs, respectively. Fig-
ure 6A shows that images of digits 1, 7, and 9 can be well reconstructed with
the learned encoder/decoder at the 600th epoch, but the images of other
digits cannot. After presenting images of all digits to the learning rule, the
reconstruction of images of all digits has been improved, as shown by Fig-
ure 6B. Figure 6C presents the learned encoder filters at the 600th epoch,
and Figure 6D presents the learned encoder filters at the 1200th epoch. Fig-
ure 7 shows the learning curve of the reconstruction of digits 7, 9, 2, and 6,
respectively. They show that different features are adaptively learned when
the stimulus distribution is changing.
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Figure 7: (A) Learning curve of the reconstruction error of digit 7. (B) Learning
curve of the reconstruction error of digit 9. Since only the images of digits 1, 7,
and 9 are presented at the first 600 epoches, their reconstruction errors decrease
with learning. However, their reconstruction errors increase after 600 epochs
since the images of more digits are presented and the “encoder resource” has
to be redistributed. (C) Learning curve of the reconstruction error of digit 2. (D)
Learning curve of the reconstruction error of digit 6. The reconstruction error
decreases once these images are presented as stimuli.

4 Multiple Timescale Learning of Infomax with Energetic Constraints

The variational online learning framework is also flexible enough to balance
information processing efficiency with energetic (analogous to physiologi-
cal metabolic) costs.

To illustrate the idea, we retain the linear gaussian encoder model in
section 3, p(r|x; θ ) = N (Wx;�), and the decoder is q(x|r;φ) = N (Ur,	).
Consider the infomax problems with a metabolic constraint that the mean
squared encoder neuron response (firing rate) should be less than some
level:

max
p(r|x;θ )

I(x, r), s.t., E(rTr) =
∫

r
p(r)rTrdr ≤ M. (4.1)

Infomax with energetic constraints has been previously proposed (Wang
et al., 2016; Karklin & Simoncelli, 2011) but handled using the addition
of regularizing penalties to the main MI cost. The difference in our for-
mulation, equation 4.1, is that we limit the mean squared encoder re-
sponses (which also incorporates the encoder noise variance) explicitly. In
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algorithm 3, we solve equation 4.1 for a population of neurons by a learning
algorithm with samples of unknown p(x).

Compared with equation 3.2 in algorithm 2, a term modulated by a
global signal ζ is added to the update rule of encoder synaptic weights
wi, i = 1, . . . , m. The signal ζ monitors overall encoder response strength
and provides homeostatic feedback that downregulates responses in order
to satisfy the constraint. Hence, the term with ζ can be regarded as a three-
term Hebbian learning term. The dynamical evolution of ζ is on a slower
timescale, since it is updated every T samples. Therefore, learning rules 4.2
and 4.3 for synaptic weights wi, uj can be implemented with locally avail-
able information but modulated by a population-level slow signal. This
learning rule amounts to a saddle point dynamics that seeks an equilib-
rium between conflicting objectives (Arrow, Hurwicz, & Uzawa, 1958). A
detailed derivation of algorithm 3 is presented in section A.2.

4.1 Example: Infomax Learning from Natural Images under Energetic
Constraint. We compare the infomax learning with and without energetic
constraints—that is, algorithms 2 and 3 in terms of processing 8 × 8 patches
sampled from a natural image database (Hyvarinen, Hurri, & Hoyer, 2009).
We remove the DC component of the patches but do not perform any fur-
ther preprocessing. The stimulus set has a total of 2 × 104 patches. During
learning, image patches are randomly selected (sequentially) and simulta-
neously presented to algorithms 2 and 3.

The number of encoder neurons is set as m = 400, so we are seeking an
overcomplete representation with infomax learning. The linear gaussian en-
coder N (W, �) and decoder N (U,	) have synaptic weights W ∈ R

400×64,
U ∈ R

64×400 to be learned, while �, 	 are fixed diagonal matrices. The initial
parameters of algorithms 2 and 3 are the same with W,U randomly drawn
from [0, 0.1] and nonzero elements of �, 	 drawn from [0.05, 0.1]. Since
the the stimuli and encoder responses are approximately bounded within
[−1, 1], the SNR is low: SNR ≤ 1

0.075 ≈ 15. We still impose the constraint that
the synaptic weight of each encoder or decoder neuron is limited within the
unit Euclidean ball: wi ∈ B64

2 and uj ∈ B400
2 . For algorithm 3, the energetic

constraint is M = 80 with ζ ∈ R
+ initially set to be 0.1. The learning pro-

cess is divided into epochs while each epoch has T = 1000 image patches.
Therefore, ζ is adapted after each epoch, while W and U are adapted with
each image patch. The learning rate of W , U is set as ηk = 1 × 10−6, and the
learning rate of ζ is set as ν = 1 × 10−4.

