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ABSTRACT

This paper presents a network-based template for analyzing large-
scale dynamic data. Specifically, we propose a novel shared-memory
parallel algorithm for updating tree-based structures or properties,
such as connected components (CC) and minimum spanning trees
(MST), on dynamic networks. The underlying idea is to update the
information in a rooted tree data structure that stores the edges
of the network that are most relevant to the analysis. Extensive
experiments on real-world and synthetic networks demonstrate that,
with the exception of the inherently sequential component for creating
the rooted tree, our proposed updatiing algorithm is scalable and,
in most cases, also requires significantly less memory, energy, and
time than recomputing-from-scratch algorithm. To the best of our
knowledge, this is the first parallel algorithm for updating MST on
weighted dynamic networks. The rooted-tree based framework that
we propose in this paper can be extended for updating other weighted
and unweighted tree-based properties such as single source shortest
path and betweenness and closeness centrality.

Keywords— Dynamic Networks, Minimum Spanning Tree, Connected
Components, Shared Memory Algorithms

I. INTRODUCTION

An important problem in big data analysis is to efficiently update
results as the data change over time. In this paper, we address this
problem in the context of network analysis. Networks (or graphs) are
mathematical models for studying systems of interacting entities. The
vertices of the network represent the entities in the system and the edges
represent their pairwise interactions. Such systems arise in a wide range
of disciplines including bioinformatics [1], epidemiology [2] and social
sciences [3], to name a few. Structural properties of these networks can
provide insights into the characteristics of the underlying systems. For
example, high centrality vertices can indicate lethal genes in biological
systems [4].

Motivation: Most of the real-world complex systems evolve with time
and the analysis of their corresponding network models must be updated.
The systems and their network models can be very large, with millions of
entities. These large-scale size of such networks paired with their rates of
change make it essential to use parallel computing techniques to update
or analyze them in a timely fashion. his motivates us to design efficient
parallel algorithms for updating large dynamic network properties.

In this paper we present novel algorithms for updating tree-based
properties of dynamic networks, specifically connected components (CC)
and minimum weighted spanning trees (MST). These tree structures are
fundamental building blocks in many applications, such as taxonomy [5],
broadcasting in computer networks [6], image processing [7], and as a
step in an approximate solution for the traveling salesman problem [8].

A. Use of Rooted Tree for Updating Weighted Trees
The primary computational costs in graph algorithms arise from graph

traversals. Due to their unstructured nature, graphs exhibit poor locality
of access, which in turn increases the time to traverse a path between two

vertices. In the case of dynamic graphs, the updates related to each edge,
namely addition or deletion, can require several traversals. The crux of
our updating algorithm is a rooted tree based data structure to reduce the
number and lengths of the traversals.

We describe in detail how the cost of traversals can be reduced by
storing information about the maximum weighted edges of the paths in
the graph. Because the graphs are typically very large (e.g., with over
a million vertices), it is infeasible to store the maximum weighted edge
of all possible paths between all vertex pairs, as this would require a
quadratic amount of storage. Our primary algorithmic innovation is in
developing efficient data structures, based on rooted trees, that require
only memory linear in the number of vertices to store information about
selected paths. Using this data structure, we can limit the length of each
traversal to an upper bound on the diameter of the tree being updated.

To differentiate between operations, we will use the term “recomput-
ing” to indicate the network property (also called feature) is computed
from scratch; and the term “updating” to indicate that we incrementally
update the feature from a previously computed one with the inclusion of
new changes to the network.

B. Our Contributions
To the best of our knowledge, ours is the first algorithm for updating

MST in parallel that can execute on actual multicore machines with
scalable performance, beyond theoretical algorithm design for Parallel
Random Access Machine (PRAM) models. The main contributions of
our paper are as follows;
• We introduce an elegant data structure based on a rooted tree that

can significantly reduce the number of graph traversals and bound
the length of each traversal by the diameter of the tree.

• We use this data structure to develop shared-memory parallel
algorithms to update tree-like properties with similar algorithmic
structures, such as connected components and minimum weighted
spanning tree. To the best of our knowledge, this is the first practical
algorithm for updating MST in parallel.

• We demonstrate the efficiency of our algorithms on large-scale
synthetic and real-world networks with respect to time, memory,
and energy by comparing their performance with parallel algorithms
for recomputing the property.

The remainder of this paper is organized as follows. Section II gives
a brief overview of the standard sequential algorithms for finding CC
and MST to demonstrate their similarity. We then propose novel parallel
algorithms for updating these properties. Section III introduces the pro-
posed data structure and demonstrates how the edge insertion and deletion
operations are implemented over this structure. Section IV describes
parallel implementations of the algorithms and analyze their complexity.
In Section V, we prove the correctness of our algorithms. Section VI
presents experimental results on real-world and synthetic datasets and
compare with parallel recomputing-based algorithms. In Section VII, we
provide an overview of related works in dynamic networks. Section VIII
concludes the paper with a discussion on future work.

II. UPDATING CONNECTED COMPONENTS AND MST
This section describes our proposed parallel algorithms for computing

connected components and minimum weighted spanning trees.
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A. Graph Terminology

A network (or graph) is defined by G = (V,E), where V is the set of
vertices and E is the set of edges. An edge can be associated with a real
number known as its weight. Two vertices u and v are called the endpoints
of an edge e = (u, v). A path of length l is an alternating sequence
v0, e1, v1, e2, . . . , el, vl of vertices and edges, such that for j = 1, . . . , l,
the vertices vj−1 and vj are the endpoints of edge ej , with no edges or
vertices repeated. A cycle is a path with the same starting and ending
vertices, i.e., v0 = vl. A tree is a connected graph with no cycles.

Given a connected undirected graph, a spanning tree is a subset of
edges that form a tree and connects all the vertices in the graph. A
connected component (CC) is a subgraph such that there exists at least one
path between any pair of vertices in the subgraph. A minimum weighted
spanning tree (MST) is a spanning tree with total weight of edges less
than or equal to the weight of every other spanning tree.

B. Algorithm Equivalence for Computing CC and MST

The objective of the connected components algorithm is to identify
vertices that are in the same component. Two vertices are in the same
component if there exists a path between them.

The objective of the minimum weighted spanning tree algorithm is
to construct spanning tree(s) in the graph such that the weight of the
spanning tree is minimized. Note that the MST of a graph may not be
unique in the sense that a graph may have several different MSTs having
the same sum of the edge weights.

Algorithm 1: Extracting CC or MST
Input : Graph G = (V,E)
Output: Connected Components or MST G = (V,Ex). Ex

forms the set of key edges.
1 if Extracting MST then
2 Sort the edges in E in the increasing order of weights
3 end
/* Initialize root for each vertex */

4 for i← 0 to |V | do
5 Root[i] = i
6 end
/* Set List of Output Edges to Null */

7 Ex ← ∅
/* Check for all Edges */

8 for i← 0 to |E| do
9 this edge← E[i]

10 v and u are endpoints of this edge
/* Find the root of v */

11 root v = v
12 while Root[root v] 6= root v do
13 root v = Root[root v]
14 end

/* Find the root of u */
15 root u = u
16 while Root[root u] 6= root u do
17 root u = Root[root u]
18 end

/* If the endpoints are in separate
components, join them */

19 if root v 6= root u then
/* Add to Key Edges */

20 Ex ← Ex ∪ this edge
21 min← min(root v, root u)
22 Root[root v]← min
23 Root[root u]← min
24 end
25 end

Algorithm 1 describes the process for finding CC and MST (via
Kruskal’s method. At the end of the execution, each vertex is associated
with a root that gives a unique identifier to its component. Here the root
is set to be the vertex with the lowest id in the component.

The algorithms for computing CC and MST are almost identical, except
for the sorting operation to find the edges with the lowest weight for the
MST computation1. Based on this similarity, we posit that the updating
algorithms for these two cases will also be similar. The only difference
lies in the technqiue how the weights are handled.

