BIOLOGY
LETTERS

rshl.royalsocietypublishing.org

t.)

Research

updates

Cite this article: Hammond TT, Palme R,
Lacey EA. 2018 Ecological specialization,
variability in activity patterns and response
to environmental change. Biol. Lett. 14:
20180115.
http://dx.doi.org/10.1098/rsbl.2018.0115

Received: 22 February 2018
Accepted: 30 May 2018

Subject Areas:
behaviour, ecology

Keywords:
accelerometers, behaviour, climate change,
locomotion, plasticity

Author for correspondence:
Talisin T. Hammond
e-mail: talisintess@gmail.com

Electronic supplementary material is available
online at https://dx.doi.org/10.6084/m9.
figshare.c.4128563.

THE ROYAL SOCIETY

PUBLISHING

Animal behaviour

Ecological specialization, variability
in activity patterns and response
to environmental change

Talisin T. Hammond', Rupert Palme? and Eileen A. Lacey'

"Museum of Vertebrate Zoology, University of California Berkeley, Berkeley, CA, USA
2Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
3Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria

TTH, 0000-0003-4175-8128

Differences in temporal patterns of activity can modulate the ambient con-
ditions to which organisms are exposed, providing an important mechanism
for responding to environmental change. Such differences may be particularly
relevant to ecological generalists, which are expected to encounter a wider
range of environmental conditions. Here, we compare temporal patterns of
activity for partially sympatric populations of a generalist (the lodgepole chip-
munk, Tamias speciosus) and a more specialized congener (the alpine chipmunlk,
Tamias alpinus) that have displayed divergent responses to the past century of
environmental change. Although mean activity budgets were similar between
species, analyses of individual-level variation in locomotion revealed that
T. alpinus exhibited a narrower range of activity patterns than T. speciosus.
Further analyses revealed that T. alpinus was more active earlier in the day,
when temperatures were cooler, and that activity patterns for both species
changed with increased interspecific co-occurrence. These results are consistent
with the greater responsiveness of T. alpinus to changes in environmental con-
ditions. In addition to highlighting the utility of accelerometers for collecting
behavioural data, our findings add to a growing body of evidence, suggesting
that the greater phenotypic variability displayed by ecological generalists may
be critical to in situ responses to environmental change.

1. Background

Ecological generalists often display different responses to environmental con-
ditions from ecological specialists, with the latter tending to be more sensitive
to external changes [1,2]. This distinction has most often been examined with
regard to morphological and physiological attributes, although specialization of
behavioural traits [3,4] may also be important in the context of environmental
change. For example, temporal differences in activity can alter the conditions to
which organisms are exposed [5,6] and species with greater intraspecific variabil-
ity in such traits are expected to be better able to accommodate environmental
changes [7]. Such variability may also facilitate behavioural partitioning of
resources when confronted with novel competitors due to climate-induced
range shifts and associated changes in community dynamics [8,9]. While the
behavioural data needed to evaluate temporal differences in activity have histori-
cally been difficult to obtain, the growing use of accelerometers allows remote
monitoring of activity in free-living animals [10].

Here, we focus on two co-occurring congeners characterized by distinct
responses to the past century of environmental change. The alpine chipmunk
(Tamias alpinus, Ta), an ecological specialist endemic to alpine habitats in the
Sierra Nevada mountains, has undergone a significant upward range contraction
paired with changes in morphology, genetics and diet. By contrast, the more
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Table 1. Activity features extracted from individual GAM plots of locomotion as a function of smoothed time.
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generalist lodgepole chipmunk (T. speciosus, Ts) has not experi-
enced any consistent patterns of change [11-14]. Ecological
modelling suggests that Ta’s range is constrained by abiotic,
climatic factors; by contrast, Ts may be more limited by
interspecific competition [14,15].

To determine whether activity patterns contribute to the
differential responses of Ta and Ts to environmental con-
ditions, we used accelerometers to characterize patterns of
locomotion, examining interspecific differences in activity
and the extent to which such differences are associated with
external and intrinsic parameters. We also quantified gluco-
corticoids to assess the impacts of accelerometers on study
subjects. Our analyses of both species- and individual-level
variability in activity generate intriguing new insights
into how activity patterns may contribute to interspecific
differences in responses to environmental change.

2. Material and methods

(a) Study species and sites
Ta is a 30-50 g alpine specialist chipmunk; Ts weighs 50-80 g
and occurs at and below the treeline. Chipmunks at three
study sites (electronic supplementary material, table S1) were
captured using grids of Sherman traps that encompassed areas
occupied by one or both species.

