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� Intrinsic brain dynamics distinguish different levels of consciousness in comatose patients.
� Reaching low variance EEG activation patterns becomes harder for lower levels of consciousness.
� The Intrinsic Network Reactivity Index is robust to etiological and pharmacological heterogeneity.

a b s t r a c t

Objective: We devise a data-driven framework to assess the level of consciousness in etiologically hetero-
geneous comatose patients using intrinsic dynamical changes of resting-state Electroencephalogram
(EEG) signals.
Methods: EEG signals were collected from 54 comatose patients (GCS 6 8) and 20 control patients
(GCS > 8). We analyzed the EEG signals using a new technique, termed Intrinsic Network Reactivity
Index (INRI), that aims to assess the overall lability of brain dynamics without the use of extrinsic stim-
ulation. The proposed technique uses three sigma EEG events as a trigger for ensuing changes to the
directional derivative of signals across the EEG montage.
Results: The INRI had a positive relationship with GCS and was significantly different between various
levels of consciousness. In comparison, classical band-limited power analysis did not show any specific
patterns correlated to GCS.
Conclusions: These findings suggest that reaching low variance EEG activation patterns becomes progres-
sively harder as the level of consciousness of patients deteriorate, and provide a quantitative index based
on passive measurements that characterize this change.
Significance: Our results emphasize the role of intrinsic brain dynamics in assessing the level of con-
sciousness in coma patients and the possibility of employing simple electrophysiological measures to rec-
ognize the severity of disorders of consciousness (DOC).

� 2018 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights
reserved.
1. Introduction

Coma and other disorders of consciousness (DOC) is associated
with profound reductions in wakefulness and awareness (Bruno
et al., 2011; Giacino et al., 2014; Laureys, 2005). Linking these
behavioral markers with specific injury attributes remains a
persistent clinical challenge (McGee et al., 2016). Electroen-
cephalographic recordings offer the potential to help to disassoci-
ate underlying causes of DOC by revealing systematic
electrophysiological correlates of injury and behavior (Sitt et al.,
2014; Sebastiano et al., 2015). However, patients in coma exhibit
substantial heterogeneity in etiology, including injury type and
location. Moreover, these patients are often managed with phar-
macological agonists that themselves produce electrophysiological
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effects (Blume, 2006). Thus, realizing the potential of EEG as a diag-
nostic tool has a number of practical challenges (Wijnen and van
Boxtel, 2010; Cruse and Young, 2016).

The most traditional approach to EEG biomarker development
involves spectral analysis of band-limited power, i.e., the assess-
ment of rhythmicity and neural oscillations (Buzsáki and
Draguhn, 2004), sometimes referred to as Quantitative EEG (QEEG).
Examples of this approach for diagnosing disorders of conscious-
ness includes the absence of blink-related delta oscillations in
DOC patients (Bonfiglio et al., 2013, 2014), a positive correlation
between Coma Recovery Scale-Revised (CRS-R) and ratios between
frequencies above 8 Hz and frequencies below 8 Hz (Lechinger
et al., 2013), higher theta/alpha and lower delta power of mini-
mally conscious state (MCS) patients compared to vegetative
state/unresponsive wakefulness syndrome (VS/UWS) patients
(Piarulli et al., 2016), and lower alpha power in UWS and MCS
patients (Naro et al., 2016).

However, such an approach could be prone to confound
since sedative drugs, in particular, produce well-defined but
wide-ranging changes in rhythmic activity (Carboncini et al.,
2014). Nevertheless, those studies relying on spectral analysis
could be informative for well-constrained patient populations.
Alternatively, EEG analysis can be performed in an active, pertur-
bational framework wherein stimuli are delivered to the patient,
and electrophysiological responses are characterized (Guerit,
2010; Risetti et al., 2013; Kotchoubey, 2017). The premise of such
an approach, which includes canonical examples such as EEG reac-
tivity and event-related potentials (ERPs), is that it captures the
responsiveness of the brain in a basal, primitive way. A less respon-
sive/reactive brain is, ostensibly, less able to support normal cogni-
tive function. Indeed, reactivity and related measures have been
shown to be informative with respect to behavioral deficits associ-
ated with DOC (Cruse et al., 2016).

