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Abstract

We propose a new method to predict microbial metabolic rates in natural environments
using genome-scale metabolic models. This method is a hybrid of existing approaches, i.e., rate
laws and flux balance analysis (FBA). It accounts for the availabilities of chemical energy and
growth nutrients in the environment, and applies FBA independently to the respiration and
biosynthesis pathways of genome-scale metabolic models. We illustrate the new method by
modeling the metabolism of a representative methanogen — Methanosarcina barkeri — in
laboratory reactors and in pristine and biostimulated aquifers. The laboratory application
demonstrates that the hybrid method predicts the rates of individual biochemical reactions within
overall cell metabolism and tracks, explicitly, cellular fluxes of carbon and energy. The aquifer
applications reveal that the growth of methanogens in natural systems can be limited by multiple
factors, including energy sources and growth nutrients, and that the limitations are subject to
Liebig’s Law of the Minimum. These results highlight the improvements of the new method in
biogeochemical reaction modeling, including its applicability to diverse environments, from
eutrophic to oligotrophic.
Keywords: genome-scale metabolic model, biogeochemical reaction modeling, microbial

kinetics, flux balance analysis, nutrient limitation, methanogenesis
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1. Introduction

Biogeochemical reaction modeling simulates, numerically, concurrent geochemical
reactions and microbial metabolisms in natural environments (Bethke, 2008). This method
combines geochemical and microbial reaction models. Geochemical models focus on chemical
speciation, redox reactions, mineral precipitation and dissolution, and other abiotic reactions.
Microbial models describe microbial reactions and the development of microbial populations. By
coupling microbial and geochemical models, biogeochemical reaction modeling offers a
quantitative assessment of microbial processes in natural environments, and has become a
routine tool for both theoretical and practical applications, such as element cycling and the
contamination and remediation of groundwater (Druhan et al., 2012; Jin and Roden, 2011;
Johannesson and Neumann, 2012).

Classical approaches simulate microbial metabolisms using black-box models (Jin et al.,
2013). These models bypass biochemical pathways and metabolic regulation, and compute rates
of respiration and growth directly from environmental concentrations of energy sources and
growth nutrients using rate laws (Monod, 1949; Simkins and Alexander, 1984). For example,
they calculate respiration rates 7'r (mol-g~!-s™!) using the thermodynamically-consistent Monod

equation (Jin and Bethke, 2002; 2003),

rﬁ:k. mD . mA . l_exp _M , (1)
my+K, m,+K,

where k is the rate constant (respiration rate per unit biomass, mol-g~'-s™!), mp and ma are the
molal concentrations of electron donors and acceptors, respectively, Kp and Ka are the molal
half-saturation constants, AGa is the energy available from redox reactions — the negative of the

Gibbs free energy change (J'-mol™"), AGc is the energy conserved by respiration (J-mol™"), yis
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the average stoichiometric number, R is the gas constant (8.3145 J-mol!-K™!), and T is the
temperature in Kelvin. They calculate biosynthesis rate »'x — biomass production rate per unit
biomass (s') — from respiration rate,

g :YX/i'Vi,R'rI; ) (2)

and calculate microbial growth rate (g-kg~!-s™),

dl X , ,
B -m)ma 3)

as the difference between the biosynthesis rate 7, and the maintenance/death rate 7, (s™') (Jin

and Roden, 2011; Jin et al., 2013). Here [X] is the biomass concentration in dry weight per unit
water mass (g-kg™!), Yxii is the biomass yield per chemical compound i (g-mol™"), and vig is the
stoichiometric coefficient of compound i in respiration reaction equation. These equations are
simple in implementation and fast in computation, but their application to natural environments
has not always been successful. For instance, their predictions can deviate from field
observations by orders of magnitude (Brown et al., 2000; Chapelle and Lovley, 1990; Murphy
and Schramke, 1998). Previous studies have questioned the applicability of the rate equations,
and ascribed the discrepancies to the differences in growth conditions and microbial metabolisms
between laboratory reactors and natural environments (Jannasch, 1967; Jin and Bethke, 2005; Jin
etal., 2013).

Recently, genome-scale metabolic models have emerged as a solution to address the
challenges of the standard modeling approach (Mahadevan et al., 2011). These models use a
series of stoichiometric equations to describe biochemical reactions of metabolic pathways, from
nutrient uptake, to respiration, and to biosynthesis (Bordbar et al., 2014; Reed and Palsson,

2003). They make possible the integration of metabolic pathways into the prediction of microbial



68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

kinetics.

For example, dynamic flux balance analysis predicts microbial rates by combining flux
balance analysis (FBA) with the Michaelis-Menten equation (fig 1A) (Mahadevan et al., 2002;
Vargas et al., 2011). The Michaelis-Menten equation calculates cellular fluxes of nutrient uptake
from the environment. FBA is a standard method for analyzing genome-scale metabolic models
(Feist and Palsson, 2008; Orth et al., 2010). It takes one or more uptake fluxes as the input, and
maximizes growth rates by optimizing the rates of biochemical reactions in genome-scale
metabolic models. This method only requires the kinetic parameters for nutrient uptake, and is
especially attractive where critical information, such as enzyme kinetic parameters, is not
available.

Previous studies applied dynamic FBA to both bioreactors and natural environments
(Henson and Hanly, 2014; Meadows et al., 2010; Tartakovsky et al., 2013; Zhao et al., 2011;
Zhuang et al., 2010). However, the method may not be suitable for many environmental
applications. For instance, in order to apply the genome-scale metabolic model of a ferric-iron
respirer — Geobacter sulfurreducens — to an aquifer, the rate predictions had to be scaled down
by an ad hoc factor of 10 (Fang et al., 2011; Scheibe et al., 2009).

Several factors have been proposed to account for the rate overestimation by dynamic
FBA. Specifically, genome-scale metabolic models are under-determined — they have more
metabolite fluxes than biochemical reactions (Herrgérd et al., 2006). As a result, their solutions
might be mathematically correct, but physiologically infeasible. In addition, FBA maximizes
microbial growth rates at given nutrient fluxes, which may not work for microbes whose
metabolic performance is suboptimal (Feist and Palsson, 2010; Wintermute et al., 2013). Also

important is the utilization of the standard Michaelis-Menten equation. This equation does not
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consider thermodynamic controls on microbial metabolism, and may not capture the full
complexity of nutrient transport from the environment to the cytoplasm (Button, 1985; Jin and
Bethke, 2007). Furthermore, growth rates and other model predictions are highly sensitive to the
enzyme parameters in the Michaelis-Menten equation, which makes dynamic FBA prone to error
(Klier, 2012).

Here we propose a new method for applying genome-scale metabolic models to microbial
kinetics in natural environments (Jin et al., 2013). This method is a hybrid of FBA and the rate
laws for microbial respiration and nutrient uptake (Jin and Bethke, 2003). It accounts for
microbial energy conservation and the uptake of growth nutrient, and applies FBA independently

to the respiration and biosynthesis pathways of genome-scale metabolic models.

We illustrate the hybrid method using a representative methanogen —Methanosarcina
barkeri. M. barkeri and its relatives live in diverse environments, from surface sediments to
aquifers (Hedderich and Whitman, 2006; Smith et al., 2015). They can make methane from
acetate — a major contributor to global methane production and a key process of biogeochemical
carbon cycling (Ferry, 2010). We apply the hybrid method to simulate the metabolism of M.
barkeri in laboratory reactors, as well as to analyze microbial growth under energy- vs. nutrient-

limiting conditions in pristine and biostimulated aquifers.

2. Methods
2.1. Flux balance analysis

Genome-scale metabolic models represent the biochemical reactions of an entire
metabolism using a stoichiometric matrix, S, of size m*n. Here, n is the number of biochemical
reactions and m is the number of metabolites — chemical compounds consumed and produced by

biochemical reactions. Element Sj; is the stoichiometric coefficient of metabolite i in reaction j.



114  These biochemical reactions are derived from annotated genomes, and drive respiration,

115  biosynthesis, detoxification, and other key metabolic functions (Thiele and Palsson, 2010). In
116  addition, genome-scale metabolic models also contain two hypothetical reactions. One is the
117  biomass production reaction that produces new cells from amino acids, nucleic acids and other
118  biomass precursors, and the other is an ATP hydrolysis reaction that accounts for the energy

119  consumption by cellular maintenance — metabolic processes that maintain the integrity and

120  function of cell components and structures, but do not contribute to cell reproduction (Hoehler
121  and Jergensen, 2013).