The results of algorithm 3 with energy constraints are depicted in Fig-
ures 8A and 8C, which show the evolution of the global modulator sig-
nal ζ and the violations of the constraint ŝr − M, respectively. We observe
that the global signal ζ is dynamically adapted and increases once the con-
straint is violated, as intended. Moreover, since ŝr − M asymptotically ap-
proaches zero in Figure 8C, the energy budget is fully used by the learned
encoder/decoder. In other words, algorithm 3 has fully allocated the energy



960 P. Yi and S. Ching

budget to achieve the most information-efficient stimulus representation.
We also evaluate the VMI after each epoch with a Monte Carlo method.
We sample 104 patches and compute VMI with equation A.1 while the
constants are ignored. Figure 8B shows the VMI after each epoch that are
computed with an encoder/decoder learned with and without constraints,
which demonstrates VMI is increased in both cases. Figure 8D gives the vi-
olations of the constraint ŝr − M when learning without energy constraints.
Therefore, we conclude that the mutual information learned with an energy
constraint could be almost the same as the case without energy constraint.
This means that by efficiently allocating the energy budget, we can achieve
the same information transmission while keeping the energy consumption
within the constraint.
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Figure 8: Comparing infomax learning with and without energetic constraints.
(A) The trajectories of the modulator signal ζ with algorithm 3 after each epoch.
(B) The trajectories of variational mutual information after each epoch that are
computed with the encoder or decoder learned with and without energy con-
straints, respectively. It shows that the mutual information learned with an en-
ergy constraint is almost the same as the case without an energy constraint. (C)
The trajectory of the violation of energy constraint ŝr − M when learning with
energy constraints, where the dashed red line is the smoothed one. (D) The tra-
jectory of the violation of energy constraint ŝr − M when learning without en-
ergy constraints, where the dashed red line is the smoothed one.

To further compare the performance of algorithms 3 and 2, that is, info-
max learning with and without energy constraints, we reconstruct 5000 im-
age patches from the database using the same sampling method described
in section 3.1. Figures 9A and 9B show the distribution of randomly selected
20 encoder neurons’ activities over the testing set, computed with the en-
coder/decoder learned with and without energy constraints, respectively.
They shows that with energy constraints, the neural activities are more con-
centrated around zero. Figures 9C and 9D show the histogram of recon-
struction error ||x−x̃||

||x|| over the testing set where x̃ is reconstructed with the
encoder/decoder learned with and without energetic constraints. The aver-
aged 〈 ||x−x̃||

||x|| 〉 over the testing set with energy constraint is 0.2009, while it is
0.1927 without energy constraints. Hence, the reconstruction performance
is indistinguishable for the two cases. However, the mean 〈rTr − M〉 over
the testing set for the encoder/decoder learned with energy constraints is
0.1526, while it is 76.6665 for the encoder/decoder learned without energy
constraints. Figures 9E and 9F show the histograms of rTr computed with
the encoder/decoder learned with and without energy constraints with a
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Figure 9: Reconstruction of image patches with the encoder decoder learned
with and without energy constraints on the same testing set. (A) The image of
the distribution of the selected encoder neuron’s activities among [−3, 3] with
50 bins, while neural activities are computed with an encoder/decoder learned
with energy constraints. (B) The image of the distribution of the selected en-
coder neuron’s activities among [−3, 3] with 50 bins, while neural activities
are computed with an encoder/decoder learned without energy constraints.
(C) The histogram of reconstructed errors with the encoder/decoder learned
with energy constraints. (D) The histogram of reconstructed errors with the en-
coder/decoder learned without energy constraints. (E) The histogram of neu-
ral activities energy computed with the encoder/decoder learned with energy
constraints. (F) The histogram of neural activities energy computed with the
encoder/decoder learned without energy constraints.

vertical line marking the location of the energy budget. They show that with
the learning rules in algorithm 3, the energy constraint is satisfied for more
image patches and the energy consumption is much less than the case with-
out energy constraints.

As these results suggest, despite using substantially less energy, the
encoder/decoder resulting from algorithm 3 achieves comparable perfor-
mance in terms of information efficiency and reconstruction error. Indeed,
by incorporating a slower timescale modulatory signal, neural coding can
be made efficient in term of both information processing and energy costs.
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5 Infomax Learning with Bernoulli Neurons

In previous sections, we adopted the linear gaussian encoder that trans-
forms continuous stimuli to continuous neural responses r, analogous to a
neural circuit that encodes stimuli with its firing rate. However, it is also
interesting to investigate how a population of neurons efficiently encodes
continuous stimuli with discrete responses analogous to neural spikes. Both
Poisson and Bernoulli neural response models have been proposed for dis-
crete encoding (Meyer, Williamson, Linden, & Sahani, 2017), and popula-
tion coding of spiking neurons based on infomax has been investigated in
Tkačik et al. (2010). In this section, we show that the proposed online learn-
ing scheme, algorithm 2, can also be applied to infomax learning of a pop-
ulation of Bernoulli spiking neurons.