This perturbational approach has been previously used in char-
acterizing the EEG response to an oddball paradigm (Kotchoubey
et al., 2005), where the authors show that severely brain-
damaged but conscious patients demonstrate much more electro-
physiological signs of intact cortical processing than the persistent
vegetative state (PVS) and minimally conscious state (MCS)
patients. Along the same lines, Cavinato and his co-authors used
an oddball paradigm with different levels of stimulus complexity
and compared the latencies and amplitudes of N1 and P3 waves
between six VS, eleven MCS, and ten control subjects (Cavinato
et al., 2011). According to their results, healthy controls and MCS
patients showed a progressive increase of P3 latency in relation
to the level of stimulus complexity, whereas no modulation of P3
latency was observed in the vegetative patients. Using nonlinear
features of EEG signals such as cross-approximate entropy
(C-ApEn), Wu and his co-authors investigate the cortical response
to painful and auditory stimuli (Wu et al., 2011b,a), and showed
that the interconnection of local and distant cortical networks in
MCS is superior to PVS group. In a more recent effort, Binder has
studied the relationship of the phase-locking index (PLI) of 40 Hz
auditory steady-state response (ASSR) with Coma Recovery Scale-
Revised (CRS-R) and found that there is a correlation between
these two measures (Binder et al., 2017).

However, such perturbational methods bring about their own
set of challenges in the context of DOC patients. The interpretabil-
ity of ERP studies involving a single sensory modality may be com-
promised due to etiological heterogeneity (Kotchoubey, 2017), and
their robustness in differentiating various degrees of consciousness
is subject to debate (Kotchoubey et al., 2005; Höller et al., 2011;
Real et al., 2016). Alternatively, approaches involving direct (e.g.,
electromagnetic) stimulation of the cortex (Bagnato et al., 2012;
Rosanova et al., 2012; Casali et al., 2013; Zhang et al., 2017), while
conceptually more favorable, raise the instrumentation burden
substantially and are thus not ideal for routine clinical assessment.
More comprehensive reviews of the previous findings in detecting
signs of consciousness using electrophysiological methods can be
found in Sitt et al. (2014), Rapp et al. (2015), Sebastiano et al.
(2015), Cruse et al. (2016), Estraneo et al. (2016), Ragazzoni et al.
(2017).

In this work, we seek to develop an objective EEG-based assay
that can reliably differentiate injury severity and behavioral defi-
cits in the face of etiological and pharmacological heterogeneity.
Doing so would have at least two impacts. Foremost, such an assay
would reveal fundamental electrophysiological features associated
with DOC, ones that specifically are robust to the confounding
effects of neurally active drugs. Further, such an assay would pro-
vide means to more objectively assess patients for whom tradi-
tional bedside behavioral exams are ineffective (Andrews et al.,
1996; Schnakers et al., 2009; Sanders et al., 2012). Our goal is to
devise a strategy that can offer an EEG-based assessment of brain
responsiveness in resting state, without the need for extrinsic
stimulation. Although there have been previous attempts to reach
this goal (Bai et al., 2017), these attempts have been mostly based
on information-theoretic (Pollonini et al., 2010; Sarà and
Pistoia, 2010; Gosseries et al., 2011; King et al., 2013; Marinazzo
et al., 2014; Thul et al., 2016) or graph-theoretic (Lehembre et al.,
2012; Leon-Carrion et al., 2012; Chennu et al., 2014; Höller
et al., 2014; Varotto et al., 2014; Chennu et al., 2017; Numan
et al., 2017) metrics, which do not provide direct information about
the underlying neuronal dynamics. Furthermore, the majority of
these studies focus on distinguishing minimally conscious patients
from patients in vegetative state. However, consciousness is a state
on a continuous spectrum (Laureys, 2004), and detecting subtle
changes of consciousness using neuroimaging and electrophysio-
logical techniques remains an open question.