C. Overview of Proposed Updating Algorithms

Let us present a high level overview of our algorithms for updating
CC and MST when new edges (henceforth referred to as changed edges)
are added or deleted. We partition the edges of the graph into key edges
and remainder edges. The key edges are those that were used to form the
desired structure (i.e., CC or MST). As per the notations in Algorithm 1,
the edges in the set Ex would be a candidate for key edges. All other
edges in the graph are remainder edges, i.e., Er = E − Ex.

For edge insertion, we check whether the new edge can be included in
Ex. For edge deletion, the property is affected only if the deleted edge
is part of Ex. If this occurs, then we seek edges from Er that can repair
the break caused by deletion. Details on these operations are as follows.

Edge Insertion: Consider an edge e = (u, v) that is inserted in the
graph. For both CC and MST, if there is no path between vertices u and
v, then the edge is added to Ex. For MST, if there exists a path between
u and v, we check whether the maximum weighted edge in the path, eh,
has a higher weight than the inserted edge, e. If so, e replaces eh in the
key edge set Ex. Otherwise, e is added to the remainder edge set.

Edge Deletion: Consider an edge e = (u, v) that is deleted from the
graph. We simply delete e from its respective set (key or remainder
edges).

Repairing Tree: Once the insertions and deletions are completed, we
first check whether the tree has become disconnected due to the deletion
of key edges. If so, we further check whether any edge in the remainder
edge set can be inserted into Ex to repair the tree that got disconnected
due to deletion. If yes, the edge is removed from the remainder edge set
and added to the key edge set.

D. Parallelization Strategy

We apply parallelization over the set of changed edges. For each
inserted (deleted) edge, we identify in parallel whether it is to be added
to (removed from) the set of tree edges or the remainder edges. Once the
changed edge set is processed, we then check the edges in the remainder
set in parallel to see whether these edges can be used to repair a tree that
was disconnected due to edge deletion. We assume that our concurrency
model supports atomic writes to variables (writes are executed without
interruption) and concurrent reads.

Conflicts During Parallel Edge Insertion. All edge removals can be
done in parallel and the inserted edges that belong to the remainder
edge set can also be added in parallel. Moreover, for the connected
components, edges can be added simultaneously to the key edge set, Ex,
since the formation of a cycle does not nullify the detection of connected
components.

However, inserting two edges simultaneously to the MST tree may
create a cycle or, due to multiple replacements, disconnect the tree.
Consider two edges (u, v) and (p, q) that are inserted simultaneously. We
denote the path in the tree from nodes a to b as Pab, and the maximum
weighted edge in that path as emax

ab . Let Puv and Ppq have some common
edges and their maximum weighted edges are part of this set of common
edges. This situation can lead to conflicts as follows.

In the first case (Case 1), the maximum weighted edge for the
endpoints of both the edges is the same, i.e., emax

uv = emax
pq . If processed

in parallel, both inserted edges will remove the same edge, and get added
themselves. This will create a cycle in the tree as shown in Case 1,
Figure 1.

1The sorting can be done more efficiently using a heap data structure. Our
purpose here is to highlight the similarities in the algorithms.
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To resolve this conflict, we mark each edge to be removed with the
index of the changed edge with which it is being replaced. Thus, if a
changed edge finds a maximum weighted edge that it can replace, it first
checks whether that edge has already been marked to be replaced by
another edge of lower weight. If so, it no longer replaces the edge.

In the second case (Case 2), there are two or more edges on the
common path that have the same maximum weight, and (u, v) picks
one of the possible candidate edges while (p, q) picks another. If both
of these edges, occurring on the same path, are removed and replaced
by the inserted edges, we can obtain a cycle and also a disconnected
component, as shown in Case 2, Figure 1.

To resolve this conflict we use a tie breaker to select a unique edge
when multiple candidates are available. The tie breaker can be as simple
as picking the edge with lowest vertex ids. Thus only a unique edge is
selected as the maximum weighted one, and the problem reduces to the
first case (Case 1) as described earlier.

Figure 1: Illustration of how conflicts in insertion can lead to cycles
or disconnected graphs, violating the tree property.

III. ROOTED TREE FOR REDUCING GRAPH TRAVERSALS

The most frequent operation in graph algorithms is traversal. During
edge insertion for updating the MST, graph traversal is used to find the
path between the two endpoints of the inserted edge. Additionally, if a
key edge is deleted, for both CC and MST, graph traversal is required to
identify the new roots of the disconnected components. The complexity
of each traversal can be as much as O(|V |), making this a very expensive
operation.

Figure 2: Rooted tree representation. E is the root and for every
vertex, its parent and maximum weighted edge on the path to the
root (under column MaxE) are depicted.

We propose storing the information of the tree structures in a rooted
tree as follows. We select the vertex with the highest degree from the
graph to be designated as the root of the tree. Each vertex, v, stores the
following information, (i) the root of the tree, r, (ii) its parent, Rv , which
is the neighbor that is one level higher than it in the breadth first search
(BFS) tree with r as the root, and (iii) the maximum weighted edge in
its path to the root (emax

vr ). Figure 2 gives an example how a weighted
tree is stored.

A. Inserting a New Edge in the Tree.

Consider an edge eins = (u, v) that is added to the graph. Our goal
is to check whether this edge should be added to the tree. For CC, this
decision can be made in constant time by simply checking the component
ids of the end vertices. For MST, this decision is based on the highest
weighted edge, emax

uv , on the path Puv from u to v. By using the rooted
tree structure, we can find the highest weighted edge in constant time in
the best case and O(h) time in the worst case, where h is the height of
the tree, as follows. Figure 3 illustrates the different cases.

Case 1: Vertices u and v are in two separate branches from the root.
Then the path passes through the root, i.e., Puv = Pur+Pvr . In this case
clearly, emax

uv is the maximum of emax
ur and emax

vr . Since the maximum
weighted edges are already stored, this operation requires O(1) time
complexity.

Case 2: Vertices u and v are in the same branch from the root, however,
they branch to different paths at a fork vertex f . Therefore, the path from
u to v passes through f , i.e., Puv = Puf+Pvf . This leads to two subcases
as follows.

Case 2a: Consider the subcase where emax
ur 6= emax

vr . Note that the
path from vertex v or u to the root has the edges on the path from the
fork node, f to the root r in common. Therefore, if emax

ur 6= emax
vr , then

the higher weighted of these edges have to be at or below the vertex f .
Thus it will be on the path Puv . Therefore, emax

uv will be the maximum
of emax

ur and emax
vr . This operation also takes O(1) time.

Case 2b: Consider the subcase where emax
ur = emax

vr . By the same
argument as above, the maximum weighted edge is on the common path
from fork node f to the root r, and therefore, not part of the path from
u to v.

Now, to find the maximum weighted edge, we have to traverse the
path from v to f and the path from u to f . We identify the maximum
weighted edge in these two paths. The number of steps to find the path
would be at most h− 1, where h is the height of the rooted tree. Hence
the time complexity of this step is O(h).

From the above three cases, the maximum weighted edge can be found
in the best case in O(1) time, and in the worst case in O(h) time.

B. Repairing the Disconnected Tree after Deletion

If a deleted edge (u, v) is part of the key edges, then after deletion, the
tree becomes disconnected and the vertices v and u will belong to two
different components (or trees). The id of the component of a vertex is
required when reconnecting the disconnected trees. If we find a remainder
edge where two vertices are in two different trees, then we can add the
remainder edge to connect those trees.

However, reassigning the component id to vertices after each deletion
is very expensive. This requires traversal of the tree to find the new root
of the component. The traversal has to be executed after each deletion.
Moreover, the root of one of the components will also change and thus
the relations in the tree have to be re-computed. We propose below an
algorithm for repairing the tree using the rooted tree data structure that
can significantly reduce the traversal costs.