Suppose the stimulus is still taken from a continuous space R
N and fol-

lows an unknown distribution p(x). Given a sample x, each encoder neu-
ron’s response is taken from a set of two symbols � = {1, −1}. The linear-
nonlinear Bernoulli encoding model of neuron i is

P(ri = 1|x; wi) = 1

1 + exp−wT
i x

,

P(ri = −1|x; wi) = 1 − 1

1 + exp−wT
i x

, (5.1)

where wi ∈ R
N is the synaptic weight of encoder neuron i. Hence, a popu-

lation of m encoder neurons transforms the stimuli x to a symbol assembly,
such as (1,−1, 1, −1,−1, . . .). We denote the set of all possible symbol as-
semblies as �m = ∏m

i=1 �. Suppose the encoder neurons are conditionally
independent of each other given the stimuli. Then the encoder model of the
population of m neurons is

P(r|x; θ ) =
m∏

i=1

P(ri|x;wi), r ∈ �m, ri ∈ �, θ = {w1, . . . , wm}. (5.2)

The goal of the encoder neurons is to learn optimal synaptic weights θ =
{w1, . . . ,wm} by solving the infomax problem, equation 2.1, which is now
given as

max
θ

I(x, r),

I(x, r) = H(r) − H(r|x) (5.3)

= −
∑
r∈�m

P(r; θ ) log P(r; θ ) +
∫

x
dxp(x)

∑
r∈�m

P(r|x; θ ) log P(r|x; θ ).

Notice that P(r; θ ) = ∫
x p(x)P(r|x; θ )dx, and then p(x|r; θ ) = P(r|x;θ )p(x)

P(r;θ ) .
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Remark 2. Here, each encoder neuron is a computational unit that may be
implemented with a neural circuit of two biological neurons. Those two
biological neurons have strongly mutual inhibitory connections such that
only one of them will fire given a stimulus input. Therefore, we can take
ri = 1 if one of the two neurons fires and r j = −1 if the other fires.

As before, we aim to give an online learning algorithm wherein each
neuron uses only pairwise neural interaction and neural activity to adapt its
synaptic weight. We again employ the scheme of algorithm 2 to derive the
online learning rule and specifically assume the variational linear gaussian
decoder q(x|r;φ) = N (Ur,	), introduced in section 2.2, to approximate the
true posterior.

This results in an online learning rule for Bernoulli neurons in algorithm
4, derived in full in section A.3.

Learning rule 5.5 can be enacted with local computations. For the en-
coder synaptic weight wi, both V̂ar(ri|xk) and Ê(ri|xk) can be computed with
locally available samples. Moreover, uji, the synaptic weight from the ith
encoder neuron to the jth decoder neuron, can also be regarded as local
information to the encoder neuron i, even though the transport of synapse
weights from postsynaptic to presynaptic neurons is still needed. Since x̂k is
assumed to be fed backward from decoder to each encoder neuron, xk − x̂k

is known by the ith encoder neuron. Similar arguments hold for learning
rule 5.6 for decoder synaptic weight uj.

5.1 Example: Learning to Encode Gaussian Mixture Distribution with
Binary Spikes. We use gaussian mixture stimuli to show that the sample-
based online learning rule in algorithm 4 can find efficient stochastic dis-
crete representations that preserve as much information as possible when
transforming continuous stimuli to binary spikes. Here, the stimulus x ∈ R

2

follows a gaussian mixture distribution p(x) = ∑8
i=1 πiN (μi, �i). p(x) has a

total of eight clusters in R
2, where each cluster is a gaussian distribution

with its center μi ∈ R
2 and variance �i ∈ R

2×2. The weight of each clus-
ter, πi, determines the frequency with which a stimulus is sampled from a
cluster i. Each cluster’s mean vector μi ∈ R

2 is uniformly generated from
[−4, 4] × [−4, 4], and its covariance �i is also randomly generated. The
weight of each cluster πi is randomly drawn from [0.3, 1], and then all πi are
normalized to be a probability vector: 0 ≤ πi ≤ 1,

∑8
i=1 πi = 1. Each nonzero

element of 	 is randomly taken from [0.1, 0.3], resulting in SNR ≈ 2
0.2 = 10.

The number of encoder neurons is 32. We utilize the learning rules in al-
gorithm 4 to update θ = {w1, . . . , w32}, wi ∈ R

2×1 and U ∈ R
2×32 with the

constraints uj ∈ B32
2 , j = 1, 2. Each element of the initial wi is randomly

drawn from [−0.1, 0.1], and each element of initial U is randomly drawn
from a normal distribution. The number of samples in algorithm 4 used
for approximating σ̂i,k and x̂k is T = 200. The learning rate is ηk = 1 × 10−6.
The learning trajectory for the encoder synaptic weight w1 ∈ R

2 is given in
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Figure 10A. We also evaluate the variational mutual information Ĩ(x, r) once
1000 samples are presented with a Monte Carlo method and equation A.17,
while the constants are ignored. The trajectory of Ĩ(x, r) is shown in Fig-
ure 10B, which implies that the mutual information is increased with the
learning rule.
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Figure 10: (A) Learning trajectory of synaptic weight w1. (B) Learning trajectory
of the variational mutual information Ĩ(x, r). (C) Image of the probablity that
encoder neurons take a value of 1 (i.e., σi(xk)) for samples from different clusters.
(D) Glyph plot of the probablity that encoder neurons take a value of 1 for the
testing set, where the samples from the same cluster are put adjacent to each
other.