Here, we treat the analysis of EEG using formalisms from
dynamical systems theory and the notion of reachability
(Jurdjevic, 1997). This notion of intrinsic brain network reactivity
is intended to holistically characterize the lability of the brain by
describing the ability of rare electrophysiological events to create
low probability excursions in neural activity, or, how easily the
EEG is able to ‘reach’ a diverse set of patterns. Thus, the technical
innovation of this paper is a method to estimate EEG reactivity
without explicit delivery of exogenous stimuli. We introduce the
Intrinsic Network Reactivity Index (INRI) by using three sigma
events as an internal reactivity trigger and quantify the reachabil-
ity of response states to these events.
2. Materials and method

2.1. Data description

We collected retrospective data including EEG and complete
medical records from 54 comatose patients and 20 control subjects
(GCS>8) over the course of three years (2013–2016). The patients
underwent EEG recording for routine monitoring purposes in the
Neurological and Neurosurgical Intensive Care Unit (NNICU) at
Barnes-Jewish Hospital, which is affiliated with Washington
University School of Medicine in St. Louis. Each patient underwent
one recording session with exceptions of four patients for whom
two recordings were performed. EEG data were acquired using
19 electrodes positioned according to the standard 10–20 system
of electrode placement. The recording was performed for at least
fifteen minutes for each patient. The original signals were recorded
against a common reference electrode and re-referenced to 18
bipolar channels (FP1-F7, F7-T7, T7-P7, P7-O1, Fp1-F3, F3-C3,
C3-P3, P3-O1, Fz-Cz, Cz-Pz, Fp2-F4, F4-C4, C4-P4, P4-O2, Fp2-F8,
F8-T8, T8-P8, and P8-O2) to reduce the sensitivity of EEG signals



Table 1
Summary of the study population.

Variable Distribution

Age 57 � 19
Gender Male (32) and Female (22)
Injury Type Focal (16), Diffuse (23), Mix (15)
Injury Location Left (11), Right (18), Bilateral (15), Unknown (10)
GCS at time of EEG Score Three (12), Score Four (8), Score Five (3),

Score Six (10), Score Seven (20), Score Eight (5)
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to external noise (Osselton, 1965). The signals were recorded at
either 250 or 500 Hz. Table 1 provides a summary of the study pop-
ulation including age, gender, injury type, injury location, and Glas-
gow coma scale (GCS), which was collected as part of the clinical
routine. In case of the intubated patients, the verbal score was esti-
mated from the motor score and eye score using the linear regres-
sion model Verbal Score ¼ �0:3756þMotor Score � 0:5713ð Þþ
Eye Score � 0:4233ð Þ as described in Meredith et al. (1998). The
study was approved by the ethics committee of Washington
University in St. Louis and conducted in accordance with the
declaration of Helsinki.

2.2. Data preprocessing

EEG preprocessing steps include removing large amplitude and
eye blink artifacts by visual inspection (Stern, 2005; Britton et al.,
Fig. 1. The calculation of Intrinsic Network Reactivity Index (INRI) includes three main s
quantifying the brain state trajectories. In (a), each channel is recursively selected as a
channel in rest of the channels (target channels) is calculated. Next, the resulting respon
control subjects). In (b), the typical response signals from the previous step are collapsed
dimensional data of the previous step is quantified by fitting a surface to the absolut
projection of trajectory points on the fitted surface in the direction of the final point in
2016), downsampling, bandpass filtering, and standardization,
which were all implemented in MATLAB using in-house code. More
specifically, sections of the data with artifacts were discarded
(approximately 6:8%), and the data that was initially recorded at
500 Hz was downsampled to 250 Hz to make the sampling rate
of all the recordings consistent. Next, a Hamming window-based
finite impulse response (FIR) bandpass filter was used to filter
the signals into the 1� 45 Hz frequency range. Finally, EEG signals
from each channel were standardized to zero mean and unit vari-
ance by taking out the mean and dividing by standard deviation
X ¼ X � lð Þ= rð Þð Þ (Guyon and Elisseeff, 2006).