Given an edge edel(u, v) that is deleted from the tree, we first set the
weight of edel to a very high value, which is higher than the maximum
weighted edge in the tree. Once all the deleted edges are processed,
we update the maximum weighted edges for all vertices that are in the
path of the end points of the deleted edges to the root. This process
requires traversing the tree having complexity of O(h) in the worst case
. However, since we update the weights after all the deleted edges have
been processed, this traversal will be done only once.

Once the maximum weighted edges are updated for the vertices
affected by deletion, we go over the set of remainder edges to see if any
edge from that set, erem = (a, b), can be added to the tree to replace the
deleted edges.

In the case of CC, the only edges that would be of higher weight are
the ones marked as deleted. In the case of MST, by construction, all the
edge weights would be less than or equal to erem, except the ones that
were marked as deleted. Thus, once the remainder edges are processed,
all the deleted edges that can be replaced, will be replaced, and the tree
will be re-connected as much as possible as per the graph structure.
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Figure 3: Three cases by which to find the maximum weighted edge in a path. The colored nodes are the endpoints of the path. The dashed
red lines are the maximum weighted edge from the nodes to the root A.

The process of checking whether a remainder edge can replace an edge
marked as deleted is exactly the same as checking whether a new edge
can be inserted (as discussed in Section III-A). Moreover, since we are
concerned with finding edges that are marked as deleted, and the deleted
edges have the highest weight in the tree, Case 2b will not occur. Thus the
process of checking whether a remainder edge can be added to reconnect
the tree requires constant or O(1) time.

IV. ALGORITHM IMPLEMENTATION AND COMPLEXITY

We now present the implementation details and pseudocodes of our
proposed algorithms and analyze their complexities. The high level
pseudocode of the complete algorithm for updating weighted trees is
given in Algorithm 2.

Data Structures. We store each of the list of changed edges and
remainder edges as a vector. Each changed edge is marked as to whether it
will be inserted or deleted. We store the set of key edges as a rooted tree as
described in Section III. Each vertex in the rooted tree retains information
about its parent, the root of the tree, and the maximum weighted edge in
its path to the root. The maximum weighted edge stores the endpoints of
the edges and the weight. It also contains an integer entry called replaced
id. When the edge is marked for replacement, then the replaced id is set
to the index of the edge in the changed edge set that is replacing it.

A. Step 1: Creating the Rooted Tree.
Our first step is to create the rooted tree based on the key edges. To

do so, we identify the vertex with the highest degree and designate it
as the root. We execute a BFS traversal from the neighbors of this root
to all the vertices reachable from these neighbors. Each BFS traversal is
executed in parallel (Algorithm 3, lines 5-23). As part of the traversal, we
assign the parent of the vertices and update the maximum weighted edge
for each vertex based on the highest edge seen when traversing from the
root to the vertex (Algorithm 3, lines 14-22).

Once all the BFSs are completed, we check the vertices to see if there
are any whose parents are not assigned. This can occur if the graph has
multiple components. If so, this vertex becomes the new root and the
BFS traversal is executed again. This process is continued until all the
vertices have assigned parents. The pseudocode for creating the rooted
tree is presented in Algorithm 3.

Challenges in Parallel Rooting. Creating the rooted tree is an inherently
sequential process with little opportunity for parallelism. We briefly
discuss why existing algorithms on creating or rooting spanning trees,
or computing BFS in parallel, are not effective for the rooted tree design
that we propose.

We assume that the spanning tree is part of the input. Therefore,
parallel algorithms for finding the spanning tree, such as in [9], are not
applicable for creating the rooted tree.

A theoretical parallel algorithm for rooting a spanning tree using a
PRAM model is given in [10]. The algorithm uses pointer jumping
to efficiently find the vertices in a path. Pointer jumping is effective
because this method can skip some of the edges in the path to the root.
However, for the rooted tree required by our algorithm, we need to find

Algorithm 2: Parallel Algorithm for Updating Connected Com-
ponents or MST

Input : Set Ex of Key Edges; Set Er of Remainder Edges;
Set CEof Changed Edges;

Output: Updated Set Ex of Key Edges for Connected
Components or MST.

1 Function Main(Ex, Er , CE)
/* Rooted Tree is an array of type RV of

size V */
2 RV RootedT [V ]
3 Initialize Each Vertex in Rooted Tree

/* Create Rooted Tree */
4 Create Tree(RootedT , Ex)

/* Status and Marked are two arrays of
size CE. Status gives Operation on
Edge. Marked stores Edge to be
replaced */

5 int Status[CE]
6 Edge Marked[CE]
7 while CE is not empty do

/* Process Changed Edges for Insertion
and Deletion */

8 Classify Edges(CE, Status, Marked, RootedT )
/* Process Edges as per Status */

9 Process Status(Ex, Er , CE, Status, Marked,
RootedT )

10 end
/* Repair Tree with Remainder Edges.

Function Repair_Tree is same as
Classify_Edges, except the edges in Er

are checked only whether they can be
inserted. */

11 Repair Tree(Er , Status, Marked, RootedT )
/* Process Repair Edges */

12 Process Status( Ex, Er , CE, Status, Marked, RootedT )
13 return;

the maximum weighted edge in the path. Thus we have to check every
edge in the path from the vertex to the root and cannot leverage the
benefit of pointer jumping.

In the literature, there exist parallel algorithms for BFS traversal [11],
[12]. However, these algorithms are scalable only when there are suf-
ficient branches from the root, and each branch contains a reasonably
large subtree. While we have used this technique for creating the rooted
tree, the scalability is not very good. This is because, unlike a graph,
where there are several paths to a vertex and hence several options for
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branching, in a tree there is only one path through which two vertices
are connected. Thus, the opportunity to create a wide BFS is severely
limited.

To summarize, the process of rooting the MST is hard to parallelize due
to the structure of the tree and also because we have to find the maximum
weighted edge in all paths from a vertex to the root. Creating the rooted
tree has time complexity O(V ) and due to its inherently sequential nature,
is one of the most expensive steps in our algorithm. Nevertheless, this is
a one-time cost that is amortized by the reduction of traversal operations
when updating the trees.

Algorithm 3: Step1: Creating the Rooted Tree

1 Function Create_Tree(RootedT , Ex)
Input : The set of key edges, Ex

Output: The rooted tree, RootedT
2 while Parents not assigned for all vertices do

/* Find vertex r with highest degree,
whose parent has not been assigned.
Set r as root */

3 RootedT [r].Parent← r
4 RootedT [r].Root← r
5 for All vertices v that are neighbors of the root do in

parallel
/* Set Root, Parent and maximum

weighted edge of v */
6 RootedT [v].Root← root

RootedT [v].Parent← mynode
7 myE = (v, root)
8 RootedT [v].maxE ← myE

/* Initialize Queue for BFS */
9 NodeQ← ∅

10 Push v into NodeQ
11 while NodeQ 6= ∅ do

/* Pop front element */
12 Mynode← NodeQ.top()

/* For all neighbors */
13 Neigh← neighbors of Mynode as per Ex

14 for i ∈ Neigh
15 if RootedT [i].Parent = −1 then

/* Assign Root and Parent */
16 RootedT [i].Root← root

RootedT [i].Parent← mynode
/* Check if myE = (i,mynode)

is the maximum weighted
edge in the path from i
to the root */

17 if myE.edgewt <
RootedT [i].maxE.edgewt then

18 RootedT [i].maxE ← myE
19 end
20 Push i into NodeQ
21 end
22 end
23 end
24 end
25 return;

B. Step 2: Classifying the Changed Edges.
We now process the set of changed edges to determine whether they

will be added (or deleted) to (or from) the tree edge or the remainder
edge set. All the edges are classified in parallel and their status is marked
in an array, named Status. The actual insertion or deletion is done in the
next step (Step 3). The pseudocode for Step 2 is given in Algorithm 4.

The Status of all the changed edges is initialized to NONE . As part
of the classification, Status can take the following values.

Deletion: We mark the Status of the edges as DEL, if the correspond-
ing edge is to be deleted (Algorithm 4, lines 6–8).