(b) Accelerometers

Acceleration loggers (Corvus Scientific) consisting of a tri-axial
accelerometer, a data logger, and a battery and weighing 1.5—
2.5¢g (less than 5% body mass; detailed specifications in [16])
were deployed in approximately July—September 2015. Units
were affixed to 815 individuals per species per site with eyelash
extension glue after shaving a dorsal patch of fur. Units activated
every 15 min to record 10 s of 20 Hz acceleration readings. A pre-
viously validated machine learning system assigned these data to
one of three behavioural categories (‘still’, “in-place movement’,
‘locomotion’) with 82-90% accuracy [16].

(¢) Glucocorticoid analyses

Faeces were collected from traps when animals were captured to
deploy and recover accelerometers, and faecal glucocorticoid
metabolites (FGMs) were measured as described in [17] (see
electronic supplementary material for details).

(d) Climatic data

iButton loggers (DS1921G) were deployed near approximately
75% of trapping stations (within approx. 1 m of the ground) to

magnitude of maximum locomotion
time of maximum locomotion
time of minimum locomotion
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AUC of morning hours divided by AUC of daylight hours
AUC of evenihg hours divided by AUC of dabylbight hours
modality of locomotion curve (e.g. bimodal = 2)

collect hourly temperature readings. Data collected during accel-
erometer deployment were used to calculate mean, maximum,
minimum and variance in daily temperatures as well as mean
daytime and afternoon temperature at each individual’s trapping
grid. Principal components analysis (PCA) was applied to these
data to reduce dimensionality (electronic supplementary
material, table S2) and the first PC axis was used as a predictor
in models (§2e).

(e) Statistics

(i) Faecal glucocorticoid metabolites
Wilcoxon signed-rank tests were used to compare pre- and
post-accelerometer FGMs.

(ii) Activity budgets

Wilcoxon rank-sum tests were used to assess interspecific differ-
ences in the proportion of the day spent on each behavioural
category (§2b).

(iii) Activity patterns

For each individual, a generalized additive model (GAM; gam
package in R) was fitted for behaviour as a function of time of
day. The response variable was the number of seconds in each
10 s sampling period (§2b) scored as ‘locomotion’. Each model
was plotted and PCA (electronic supplementary material, table
S3) was applied to the correlation matrix of locomotion features
(table 1; electronic supplementary material, figure S1) extracted
from each individual’s plot. PCA loadings were un-rotated. We
repeated analyses for overall activity (locomotion and in-place
movement), which showed reduced interspecific differentiation;
thus, we focused only on locomotion for subsequent analyses.

To group individuals by differences in patterns of daily loco-
motion, K-means cluster analyses were applied to the first two
PCs (electronic supplementary material, table S3) of locomotion
features [18]. Sum-of-squared error scree plots were used to
determine the optimal number of clusters; each animal was
assigned to the cluster with the centroid nearest to its PC pos-
ition. For each species, x*-tests were used to determine if the
number of individuals per cluster differed from expectation
(equal distribution across clusters).

Generalized linear mixed models (GLMMs) were constructed
to test whether patterns of locomotion differed between species,
whether individuals altered their activity in areas of sympatry
versus allopatry and whether patterns of locomotion were associ-
ated with selected climatic or phenotypic factors (electronic
supplementary material, table S4). A set of models containing
all possible subsets of variables was constructed (‘dredge’ func-
tion, MuMIn package). All models for which comparisons with
the lowest-AIC (Akaike information criterion) model exhibited
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Figure 1. Daily activity budgets for T. alpinus (a) and T. speciosus (b). Mean proportion of each hour spent still (light shading), moving in place (medium shading)
or in locomotion (dark shading) is shown; no significant differences in activity were found between species. Species distributions are shown on the left. (Online

version in colour.)

a AAICc of less than 4 were included in model averaging
(‘'model.avg’) to generate the final optimum model.

3. Results

(a) Effects of accelerometers on faecal glucocorticoid
metabolites

No significant differences were detected between pre- and
post-accelerometer FGMs (Ta: V=72, p=0.37; Ts: V = 261,
p = 0.19; electronic supplementary material, figure S2).

(b) Activity budgets

Accelerometers were recovered from 19 Ta (15F, 4M) and 28
Ts (18F, 10M). These units collected data over a mean + s.d.
of 57.4 + 14 h per individual for Ta and 56.9 + 18.1 h per
individual for Ts. Overall activity budgets were similar
across species (figure 1); both species were diurnal, with no
significant differences in the proportion of the day spent on
any behavioural category (all p > 0.35).