2.3. Quantifying intrinsic dynamics

Calculating the Intrinsic Network Reactivity Index (INRI)
involves three main steps of identifying intrinsic events, obtaining
brain state trajectories, and quantifying the brain state trajectories
(Fig. 1). Each of these steps is discussed in the following
subsections.

2.3.1. Identifying intrinsic events
After the data has been preprocessed, we would like to capture

the typical response to intrinsic (in this case three sigma) events. In
order to do this, we select one channel at a time as a trigger chan-
nel (where the intrinsic events occur) and then calculate the
response to these intrinsic events in rest of the channels (target
teps of (a) identifying intrinsic events, (b) obtaining brain state trajectories, and (c)
trigger channel and a typical response to three sigma events (þ3r) of this trigger
se signals are averaged for each subject group (in this case different GCS values and
into three dimensions using principal component analysis. Finally, in (c), the three-
e value of obtained trajectories and calculating the directional derivatives of the
the time domain.



Fig. 2. Identifying intrinsic events. To extract the intrinsic events, for each channel selected as a trigger channel (here channel nine), the data points that are more than three
standard deviations away from the signal mean in the positive direction (þ3r) are identified (marked by red stars). Next, a window of length w (in this case one second) that
follows the identified events is defined, and the corresponding windows in the remaining (target) channels are identified. For each target channel, all the marked windows are
averaged to obtain a single response signal for that channel based on the selected trigger channel (shown by red curves here for channels 7;8;10;13;14f g). This process is
repeated until each channel is selected as a trigger channel once (represented by a dashed line here), and then the response signals to different trigger channels are averaged
to get a typical response signal for each target channel. Finally, the resulting response signals are averaged for each subject group. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)

Fig. 3. Obtaining brain state trajectories. To obtain the brain state trajectories, PCA
is used to reduce the 18-dimensional average responses extracted in Section 2.3.1
into three dimensions. Each point in this plot shows the averaged responses to three
sigma events, in three target channels. The three arrows show the direction of
eigenvectors with the highest eigenvalues (in this case k3 < k2 < k1), where each
eigenvalue represent the variance of the data in the direction of the corresponding
eigenvector. The ellipsoid is a characterization of the covariance of the data where
the angle of the ellipsoid is determined by the interdependency between data
points from different channels, and the magnitudes of the ellipsoid axes depend on
the variance of the data.
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channels). More specifically, after the data has been preprocessed,
we start selecting one channel at a time from each patient’s record-
ing to serve as the trigger channel, and all the points that are more
than three standard deviations away from the signal mean in this
selected trigger channel are identified. These points are marked
as intrinsic events, and a window of length w ¼ 1s following these
intrinsic events is defined. Next, the corresponding windows in
the other recorded channels (target channels) of the same record-
ing are identified and averaged to obtain a response signal for each
target channel with regards to a specific trigger channel. The pro-
cedure is iterated by defining each channel as a trigger, then aggre-
gating the responses from different target channels into one 18-
dimensional prototypical response trajectory. Finally, the obtained
typical responses are averaged across different subject groups.
Fig. 2 shows one iteration of the intrinsic event identification,
where channel nine is selected as the trigger channel, and the
response in five target channels 7;8;10;13;14f g to the three sigma
events in channel nine are represented.

2.3.2. Obtaining brain state trajectories
The 18-dimensional target response for each subject group is

collapsed into three dimensions using principal component analy-
sis (PCA). The principal component analysis is a statistical proce-
dure that applies an orthogonal transformation to uncorrelate
possibly correlated variables. PCA decomposes the original data
X 2 RN�M into uncorrelated components using a transformation
matrix W and sorts them according to the variance explained by
each component (Bishop, 2006). In this case, our X is the averaged
responses in different target channels, N ¼ 18 is the number of
channels, and M ¼ 250 is the length of averaged responses
(w ¼ 1s). Instead of applying the entire PCA transformation matrix,
generally, the first k columns of theWmatrix that explain a certain
percentage of the variance in the signal is used. In this case, PCA
acts as a dimensionality reduction method and reduces the dimen-
sion of the original data while retaining as much variance in the
dataset as possible (Fig. 3). Here we have used k ¼ 3, which pro-
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vides the first three principal components that explain 97:83% of
the variance in our data.