Insertion without Replacement: If a changed edge is marked as
inserted, and it connects vertices with different roots, then this indicates
that the vertex is connecting two disconnected trees. We mark the Status
as INS (Algorithm 4, lines 12–14).

Insertion with Replacement: When updating the MST, we also check
whether a changed edge marked for insertion can replace an existing key
edge. For this purpose, we first find the maximum weighted path between
the endpoints of the edge to be inserted, as described in Section III.

Let the edge to be inserted be denoted as eins, and let it replace a key
edge, erpl. We check the replaced id variable associated with this key
edge, erpl, to see whether it is already marked to be replaced by another
changed edge, say eoth. The edge eins will replace erpl only if it is of
lower weight than eoth.

In this case, the replaced id of erpl is marked by i, where i is the
index of eins in the changed edge set. We maintain an array, named
Marked, which stores the replaced edge erpl at index i, denoting that
eins will replace erpl. The Status of eins is set to RPL, indicating that
it is replacing an edge (Algorithm 4, lines 17–22).

Figure 4: Example of Reversing Path Due to Edge Insertion. Each
node points to its parents. Edge E-G is replacing edge C-D. The
pointer to the parent is reversed from D to G.

C. Step 3: Processing Edges by Status.
Once all the changed edges are classified, they are added to or removed

from their respective edge sets (Algorithm 5). All the statuses except RPL

simply involve adding or removing the edge from its respective edge set.
When a key edge is deleted, its weight in the rooted tree is set to infinity
(or a very high value) to signify that it is deleted (Algorithm 5, lines 5–
13). However, replacing the edges require a few more steps as follows.

Let enew be the edge marked with RPL. The marked index associated
with enew contains the edge erpl, indicating that enew will replace erpl
in the set of key edges. We check the index stored at the replaced id
associated with erpl to see if it points to the index of enew in the list of
changed edges (Algorithm 5, lines 14–23).

If the indices do not match or the weight of erpl is set to −1, this
indicates that erpl is marked to be, or has been already, replaced by a
different edge, say eoth. Most of the time, the weight of eoth will be less
than the weight of erpl, thus making eoth the more suitable edge to be
added. However, since we are not using locks, in some rare cases eoth
might have higher weight. To address this rare case, when the indices
do not match, we store erpl in a new changed edge set (Algorithm 5,
lines 20–22). Once Step 3 is completed, we again execute Step 2 over
the new set of changed edges. If erpl has indeed a lower weight, it will
be marked to be added to the key edge set. We iterate over Step 2 and
Step 3 until the changed edge set is empty. The iterations will converge,
because at each step, the changed edge set becomes successively smaller.
In practice, we do not need to perform more than one iteration.

If the indices match, then edge enew is added to the set of key edges
(Algorithm 5, lines 16–19). Let the endpoints of enew be a and b. If a
is at a higher level in the tree than b, then a is marked as a parent of b.
The edge, erpl, is removed from the set of key edges. Its weight in the
rooted tree is set to −1 to mark it as replaced. Let the endpoints of erpl
be c and d, and d is marked as the parent of c. Since the edge erpl is
deleted, we have to reset the parent information of c
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Algorithm 4: Step 2: Classifying the Changed Edges

1 Function Classify_Edges(CE, RootedT , Status,
Marked)

Input : Changed Edge Set, CE; Rooted Tree, RootedT .
Output: Status of Changed Edges, Status; Marking Edges

to be Replaced, Marked
/* For all edges in CE */

2 for i = 0 to |CE| do in parallel
/* Initialize Status and Marked. */

3 E ← CE[i]
4 Status[i]← NONE
5 Marked[i]← dummy edge
6 if E marked as deleted then
7 Status[i]← DEL
8 end
9 else

/* E marked as inserted */
10 u← E.node1
11 v ← E.node2

/* If connecting disconnected
components */

12 if RootedT [u].Root 6= RootedT [v].Root then
13 Status[i]← INS
14 end
15 else

/* Check if edge can be replaced

*/
16 Find maximum weighted edge, MaxW , in path

from u to v
/* Check if E can replace MaxW

*/
17 if MaxW.edgewt > E.edgewt then
18 x←MaxW.Rpl Id
19 if x = −1 OR CE[x].edgewt > E.edgewt

then
20 Marked[i]←MaxW

Status[i]← RPL
MaxW.Replace Id = i

21 end
22 end
23 end
24 end
25 end

To reset the parent information due to an edge being deleted, we have
to find the path from c to b in the current tree, and reverse the direction of
the edge to mark the parents. Consider two nodes, x and y in the path from
c to b. If before replacement x was the parent of y, after replacement, y
becomes the parent of x. An example is given in Figure 4. This process of
reversing the parent is very expensive (worst case complexity of O(h)) if
done for each replacement separately. Instead, we delay the assignment of
the parents of the nodes until all the edges that are marked to be replaced
have been replaced. After that we reassign the parents by conducting a
BFS from the root (Algorithm 5, line 25). This operation also serves to
update the maximum weighted edges of the vertices that are affected by
the deletion. Note that all changed edges that can replace erpl are marked
to replace it. However, erpl stores the index of only one of the changed
edges in its replaced id, guaranteeing that exactly one of the changed
edges will replace it.

D. Step 4: Repairing the Tree.
Once all the changed edges have been processed, we reconnect the tree

if it was disconnected, using the remainder edges. For each remainder

Algorithm 5: Step 3: Processing Edges By Status

1 Function Process_Status(Ex, Er , CE, Status,
Marked, RootedT)

Input : Changed Edge Set, CE; Status of Edges, Status;
Marking Edges to be Replaced, Marked.

Output: Set Ex of Key Edges; Set ER of Changed Edges;
Rooted Tree, RootedT

2 for i = 0 to |CE| do in parallel
/* Get Edge and its Status */

3 E ← CE[i]
4 S ← Status[i]

/* Deleting Key Edge */
5 if S = DEL then
6 Delete Edge E from Appropriate Edge Set
7 ** What does “Appropriate” mean here **

Assign Weight of Edge E to INF , i.e., very high
value to mark it as deleted

8 end
/* Edge into Remainder Edges */

9 if S = NONE then
10 Add Edge E to the Remainder Edge Set
11 end

/* Edge into Disconnected Tree */
12 if S = INS then
13 Add Edge E to the Key Edge Set
14 end

/* Replacing Edge from Key Edge */
15 if S = RPL then

/* Find Edge to be Replaced */
16 Erpl ←Marked[i]

/* Replacing Edge Matches Current
Inserting Edge */

17 if Erpl.Rpl Id = i then
18 Add Edge ** Which Edge ? ** to the Key

Edge Set, Ex

19 Set Weight of Erpl to −1 to mark it as deleted
20 end
21 else

/* Replacing Edge Does Bot Match

*/
22 Add E to set of new changed edges
23 end
24 end
25 end
26 Execute BFS on Ex from root, to assign the parents and

maximum weighted edges in the modified RootedT

edge erem, we check whether the maximum weighted path between the
two endpoints of erem is set to infinity. If so, we mark the status of the
remainder edge as RPL and the replaced id of the edge to be replaced
with the index of erem. The process is similar to the classification for
edge insertion in Step 2. Note here that we only consider the case where
an edge from the remainder set can replace an edge with weight assigned
to infinity. Therefore, the other Status values such as INS and DEL are
not applicable here.After the remainder edges are processed, the ones
marked with RPL replace the deleted edges in a process similar to the
one described in Step 3.

E. Complexity of the Algorithm

Given a graph G = (V,E), a set of changed edges with x′ insertions
and y′ deletions, and p′ processing units, the complexity of the operations
are discussed below in four steps.
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Step 1 (Creating the Rooted Tree): it involves a set of BFS traversals
over the key edges. Since we consider spanning trees, all vertices are
visited at least once. This operation has time complexity of O(V ), since
there is little opportunity for parallelism.