122 FBA assumes that metabolism is at steady state, and applies the principle of mass balance
123  to metabolite fluxes. The result is a linear algebra equation,

124 J=8SR 4)
125  where J and R are column vectors; element J; is the net flux or production rate of metabolite i per
126  unit dry weight of biomass (mol-g~!-s™!), and element R; is the rate of biochemical reaction j per
127  unit biomass (mol-g~!s™).

128 Different modeling disciplines treat under-determined systems differently. For instance,
129  geochemical reaction modeling brings under-determined systems to balance using the principle
130 of mass action (Bethke, 2008). But this approach is not feasible for genome-scale metabolic

131  models because kinetic parameters are not available for most biochemical reactions. Instead,

132  FBA takes one or more uptake fluxes of energy sources and growth nutrients as the input, and
133  optimizes the rates of individual biochemical reactions in order to maximize the rates of growth
134  (Feist and Palsson, 2010).

135  2.2. Dynamic FBA

136 Dynamic FBA applies FBA to simulate microbial metabolisms, assuming that the
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metabolisms are at quasi steady-state (Becker et al., 2007). At each time step, this method
assumes that cell metabolisms are at steady state, and predicts microbial rates and chemical
fluxes in two steps (fig 1A) (Mahadevan et al., 2002). It first applies the classical Michaelis-
Menten equation to compute the uptake fluxes of energy sources and growth nutrients. For

example, the uptake flux Fn of a nutrient is calculated according to,

m
FN — V . N,env (5)

max 5
mN,env + KN,env

where Vmax is the maximum flux (mol-g~!-s™!), mn.env is the molal concentration of nutrient N in
the environment, and Kn env 1s the molal Michaelis constant (M). It then takes one or more uptake
fluxes as the input, and applies FBA to genome-scale metabolic models to predict microbial
growth rates and the fluxes of nutrient consumption and waste production by cell metabolisms.
At the end of the time step, the growth rates and chemical fluxes are applied to update the
concentrations of biomass and chemical compounds, respectively.
2.3. Hybrid method

We propose a hybrid method that combines FBA with microbial rate laws. This method
builds on current frameworks of biogeochemical reaction modeling, and accounts for the
availabilities of chemical energy and growth nutrients in the environment (fig 1B).
2.3.1. Nutrient uptake

A unique feature of the hybrid method is the consideration of cytoplasmic nutrient
accumulation. Microbes can accumulate nutrient in the cytoplasm by releasing proton motive
force or by hydrolyzing ATP — a process called active transport (Tanford, 1983). By coupling to

the release of proton motive force, nutrient transport can be described as

N, +v H. =2 N + v, H. (6)

env cyt 2
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where Neny and Ney are the nutrient in the environment and the cytoplasm, respectively, H. = and

env

H:y, are the protons in the environment and the cytoplasm, respectively, and v is the number of

protons transported together with the nutrient. We calculate the uptake flux Fx using the

thermodynamically-consistent Michaelis-Menten equation,

F =V Mhew 7 )
N 7 max m +K T>

N,env N,env
in order to account for the feedback inhibition of nutrient accumulation in the cytoplasm (Jin and

Bethke, 2007). Here Fr is the thermodynamic factor,

(zN+VH)-FAp+

1 aN env
F,=1-——ex
P RT

T

Zy -ln(IO)-ApH , (8)

AN eyt
where a represents chemical activity — the product of molal concentration and activity
coefficient, zn is the electrical charge of the nutrient, Ap is the proton motive force (V), ApH is
the pH difference between the environment and the cytoplasm, and F is the Faraday constant
(Jin, 2012).

Evaluating the thermodynamic factor (eq 8) requires knowledge of the nutrient
concentration in the cytoplasm — a parameter not available for most microbes. We note that
cytoplasmic nutrient concentration influences not only nutrient transport (eq 8), but also the
activities of cytoplasmic enzymes that consume nutrients. The impact on nutrient consumption

can be quantified using a kinetic factor Fx,

m
Fe=—2— 9)

- 9
mN,cyt + KN,cyt

where m and K are the molal concentration and Michaelis constant of nutrients, respectively (Jin

and Bethke, 2007).
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From equation 8 and 9, we see that high cytoplasmic concentrations inhibit nutrient
assimilation by lowering the F'r value and hence the uptake flux . On the other hand, high
concentrations raise the kinetic factor Fx and the activities of nutrient-consuming enzymes,
thereby promoting nutrient assimilation. We thus assume that to effectively assimilate nutrients,
microbes need to maximize the product of the thermodynamic factor Fr and the kinetic factor

Fx,
max(FT F;Z) (10)

Here, the exponent n accounts for the likelihood that the thermodynamic and the kinetic factors
may influence nutrient consumption and assimilation to different extents. Solving equation 10
gives the optimum cytoplasmic nutrient concentration, which is then applied to compute the
nutrient uptake flux (eq 7).
2.3.2. Respiration

The hybrid method calculates respiration rate »'r according to the
thermodynamically-consistent Monod equation (eq 1). In evaluating this rate equation, we
calculate the energy AGc conserved by respiration,

AG. =V, - AG,, (11)
as the product of the ATP yield varp — the number of ATPs produced per respiration reaction —
and the phosphorylation energy AGp — the energy required for ATP synthesis from ADP and
phosphate [J-(mol ATP)~']. We calculate the chemical flux (mol-g'-s!) of respiration according
to

Fr=Vir 1 > (12)
where FiR is the flux of compound i, and its value is positive for reaction products and negative

for reactants.
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We estimate the ATP yield by applying FBA to the respiration pathways in genome-scale
metabolic models. ATP is an intermediate metabolite produced by respiration pathways, and is
consumed by biosynthesis pathways and maintenance reactions. The steady-state assumption of
FBA dictates that the net flux of ATP is 0. In order to estimate ATP yields, we temporarily
decouple ATP production and consumption by setting the rates of the biosynthesis and
maintenance reactions to 0.

We add a hypothetical reaction of ATP output to the genome-scale metabolic models, and
assume that respiration maximizes the ATP output flux. We carry out FBA using the uptake
fluxes of electron donors D and/or acceptors A as the input. The FBA output includes the fluxes
of ATP output and the production of oxidized electron donors D" and reduced electron acceptors

A~. The ratios of these fluxes give the stoichiometric equations of respiration,

D vpD+D v A+v,, ADP+v, P v, HY 2 Y v D'+ v A+, ,ATP+v,,H,0,
D A D A

(13)

where p and others are stoichiometric coefficients, and P; is inorganic phosphate (HPO; ).

2.3.3. Biosynthesis

We apply FBA to the biosynthesis pathways to predict the rates, chemical fluxes, and
yields of biosynthesis. Biosynthesis pathways use ATP to make new biomass from growth
nutrients. As discussed above, because ATP is an intermediate metabolite, we cannot analyze the
effect of ATP supply on biosynthesis by applying FBA directly to genome-scale metabolic
models. Instead, we stop the ATP-producing respiration pathways and the ATP-consuming
maintenance reaction, and prescribe a supply flux of ATP as the input for biosynthesis. In order
to analyze the relative importance of ATP and growth nutrients, we also prescribe nutrient

uptake fluxes as the input.

10
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We follow the standard practice of assuming that microbes maximize the rates of

biosynthesis (Feist and Palsson, 2010). The FBA output includes biosynthesis rates 7y, and the

chemical fluxes driven by the biosynthetic reactions, such as nutrient consumption and waste
production. The ratios of these chemical fluxes can be applied to infer the stoichiometric
equation for biosynthesis, and biosynthesis rates are applied to compute the rates of microbial
growth (eq 3). The chemical fluxes are combined with those of respiration to compute the total
chemical fluxes of cell metabolism. For example, the total flux Fit of compound i is
Fr=Fg +Fix, (14)

the sum of the fluxes driven by respiration (Fjr) and by biosynthesis (Fjx).
2.4. Application

We apply the hybrid method to the current genome-scale metabolic model of M. barkeri
— model iIMG746, a revised version of the original model iAF692 (Feist et al., 2006; Gonnerman
et al., 2013). We update model iMG746 with the following revisions: the Na'/H" antiporter
translocates one proton per Na' (Jin, 2012) and the acetate transporter moves one acetate
molecule, together with one proton, across the membrane (Welte et al., 2014). We set the
growth-associated ATP consumption — the ATP requirement by the hypothetical biomass
production reaction — to 109 mmol-g~! (Kliphuis et al., 2012). We also follow the original model
—1AF692 and remove the sulfite transporter activity, because no gene in M. barkeri genome
codes for a sulfite transporter.