2.3.3. Quantifying the brain state trajectories
The end result of the first two INRI steps is a three-dimensional

trajectory that captures the average evoked response (trigger chan-
nel to target channels) for each patient group (GCS value). As a final
step, in order to quantify the lability of the obtained three-
dimensional state trajectories for different groups of subjects, a
numerical method is used where first a polynomial surface with
degree d ¼ 3 (Eq. (1)) is fitted to the absolute value of each point
in the trajectories of each subject group (in this case x and y are
the absolute values of the trajectory point coordinates in PC1 and
PC2, respectively).

z ¼ f x; yð Þ ¼
X

06i;j; 06iþj6d

ai;jxiy j ð1Þ

Next, given that zt ¼ f xt ; ytð Þ is the projection of each trajectory
point on the fitted surface f, the directional derivative (Du!f xt ; ytð Þ)
provides the rate of change of z in the direction of the unit vector
u!. In our case, the direction of the unit vector is towards the last
point of the trajectories in the time domain as described in Eq. (2).

u!¼ xT ; yTð Þ � xt; ytð Þ
xT ; yTð Þ � xt; ytð Þ jjjj ð2Þ

Hence, given the definition of directional derivatives for each
point at time t, we have:

D
u!f xt ; ytð Þ ¼ lim

h!0

f xt þ hu1; yt þ hu2ð Þ � f xt ; ytð Þ
h

ð3Þ

In practice, it is difficult to calculate the limit in Eq. (3) and often
the directional derivatives are calculated using the gradient as
shown in Eq. (4) (Simmons and Simmons, 1996).

D
u!f xt ; ytð Þ ¼ rf xt ; ytð Þ: u! ð4Þ

The calculated Du!f xt ; ytð Þ value gives the slope of our surface

(z ¼ f x; yð Þ) when standing at the point xt ; ytð Þ and facing to the
direction of the final trajectory point in the time domain ( u!).
Hence, the positive value here means the value of z is increasing
in the direction of u! when moving through xt ; ytð Þ, which implies
Fig. 4. Quantifying the brain state trajectories. To quantify the lability of the
obtained three-dimensional state trajectories, first a surface (z ¼ f x; yð Þ) is fitted to
the absolute value of points in the trajectory. Next, at each projected point on the
surface, the directional derivative D u!f xt ; ytð Þ in the direction of the final point in
the trajectory xT ; yTð Þ is calculated, which provides the rate of change of z in this
direction.
an increase of PC3 component relative to PC1 and PC2. In other
words, if we are standing at point xt ; ytð Þ and moving towards
the final point in the trajectory xT ; yTð Þ, a positive directional
derivative means the next step we take will be towards a larger z
value within the landscape of our surface (moving uphill). Since z
is the absolute value of the PC3 component, using directional
derivatives we are capturing the extent to which a given trajectory
moves towards PC3 (See Fig. 4). Given that PC3 is the low variance
component (k3 < k2 < k1), such movement towards larger z values
in the positive PC3 domain implies moving to a lower variance
region of the state space, which we posit to reflect greater lability
in the underlying brain dynamics.
3. Results