After learning, we regenerate 1 × 104 samples from the mixture gaussian
and test the learned encoder/decoder by reconstructing those samples. The
averaged reconstruction error 〈 ||x−x̃||

||x|| 〉 over the testing set is 0.1717, while
the averaged similarity 〈cos θ〉 between samples and their reconstruction
over the testing set is 0.9965. Figures 11A and 11B show the heat map of the
testing set and its reconstruction with the learned encoder/decoder. They
verify that the cluster information of the gaussian mixture stimuli is well
preserved by the binary stochastic encoder representations, and the encoder
information can be used by the downstream neurons to recover the origi-
nal stimuli. Figure 10C shows the probability that encoder neurons take a
value of 1 given samples from different clusters. Figure 10D gives the glyph
plot of the probability that encoder neurons take a value of 1 given samples
from different clusters. They demonstrate that a specific stochastic binary
representation of encoder neurons emerges for samples of different clusters
after learning.

6 Discussion and Conclusion

In this letter, we have addressed the problem of neural coding from the
perspective of mutual information maximization and variational online

https://www.mitpressjournals.org/action/showImage?doi=10.1162/neco_a_01182&iName=master.img-005.jpg&w=311&h=173
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Figure 11: (A) Heat map of the testing set of stimuli samples. (B) Heat map of
the reconstruction of testing samples with the learned encoder/decoder.

learning. While our model formulation is abstract, the proposed learning
rules are biologically plausible in the following sense:

• Stimulus samples are processed in an online manner rather than in a
batch manner. This obviates the need to “store” data—a biologically
problematic premise—within a batched scheme. With online learning
rules, sensory neurons adapt their encoding parameters in real time
when the underlying stimulus distribution is changing.

• The nonlocal terms in the gradient of variational MI can be approxi-
mated with samples from decoder/encoder neurons. In this way, the
variational decoder plays a crucial role during approximated gradi-
ent computation beyond the derivation of a lower MI bound. The use
of decoder samples in this scheme has not been explored in previous
variational MI works. Specifically, the sample-based learning rule re-
moves the requirement that each neuron has global network aware-
ness. This supposition is consistent with a recent hypothesis that neu-
ral circuits perform Bayesian computation with samples rather than
probability (Sanborn & Chater, 2016). The current learning rule still
requires each encoder neuron to know the weights of synapses that
it is presynaptic to, while the biological mechanism to achieve such
a weight transport from postsynaptic neuron to presynaptic neuron
is unclear. This issue is a substantial and active research topic in bio-
logical learning.

• With the variational online learning scheme, an energetic constraint
on encoder neural responses can be incorporated with infomax by

https://www.mitpressjournals.org/action/showImage?doi=10.1162/neco_a_01182&iName=master.img-006.jpg&w=311&h=180
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adding a modulatory signal with slower timescale dynamics. The
scheme is different from the energy-penalty-based infomax in Karklin
and Simoncelli (2011), which employs a fixed regularizer added to the
infomax cost. In our case, we use a hard constraint, leading to a multi-
plier that adapts based on encoder neural response history on a slow
timescale.

Our numerical examples illustrate the efficacy of the proposed rules and
also highlight the manifestation of neural response selectivity and continual
adaption to dynamic stimuli. Thus, these phenomena are compatible with
online, sample-based infomax learning.

The learning rule is based on the variational method, an efficient approxi-
mate Bayesian inference method. The variational approach is closely related
to the free energy hypothesis that the brain minimizes free energy for per-
ception and action (Friston, 2010). In fact,

I(x, r) − Ĩ(x, r) =
∫

r
drp(r)

∫
x

p(x|r; θ ) log
p(x|r; θ )
q(x|r;φ)

. (6.1)

The right term in equation 6.1 is an expectation of conditional free energy
(Friston, 2012). Hence, maximizing Ĩ(x, r) could be regarded as a minimiz-
ing of free energy. Moreover, the variational decoder q(x|r;φ) can be inter-
preted as a cognitive model in the sense of Helmholtz. In this case, the en-
coder p(x|r; θ ) is a model of the sensory neural system, while q(x|r;φ) is a
model of a higher-level cognitive system. The co-optimization of encoder
p(x|r; θ ) and decoder q(x|r;φ) then embodies a lower-level sensory neu-
ral system modulated by feedback from higher-level cognition functions
(Gilbert & Li, 2013).

The normative view of theoretical neuroscience posits neural circuits as
optimization/decision entities. In this context, there are two principles to
be clarified: the optimization objective function and the optimization algo-
rithm. In our work, a lower bound of MI is taken as the objective function.
The proposed online learning rule is similar to the wake-and-sleep algo-
rithm for a Helmholtz machine (Hinton, Dayan, Frey, & Neal, 1995), since
it learns both the perception (encoding) and recognition (decoding) model.
The wake-and-sleep algorithm is conjectured to be the mechanism for free
energy minimization in the brain (Friston, 2010), and it is shown to be im-
plementable by spiking neural circuits (Pavel & Miller, 2015). However, the
wake-and-sleep algorithm is ad hoc since it optimizes different objective
functions during the wake phase and the sleep phase (Rezende et al., 2011).
Our work provides comparable results using a consistent, information-
based objective function. From the optimization algorithm perspective,
the learning rule could be treated as a stochastic gradient algorithm or
incremental gradient algorithm. Both algorithms are understood well in
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the operations research community, while their convergence is usually
guaranteed for convex problems with diminishing step sizes. For biolog-
ical learning, the nondiminishing step size enables the system to achieve
continual learning even in a nonstationary environment and hence enables
the neural system to adapt to dynamical stimuli.