Microbial growth consumes sources of energy, carbon, nitrogen, phosphorous, and other
elements. M. barkeri can fix Ny, but prefers ammonium as the source of nitrogen (Kenealy et al.,
1982; Kessler et al., 2001), and both pathways are represented in model iMG746. Here we take

ammonium uptake as an example (Boogerd et al., 2011),

11
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NH, +H = NH, +H’ (15)

3env T Heny 3ot T eyt
to illustrate how explicitly accounting for nutrient availability and transport influences the
accuracy of microbial growth rate prediction via the hybrid method.

Before simulating the metabolism of M. barkeri, we apply FBA to the methanogenesis
pathway of model iMG746 to estimate the yield of ATP (fig 1B). We assume that cytoplasmic
ammonium concentrations are at optimum levels for biosynthesis, and solve the optimization
problem (eq 10) at different environmental ammonium concentrations using brute-force search.
We then use the estimated ATP yield and the optimized cytoplasmic ammonium concentrations
to simulate the overall metabolism of M. barkeri. At each time step, we first calculate the rate
and ATP flux of methanogenesis using the thermodynamically-consistent Monod equation (egs.
1 and 12), and the flux of ammonium uptake using the thermodynamically-consistent Michaelis-
Menten equation (eqs. 7 and 8). We predict the rate and chemical fluxes of biosynthesis by
applying FBA to the biosynthesis pathway, using the fluxes of ATP synthesis and ammonium
uptake as the input. At the end of the time step, we update the concentrations of chemical
compounds and biomass in the environment (eqs. 3 and 14). Applying the hybrid method
requires a series of microbial and enzymatic parameters, which, for the present calculation, are
listed in table 1.

We implement the hybrid method by linking the COBRA toolbox and PHREEQC
software package and by using the Microsoft Component Object Model (COM) Server as a
control and data management source. COM is a Microsoft foundations technology for
exchanging information among software packages of different platforms. COBRA and
PHREEQC specialize in FBA and biogeochemical reaction modeling, respectively (Charlton and

Parkhurst, 2011; Schellenberger et al., 2011). We run COBRA using Gruobi version 6.5, a linear

12
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solver that provides acceptable accuracy at small chemical fluxes. The input files of the
simulations are available in the Supplementary Material.
3. Results

We illustrate the hybrid method using the metabolism of M. barkeri growing on acetate.
We first estimate key parameters, including the ATP yield of methanogenesis, the stoichiometry
of biosynthesis reactions, and the flux of ammonium uptake. We then simulate the metabolism in
laboratory experiments, and predict the growth in aquifers under energy- vs. nutrient- limiting
conditions.
3.1. Model predictions

The hybrid method takes multiple steps to predict the rates of methanogenesis and
biosynthesis in M. barkeri. These steps include applying FBA independently to the
methanogenesis and biosynthesis pathways in model iMG746, as well as the optimization of
cytoplasmic nutrient concentration.
3.1.1. ATP yield

We apply FBA to the methanogenesis pathway of model iMG746 to estimate the ATP
yield of acetoclastic methanogenesis. The results show that M. barkeri makes ATP by
consuming acetate and proton and producing methane and CO;. The ratios of the chemical fluxes
give a yield of 0.75 ATPs per methane, and the following stoichiometric equation of

acetcoclastic methanogenesis,
3 3 3. 3 3
Acetate+ZADP+ZPi+IZH ﬁCH4+COZ+ZATP+ZH20. (16)

These ratios remain constant over acetate uptake fluxes of 10~ mmol-g!-hr~!, as in oligotrophic
environments (Hoehler and Jergensen, 2013), to a maximum flux of 7.1 mmol-g~!-hr! (table 1).

The FBA-derived ATP yield matches with the value estimated previously for Methanosarcina

13
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species (Welte and Deppenmeier, 2013). The product of the ATP yield and the maximum acetate
uptake flux gives the maximum flux of ATP production at 5.3 mmol-g~'-hr! (eq 12).
3.1.2. Biosynthesis reaction

We apply FBA to the biosynthesis pathway to analyze the effect of microbial energy
conservation on biomass synthesis. Biosynthesis consumes both ATP and nutrients. In order to
focus on ATP supply, we use the flux of ATP as the only input for FBA, assuming that nutrient
uptake is not limiting with respect to biosynthesis, as would be typical in most laboratory
experiments (Whitman et al., 2006). Later we consider nutrient limitation by taking ammonium
as an example (section 3.3.1.).

The FBA results show that the biosynthesis pathway makes new cells by consuming
acetate, ammonium, proton, phosphate, and cysteine. The cysteine requirement is consistent with
the current practice of laboratory culturing: cysteine is an essential nutrient and serves as a
source of sulfur for M. barkeri (Mazumder et al., 1986). The biosynthesis pathway also produces
CO; and methylsulfide (methanethiol or methyl mercaptan, CH3SH) as waste products. The
methylsulfide production complements previous laboratory observations that the methanogenesis
of M. barkeri can consume methylsulfide as a substrate or produce it as a product (Moran et al.,
2008; Zhang et al., 2008).

The rates and chemical fluxes of biosynthesis vary linearly with ATP fluxes. The overall

rate of biosynthesis is given by,

1 = Youre - Farpo (17)
where Yx/atp is the biomass yield per ATP, and has a value, 6.1 g-mol, that is close to the value
(6.2 g'mol™!) determined using laboratory bioreactors (Jin, 2012). When ATP is supplied at the

maximum production flux, biosynthesis reaches a maximum rate of 3.2x102 hr!, consuming
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ammonium at a maximum flux of 0.35 mmol-g~!-hr~!. The predicted maximum biosynthesis rate

is close to the maximum growth rate of M. barkeri in laboratory reactors (4.1x10~> hr")
(Fukuzaki et al., 1990).
The linear variations of the chemical fluxes also give the following stoichiometric

equation for biosynthesis,

1.73 Acetate + 0.95NH; +0.05Cysteine+11.78H,0 +14.17ATP
— X +0.08CO, +0.03CH,SH +14.17ADP +14.09P, +13.29H"

(18)

Here X represents biomass with a chemical formula of Cs.52Hs.4201.33NP0.08S0.03 (molecular
weight, 86.46). The chemical formula is arrived at on the basis of the cellular composition of
macromolecules and metabolites (Gonnerman et al., 2013); following the common practice, we
set the number of nitrogen atom in the biomass formula at 1. The FBA results show that the
biosynthesis reaction also produces aminobenzoate and glycolaldehyde as waste products.
However, as these compounds have stoichiometric coefficients of only 0.002, they are omitted
from the reaction equation. Also note that ADP and phosphate do not have a 1:1 stoichiometry in
the products, as would be the case if ATP hydrolysis was the sole reaction involving phosphate.
Instead, the smaller quantity of phosphate relative to ADP is due to the consumption of 0.08 mol
phosphate per mol biomass synthesized.
3.1.3. Ammonium transport

Optimizing cytoplasmic ammonium concentration requires a series of parameters,
including the maximum ammonium uptake flux, the Michaelis constant of cytoplasmic
ammonium, and the exponent 7 (see eqs 8, 9 and 10). We calculate the maximum ammonium

uptake flux, Vmax, of 0.35 mmol-g~!-hr~!, from the maximum biosynthesis rate and the

stoichiometric equation of biosynthesis (eq 18). The maximum ammonium flux and biosynthesis
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rate are close to those of Geobacter sulfurreducens: Scheibe et al. (2009) estimated that G.
sulfurreducens has a maximum ammonium flux and biosynthesis rate of 0.5 mmol-g~!-hr~! and
4.7x102 hr!, respectively.

The exponent # in the optimization function (eq 10) determines the magnitude of
ammonium accumulation in the cytoplasm. A large n value favors the accumulation of
cytoplasmic ammonium, while a small value lowers the accumulation. Kadam and Boone (1996)
analyzed ammonium accumulation by Methanolobus bombayensis, Methanolobus taylorii, and
Methanohalophilus zhilinaeae in laboratory reactors where ammonium concentrations are
relatively large, > 10 mM (fig 2A). By trial and error, we found that by taking the exponent » as
2, the optimization solution matches the ammonium accumulation in those three methanogens
(see fig 2A). The exponent n of 2 suggests that these methanogens likely favor ammonium
accumulation in the cytoplasm, which comes at the expense of decreasing the thermodynamic
factor and, hence, the ammonium transport flux (eq 8). This may reflect the need of a relatively
large pool of cytoplasmic ammonium in order to speed up the ammonium-consuming enzymes
with relatively large Michaelis constants. Specifically, in the cytoplasm of M. barkeri,
ammonium-consuming enzymes include glutamine synthetase and glutamate dehydrogenase, and
their Michaelis constants for ammonium can be as large as 2 mM (Boogerd et al., 2011).