Step 2 (Classifying the Changed Edges): It is performed in parallel.
The complexity of marking the Status of an edge as DEL is O(1), since
the edge will be marked for deletion in the changed edge set. The worst
case complexity of an insertion is O(h), where h is the height of the
tree. This is because we may have to traverse up to the root to find the
maximum weighted edge. Therefore, the complexity is (x′O(h)+y′)/p′.

Step 3 (Processing the Edges by Status): For deletion, if one endpoint
of the edge marked for deletion is the parent of the other endpoint, then
the edge becomes part of the key edges; otherwise, it is part of the
remainder edges. This operation takes constant time. Inserting an edge
in the remainder edge (when Status = NONE ) or key edges also take
constant time. Hence, if executed in parallel, the complexity of this step
is O(x′ + y′)/p′. The final BFS to reassign the parents is again O(V ).

Step 4 (Repairing the Tree): The remainder edges are processed in
parallel. The number of remainder edges is E−Ex, therefore processing
of all the remainder edges is very expensive. Moreover, most of them do
not contribute to repairing the tree. In practice, we select only a certain
percentage of the edges (or those whose weight is within a threshold when
updating MST). Let z be the number of remainder edges processed.

In the worst case, we have to traverse the rooted tree up to the root in
order to find the maximum weighted edge in the path between the two
endpoints. Thus the worst case time is zO(h)/p. The appropriate edges
are then added to the key edges as in Step 3. The complexity of this
process is O(z/p).

Taking all the steps together, the total complexity of the update
operations is O(V )+(x+z)(1+O(h))/p+2O(y/p), which can written as
O(V )+O((x+z)h+y)/p). Therefore, to benefit from parallel processing,
the number of changed set of edges must be significantly larger than the
number of vertices in the original graph.

V. CORRECTNESS OF ALGORITHMS

Consider a graph G = (V,E) and a set of inserted edges, Eins and
a set of deleted edges, Edel. Let the rooted tree created with the set
of key edges in the original graph be denoted as RT . An active edge in
RT is one that is not marked as deleted. After updating with the changed
edges, following our algorithms, RT forms a new rooted tree, RTnew . Let
Gnew = (V,Enew) be the new graph, where Enew = E ∪Eins \Edel.
Note that, if G and Gnew have disconnected components, then RT and
RTnew may consist of several disconnected trees, each corresponding
to a connected component. Our updating algorithms will guarantee the
following.

Lemma V.1. When updating for connected components, if there exists
a path between two vertices u and v in Gnew , then there also exists a
path between these two vertices in RTnew .

Proof. Since insertion and deletion of edges do not conflict, except for
the rare case of lucky cancellation, we will prove the lemma separately
for edge insertion and deletion.

We observe that the original rooted tree, RT , is created from the
connected components in G. Therefore, at the initial step, if there is
a path between any two vertices u and v in G, then there is also a path
between these vertices in RT .

Edge Insertion. To prove by contradiction, we assume that there is at
least one pair of vertices a and b that are connected in Gnew , but not
in RTnew . Given we are only considering insertion, if a and b are not
connected in RTnew , then they are also not connected in RT and hence
in the original graph G. Consequently, a and b will have different roots
in RT .

Since the vertices are connected in Gnew , this means a new edge eins

has been added to G to create a path between a and b. According to
our proposed algorithm, since the roots of a and b are not equal, eins

will be added to the set of key edges, and subsequently be included in
RTnew . Therefore, there will be a path from a and b in RTnew , thereby
contradicting our assumption.

Edge Deletion. Now consider an edge, edel, being deleted from the
original graph G. If edel was not part of RT , then after its deletion,
vertices that were connected in the old graph G will still remain connected
in the new graph Gnew . Moreover, since no edge in RT was affected
due to this deletion, RTnew is the same as RT . Given all the vertex pairs
connected in G are also connected in RT , it follows that all vertex pairs
connected in Gnew are also connected in RTnew .

Now, let edel be part of RT . Removing edel disconnects RT into
two components. If edel is the only edge in G connecting these two
components, then the paths that are deleted in creating RTnew , are also
the paths that are deleted in Gnew .

If there exists at least another edge that connects the disconnected
components of RTnew , then the connections will remain intact in Gnew .
Let this alternate edge be Ealt = (p, q). In RTnew , the path through
the vertices p and q contains the edge Edel,which is also the maximum
weighted edge in this path. Then, based on our algorithm for repairing
the tree, Ealt will replace Edel, thereby restoring the connectivity.

Lemma V.2. When updating for MST, the sum of the edge weights of a
MST obtained from Gnew is equal to the sum of the weights of the active
edges in RTnew .

Proof. As in the proof of the previous lemma, we will prove the statement
separately for edge insertion and deletion. Since the original rooted tree
is created from the MST in G, therefore at the initial step, the sum of the
weights of the active edges in RT is equal to the sum of the weights of
the edges in a MST obtained from G. To simplify the proof, we consider
the case where there is just one MST. In other words, RT consist of only
one tree.

Edge Insertion. Let eins be the new edge inserted. If eins does not
replace an existing edge in RT , all the edges in RT have equal or lower
weight than that of eins. Therefore, when creating the MST from Gnew ,
which is G with the inserted edge eins, there exists a sorting order where
all the edges in RT are processed before eins. These edges will create
an MST, the same as that obtained from G. Thus RTnew is the same
tree as RT , and the MST from G is the same as that from Gnew .

In the case where eins replaces an edge erpl in RT , the replacement
still maintains the tree structure. The replacement happens because the
weight of erpl is higher than eins. Therefore, when creating the MST
from Gnew , once the edges are sorted, eins will be processed before
erpl. Since all other edges remain the same, the MST will be formed
using eins, and erpl will not be added to the tree. Therefore, in both the
cases, the sum of the edge weights of RTnew is equal to the sum of the
edge weights of the MST from Gnew .

Edge Deletion. Let an edge edel be deleted from the graph G. If edel
is not part of RT , then the edges in RT , will form a valid MST for
Gnew , and the deletion will have no effect.

If edel is part of RT , then it is marked with a very large weight. Let
ealt = (p, q) be the smallest weighted edge that is in G but not in RT ,
and whose endpoints are in a path that contains edel. Since RT is a tree,
replacing edel with ealt will maintain the tree structure in RTnew .

In the graph Gnew , once edel is removed, edges that are further in
the sorted listed, i.e., of higher weight than edel, have to be processed
to complete the tree. The only edges that can be included in the tree are
those which connect the components disconnected due to edel. This is
equivalent to finding edges that close the cycles in the paths containing
edel. Of these, the first edge to be processed would be ealt (or an edge of
equal weight), since this is the smallest weighted edge. Thus the weight
of the new MST will be equal to the weight of the original MST having
the weight of edel plus the weight of ealt, which is equal to the weight
of the edges of RTnew .

Since a graph can have multiple MSTs, our algorithm only guarantees
that the updating will create one valid MST. However, the MST created
by our updating algorithm is likely to have more common edges with the
original MST. In practical applications of MST, such as graph clustering,
this provides an extra advantage, since the number of changes in the
graph structure is minimized.
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VI. EXPERIMENTAL RESULTS

Table I: Execution times (in seconds) for different phases of our
update algorithm and Galois’ recomputation.