Variational learning performance is limited by the model capacity of the
decoder distribution. Taking the multimodal mixture gaussian distribution
as an example, the exact posterior p(x|r) should also be a multimodal dis-
tribution. When |r|  |x|(m  N), the posterior p(x|r) will be concentrated
around a few peaks. In this case, q(x|r;φ) = N (Ur,	) used in this work
can serve as a good approximation of the true posterior p(x|r). Even when
we have more encoder neurons than stimulus dimension m > N, in which
case p(x|r) will be highly peaked, approximating a multimodal distribution
with a unimodal gaussian distribution q(x|r;φ) will inevitably bring errors.
If the decoder distribution q(x|r;φ) is flexible enough such that for any en-
coding parameter θ , there exists φ to ensure q(x|r;φ) = p(x|r), it is possi-
ble to learn infomax with the variational method. Since q(x|r;φ) is realized
by the higher-level cortical networks we conjecture that it is not limited to
gaussian distributions but could approximate more complicated ones. This
investigation is suitable for future work.

The variational infomax method is based on the approximation of the
posterior with gaussian distributions. Certainly there is a theoretical gap
between the true posterior and this approximation, though the tightness of
this gap is not yet well understood (Blei, Kucukelbir, & McAuliffe (2017)).
Moreover, because the proposed learning algorithm is based on stochastic
gradient descent for a nonconvex problem, we cannot guarantee conver-
gence to the global optimum. Thus, there are at least two levels of subopti-
mality to which the converged solution may be subjected. Understanding
this degradation from an analytical perspective is thus an important ques-
tion, though one that we do not tackle here.

The balance between information processing efficiency and energetic
cost in neural coding has been extensively discussed (Levy & Baxter, 1996;
Laughlin, 2001; Balasubramanian, Kimber, & Berry, 2001), though how the
neuron system learns such a balance with biological rules is unknown. Our
results show that an averaged energy cost (in terms of the sum of squared
encoder responses) can be held within a desirable range by using a multiple
timescale learning rule with modulatory signals. In principle, this frame-
work could be extended to other constraints, leading to even more diverse
auxiliary dynamics. For example, it is desirable that the encoder neural re-
sponse be as independent as possible to reduce redundancy and exhibit
sparse spatiotemporal activation.

The proposed variational infomax learning resembles the variational
autoencoder (VAE), a recent fixture in unsupervised learning (Kingma &
Max, 2013). Both VMI and VAE adopt variational Bayesian inference as a
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subroutine. Furthermore, VAEs can be treated in terms of minimizing a re-
construction error plus a regularization term. However, there are important
differences between the strategy proposed here (infomax with hard energy
constraints) and regularized VAEs.

VAEs aim to learn a probabilistic generative model by maximizing
the data likehood. That is, VAEs assume a generative model q(x) =∫

r q(x|r)q(r)dr for the observed data and then maximize the likehood of
log q(x) over independent samples. The hidden variable r is assumed with
a fixed prior distribution q(r) (often a gaussian), and then the generative
mapping q(x|r) is learned to maximize the likelihood of q(x). In contrast,
infomax assumes an analytic model p(x|r) and maximizes the mutual infor-
mation I(x, r) between observation x and the hidden variable r. The distri-
bution of r is p(r) = ∫

x p(x|r)p(x)dx (after learning). No prior distribution is
assumed, thus allowing for general hidden variable distributions.

Beyond this conceptual difference, there are differences in mathematical
formulation, solution strategy, and ensuing interpretation. In section A.4,
we detail the mathematical relationship between the objective functions for
VAE and the proposed infomax problem. As shown there, there is indeed
commonality in the two formulations. Specifically, we note the presence of
a term

∑N
k=1

∫
r p(r|xk; θ )rrTdr that appears in both objectives and is central

to achieve coding with efficient energy utilization.
The key development in our results pertains to the treatment of this

term: the use of a Lagrangian saddle point optimization strategy with a
multiplier ζ (see sections A.2 and A.4). As a result, ζ adapts according to
the neural responses and the available energy budget, while VAEs and re-
cent variants thereof (β-VAE in Higgins et al., 2017) use a fixed weight on∑N

k=1

∫
r drp(r|xk; θ )rrT . The adaptation of ζ amounts to the use of modula-

tory processes within the overall learning dynamics that carry a normative
biological interpretation. In particular, these processes suggest a functional
role for slower signaling pathways (e.g., widespread regulation of neuro-
modulators). This amounts to balancing information processing efficiency
and energy consumption within the network. Indeed, the learning rule for
infomax with energy constraints has a three-term Hebbian form and mul-
tiple timescale dynamics, providing a normative explanation for why such
dynamics may be observed biologically.