3.1. Intrinsic network reactivity disambiguates levels of consciousness

Fig. 5 shows the obtained state space trajectories and the fitted
surface plots for each subject group. It is clear that the state space
trajectories differ between subject groups. In order to quantify
these differences, the intrinsic network reactivity index was calcu-
lated for each subject group. As shown in Fig. 6, the INRI values
between each consequent patient groups (such as GCS ¼ 5;6)
was significantly different (multiple comparison test (Tukey-
Kramer) of Kruskal-Wallis ranks), except for patient groups
GCS ¼ 6;7. Of note, the sign of the INRI value was negative except
for the control subjects, consistent with a severity-dependent con-
traction in the space of electrical activity that can be supported in
these (injured) brains. To check the robustness of these results, we
also conducted a sensitivity analysis in terms of different window
sizes as shown in Fig. 7. The overall trend of increasing directional
derivative values with respect to GCS scores is persistent for differ-
ent window sizes, but there are also slight divergences due to the
noisy nature of EEG signals.
3.2. INRI is robust to etiological and pharmacological heterogeneity

A key premise of the proposed measure is that it captures a fun-
damental aspect of neural circuit dynamics: their responsiveness
to perturbation. This contrasts conventional studies of macro-
scale brain signals that focus on characterization of the rhythmic
electrophysiological activity. As a consequence, we hypothesized
that our method would be robust to the heterogeneous effects of
coma etiology and concurrent pharmacology that might confound
oscillatory EEG assays. To emphasize this point, we derived several
traditional quantitative EEG parameters based on the spectral anal-
ysis of our dataset. More specifically, we estimated the multi-taper
time-frequency spectrum (Babadi and Brown, 2014) using a 20 s
moving window with 50% overlap and took the average of the
power spectrum within each predefined frequency band
(d 0:5� 4 Hz½ �; h 4� 8 Hz½ �;a 8� 12 Hz½ �, and b 16� 32 Hz½ �) for all
the channels. The selected frequency bands are based on the com-
mon frequency ranges used in quantitative EEG analysis
(Lehembre et al., 2012). The EEG data was locally detrended prior
to the power spectrum estimations, and the secondary measures
such as a=d ratio (Husain and Sinha, 2017; LaRoche and Hiba Arif
Haider, 2018) were calculated based on the estimated band-
limited power of the signals. The mean and standard error of the
band-limited signal power and secondary measures for each
patient group is provided in Fig. 8. As shown, the average band-
limited power of the signals in the canonical EEG bands does not
reveal any systematic relationship with the level of consciousness
in our patient cohort. Secondary indices based on spectral analysis,
such as the alpha/delta ratio, similarly exhibit no relationship with
GCS.



Fig. 6. Comparison of the calculated INRI values for various subject groups. Each bar plot is expressed as mean � standard error, and the significance level of comparing each
consequent pair using multiple comparison test (Tukey-Kramer) of Kruskal-Wallis ranks is shown at the top of each bar plot. The p-values from left to right are
p ¼ 4:00e� 08;1:09e� 04;5:50e� 07;1:00eþ 00;9:90e� 03;3:62e� 03f g.

Fig. 7. The sensitivity of the INRI values to various window sizes. The overall increasing trend of the INRI values with respect to GCS scores is persistent, but there are also
some divergences due to the noisy nature of EEG signals.

Fig. 5. Intrinsic activity trajectories and their corresponding surface plots. Each color represents one subject group, and each point represents one time point of the averaged
response from all target channels collapsed into three dimensions using PCA.
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Fig. 8. Classical band-limited power analysis at different frequency bands fails to capture the subtle intrinsic brain dynamic changes that differentiate the levels of
consciousness in comatose patients.

Fig. 9. Scaling of the proposed method in terms of the number of channels, number of samples, number of subjects, and window size. For each factor, we either changed the
original data size (18 Channels, 78 subjects, 390140� 192070 samples) or the default parameter setting (window size of one second). All the implementations were done in
MATLAB R2016a using a Windows 10 PC with Intel Core i7-6700 CPU and 16 Gigabytes of DDR3 RAM.
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It should be noted that analyzing EEG signals at different fre-
quency bands is one of the most conventional ways of examining
rhythmicity of the EEG signals. However, here we are proposing
a different perspective of analyzing the EEG signals based on the
notion of reachability in dynamical systems. While one could, in
principle, apply our proposed analysis to filtered (band-limited)
versions of the EEG, the outcome of such a step would be difficult
to interpret. This is because many effects on the trajectory of a
dynamical system may not be restricted to a narrow frequency
band (hence, the very motivation for exploring trajectory-based
analysis).
3.3. The INRI is scalable to large datasets