Network % Num. MST MST MST MST Galois
Ins. Thr. Root Ins-Del Repair Update Total

RMAT24-G 100% 1 7.46 0.97 0 0.97 101.92
RMAT24-G 100% 2 9.15 0.95 0 0.95 55.71
RMAT24-G 100% 4 7.71 0.6 0 0.6 28.24
RMAT24-G 100% 8 7.53 0.62 0 0.62 15.94
RMAT24-G 100% 16 7.24 0.53 0 0.53 8.72
RMAT24-G 100% 32 7.4 0.5 0 0.5 5.07
RMAT24-G 100% 48 7.54 0.54 0 0.54 4.96
RMAT24-G 100% 64 7.38 0.5 0 0.5 3.99
RMAT24-G 100% 72 7.36 0.53 0 0.53 3.83
RMAT24-G 75% 1 7.39 0.85 5.58 6.43 103.78
RMAT24-G 75% 2 9.54 0.8 4.36 5.16 54.28
RMAT24-G 75% 4 9.39 0.57 2.38 2.95 29.19
RMAT24-G 75% 8 7.89 0.6 1.76 2.35 15.47
RMAT24-G 75% 16 10.35 0.6 1.34 1.94 8.94
RMAT24-G 75% 32 7.06 0.47 1.35 1.82 5.00
RMAT24-G 75% 48 7.24 0.48 1.22 1.7 5.01
RMAT24-G 75% 64 7.91 0.46 1.06 1.52 4.01
RMAT24-G 75% 72 8.61 0.44 0.91 1.35 3.81
LiveJournal 100% 1 1.64 1.05 0 1.05 14.03
LiveJournal 100% 2 1.74 0.91 0 0.91 10.11
LiveJournal 100% 4 1.72 0.75 0 0.75 6.37
LiveJournal 100% 8 1.71 0.69 0 0.69 3.75
LiveJournal 100% 16 1.75 0.67 0 0.67 2.11
LiveJournal 100% 32 1.86 0.68 0 0.68 1.21
LiveJournal 100% 48 1.89 0.7 0 0.7 1.02
LiveJournal 100% 64 1.82 0.69 0 0.69 0.93
LiveJournal 100% 72 1.93 0.67 0 0.67 0.92
LiveJournal 75% 1 1.64 0.91 1.38 2.3 14.11
LiveJournal 75% 2 1.77 0.83 1.16 1.99 9.98
LiveJournal 75% 4 1.87 0.68 0.75 1.43 6.04
LiveJournal 75% 8 1.87 0.65 0.6 1.24 3.66
LiveJournal 75% 16 1.74 0.68 0.58 1.26 2.16
LiveJournal 75% 32 1.98 0.6 0.48 1.09 1.21
LiveJournal 75% 48 2.04 0.66 0.48 1.14 1.03
LiveJournal 75% 64 1.98 0.64 0.41 1.05 0.93
LiveJournal 75% 72 1.86 0.62 0.41 1.04 0.89
Pokec 100% 1 0.69 0.76 0 0.76 7.77
Pokec 100% 2 0.72 0.66 0 0.66 5.36
Pokec 100% 4 0.73 0.52 0 0.52 3.29
Pokec 100% 8 0.74 0.47 0 0.47 2.33
Pokec 100% 16 0.73 0.42 0 0.42 1.47
Pokec 100% 32 0.78 0.51 0 0.51 0.89
Pokec 100% 48 0.66 0.49 0 0.49 0.74
Pokec 100% 64 0.75 0.48 0 0.48 0.67
Pokec 100% 72 0.77 0.47 0 0.47 0.67
Pokec 75% 1 0.68 0.68 1.5 2.18 7.65
Pokec 75% 2 0.72 0.63 1.29 1.92 5.59
Pokec 75% 4 0.72 0.52 0.84 1.35 3.65
Pokec 75% 8 0.75 0.46 0.69 1.15 2.18
Pokec 75% 16 0.7 0.44 0.49 0.93 1.42
Pokec 75% 32 0.7 0.53 0.52 1.05 0.86
Pokec 75% 48 0.74 0.5 0.64 1.14 0.76
Pokec 75% 64 0.77 0.46 0.57 1.03 0.67
Pokec 75% 72 0.75 0.49 0.47 0.95 0.65
YouTube 100% 1 0.37 2.31 0 2.31 1.69
YouTube 100% 2 0.43 2.35 0 2.35 1.21
YouTube 100% 4 0.38 2.21 0 2.21 0.73
YouTube 100% 8 0.37 2.18 0 2.18 0.49
YouTube 100% 16 0.38 2.14 0 2.14 0.33
YouTube 100% 32 0.36 2.13 0 2.13 0.29
YouTube 100% 48 0.35 2.14 0 2.14 0.39
YouTube 100% 64 0.4 2.1 0 2.1 0.43
YouTube 100% 72 0.37 2 0 2 0.47
YouTube 75% 1 0.38 2.22 0.3 2.51 1.62
YouTube 75% 2 0.37 2.11 0.26 2.38 1.15
YouTube 75% 4 0.38 1.97 0.17 2.14 0.71
YouTube 75% 8 0.38 2 0.14 2.14 0.47
YouTube 75% 16 0.36 1.93 0.11 2.04 0.31
YouTube 75% 32 0.36 1.99 0.12 2.12 0.26
YouTube 75% 48 0.38 1.95 0.12 2.07 0.34
YouTube 75% 64 0.4 1.83 0.12 1.95 0.41
YouTube 75% 72 0.38 1.92 0.12 2.03 0.47

In this section, we present our experimental results for computing the
connected components and MST on a dynamic network. We performed
experiments on a 36-core (72 thread) Intel Haswell server with 256GB

DDR4 RAM, with two Intel Xeon E5-2699 v3 2.30 GHz CPUs. The
operating system is Ubuntu 16.04. Our code is based on C++ and
OpenMP and was compiled with GCC version 4.8.5.

A. Datasets and Implementation Specifics
We used synthetic networks generated using R-MAT model [13], which

uses recursive Kronecker matrices. The model takes in as input the
number of vertices in the graph, the average number of edges per vertex,
and four values a, b, c, d, one for each quadrant of the matrix such that
a+ b+ c+ d = 1.

We generate two types of RMAT networks. The first labeled RMAT-G
has scale-free degree distribution and is generated using the following
parameters a = 0.45, b = 0.15, c = 0.15, d = 0.25. The second labeled
RMAT-E is a random network with normal degree distribution and is
generated using the following parameters a = b = c = d = 0.25.
The networks have 224 (RMAT24), 225 (RMAT25), and 226 (RMAT26)
vertices respectively, with an average of 8 edges per vertex.

Our test suite also consists of three real-world social networks from the
groups: YouTube (1.1M nodes, 3.0M edges), Pokec (1.6M nodes, 30.6M
edges), and LiveJournal (4.8M nodes, 68.9M edges). These networks
were collected from the Stanford Network Database [14].

Since the networks were not weighted, we invoke a random number
generator for each edge, and assign each edge a weight from 1 to 100.
The set of changed edges are similarly weighted from 1 to 100. This step
ensures that the variations in results will be only due to the structure of
the network and type of changed edges, and not the distribution of the
edge weights. For the repair stage, we process all the remainder edges
that have a weight less than or equal to 10.

While in the parallel algorithm design, Step 3 (processing edges based
on status) can be theoretically executed in parallel, the current version of
OpenMP version does not support safe parallel insertion into vectors. For
this reason, the implementation of Step 3 is done sequentially. However,
since the operations require constant time, using a sequential algorithm
does not significantly affect the scalability.

B. Comparing Different Classes of Networks
Figure 5 exhibits the time and scalability results for computing MST

on the synthetic and real-world networks. We updated each of these
networks by inserting or deleting 50 million edges, with the percentage
of insertions ranging from 100%, 75% and 50% of the total changed
edges. 50 million edges represent 37%, 19%, and 9% of the original edge
counts for RMAT24, 25, and 26, respectively. For the real-world datasets
50 million edges represent 1,673% (YouTube), 163% (Pokec), and 73%
(LiveJournal). With YouTube (3.0M edges) for example, nearly all of the
deleted and inserted edges did not exist in the original network. We show
results for MST because it is the more complex operation. Results for
CC (connected components) show a similar trend.

The results are scalable but they flatten out at higher scales due to the
inherently sequential nature of creating the rooted trees. The percentage
of insertion does not make a difference in the random networks, while
in the real-world and scale-free graphs, updates due to 100% insertions
are faster.

The degree distribution has an important influence on the time and
scalability. Even though they have approximately the same number of
vertices and edges, the scale-free networks take significantly less time
to update compared to networks with normalized degree distribution. We
surmise that this is because the diameter of the scale-free graphs is shorter
than random graphs. Therefore, given equal distribution of weights in the
edges, the MST is likely to have a lower diameter, leading to lower height
of the rooted-tree, which in turn reduces runtime.