Appendix: Derivations of Learning Rules and Discussions on VAE

A.1 Derivation of Learning Rule for Linear Gaussian Encoder. In this
part, the encoder is p(r|x; θ ) = N (Wx, �), and the decoder is q(x|r;φ) =
N (Ur,	), where W,U are the neuron synaptic weights to be learned, while
�, 	 are fixed neuron noise parameters.

To apply the online learning scheme in section 2.2, we need to calculate
an approximated gradient of Lk(W,U ) = ∫

r p(r|xk; θ ) log q(xk|r;φ)dr after a
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stimulus xk is sampled and presented to the neural network:

Lk(W,U ) =
∫

r
drp(r|xk; θ ) log q(xk|r;φ)

=
∫

r
drN (Wxk, �) log

1√
2π | det 	|

× exp
{
−1

2
xT

k 	−1xk + xT
k 	−1Ur − 1

2
rTUT	−1Ur

}

= constant +
∫

r
drN (Wxk, �)

[
xT

k 	−1Ur − 1
2

rTUT	−1Ur
]

= constant + xT
k 	−1UWxk

−1
2

[
Tr(UT	−1U�) + xT

k WTUT	−1UWxk
]
. (A.1)

Then we have

∇W Lk(W,U ) = UT	−1xkxT
k − UT	−1UWxkxT

k , (A.2)

∇ULk(W,U ) = 	−1xkxT
k WT − 	−1U� − 	−1UWxkxT

k WT . (A.3)

The exact gradients A.2 and A.3 are too complicated to be calculated
by the encoder or decoder neurons, since all synaptic weights are needed
for each neuron. We approximate the terms related with the expectation of
neuron response or stimuli reconstruction by means of stochastic sampling.
This is consistent with the hypothesis that the brain computes by sampling
rather than with exact probability distributions (Sanborn & Chater, 2016),
which also leads to biologically implementable rules. We could approxi-
mate Wxk with a sampled response rk of encoder network N (Wxk, �) when
the stimulus xk is given. We could also approximate UWxk by a sample
x̂k from the decoder N (Urk,	) after the sample rk from the encoder has
been given. In fact, rk = Wxk + ε1 and x̂k = UWxk + Uε1 + ε2, where ε1, ε2

are zero-mean gaussian processes. Hence, rk and x̂k can be regarded as the
unbiased estimates of Wxk and UWxk. Then we have the approximated gra-
dients of equations A.2 and A.3 as follows:

∇W Lk(W,U ) ≈ UT	−1xkxT
k − UT	−1x̂kxT

k , (A.4)

∇ULk(W,U ) ≈ 	−1xkrT
k − 	−1U� − 	−1x̂krT

k . (A.5)

Then we write the above equations in term of synaptic weights wi and uj

and get the learning rules in equations 3.2 and 3.3.

A.2 Derivation of Learning Rules for Energy-Constrained Infomax.
Here we give the derivation of algorithm 3 for infomax with energetic
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constraints (see equation 4.1) for the linear gaussian encoder and decoder.
Suppose we have T samples of stimuli, {x1, . . . , xT}. Then we can ap-
proximate the unknown distribution p(x) with an empirical distribution
p̂(x) = 1

T

∑T
k=1 δ(x − xk). Since p(r) = ∫

x p(x)p(r|x; θ )dr, we approximate
it as p(r) = 1

T

∑T
k=1 p(r|xk; θ ). The constraint term E(rTr) = ∫

r p(r)rTrdr =∫
r p(r)Tr(rrT )dr is approximated as 1

T

∑T
k=1

∫
r p(r|xk; θ )Tr(rrT )dr. We also ap-

proximate the mutual information like equation 2.15, resulting in the fol-
lowing constrained optimization problem:

maxθ∈�,φ∈�
1
T

∑T
k=1

∫
r p(r|xk; θ ) log q(xk|r;φ)dr

s.t. 1
T

∑T
k=1

∫
r p(r|xk; θ )Tr(rrT )dr ≤ M.

(A.6)

Performing Lagrangian saddle point optimization with a multiplier ζ ∈
R+ produces (Arrow et al., 1958)

min
ζ∈R+

max
θ∈�,φ∈�

1
T

T∑
k=1

{∫
r

p(r|xk; θ ) log q(xk|r;φ)dr

− ζ

(∫
r
Tr(rrT )p(r|xk; θ

)
dr − M)

}
. (A.7)

Given the encoder model p(r|x; θ ) = N (Wx, �) and the decoder model
q(x|r;φ) = N (Ur,	), we have

∫
r
Tr(rrT )p(r|xk; θ )dr =

∫
r
Tr(rrT )N (Wxk, �)dr

= Tr
(∫

r
rrTN (Wxk, �)dr

)
(A.8)

= Tr(� + WxkxT
k WT ) = Tr(�) + xT

k WTWxk. (A.9)

Combined with equation A.1, the Lagrangian optimization, equation A.7,
turns out to be

min
ζ∈R+

max
θ∈�,φ∈�

1
T

T∑
k=1

{
Lk(W,U, ζ )

}
(A.10)

Lk(W,U, ζ ) = xT
k 	−1UWxk

−1
2

[Tr(UT	−1U�) + xT
k WTUT	−1UWxk]