In this section, we test the scalability of the proposed method in
terms of different aspects of data size. Instead of providing the the-
oretical upper bound for the complexity of the INRI calculation, we
provide the actual runtime since the actual runtime depends on
many factors such as the processor type, memory speed, and the
computer architecture that are not captured in the algorithmic
complexity analysis. Fig. 9 provides the actual runtime increase
as a function of the number of channels, number of samples, num-
ber of patients, and window size. Based on the results, the length of
the moving window has the largest impact on the increase of com-
putational time, which is mainly because of the time needed to fit
the surface and calculate the directional derivatives for a larger
number of trajectory points.
4. Discussion

This study complements current efforts to identify fundamental
neural circuit mechanisms underpinning different levels of con-
sciousness in brain-injured patients. To this end, we investigated
the plausibility of using a new notion of intrinsic brain dynamics
to distinguish different levels of consciousness in severe coma
cases, with an eye toward robustness in the face of etiological
and pharmacological confounds. To the authors’ best knowledge,
this is the first demonstration of the discriminative power of
intrinsic brain dynamics extracted from resting state EEG record-
ings in distinguishing different levels of consciousness in severe
cases of coma. We specifically developed a new EEG measure
(intrinsic network reactivity index) that captures the lability of
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brain dynamics, conceptually similar to EEG reactivity but acting
only on passively recorded data. Through this index, we showed
that the lability of brain dynamics decreases with the level of
consciousness.

4.1. Generalization of intrinsic event detection and clinical applications

In the current paper, we have shown that the INRI is able to con-
fer information about the severity of brain injury. It is important to
note, though, that the best use-cases for this method are likely not
in the realm of severity assessment since for many of these
patients administering bedside behavioral assays is routine.
Rather, the purpose of our results is to highlight that it is possible
to extract fundamental information about brain dynamics, analo-
gous to reactivity, using a strictly passive (resting state) paradigm.
Most critically, the INRI framework is highly generalizable.

For instance, the INRI can be generalized to other formulations
of trigger detection. That is, in our work we consider a simple three
sigma criteria to identify moments in time from which evoked tra-
jectories are calculated. However, more elaborate criteria could
also be considered, e.g., defining trigger events as those moments
when a particular waveform complex is observed. Similarly, the
notion of the evoked trajectory could be abstracted. One can envi-
sion these generalizations being useful for applications such as
injury localization, or estimation of focal sources of aberrant elec-
trophysiological dynamics such as during states of seizure. For the
specific purposes herein we found that the most basic formulation
of detector criterion and evoked trajectory were sufficient to yield
confirmation of our hypothesis.

4.2. Interpreting the INRI in terms of dynamical systems and
reachability

The formulation of the proposed INRI measure is straightfor-
ward: as opposed to the conventional reactivity design, involving
delivery of exogenous sensory (or, more recently, electrical/mag-
netic) stimuli, we consider the extent to which particular channels
‘evoke’ rare responses through the measured montage. This frame-
work has a particular interpretation if we consider the EEG as
observations of an underlying dynamical system. In this scenario,
any given time point t generates a (noisy) measurement of the state
of the system. An assessment of reachability ascertains those states
that can be realized or induced within some standardized time
frame. For example, if the reachable set of states is small, then
the system can do very little in response to an internally or exter-
nally generated stimulus. Thus, reachability is the formal mathe-
matical analog to EEG reactivity.