We observe that among the real-world networks, even though the Pokec
network is 30 times denser than the Youtube network, the timings are very
similar. This observation indicates that the execution time of our updating
algorithm is relatively independent of the density of the network.

C. Effect of Selection of Root on Time
Because the complexity of insertion and deletion of an edge is

proportional to the height of the tree, we investigated how the height of
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Figure 5: Scalability Results for Updating Networks. Top: Networks with scale-free degree distribution of order of 224, 225, 226 vertices.
Middle: Random Networks with normal degree distribution of order of 224, 225, 226 vertices. Bottom: Real-world Networks, left to right
(YouTube, Pokec, LiveJournal). Blue 100% insertions, Red 75% insertions, and Green 50% insertions. The X-axis gives the number of
threads and Y-axis gives the time in seconds. The average time over 4 runs is plotted and error bars showing the standard deviation is
given.(color online).

the tree affects the time for updates. For one synthetic network (RMAT24-
G) and one real-world network (LiveJournal), we selected the root that
gives the tree with the shortest height, the root with the tree that gives
the greatest height, and six other heights in between. As can be seen
in Figure 6, while there is some variation of time when the number of
processors is small, the variations become negligible as the number of
processors increases. We also observe that the difference between the
shortest and the tallest height is not very large and hence does not make
a significant difference in the updating time.

D. Comparison with Recomputing Algorithm
We compare the time taken to update the CC and MST with the time

taken to recompute them from scratch using the Galois software [15].
Galois has a template that identifies lower level parallelism, such as loops,
in the graph algorithms. By simply parallelizing the loops, Galois has
been shown to be very fast compared to other parallel network packages.
Galois has a parallel algorithm for finding CC and uses a parallel Boruvka
algorithm [15] for computing the MST. Since the speedup and memory
performance results exhibit similar trends for both algorithms, we focus
on the MST in this subsection.

Parallel Speedup. Parallel speedup is defined as the ratio of sequential
to parallel execution time, i.e., T1/T ′p where p′ is the number of threads.
In Figure 7, we show the speedup values for RMAT24-G and three real
networks with one million changed edges and 100% insertions (top row)
and 75% insertions (bottom row). The ideal speedup is equal to the
number of threads. The speedups for both of our algorithm and Galois
degrade as the number of threads increases, but our updating method
degrades faster. Unsurprisingly, the speedup for both methods is better for
denser networks, which require more computation than sparser ones such

as Youtube, because there is more work overall. Improving the speedup
of dynamic algorithms is ne of our future objectives.

The speedup does not consider the rooting tree computation because it
is a one-time cost that is later amortized by the cost of multiple updates.
We do show the breakdown of the times (in seconds) for the different
phases in Table I. The first column indicates the network (among the
datasets described in Sec. VI-A, while the second column specifies the
percentage of insertions in the update (batch size is 1,000,000 edges). The
third column indicates the number of threads in the experiment, and the
MST Root, MST Ins-Del and MST Repair columns show average times
for the rooting, insertion/deletion, and tree repair phases of the algorithm.
The MST Update column is the sum time for insertion, deletion, and
repair of the tree (after deletions). The Galois Boruvka time includes the
full tree computation, excluding I/O.

Memory. In Figure 8, we show the total memory used by our algorithm
and Galois’ Boruvka for RMAT24-G for three real networks with a
million changed edges and 100% insertions (top row) and 75% insertions
(bottom row). Note that this value is the maximum resident memory size
for the entire computation, which includes initialization and in the case
of dynamic algorithm, it includes the initial MST computation, as well
as the update (a single batch size of 1,000,000 edges). For the networks
we tested, the memory footprint of the recomputing (Galois) algorithm
uses up to 24x the amount of memory used by the update algorithm.

Power and Energy We now compare the power and energy con-
sumption of our code with the Boruvka algorithm in Galois. We use
the Performance Application Programming Interface (PAPI) [16]. PAPI
interfaces with Intel’s Running Average Power Limit (RAPL), which
provides access to a set of hardware counters measuring energy usage.
From these, PAPI computes average energy in nanojoules for a given
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Figure 6: Variations of updating time based on the choice of root. Left: RMAT24-G. Right: LiveJournal. The Y-axis gives the time in seconds.
The X-axis gives the number of threads. Each colored bar represents a tree of different height. The heights are given in the legend. The
results are for 100% insertions of 50M edges. While there are some variations in time for lower processors, the times are almost equivalent
as the number of processors increase.

Figure 7: Parallel speedup (log scale) for computing the MST of RMAT-24G and three real-world networks (described in Sec VI-A). Speedup
was computed based on one batch update, with batch size 1,000,000 edges. Top: 100% insertions. Bottom: 75% insertions.

time interval. We performed power and energy measurement experiments
on a dual socket Intel R© Xeon R© E5-2699 v3 @ 2.30GHz chips (36
hardware threads each, 72 total). These support direct per-socket power
measurement (unlike earlier generations where power and energy values
were estimated based on performance counters). We instrumented the
source code to measure only the actual update-related computation.

We considered three real-world networks and the RMAT-24G synthetic
network (described in Sec. VI-A) to evaluate the power and energy scaling
of our algorithm and compare them to the best available parallel shared-
memory implementations of the equivalent recomputing algorithm from
Galois. For the dynamic updating algorithm, we show measurements
for Steps 2 and 3 (termed insertion and deletion) and Step 4 (termed
repair, occurs only for deletion), which constitute a single batch update.
The batch size of each update is 1,000,000 edges. For the recomputing
algorithm from Galois, we show the total time, power and energy
measurements when applying the algorithm (not considering I/O) to each
updated network. Each measurement corresponds to the mean of four
identical experiments performed in the dedicated mode. All experiments
were also performed in the same time period (to minimize influence of
environmental conditions such as ambient temperature differences). As a
baseline for power measurements, we also include the overall machine
power measured during a system call to sleep(10); we took the

minimum from testing with various numbers of threads, which was 25W.

Figure 9 shows the power and energy consumption of the dynamic
minimum spanning tree algorithm applied to RMAT-24G for different
percentages of insertions and similar measurements for the Boruvka
algorithm in Galois. The patterns for both MST and CC computations are
similar, hence we focus on the MST. The power and energy measured
with RAPL [17] are shown per CPU socket, each socket is indicated
by the “-p0” or “-p1” suffix in the plot legends. The MST-UpdateTot
values include the total for both CPUs for the MST-ins-del and MST-
repair operations (which constitute a full update). Because it is a one-
time cost which will be amortized with multiple updates, the rooting
tree phase is not included in this total (instead, we summarize the times
for different phases in Table I). For Galois, Galois-Total includes the
complete algorithm totals for both CPUs. We also include the execution
time along with the corresponding power and energy data for easy
reference, even though some of that information is also available in
the scaling studies described in Sec. VI-D. When there are no deletions
(first row in Fig. 9), the dynamic algorithm has significantly lower power
requirements than Galois on more than two threads, and the power for
increasing the number of threads remains constant, whereas it grows
rapidly with Galois. Deletions, and in particular, repairing the tree, require
more power than insertions, as evident fromm the experimental data in
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Figure8:TotalmemoryuseforcomputingtheminimumspanningtreeofRMAT-24Gandthreereal-worldnetworks(describedinSecVI-A).
Top:100%insertions.Bottom:75%insertions.
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Figure9:Comparisonofper-socketandtotalpowerandenergymeasurements:asinglebatchupdate(blues),brokeninto“Insertionand
Deletionand“Repair,”comparedwithrecomputingusingGalois(reds)oftheminimumweightedspanningtree.Top:100%insertions
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thesecondrowinFig.9andevenrowsofFig.10.Galoiscomputations
requiresignificantlymoreenergythantheupdatingalgorithm,indicating
thatupdatingusingarootedtreeismoreenergy-efficientforthistypeof
network.