−ζ (Tr(�) + xT
k WTWxk − M). (A.11)
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The learning algorithm is based on a two-timescale gradient algorithm
for solving the saddle point problem, equation A.10. Suppose ζ is fixed
as a constant over the T samples. Then we can calculate the gradient of
Lk(W,U, ζ ) with respect to W and U. In fact, ∇ULk(W,U, ζ ) = ∇ULk(W,U )
in equation A.3, and we have

∇WLk(W,U, ζ ) = UT	−1xkxT
k − UT	−1UWxkxT

k − ζWxkxT
k . (A.12)

We approximate the Wxk and UWxk in the gradient ∇WLk(W,U, ζ ),
∇ULk(W,U, ζ ) with samples rk from the encoder and x̂k from the decoder,
respectively, and get the approximated gradients of wi and ui on the right-
hand side of learning rules 4.2 and 4.3. The update of wi and ui is a projected
gradient ascent with each sample xk when ζ is treated as a constant.

Suppose the T samples {x1, . . . , xT} all have been presented. Then
the gradient of 1

T

∑T
k=1 Lk(W,U, ζ ) with respect to ζ is 1

T

∑T
k=1(Tr(�) +

xT
k WTWxk) − M. Noticing that rk = Wxk + εk, and εk ∼ N (0, �), we can ap-

proximate 1
T

∑T
k=1(Tr(�) + xT

k WTWxk) with r̂s = 1
T

∑T
k=1 rT

k rk. Then the pro-
jected gradient descent on ζ performed every T samples is given as

ζ ← PR+ [ζ + ηk(r̂s − M)]. (A.13)

The dynamics of the synaptic weights W , U and multiplier ζ are evolv-
ing on two different timescales. In fact, every time a sample xk is given,
the synaptic weights of wi and uj are updated since only local information
with a globally known ζ is needed. On the other hand, only after a long pe-
riod (say, T) of samples presented is the multiplier ζ updated based on the
encoder’s neural activity history ŝr. From a biological standpoint, the dy-
namics of ζ may be interpreted as a global neuromodulator that aggregates
network activity into a widespread gating effect on individual neurons.

A.3 Derivation of Learning Rule for Bernoulli Spiking Model. In this
section, we give the derivation for algorithm 4. Denote σi(x) = 1

1+exp−wix .
Then for the Bernoulli encoder, equation 5.1, we have

E(ri|x;wi) = 2σi(x) − 1, Var(ri|x;wi) = 4σi(x)(1 − σi(x)). (A.14)

We denote E(r|xk) = (E(r1|xk;w1), . . . , E(rm|xk;wm))T , and denote
Diag{Var(ri|xk)} as a diagonal matrix with its diagonal element as
Var(ri|xk;wi). We also know that

d
dz

1
1 + exp−z

= 1
1 + exp−z

∗
(

1 − 1
1 + exp−z

)
. (A.15)
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According to section 2.2, we need to calculate the approximated gradient
of

Lk(θ,U ) =
∑
r∈�

P(r|xk; θ ) logN (Ur,	) (A.16)

with respect to θ = {w1, . . . , wm} andU for a given sample xk, since we adopt
a linear gaussian decoder N (Ur,	). Similar to equation A.1,

Lk(θ,U ) =
∑
r∈�m

P(r|xk; θk) log
1√

2π | det 	|

× exp
{
−1

2
xT

k 	−1xk + xT
k 	−1Ur − 1

2
rTUT	−1Ur

}

= constant + Er

[
xT

k 	−1Ur − 1
2

rTUT	−1Ur
]

= constant + xT
k 	−1UE(r|xk) − 1

2
ET (r|xk; θ )UT	−1UE(r|xk)

−1
2

Tr(UT	−1UDiag{Var(ri|xk)}). (A.17)

Then the gradient of Lk(θ,U ) with respect to wi is

∇wi Lk(θ,U ) = 2[UT	−1xk]iσ1(xk)(1 − σi(xk))xk

−2[UT	−1UE(r|xk)]iσi(xk)(1 − σi(xk))xk

−2[UT	−1U]ii(1 − 2σi(xk))σi(xk)(1 − σi(xk))xk (A.18)

and the gradients of Lk(θ,U ) with respect to U are

∇ULk(U,	) = 	−1[xkET (r|xk)

−UDiag{Var(ri|xk)} − UE(r|xk)ET (r|xk)]. (A.19)

Finally, we discuss how to implement equations A.19 and A.18 with lo-
cally available samples. The key idea is to replace UE(r|xk) in equations
A.19 and A.18 with a sample-based reconstruction x̂k. Given a stimulus xk,
we first get a sample rk from encoder P(r|xk; θ ), and then we can sample the
decoder N (Urk,	) to get a reconstruction x̂k. This sample procedure is re-
peated T times, yielding samples {rl

k = (rl
1,k, . . . , rl

m,k), xl
k, l = 1, . . . , T}. The

sample-based estimation of UE(r|xk) is x̂k = 1
T x̂l

k. Even though σi(xk) could
be calculated by each encoder neuron, we still use a sample-based estima-
tion to approximate E(r|xk; θ ) and Diag{Var(ri|xk;wi)}. This is because both
Hebbian and spike timing dependent plasticity neural learning rules sug-
gest that the synaptic weight adapts according to neural activities, while
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here, samples can be regarded as neural activities. Moreover, σi(xk) can-
not be known by the decoder neuron since it does not know the encoder
synaptic weight wi. We approximate σi(xk) as σ̂i(xk) = 1

2T

∑T
l=1(rl

i,k + 1). No-
tice that σ̂i(xk) can be calculated by the decoder neuron since it accesses
samples from encoder neurons. This leads to the approximated Ê(ri|xk;wi),
Ê(r|xk) and V̂ar(ri|xk;wi) according to equation A.14.