Unfortunately, for all but the most idealized systems (specifi-
cally, those systems whose dynamics are linear), reachability cal-
culations are notoriously difficult. Further, these calculations rely
on the availability of a mathematical model for the system at hand.
While such models can and have been postulated for EEG, they are
certainly not linear (Fell et al., 1996; Stam et al., 1999; Stam, 2005).
Thus, we desire a data-driven approach that can estimate a surro-
gate for the set of reachable states based on EEG recordings. This
is precisely what the proposed INRI measure does. Specifically,
we project each intrinsically evoked EEG response trajectory on a
three-dimensional basis obtained by PCA. The basis vectors (i.e.,
the PCs) are ranked according to the amount of variance they cap-
ture about the full collection of trajectories across patients. Our
INRI measure, by means of the directional derivative, attempts to
capture the extent to which a given trajectory moves towards
PC3, a low variance component. If it does, then the trajectory in
question tends toward a rarer morphology, which we interpret as
embodying circuit lability. As such, the INRI quantifies the ‘maneu-
verability’ of the underlying neural circuits to make difficult (low
variance) state transitions. In this setting, our findings suggest that
the maneuverability of the brain decreases as the level of con-
sciousness of patients deteriorates (lower GCS value), which could
indicate a form of neuroprotection against the brain injury.

It is worth noting that there is significant prior work on the
development of time-series analysis techniques for the characteri-
zation of EEG signals, including in the context of DOC. In particular,
effort has been directed toward the assessment of signal ‘complex-
ity’ (Gonzalez Andino et al., 2000; Gao et al., 2011; Tang et al.,
2015) under the premise that such complexity decreases with
the level of consciousness (Schartner et al., 2015). Many of these
techniques, such as the perturbational complexity index (Bodart
et al., 2017), approximate entropy (Gosseries et al., 2011) and
weighted symbolic mutual information (King et al., 2013), enact
a probabilistic quantification of the observed time series (the PCI
also requires the application of external cortical stimulation).
Other techniques, more conceptually similar to ours, treat EEG sig-
nals as trajectories of a dynamical system (e.g., Lyapunov expo-
nents (Gallez and Babloyantz, 1991) and other data-driven
attractor quantification methods, reviewed in Pradhan and Dutt
(1993), Stam (2005), Peng et al. (2009), Khanmohammadi
(2017)). The analysis we have put forth in this paper is distinct
from these other efforts insofar as it attempts to explicitly quantify
the responsiveness of the underlying neural circuit, as opposed to
the complexity of the ongoing activity per se (e.g., the ongoing
activity may be simple, yet highly responsive). Nonetheless, the
INRI measure can also be viewed as a type of complexity character-
ization, where higher levels of reachability to low variance states
could be interpreted as more complex phenomena.
4.3. Limitations and future directions

Despite the encouraging results, several limitations should be
considered when interpreting the results of this study. First and
foremost, the Glasgow coma scale used here is far from perfect
for assessing the conscious state of coma patients (Dong and
Cremer, 2011). It has limited capability in capturing the clinically
relevant features and suffers from inter-rater inconsistency. Sev-
eral alternatives to GCS such as Full Outline of UnResponsiveness
(FOUR) score (Wijdicks et al., 2005) have been proposed. Along
the same lines, we have only used the total Glasgow coma scale
in this study, whereas GCS is comprised of three different sub-
scores that could provide additional information about the
patient’s condition. For example, patients one and three in our
study had the same total GCS value whereas their scores on verbal
and motor responses were different. Such a heterogeneous patient
population may necessitate more sophisticated methods to take
into account the inter-subject variations of neuronal dynamics in
order to make the method suitable for subject level analysis.
Finally, pharmacological heterogeneity was not formally assessed
in this study, but analyzing such heterogeneity could provide
new insights into specific modulations of neural dynamics in
comatose patients.

In summary, we provided a simple measure that can distinguish
different levels of consciousness in severe coma patients without
requiring any cooperation from the patient (in this case response
to external stimuli). Future studies will be aimed at extending
the proposed method to subject level analysis, using intrinsic brain
dynamics to localize the brain injury, and exploring the possible
correlations of intrinsic brain dynamics with the recovery of con-
sciousness in comatose patients (prognosis).
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