Here we assume that for M. barkeri, the exponent n also takes a value of 2 and that the
laboratory observations can be extrapolated to natural environments, where ammonium
concentrations are generally much smaller than 10 mM (fig 2B). Figure 2B and C show the
accumulation of cytoplasmic ammonium and the corresponding fluxes of ammonium uptake,
given these assumptions. Both the accumulation and uptake respond strongly to the availability

of ammonium. With an environmental ammonium concentration of 1 uM, M. barkeri can
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accumulate ammonium in the cytoplasm by a factor of 33, and transport ammonium at a flux of
3.1x10~* mmol-g'-hr~!. At 10 mM ammonium, the accumulation reduces to four fold, but the
uptake flux increases to 0.31 mmol-g~!-hr™!, close to the maximum flux.

3.2. Laboratory experiments

Previous laboratory studies have extensively examined the metabolism of M. barkeri
growing on acetate (e.g., Mah et al., 1978; Smith and Mah, 1978; Westermann et al., 1989, and
others). Here we apply the hybrid method to simulate the experiments of Fukuzaki et al. (1990).
They grew M. barkeri at 37 °C in batch reactors of 50 mL of complex growth media and 75 mL
headspace. The media had pH 7.1 and contained 19.7 mM acetate and 9.3 mM ammonium. They
followed closely the progress of acetate consumption, even after acetate reached a constant
concentration of 2.0 mM at day 4 (fig 3A), which provides an opportunity to illustrate the
thermodynamic control on the progress of metabolism.

We simulated the progression of their experiments using an initial biomass concentration
of 30 mg-kg~!. This value is estimated on the basis of the experimental results of the first two
days (fig 3A). The simulation results match the observations of Fukuzaki et al. (1990). As shown
in figure 3A, at the beginning of the experiments, acetate concentration decreases almost linearly
with time. After two days into the experiments, the decrease slows down. The simulation
predicts that methane and biomass build up in the reactors (fig 3A and B). At the end of the
simulation, acetate concentration decreases to 1.3 mM, and 16.9 mmol methane is produced per
liter of growth media. Note that our simulation partitions methane between the medium and
headspace, with respective volumes as given by Fukuzaki et al. (1990); figure 3 plots only the
dissolved methane concentration. These results give a stoichiometric ratio of methane production

to acetate consumption at 0.92, close to the value of 1 in the reaction equation (eq 16) (Smith and
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Mah, 1978). Biomass concentration increases with time and reaches its maximum value at day 5.
The simulation also predicts notable ammonium consumption — during the experiments, a total of
0.8 mM ammonium is consumed (fig 3A).

We also simulate the experimental progress using dynamic FBA, and an initial biomass
concentration of 0.12 g-kg~!. Table 1 lists the required parameters and their values for the
simulation. As shown in figure 3A and B, dynamic FBA is only applicable to the first 2.5 days of
the experiments. It predicts well acetate consumption during this period. But after day 2.5,
dynamic FBA fails to return any solution, for reasons described in the discussion below.

The results of the hybrid method agree with previous characterizations of methanogen
metabolisms. For instance, previous studies describe the efficiency of cell metabolism in terms
of the biomass yield per carbon source, Yx/,c (Roden and Jin, 2011). We can calculate the

biomass yield from the predicted biosynthesis rate 7; and the total flux of acetate consumption

Facr,

rl
Yo =—X—. (19)
e FAC,T

Substituting equation 14 and applying the simulation results give a Yx/c value of 4.0 g-mol ™!,
near the upper end of the range of 1.2 to 4.2 g-mol~! determined in laboratory bioreactors
(Scherer and Sahm, 1981; Sowers et al., 1984).

As a second example, acetate is used by M. barkeri in both methanogenesis (energy-
producing) and biosynthesis (carbon-utilizing) reactions. Here the fractions of acetate consumed
by methanogenesis and biosynthesis are denoted as fr and fx, respectively. The simulation
predicts that M. barkeri has fr of 0.92 and fx of 0.08 (fig 3C and D), close to the values of 0.95

and 0.05 suggested previously (Rittmann and McCarty, 2012).
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The simulation results include the rates of individual biochemical reactions, which allow
us to further track the cellular usage of acetate. The biosynthesis pathway of M. barkeri
consumes acetate for two purposes. One is the production of acetyl-CoA and pyruvate — the
central metabolites for the production of amino acids, nucleotides, and other biomass precursors.
The other is the production of reducing power — reduced ferredoxins and cofactor F420, which
are utilized in the synthesis of biomass precursors (Jablonski and Ferry, 1991; Krzycki et al.,
1982). To produce the reducing power, acetate is first oxidized to methyl-
tertahydrosarcinapterin, and then to CO». The first oxidation step is driven by the CO
dehydrogenase/acetyl-CoA synthase enzyme complex and the second by the reversal of the CO»
reduction portion of the hydrogenotrophic methanogenesis pathway.

The simulation results predict that, for M. barkeri growing on acetate in laboratory
reactors, the biosynthesis pathway spends 72.7% of the acetate flux on the production of acetyl-
CoA and pyruvate and the remaining 27.3% on the production of reducing power. Overall, of the
total acetate consumed by M. barkeri, the fraction used to generate reducing power is 0.02, the
fraction used for production of biomass precursors is 0.06, and the remaining fraction, 0.92, is
consumed by the methanogenesis pathway for ATP production. These values fall into the range
reported previously for Methanosaeta harundinacea strain 6Ac — another methanogen capable of
acetoclastic methanogenesis. Zhou et al. (2015) analyzed the significance of reducing power
production during the growth of strain 6 Ac on acetate, and reported that the acetate fraction for
reducing power production ranged from 0.005 to 0.037.

The simulation results indicate that, in typical laboratory culturing media, the growth of
M. barkeri is limited primarily by energy sources (Hespell and Bryant, 1979; Tempest and

Neijssel, 1984). In the simulation, M. barkeri lives in the growth media of about 9 mM
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ammonium, and can transport ammonium at up to 0.31 mmol-g~!-hr~!, fast enough to support the
biosynthesis pathway (fig 3D). In comparison, the energy available to ATP synthesis decreases
with time, thereby decreasing the flux of ATP production and hence the rate of biosynthesis (fig
3C,E, and F).
3.3. Environmental application

Natural environments are often limited in growth nutrients and/or energy sources. But it
has been challenging to experimentally analyze how nutrient availability impacts the kinetics of
microbial metabolism, due to the technical difficulties in differentiating between metabolically
active and dormant cells, in attributing bulk chemical measurements to specific microbial
populations, and in untangling the overlapping effects of energy sources and growth nutrients.
The hybrid method accounts for ATP production and nutrient consumption at the same time,
which offers a computational approach to explore microbial growth under energy- vs nutrient-
deprived conditions.
3.3.1. Ammonium limitation

We first take ammonium consumption as an example, and apply the hybrid method to
predict how nutrient availability influences the kinetics and efficiency of biomass synthesis of M.
barkeri. Ammonium is commonly limiting in natural environments (Knelman et al., 2014;
LeBauer and Treseder, 2008). Its concentrations range from less than 1 uM in oligotrophic
environments to over | mM in eutrophic settings (Buss et al., 2004). Figure 4A shows how the
biosynthesis rate varies with acetate concentration in an environment containing 10 uM
ammonium, 1 mM bicarbonate, and 1 to 10* pM methane. At 1 uM methane, where acetate
concentration is less than 30 uM, the biosynthesis is limited by ATP supply, and the biosynthesis

rate increases with acetate concentration. At acetate concentration greater than the threshold of
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30 uM, the biosynthesis is limited by ammonium availability, and proceeds at a maximum rate of
1.9x10~* hr .

Increases in methane concentration increase the threshold acetate concentration for
ammonium limitation. This is because methane accumulation slows down ATP production by
methanogenesis (eqs 1 and 12) and therefore reduces the demand for ammonium in biosynthesis
(eq 18). At I mM methane, the threshold acetate concentration increases to 475 uM, one order of
magnitude larger than the acetate threshold at 1 uM methane.

Figure 4B illustrates the transition between energy-limited and N-limited regimes across
ranges of environmentally-meaningful acetate, ammonium, and methane concentrations.
Increases in ammonium concentrations raise maximum biosynthesis rates. Larger ammonium
concentrations enable faster ammonium uptake (eq 7), which in turn supports faster biosynthesis
(eq 18). At 1 mM ammonium, the biosynthesis can reach a maximum value of 1.2x10~2 hr !,
about two orders of magnitude larger than the maximum rate at 10 uM ammonium.