Then the gradient of Lk(θ,U ) with respect to wi and U is

∇wi Lk(θ,U ) ≈ 1
2

{
[UT	−1(xk − x̂k)]i

+ [UT	−1U]iiÊ(ri|xk;wi)}V̂ar(ri|xk;wi)xk, (A.20)

∇ULk(θ,U ) ≈ 	−1[(xk − x̂k)ÊT (r|xk) − UDiag{V̂ar(ri|xk)}]. (A.21)

We write equations A.20 and A.21 componentwise according to the
synaptic weights of each encoder/decoder neuron and get the learning
rules in algorithm 4.

A.4 Detailed Comparison between VAE and Infomax Learning Objec-
tives, Optimization Strategies, and Interpretation.

A.4.1 Objective functions. Both variational infomax and VAE adopt the
variational Bayesian inference techniques to derive tractable objective func-
tions. However, their objective functions are fundamentally different.

Suppose we have a batch of sampled data {x1, . . . , xN}. With the varia-
tional infomax, the objective function is

fvmi(θ, φ) = 1
N

N∑
k=1

∫
r
drp(r|xk; θ ) log q(xk|r;φ). (A.22)

Here q(xk|r;φ) is the variational approximation for the Bayesian posterior,
which could be treated as the generative distribution in VAE.

On the other hand, by introducing a variational distribution p(r|xk; θ ),
the objective function used in VAEs is

fvae(θ, φ) = 1
N

N∑
k=1

∫
r
drp(r|xk; θ )[− log p(r|xk; θ ) + log q(xk|r;φ)q(r)]

(A.23)

= fvmi(θ, φ) − 1
N

N∑
k=1

KL(p(r|xk; θ ), q(r)), (A.24)
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where q(r) is a fixed prior distribution that is usually taken as a normal
distribution N (0, I), and p(r|xk; θ ) is the channel conditional distribution in
infomax. Therefore, the variational infomax objective function fvmi(θ, φ) is
different from the VAE objective function fvae(θ, φ), since the latter has an
additional KL divergence term.

A.4.2 Infomax with an Energy Constraint. The variational infomax with an
energy constraint is also different from the VAE with a gaussian prior. The
energy constraint Er(rTr) < M can be written as

1
N

N∑
k=1

∫
r
drp(r|xk; θ )rrT ≤ M.

Then the variational infomax with an energy constraint is leading to

max
θ;φ

fvmi(θ, φ), s.t.,
1
N

N∑
k=1

∫
r
drp(r|xk; θ )rrT ≤ M (A.25)

(note that this equation is the same as equation A.6).
Now, for VAEs, with a gaussian prior q(r) = N (0, I), the KL term

− 1
N

∑N
k=1 KL(p(r|xk; θ ), q(r)) in equation A.24 is

− 1
N

N∑
k=1

∫
r
drp(r|xk; θ ) log(p(r|xk; θ ))

− 1
2N

N∑
k=1

∫
r
drp(r|xk; θ )rrT + constant. (A.26)

Therefore, the VAE problem becomes

max
θ;φ

fvae(θ, φ),

fvae(θ, φ) = fvmi(θ, φ) − 1
N

N∑
k=1

∫
r
drp(r|xk; θ ) log(p(r|xk; θ ))

− 1
2N

N∑
k=1

∫
r
drp(r|xk; θ )rrT . (A.27)

The optimization problem, (equations A.25 and A.27), are obviously differ-
ent, noting that the objective function of VAE also penalizes the entropy
term −∑N

k=1

∫
r drp(r|xk; θ ) log(p(r|xk; θ )).
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A.4.3 Biological Implication of Three-Term Modulatory Processes for the
Weight Updates. Even though the term

∑N
k=1

∫
r drp(r|xk; θ )rrT appears in

both equations A.27 and A.25, its treatment differs. We develop a La-
grangian saddle point optimization with a multiplier ζ that produces

min
ζ

max
θ;φ

fvmi(θ, φ) − ζ
1
N

N∑
k=1

∫
r
drp(r|xk; θ )rrT + ζM (A.28)

Hence, the weight ζ before
∑N

k=1

∫
r drp(r|xk; θ )rrT can adapt according to the

neural responses and the available energy budget, while VAE (even β-VAE
in Higgins et al., 2017) uses a fixed weight. This in turn leads to nontrivial
biological interpretations, as discussed in section 6.
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