Figure10showsthetime,power,andenergycharacteristics(similarto
Fig.9)forthereal-worldnetworksdescribedinSec.VI-A.Focusingon
thepowermeasurements(middlecolumn),onecommonpatternacross
allthenetworksisthatGalois’powerconsumptionisrelativelylowfor
smallthreadcounts,thenincreasessharplywhenusingmorethan16
threadsonbothCPUsockets.For16orfewerthreads,clearlyjustoneof
theCPUsisbeingused,buttheincreaseinpowerisnotjustinthesecond
CPU(badpowerscaling),whichcanpresentproblemsinpower-capped
environments.Incontrast,thepowerconsumptionofedgeinsertion(rows
1,3,and5ofFig.10)intheupdatealgorithmremainsrelativelyflat
asmorethreadsareused.Forinsertion-onlyupdates,withlowerthread
counts(n < 16)onfewreal-worldnetworks,Galoisconsumesless
powerthantheupdatealgorithm.Ifthenumberofthreadincreases,

Galoisconsumessignificantlymorepowerthantheupdatealgorithmfor
insertionupdates.WhileGaloisisfasteratlargerthreadcounts,itshigher
poweruseleadstohigherenergyconsumptionfortwoofthethreereal-
worldnetworks,LiveJournalandPokec(with100%insertions).Again,
inthepresenceofdeletions,therepaircomputationmakestheupdate
algorithmlesspower-efficientthantherecomputation.Identifyingthe
insertionpercentagesforwhichtheupdateisbetterintermsoftime,
power,andenergyisatopicoffutureresearch.

E.SummaryofComparisons

Fromtheexperiments,weobservethatourproposedalgorithmrequires
significantlylessmemorythanGalois.Whilepartofthisdependsonthe
internaldatastructuresofGalois,wenotethatouralgorithmrequiresonly
anextraO(V)storageinadditiontothegraphandthesetofchanged
edges.Thismakesouralgorithmverylightweight.
Theexperimentsalsoshowthatourupdatingalgorithmisfasterand

useslessenergythanGalois.Furthermore,itgenerallyuseslesspower
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Figure 10: Real-world network comparison of per-socket and total power measurements: a single batch update (blues), broken into “Insertion
and Deletion” and “Repair,” compared with recomputing using Galois (reds) of the minimum weight spanning tree. Top two rows: YouTube
(1.1M nodes, 3.0M edges). Middle two rows: Pokec (1.6M nodes, 30.6M edges). Bottom two rows: LiveJournal (4.8M nodes, 68.9M edges).
For each network, the first and second rows represent 100% and 75% insertions, respectively.
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and has flatter power profiles at all levels of parallelism, making it better
suited for power-capped environments than Galois. Even at higher number
of threads, where the scalability is worse, we are comparable to Galois.
The reason for the improved performance is that Galois has to recompute
the entire MST or connected components after including the changes in
the graph. However, most of the changes do not affect the structure of
the tree. Our updating algorithm can identify these edges and does not
include them in updating the tree structure. Moreover, by storing the
information on maximum edge weights in the rooted tree data structure,
we can update the tree very quickly, in the best case in constant time and
in the worst case in O(h) time.

Galois has better speedup than our algorithm. This is mainly due to
the fact that the update performs significantly less work than Galois
algorithm, limiting effective parallelization to fewer threads. However,
as our results show, the speedup does not necessarily mean that the time
taken is actually less. Galois algorithm is faster than ours for one of the
networks we tested even for 100% insertions, and faster at higher thread
counts for 75% insertions. For high-deletion scenarios, the recomputation
algorithm in Galois may be more appropriate because the cost of repairs
exceeds the benefit of not recomputing the tree from scratch.

VII. RELATED RESEARCH

Here we discuss related research in parallel dynamic graph algorithms
and in analyzing their power requirements.

A. Algorithms on Dynamic and Parallel Graphs
Several interesting solutions have been proposed for developing paral-

lel algorithms for large networks. They include: (1) Matrix-based graph
approach, where the network algorithms are expressed as sparse matrix
operations [18] to make them easier to parallelize on distributed memory
systems. (2) Vertex centric graph algorithms used by GraphLab [19]
and Pregel [20], where each vertex is updated locally, and then a
synchronization function is used for global updates. The algorithms
then converge over several iterations. (3) Massively multithreaded graph
algorithms use fine-grained parallelism to generate enough tasks to keep
the processing units busy while they are waiting for data [21], [22]. This
approach is suited for platforms with very large numbers of processing
units such as massively multithreaded machines. These methods, with the
exception of the multithreaded approach, apply only to static networks.
Two projects that on dynamic graph algorithms are STINGER [22] and
PHISH [23]. However, they deal with only unweighted graphs.

Parallel algorithms related to spanning tree, such as breadth first search
(BFS) and minimum weighted spanning trees (MST), on static networks
are available for many HPC platforms including distributed memory [11],
multicores [24], massively multithreaded machines [21], and GPUs [12].
Parallel algorithms for dynamically updating connected components have
been developed using the STINGER framework [25] and in our previous
work using a sparsification-based technique [26].

Parallel implementations of MST include the Shiloach-Vishkin ap-
proach [27] and Boruvka’s algorithm [28]. Sequential algorithms for
updating MST are discussed in [29]. Parallel algorithms for dynamic
MST were proposed in [30], [31] for theoretical PRAM machines but
no empirical results were reported. To the best of our knowledge,
our algorithm is the first practical parallel implementation that can be
executed on multicores for very large networks.

B. Power and Energy of Static Graph Computations
The Green Graph 500 list [32] collects performance-per-watt metrics

and acts as a forum for vendors and data center operators to compare the
energy consumption of data intensive computational workloads on their
architectures. The benchmark consists of undirected graph generation
and breadth-first search. In [33], we explored fine-grained power and
energy modeling of the BFS benchmark using custom hardware to provide
component-level high-frequency power and energy measurements.

Other approaches to evaluating power and energy of graph algorithms
(e.g., Graphicionado [34]), typically focus on special purpose hardware
for graph computations. Graph algorithms research that targets execution
time improvement also indirectly leads to reduced energy, but most works
in that area do not explicitly analyze the power use of these algorithms.

Power and energy can be estimated based on hardware performance
counters (e.g., [35]) or direct measurements, either supported by com-
modity hardware such as recent generations (Haswell) of Intel server
processors, or through additional hardware instrumentation. In this work,
we rely on the Intel Running Average Power Limit (RAPL) [17] for
obtaining direct power measurements.

VIII. CONCLUSION

In this paper we presented a template for designing parallel algorithms
for updating tree-like properties of dynamic networks. Our algorithm is
primarily based on storing information in a rooted tree, using which
the graph traversal time is significantly reduced. Although creating the
rooted tree has little opportunity for parallelism, our experiments on large-
scale real-world and synthetic networks demonstrate that our updating
algorithm is faster and requires less energy and memory than state-of-th-
art parallel algorithms for recomputing the graph properties.

It is also observed that edge deletions require more resources than edge
insertions. This is because re-joining the tree requires searching through
all the remainder edges and is often equivalent to an intermediate phase
in the static algorithm. This is a typical situation for any dynamic system,
where the effect of change can become so large that recomputing is more
efficient than updating. As part of our future work, we aim to determine
this critical point for different dynamic algorithms. Another solution to
finding the critical edges is to find the betweenness centrality of the
remainder edges and process them accordingly.

In the future we aim to investigate heuristics to help reduce the cost of
these operations. We plan to explore faster heuristics for creating the tree
as needed (e.g., lazy creation). We will also explore the design of adaptive
algorithms, where one can switch between updating and recomputation
at runtime based on the type and percentage of changed edges and the
computational resource to be optimized. Finally, we plan to develop
parallel algorithms for updating other properties of weighted graphs, such
as the single source shortest path, using the rooted tree approach.
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