The efficiency of biosynthesis has been described using different parameters. As
mentioned above, the efficiency of laboratory cultures is characterized using biomass yield Yx/.c
(eq 19). For natural communities, the efficiency is measured using carbon use efficiency (CUE)
— the portion of total carbon consumed in cell metabolism that is assimilated into new biomass
(Sinsabaugh et al., 2013; Stefano et al., 2012). The two parameters are exchangeable,

CUE = fyc Vacx Yacs (20)

where fxc is the fraction of acetate flux assimilated into new biomass over the flux driven by

biosynthesis, and v, is the number of acetate molecules consumed per unit biomass
synthesized. According to the simulation results, M. barkeri has a fxc value of 0.73 and a v,

value of 0.02 mol-g~! (see eq 18).
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Figure 4C and D show according to the predictions (fig 4A and B), how the biomass
yield of M. barkeri varies with the concentrations of acetate, ammonium, and methane. Previous
studies emphasized the atomic ratios of nutrients, such as Redfield ratio, as a controlling factor
of metabolic efficiencies of natural communities (Cleveland and Liptzin, 2007; del Giorgio and
Cole, 1998). Figure 4E and F show how the CUE of M. barkeri changes with C:N ratios — the
atomic ratios of carbon in acetate to nitrogen in ammonium.

The predictions suggest that biosynthesis efficiencies depend on the availability of
acetate and ammonium. Acetate and ammonium concentrations modulate the fluxes of ATP
production and ammonium uptake, respectively (eqs 1 and 7). Where the ATP to ammonium flux
ratio is less than or equal to their stoichiometric ratio in the biosynthesis reaction (eq 18), i.e.,
20.9, biosynthesis is limited by the supply of ATP. Under this condition, biosynthesis rate varies
linearly with ATP production flux (or methanogenesis rate) (eq 17), and the metabolic
efficiencies reach their maximum values.

Substituting equation 12, 14, and 17 to 19, we can calculate maximum yield (¥Ymax),

— Vare  Yxare 21)

max >
Vacr tVatr "Vacx * Yxate

from the stoichiometric coefficients of acetate in methanogenesis and biosynthesis (vac,r and
vac,x), the ATP yield vatp, and the biomass yield per ATP, Yx/atp. Equation 20 and 21 suggest
that maximum metabolic efficiencies are intrinsic microbial parameters constrained by the
properties of metabolic pathways, and their values does not vary with environmental conditions.
For M. barkeri, by using the parameter values derived from model iMG746, the maximum yield
Yimax 18 4.2 g-(mol acetate)™! and the maximum CUE (CUEmax) is 6.1% (figs 4C to F).

Where the ratio of ATP to ammonium fluxes surpasses their stoichiometric ratio in the

biosynthesis reaction (eq 18), the biosynthesis rate no longer responds to the changes in acetate
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concentration or methanogenesis rate but, instead, is determined solely by the uptake flux of
ammonium,

i =Yon Py s (22)
where Yx is the biomass yield per ammonium. The predictions (fig 4B) give a Yx~ value of

91.5 g-(mol NH; ) for M. barkeri, which is close to the value of 121 g-(mol NH} )™

determined in laboratory for Methanothermobacter thermautotrophicus (Kenealy et al., 1982).
The decoupling of biosynthesis from methanogenesis has been observed for M. barkeri growing
under ammonium-deprived conditions (Kenealy et al., 1982).

Under the conditions of ammonium limitation, metabolic efficiencies are not constant,
but decrease nonlinearly with increasing acetate concentrations or increasing C:N ratios (figs 4C
to F). These predictions agree with the CUE values reported for natural communities. In natural
environments, ammonium concentrations tend to be small and thus likely limit the biosynthesis
of natural communities. Accordingly, the CUE declines nonlinearly with C:N ratios (del Giorgio
and Cole, 1998).

Where acetate concentrations are much larger than the half-saturation constant of acetate
consumption (i.e., 5 mM for M. barkeri, table 1), the efficiencies reach their minimum values
(figs 4C to F). Minimum efficiencies can be calculated from equation 19 and 22 by assuming
that methanogenesis proceeds at its maximum rate. For example,

= B Py . (23)
Vacr 'k+VAc,x Yon - Fy

min

According to this equation, the minimum efficiencies depend not only on the properties of
metabolic networks but also on the uptake flux or the availability of ammonium. In natural

environments with ammonium concentrations less than 10 uM, the minimum biomass yields and
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CUEs can be as low as 0.027 g-(mol acetate)™! and 0.04%, respectively — two orders of
magnitude smaller than the predicted maximum efficiencies (Ymax and CUEmax). On the other
hand, in laboratory reactors, where ammonium is supplied at concentrations greater than 1 mM
(Whitman et al., 2006), the minimum yields are greater than 1.45 g-(mol acetate)™!, close to the
predicted Ymax value. In other words, the biomass yields determined in laboratory bioreactor
should be close to each other, but the CUEs of natural communities can vary over orders of
magnitude. These predictions are consistent with the results of previous laboratory and field
studies: the biomass yields of M. barkeri in laboratory reactors fall into a relatively narrow range
of 1.2 to 4.2 g-(mol acetate)™' (Scherer and Sahm, 1981; Sowers et al., 1984), and the CUEs of
natural communities vary more than an order of magnitude (del Giorgio and Cole, 1998).

Combining equation 12, 17, and 22, biosynthesis rates 7, can be calculated according to

ry =min (Y urp - Vare 7o Yon - Fr) - (24)

This equation states that biosynthesis is subject to Liebig's Law of the Minimum (Bader, 1978;
Droop, 1974; Egli, 2013; Zinn et al., 2004), and biosynthesis rate is determined either by ATP
production flux Farp or by ammonium uptake flux Fn, depending on which one places a stronger
limitation and whether or not biosynthesis is coupled to methanogenesis.
3.3.2. Growth Kkinetics

According to the above biosynthesis predictions (fig 4B), ammonium availability in the
environment can place upper limits on the rates of biosynthesis (Kessler et al., 2001; LeBauer
and Treseder, 2008; Ma and Thauer, 1990). These limits may account for the wide range of
doubling time reported for microbes. For example, where the energy sources and growth
nutrients are abundant, the hybrid method predicts that M. barkeri has a maximum biosynthesis

rate of 3.2x10~2 hr!, which is equivalent to a doubling time of 22 hours. This prediction is close
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to the doubling time of 24 hours determined for M. barkeri in laboratory bioreactors (Peinemann
et al., 1988; Smith and Mah, 1978).

The doubling time of natural microbes is much longer than laboratory cultures. Phelps et
al. (1994a) estimated that, in the sediments of Lake Mendota, a eutrophic lake in Wisconsin,
USA, microbes have a doubling time of 5 to 10 days. At the observed sediment ammonium
concentration of approx. 100 uM (Austin and Lee, 1973), the hybrid method predicts a N-limited
growth rate for M. barkeri of 2.2x1073 hr! (doubling time of 13 days), close to the estimate of
Phelps et al. (1994a).

In the Middendorf aquifer, South Carolina, USA, microbes have an average doubling
time of centuries (Phelps et al., 1994a). In this aquifer, the groundwater has about 1 uM
ammonium (Phelps et al., 1994b). According to the above predictions, M. barkeri growing at 1
1M ammonium has a biosynthesis rate up to 2x10~> hr~!, a value that is close to microbial
maintenance rate. In natural environments of limited resources, microbes may have maintenance
rates an order of magnitude smaller than laboratory cultures (Schmidt, 1992). Using a
maintenance rate of 1.8x107> hr! (table 1), M. barkeri would have a growth rate of 2x10~6 hr!
(eq 3), equivalent to a doubling time of 40 years. Other factors, such as non-optimal temperatures
and pHs and the scarcity of energy sources and other growth nutrients, can also slow down
growth, further extending the doubling time of aquifer microbes (Price and Sowers, 2004).
3.3.3. Pristine aquifer

The potential linkage between the long doubling time of aquifer microbes and the low
ammonium in groundwater suggests that the growth of aquifer microbes might be limited by the
availability of ammonium. Current biogeochemical reaction modeling calculates biosynthesis

rates as a linear function of methanogenesis rates (eq 2), assuming that the growth of natural
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microbes is limited primarily by energy sources (Jin et al., 2013). Here we use M. barkeri as a
model microbe and test in pristine aquifers, whether the ammonium limitation on growth is
applicable to aquifer microbes.