(¢) Clustering of activity patterns

Scree plots (electronic supplementary material, figure S3)
indicated four clusters of locomotor activity (figure 2a).
While the distribution of individual Ts across clusters was
not uneven (y?= 143, p=0.70), Ta’s distribution differed
from expectation (y* = 11.9, p = 0.008). Ta was disproportion-
ately abundant in cluster 3 (11/19 individuals); averaged
activity patterns (GAM output for all individuals in a cluster;
figure 2b) revealed that animals in this cluster were more
active in the morning, such that peak locomotion did not
coincide with peak daily temperatures (figure 2b). By con-
trast, Tn was underrepresented in clusters 2 (1/19) and

4 (3/19), in which animals exhibited locomotion peaks later
in the day, when temperatures were higher, and was found
in expected numbers in cluster 1 (4/19), where individuals
were also more active in the morning.

(d) Locomotion and environmental parameters
Species, deployment date and species co-occurrence score
were retained in GLMMs predicting the first PCs of loco-
motion data; sex and the interaction between species and
species co-occurrence were also retained, although they had
limited predictive power (table 2). Model results were consist-
ent with cluster analyses, suggesting that activity patterns of
the focal species were significantly different. More specifi-
cally, Ta exhibited higher proportions of activity in the
mornings and earlier activity peaks in comparison with Ts
(table 2; electronic supplementary material, table S3). As co-
occurrence with heterospecifics increased, activity patterns
for both species changed, with individuals becoming more
active in the evening and less active in the morning (elec-
tronic supplementary material, table S3). As the season
progressed (i.e. later deployment dates), peak activity for
both species shifted to later in the day (table 2).

4. Discussion

Our results indicate that accelerometers provide valuable
information on activity patterns of small mammals. With
validation [16], accelerometer data can be used to monitor
specific behavioural categories, including locomotion, which
has clear implications for patterns of habitat use. Our FGM
analyses revealed no post-deployment changes, suggesting
that accelerometers were not stressful to study animals.
While overall activity budgets for the study species were
similar, individual patterns of locomotion revealed important
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Figure 2. Clustering of activity patterns. (a) A biplot showing clustering of activity data along the first two PCs of locomotion-based features (table 1). Arrows
represent vectors indicating the direction and magnitude of each variable’s PC score along the two axes. Each point represents an individual chipmunk (shape
denotes species and colour denotes cluster). (b)) GAM locomotion curves for each cluster; averaged values are depicted in bold, coloured by dluster, with
curves for all individuals in each cluster in grey. Dotted red lines show smoothed hourly temperatures from data collection periods and sampling localities averaged

across all individuals in each cluster.

interspecific differences that were likely masked by marked
intraspecific variation during analyses of mean activity bud-
gets. Specifically, our findings indicated that Ta was more
likely to exhibit higher proportions of and peak values of
locomotor activity during the morning, when temperatures
were cooler. This finding is consistent with the suggested
greater sensitivity of this species to thermal conditions
[14,19]. Given the correlational nature of our study and the
limited sample size and spatio-temporal scope of our study,

we cannot conclude that these results are due solely to temp-
erature, with no input from other environmental parameters
(e.g. predation risk, vapour pressure, forage quality). Our
findings do, however, underscore the importance of explor-
ing individual variation in activity patterns rather than
simply assessing differences in average activity [18].
Members of both species displayed altered locomotor
activity in areas of sympatry, with a shift towards greater
locomotion later in the day. Areas of sympatry tended to
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Table 2. Final model-averaged GLMM results predicting the first principal component of locomotion curve data (electronic supplementary material, table S2). n

Significant terms are in bold type.

estimate

(intercept) —0.01 0.25
species co-occurrence score 112 051

species (Ts) 0.51 0.21
omae e 052

sex (M) —0.19 0.21

sbéciéé >< co-occurrence ‘ score 0.30 0.41

random effect variance (s.d.)

site 0.06 0.25

have lower ambient daytime temperatures than sites inhab-
ited by exclusively T. alpinus, which were above the treeline
and, therefore, experienced greater exposure and warmer
daytime temperatures. Thus, at least for T. alpinus, increased
activity later in the day was not due to warmer temperatures
in areas of sympatry. Interspecific competition provides a
logical hypothesis to explain differences in locomotion in
areas of sympatry, although other, unmeasured habitat
variables may also contribute to these differences.

Among individuals, Ta exhibited less diverse temporal
patterns of locomotion in comparison with Ts, suggesting that
the former species has reduced variability in activity patterns.
In addition to undergoing more pronounced spatial, genetic,
dietary and morphological responses to the past century of
environmental change [11-14], Ta is more ecologically special-
ized than Ts, and Ta’s reduced variability in activity patterns is
consistent with the prediction that taxa with reduced behav-
ioural diversity or flexibility may be less able to cope in situ
with rapidly changing environments [7,20]. Ultimately,

References

adjusted s.e.

z-value p-value relative importance
0.06 0.95
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improved understanding of interactions between ecological
specialization and phenotypic variability should enhance
understanding of biotic responses to environmental change.
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