We retrieved groundwater chemistry data from the U.S. Geological Survey (USGS)
National Water Information System (NWIS) database (https://nwis.waterdata.usgs.gov). We
searched the database for samples that were collected from wells (site type) and analyzed for
ammonium (USGS parameter 00608), methane (parameter 76994), and dissolved oxygen
(parameter 00300). We eliminated samples that contained 1 mg/L or more dissolved oxygen, as
likely being inhibitory for methanogenesis. Out of the 21 hydrologic regions in the database, the
Mid-Atlantic region returned the largest number (i.e., 170) of groundwater samples (see
Supplementary Material). These samples were from the siliciclastic aquifers in Pennsylvania,
USA - the aquifers of unconsolidated sediments, sandstones, siltstones, and shale (Ator et al.,
2005). They have an average temperature of 12 °C, pH of 7.8, about 0.3 mM bicarbonate, and 4
uM methane. No acetate analysis is available for these samples. But in pristine aquifers, acetate
can reach a concentration of 20 uM (McMahon and Chapelle, 1991a; 1991Db).

The hybrid method predicts that M. barkeri in the aquifers has a biosynthesis rate of
6.8x107° hr~!. Taking the maintenance rate as 1.8x107> hr~! (table 1), M. barkeri would have a
growth rate of 5.0x10~° hr! (eq 3) or a doubling time of 578 days. If we neglected ammonium
limitation and calculated the biosynthesis rate using the linear biosynthesis equation (eq 2), we
would arrive at a growth rate of 8.5x10~° hr~! or 339 days. Considering that we assume a
relatively large acetate concentration (i.e., 20 uM), the difference between the two predictions
might indicate that at least at some locations of the aquifers, microbial growth is limited by

ammonium availability.
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The potential ammonium limitation is consistent with the groundwater chemistry of the
aquifers. Figure 5 compares the concentrations of methane and ammonium in the groundwater.
Methane levels range from below 1 uM to over 100 uM, and correlate moderately with the
concentrations of ammonium (Spearman’s coefficient, 0.495). If the ammonium availability
limits methanogen growth in the aquifers, it would also limit the production of methane gas.
3.3.4. Bioremediation

As a second example, we take M. barkeri as a model methanogen, and apply the hybrid
method to predict the growth of aquifer methanogens during in situ groundwater bioremediation.
Current in situ bioremediation practice removes or immobilizes groundwater contaminants by
injecting solutions of organic compounds into aquifers and by stimulating the metabolisms of
aquifer microbes (Majone et al., 2015).

We focus on a field bioremediation experiment in an alluvial aquifer, Colorado, USA
reported by Mouser et al. (2009). This experiment injected acetate solution into the aquifer
through a 10-meter-long array of injection wells, and monitored the chemistry and microbiology
in the groundwater from monitoring wells 2.5 meters (well D-02 and 04) to 5 meters (well D-05
and 08) down-gradient from the injection wells. The acetate injection stimulated the metabolisms
of aquifer microbes, including methanogens (Anderson et al., 2003; Komlos et al., 2008; Liang
et al., 2012). We assume that the biostimulation increased microbial metabolic rates, including
maintenance rates (van Bodegom, 2007). As a result, in the biostimulated aquifer, M. barkeri
may have a maintenance rate close to the value of 1.8x10~* hr~! determined in laboratory
bioreactors (Wandrey and Aivasidis, 1983).

Figures 6A to D show, during the experiment, how the ATP flux from acetoclastic

methanogenesis varied with time (eqs 1 and 12). The ATP fluxes are predicted from the reported

27



613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

acetate concentrations during the experiment (Mouser et al., 2009, their figure 1B), and by taking
pH of the groundwater at 7, bicarbonate at 3.4 mM, and methane at 0.1 uM (Druhan et al., 2014;
Fang et al., 2009).

The variations in ATP fluxes reflected the acetate concentrations in the groundwater. The
acetate injection occurred during the first 10 days and between day 17 and 30 of the experiment
(Mouser et al., 2009). Accordingly, the ATP fluxes increased and then decreased during the first
20 days. Afterwards, the fluxes increased again. Also, the maximum ATP fluxes were larger in
the wells close to the injection wells (well D-02 and 04) than in those away from the injection
(well D-05 and 08).

Figure 6E to H show how the ammonium uptake fluxes varied with time. The ammonium
fluxes reflected the ammonium concentrations in the groundwater, which were different at
different locations. These differences have been attributed to the heterogeneous occurrence of
sedimentary organic matter (Mouser et al., 2009).

Figure 61 to L show the predicted growth rates of M. barkeri. In well D-02, 04, and 05,
the variations follow the trends of ammonium fluxes. In well D-02, the growth rate of M. barkeri
increases with time to 2.3x107> hr~!. In well D-04, the growth rate remains relatively constant at
1.1£0.3x1073 hr!. In well D-05, the growth rate remains close to 0. In contrast, in well D-08, the
variation in growth rate is similar to that of ATP production flux. These results suggest that in
well D-02, 04, and 05, the biosynthesis of M. barkeri is limited by ammonium availability and
hence is decoupled from methanogenesis. On the other hand, in well D-08, the biosynthesis is
limited by ATP production (or by acetate availability) and is coupled to methanogenesis.

The metabolic decoupling is also evident from the predicted CUEs (figs 6M to P). In well

D-02, 04, and 05, at most sampling time points, the CUEs remain smaller than the maximum
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value of 6.1%, reaching as low as 0.06% in well D-05. However, in well D-08, the CUEs remain
constant at the maximum value throughout the experiments.

The growth rate predictions suggest that methanogens would not be able to flourish
around well D-05, but they could live and develop around well D-02, 04, and 08. In the aquifer,
the main source of ammonium was from the degradation of sedimentary organic matter (Mouser
et al., 2009). This natural nitrogen source was insufficient to support the metabolisms of aquifer
microbes during the biostimulation (fig 61 to P). Thus the addition of acetate, without any source
of nitrogen, might have hindered the stimulation of aquifer microbes. In addition, the
heterogeneous distribution of ammonium can account, at least in part, for the uneven spatial
distribution of microbes in the aquifer and their metabolic activities during biostimulation tests
(Liang et al., 2012).

If we neglected the impact of ammonium and assumed a linear relationship between
biosynthesis and methanogenesis (eq2), as in current practice of biogeochemical reaction
modeling (Li et al., 2009; Yabusaki et al., 2011), we would arrive at growth rates up to an order
of magnitude larger than the values predicted by the hybrid method (see figs 71 to L). These
differences reflect the limiting effect of ammonium in aquifers, and resonate with the previous
notion that current modeling frameworks (eqgs 1 to 3) may not capture accurately the rates of
microbial metabolisms in situ (Brown et al., 2000; Murphy and Schramke, 1998; Phelps et al.,
1994a).

We can test the occurrence of ammonium limitation on the basis of gene expression.
Specifically, M. barkeri and other prokaryotes accumulate ammonium in the cytoplasm using
ammonium transporter enzyme. Mouser et al. (2009) analyzed the expression of the enzyme by

the aquifer microbes during the field experiment. They enumerated the transcripts of an
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ammonium transporter gene, amtB, using reverse-transcription polymerase chain reaction (RT-
PCR), and compared the transcript numbers to those of a housekeeping gene recA (fig 7). A
BLAST search against currently available genome sequences found that their primer sets for
amtB retrieved sequences from diverse microbes, including M. barkeri. Their results thus might
have reflected the response of aquifer microbes in general.

We quantify the significance of ammonium limitation using the ratio of ammonium
concentration meny in groundwater to the concentration meq required to support the
stoichiometrically-balanced biosynthesis of M. barkeri. Figures 6Q to T compare the ammonium
concentration in the groundwater to the concentrations required by the stoichiometrically-
balanced growth. Figure 7 shows that during the field experiments, the expression of amtB gene
correlated with the significance of ammonium limitation (Spearman’s coefficient of —0.852). The
strong negative correlation is consistent with our assessment about the ammonium limitation
around well D-02, 04, and 05.

4. Discussion

We illustrated in this paper how to predict the kinetics of microbial metabolisms by
combining genome-scale metabolic models with thermodynamically-consistent rate laws. We
took methanogenesis as an example and simulated the metabolism of M. barkeri in both
laboratory bioreactors and aquifers. The results show that the new method expands and improves
the predictions of microbial kinetics, and can be applied to diverse environments, from
laboratory bioreactors of optimal growth conditions to natural environments of limited resources.
4.1. Method development

The hybrid method follows dynamic FBA, and uses genome-scale metabolic models to

account for the pathways of cell metabolisms (fig 1). But the two methods differ from each other
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in the treatment of metabolic pathways (fig 1). Dynamic FBA uses standard genome-scale
metabolic models, which lump together the biochemical reactions of catabolic and biosynthetic
pathways. Additionally, they use a hypothetical ATP-consuming reaction to account for the
energy demand by maintenance (Thiele and Palsson, 2010). For this reason, direct applications
of genome-scale metabolic models require that ATP production fluxes from catabolism surpass
ATP hydrolysis rates of maintenance. As a consequence, dynamic FBA always predicts that
microbes are actively growing. But in most subsurface environments, active growth might be
sporadic because of limited energy sources and growth nutrients, and stationary and death phases
can be the common metabolic states (Morita, 1997; Price and Sowers, 2004; Roszak and
Colwell, 1987).

In comparison, the hybrid method applies FBA separately to the catabolic and
biosynthetic pathways in genome-scale metabolic models and, following standard practice in
biogeochemical modeling, accounts for cellular maintenance using negative rates of biosynthesis
(Jin and Roden, 2011; Jin et al., 2013). The separate treatment of catabolic, biosynthetic, and
maintenance pathways enables the application of the hybrid approach to a wider range of
metabolic states, from active growth to stationary and to death phase. For example, in the
simulation of the laboratory experiments, dynamic FBA fails to find a solution after 2.5 days into
the experiments. After this point, the ATP flux from methanogenesis is no longer able to match
the ATP consumption flux by maintenance assumed in model iMG746 (fig 3A, B, and E). On the
other hand, the hybrid method predicts that the metabolism of M. barkeri follows the typical
sequence of exponential and stationary phases (fig 3B).

The hybrid method predicts microbial kinetics by combining genome-scale metabolic

models with rate laws. There are different microbial rate laws on which to potentially build this
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application (Simkins and Alexander, 1984). The choice of the thermodynamically-consistent
Monod equation (eq 1) reflects the need to consider thermodynamics in predicting the kinetics of
microbes under the conditions that frequently characterize natural systems (Jin and Bethke,
2005). As demonstrated in the example application (figs 3C, D, and F), the hybrid method
captured the response of acetate consumption flux to the changes in the chemical energy of the
environment: the acetate fluxes are larger at larger available energies, and vice versa. If we
applied dynamic FBA without accounting for the thermodynamics of microbial catabolism, we
would not be able to capture the response of acetate fluxes to the thermodynamic conditions of
the environment (fig 3A and F).

Applying the hybrid method requires the evaluation of the thermodynamically-consistent
rate laws and the simulation of biosynthesis using FBA. In the example application to laboratory
experiments (fig 3), we coupled FBA directly to the evaluation of the rate laws. At each iteration,
we use the rate laws to compute the fluxes of ATP synthesis and nutrient uptake, and feed the
fluxes to FBA to obtain biosynthesis rates (fig 1B). The direct coupling ensures a rigorous and
real-time exchange of microbial rates and fluxes between the rate laws and FBA, but running
FBA at every iteration can be computationally expensive — especially in field-scale applications
that repeat FBA at every grid cell and time step.

Alternatively, we can couple FBA and microbial rate laws indirectly by replacing FBA in
the hybrid method with Liebig's Law of the Minimum (eq 24). According to the FBA
predictions, biosynthesis rates are determined by the most limiting fluxes of ATP production and
nutrient uptake, and the relationship can be described according to Liebig's Law of the
Minimum. Thus rather than running the time-consuming FBA at each iteration, we can arrive at

the same results by the simple evaluation of Liebig's Law of the Minimum. Specifically, we first
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apply FBA to biosynthesis pathways to estimate the biomass yields for ATP and for relevant
growth nutrients and to build Liebig's Law of the Minimum for biosynthesis (eq 24). We then
compute metabolic rates by combining the thermodynamically consistent rate laws for
respiration and nutrient uptake and Liebig's Law of the Minimum for growth.

4.2. Methanogenesis

Methanogenesis is a final step of organic matter degradation, and methane fluxes are a
key parameter in predicting future environmental changes (Nisbet et al., 2016; Thauer et al.,
2008). Previous studies predicted the metabolic activities of methanogens using dynamic FBA
(Stolyar et al., 2007) and microbial rate laws (Jin and Roden, 2011; Yang and Okos, 1987). Here
we applied the hybrid method and predicted the metabolic rates and chemical fluxes of M.
barkeri in both laboratory reactors and aquifers.

The hybrid method enhances the predictions of microbial carbon fluxes by accounting for
biochemical mechanisms at the enzyme level. By applying FBA to genome-scale metabolic
models, the hybrid method tracks not only the total fluxes of carbon, but also the contribution of
different biochemical pathways. In the application to the laboratory experiments (fig 3), in
addition to acetoclastic methanogenesis, the growth of M. barkeri also consumes acetate using
two different pathways — the reversal of CO; reduction pathway that generates reducing power
by oxidizing acetate to CO» and the biosynthesis pathway that assimilates acetate into new
biomass. Specifically, the pathways of methanogenesis, acetate assimilation, and reducing power
production consume 92%, 6%, and 2% of the total acetate fluxes, respectively. These fractions
reflect how M. barkeri allocates acetate to the three pathways in order to meet its needs of ATP,
carbon, and reducing power for biosynthesis.

The hybrid method is organism-specific — its predictions are based on genome-scale
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metabolic models of individual organisms and their kinetic parameters of respiration,
maintenance, and nutrient uptake. But M. barkeri and other methanogens rarely live alone in
natural environments. Instead, they mingle with each other, and partner with diverse fermenting
microbes, sulfate reducers, acetogens, and others of different metabolic functions to build
microbial communities and to carry out organic matter degradation, nutrient cycling, and other
ecological functions (Nielsen et al., 2011; Schimel and Schaeffer, 2012).

Applying the hybrid method to microbial communities is feasible, provided that genome-
scale metabolic models of key community members are available. The application assumes that
the metabolisms of community members are at quasi steady state, and applies iterative
procedures to track the progress of community metabolisms (Zhuang et al., 2010). At each time
step of simulation, the hybrid method is applied to individual community members, and the
results are combined to compute the total fluxes of microbial communities, and to update the
abundances of community members and the concentrations of chemical compounds in the
environment. Such applications may hold promise for probing the ecological functions of
microbial communities and their dependence on environmental conditions — for example, the
contribution of different methanogens to methane fluxes and how environmental conditions
dictate the development and function of microbial communities (Keller and Bridgham, 2007; Ye
etal., 2012).

4.3. Microbial growth

The hybrid method can be applied to microbial metabolism under energy- vs. nutrient-
limiting conditions. We illustrated this capability by analyzing the growth of M. barkeri across
wide spectra of acetate and ammonium availabilities (fig 4). The results confirm that linear

growth equations (e.g., eqs 2 and 3) are best applied to laboratory bioreactors and eutrophic
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environments, where nutrients are abundant. Under this condition, biosynthesis is limited by
ATP synthesis, and is coupled to respiration (Russell and Cook, 1995; Tempest and Neijssel,
1984). The results also show that in natural environments, biosynthesis rates are determined by
the fluxes of either ATP production or ammonium uptake, depending on which one places a
stronger limitation (eq 24).

The hybrid method is universal, and can also be applied to other growth nutrients by
explicitly accounting for the uptake and consumption of the nutrients. For example, if we expand
the application and consider the availability of phosphate — another limiting nutrient for natural
microbes (Elser et al., 2007), we would arrive at similar results. Specifically, biosynthesis rates
are subject to Liebig’s Law of the Minimum, and are determined by the factors of most

significant limitation,
Y :min(YX/ATP'VATP""I;’YX/N'FN9Y>QP'FP)a (25)

where Yxp is the biomass yield per phosphate, and F» is the flux of phosphate uptake. The Yx/p
value can be determined from the variations in biosynthesis rate with phosphate uptake flux, and
the value is 1.1x10° g-(mol phosphate)~!. Similar to the above predictions of ammonium
limitation, where phosphorus is limiting, biosynthesis is also decoupled from methanogenesis — a
prediction consistent with laboratory observations (Archer, 1985).

The agreement between the hybrid method and Liebig’s Law of the Minimum arises from
the similar underlying assumptions of the two methods. Liebig’s Law of the Minimum assumes
that the pathways of respiration and nutrient utilization do not interact with each other, and
biosynthesis rates are determined by the more limiting of ATP supply or nutrient uptake fluxes
(Zinn et al., 2004). The hybrid method takes the fluxes as inputs. These fluxes are independent of

each other and meet the energy and element needs of biosynthesis pathways. As a result, the
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most limiting flux determines the rate of biosynthesis (Edwards et al., 1999; Orth et al., 2010).
In addition to the linear growth equation (eqs 2 and 3) and Liebig’s Law of the Minimum
(eqs 3 and 25), other equations have also been applied to predict microbial growth. For instance,
previous studies accounted for growth nutrient limitation using the multiplicative Monod
equation (Bader, 1982; Jin et al., 2013; MeGee et al., 1972). This model quantifies the effect of

nutrient availability using a Monod-type factor, and computes biosynthesis rates according to

m
' ' N,env
Vv, = Y I R A (26)
X/
X PR +K

N,env N,env
This model assumes that the pathways of respiration interact with those of growth nutrient
consumption, and should be accounted for at the same time (Zinn et al., 2004).

Previous studies also predicted microbial growth using sigmoidal functions, such as the
logistic equation and the Gompertz equation (Zwietering et al., 1990). These functions focus on
biomass concentrations, and assume a priori that microbial growth follows a sigmoid function.
They calculate biomass concentrations from lag time, maximum growth rate, and maximum
biomass concentration of the environment, and hence offer limited link to respiration pathways
(Mitchell et al., 2004). For this reason, they may not be the best option for biogeochemical
reaction modeling — a modeling discipline that emphasizes the chemical interactions between
microbial metabolisms and natural environments.

In summary, we proposed a hybrid method that combines FBA with rate laws to predict
the kinetics of microbial metabolism in natural environments. This method accounts for the
availability of energy sources and growth nutrients, and applies FBA independently to the
respiration and the biosynthesis pathways of genome-scale metabolic models. The application to
M. barkeri in laboratory experiments shows that the method explicitly tracks cellular fluxes of

energy and carbon, thereby bringing unprecedented metabolic detail to biogeochemical reaction
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modeling. The applications to aquifers show that the growth of natural methanogens is limited
either by energy sources or by the most limiting nutrient, and can be described according to
Liebig’s Law of the Minimum. These predictions are consistent with the decoupling of
biosynthesis from methanogenesis and the slow growth of natural microbes under
nutrient-deprived conditions, the correlation between dissolved methane and ammonium in the
pristine aquifers of Pennsylvania, USA, and the expression of ammonium transporter gene in the
biostimulated alluvial aquifer of Colorado, USA.
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1174  Table 1. Parameters and their values for applying different modeling methods to Methanosarcina barkeri growing on acetate.

Parameter® Value Rate law dynamic FBA  Hybrid method
Respiration parameter
Rate constant k (mmol-g'-hr!) 7.1@D v v
half-saturation constant Kp (mM) 5.00:0) v v
ATP yield w 0~1@ v
Phosphorylation energy AGp (kJ-mol™") 409 v v
Average stoichiometric number y 2(@0) 4 v
Proton motive force (V) 0.19 v
Growth parameters
Growth yield Yxr (g'mol™) 2.9@ v
Maintenance rate m (hr") 1.8x10740 v v v
Acetate uptake
Maximum rate Vmax (mmol-g~'-hr 1) 2.2M v
Michaelis constant Kac out 0.3™ v
Ammonium uptake
Maximum rate Vmax (mmol-g~"-hr ) 0.250 v
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1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

Michaelis constant for ammonium in the

0]
environment K (uM) 200 v v
Michaelis constant for cytoplasmic
. 2000% v
ammonium K. (LM)
Exponent n 20 v
Total parameters 7 5 9

Note:

(a). Values expressed for reaction equation 16.

(b). Smith and Mah (1978).

(c). Acetate is accounted for as the electron donor in the modified Monod equation (eq 1).

(d). Jin (2012).

(e). Jin and Bethke (2009).

(f). Wandrey and Aivasidis (1983).

(2). In model iMG746, the hypothetical ATP hydrolysis reaction of maintenance has a rate of 2.0 mmol-g~!-hr~! (Gonnerman et al.,
2013).

(h). Button (1998)

(i). This study.
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(j). Boogerd et al. (2011).

(k). Chang et al. (2014).
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Figure Caption

Figure 1. Comparison of dynamic FBA (A) and the hybrid method of FBA and microbial rate
law (B). Dynamic FBA calculates uptake fluxes of electron donors, acceptors, and nutrients
using the Michaelis-Menten equation (eq 5), and applies FBA to entire genome-scale metabolic
models. The hybrid method applies FBA to the respiration pathways to estimate ATP yields, and
computes respiration rates and ATP fluxes using the thermodynamically-consistent Monod
equation (eqs 1 and 12); it estimates nutrient uptake fluxes by optimizing cytoplasmic nutrient
concentration (eq 10) and by using the thermodynamically-consistent Michaelis-Menten
equation (eqs 7 and 8), and then applies FBA to the biosynthesis pathways using the fluxes of

ATP production and nutrient uptake as the input.

Figure 2. Variations in cytoplasmic ammonium accumulation (A and B) and uptake (C) with
ammonium concentrations in the environment. Panel A and B show ammonium accumulation in
laboratory reactors and in natural environments, respectively. Data points in panel A are the
laboratory observations of Methanohalophilus zhilinaeae (<), Methanolobus bombay (O), and
Methanolobus taylorii (1) by Kadam and Boone (1996). The solid lines in panel A and B are the
optimization results (eq 10). The solid line in panel C is computed according to the
thermodynamically-consistent Michaelis-Menten equation (eqs 7 and 8) using the parameters in

table 1, while the dashed line indicates the maximum ammonium uptake flux.

Figure 3. Variations in the concentrations of acetate, methane, and ammonium (A), and biomass
(B), the fluxes of ATP production and acetate consumption by methanogenesis (C), the fluxes of

acetate and ammonium consumption by biosynthesis (D), growth rate (E), and the energy AGa
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1234

available from methanogenesis (F) during the growth of M. barkeri on acetate. Data points are
the experimental results of Fukuzaki et al. (1990); solid lines are the simulation results of the
hybrid method; the dashed lines in panel A and B are the result of dynamic FBA. The dotted line
in panel D shows the maximum possible uptake flux of ammonium, and the dotted line in panel
F shows the energy AGc conserved by methanogenesis (eq 11). The lines labeled “FBA
infeasible” in panel A and B indicate the time point beyond which ATP synthesis rate by
methanogenesis is smaller than ATP consumption rate by maintenance assumed in model

iMG746, and dynamic FBA fails to find a solution.

Figure 4. Variations with acetate concentration in biosynthesis rate and generation time (A) and
biomass yield (C) at 10 uM and at other ammonium concentrations (B and D), and changes in
carbon use efficiency (CUE) with the atomic ratios of C in acetate and N in ammonium at 10 uM
(E) and at other ammonium concentrations (F). The solid lines are the predictions of the hybrid
method by taking temperature at 25 °C, pH at 7, and bicarbonate concentration at 1 mM; the
dashed lines in panel A and B are the maximum biosynthesis rates at given ammonium
concentrations; the dashed lines in C and D are the maximum and minimum biomass yields; the
dashed lines in E and F are the maximum and minimum CUEs; labels in panel A, C, and E show
the methane concentrations in uM; labels in panel B, D, and F show ammonium concentrations
in uM. The generation time is computed as the ratio of In(2) to specific biosynthesis rate.

Biomass yields and CUEs are calculated according to equation 19 and 20, respectively.

Figure 5. The correlation between ammonium and methane concentrations in the siliciclastic

aquifers of Pennsylvania, USA.
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Figure 6. Variations with time in the ATP fluxes (O) from methanogenesis (A to D), the
ammonium uptake fluxes (®, E to H), the growth rates predicted by the hybrid method (A) and
by the linear equation (eqs 2 and 3, A, I to L), the carbon use efficiencies (CUEs, M to P),
groundwater ammonium concentrations (M), and the ammonium concentrations (1) required to
support the stoichiometrically-balanced biosynthesis of methanogens (Q to T) in the groundwater
from wells D-02, D-04, D-05, and D-08 during the field bioremediation experiments (Mouser et

al., 2009). The dotted lines in panel I to L indicate no growth.

Figure 7. Variations in the expression of ammonium transporters with the ratio of ammonium
concentration meny in the environment to the concentration meq required to support the
stoichiometrically-balanced biosynthesis of M. barkeri. The expression is measured as the ratio
in mRNA transcript copy of an ammonium transporter gene amtB to a housekeeping gene recA
gene in groundwater samples from well D-02 (O), 04 (), 05 (<>), and 08 (A) by Mouser et al.
(2009, their figure S4); the shaded area indicates that ammonium in the environment cannot meet

the requirement of biosynthesis, and hence is limiting growth.
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