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Abstract  7 

We propose a new method to predict microbial metabolic rates in natural environments 8 

using genome-scale metabolic models. This method is a hybrid of existing approaches, i.e., rate 9 

laws and flux balance analysis (FBA).  It accounts for the availabilities of chemical energy and 10 

growth nutrients in the environment, and applies FBA independently to the respiration and 11 

biosynthesis pathways of genome-scale metabolic models. We illustrate the new method by 12 

modeling the metabolism of a representative methanogen – Methanosarcina barkeri – in 13 

laboratory reactors and in pristine and biostimulated aquifers. The laboratory application 14 

demonstrates that the hybrid method predicts the rates of individual biochemical reactions within 15 

overall cell metabolism and tracks, explicitly, cellular fluxes of carbon and energy. The aquifer 16 

applications reveal that the growth of methanogens in natural systems can be limited by multiple 17 

factors, including energy sources and growth nutrients, and that the limitations are subject to 18 

Liebig’s Law of the Minimum. These results highlight the improvements of the new method in 19 

biogeochemical reaction modeling, including its applicability to diverse environments, from 20 

eutrophic to oligotrophic.  21 

Keywords: genome-scale metabolic model, biogeochemical reaction modeling, microbial 22 
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1. Introduction 24 

Biogeochemical reaction modeling simulates, numerically, concurrent geochemical 25 

reactions and microbial metabolisms in natural environments (Bethke, 2008). This method 26 

combines geochemical and microbial reaction models. Geochemical models focus on chemical 27 

speciation, redox reactions, mineral precipitation and dissolution, and other abiotic reactions. 28 

Microbial models describe microbial reactions and the development of microbial populations. By 29 

coupling microbial and geochemical models, biogeochemical reaction modeling offers a 30 

quantitative assessment of microbial processes in natural environments, and has become a 31 

routine tool for both theoretical and practical applications, such as element cycling and the 32 

contamination and remediation of groundwater (Druhan et al., 2012; Jin and Roden, 2011; 33 

Johannesson and Neumann, 2012).  34 

Classical approaches simulate microbial metabolisms using black-box models (Jin et al., 35 

2013). These models bypass biochemical pathways and metabolic regulation, and compute rates 36 

of respiration and growth directly from environmental concentrations of energy sources and 37 

growth nutrients using rate laws (Monod, 1949; Simkins and Alexander, 1984). For example, 38 

they calculate respiration rates r'R (mol∙g−1∙s−1) using the thermodynamically-consistent Monod 39 

equation (Jin and Bethke, 2002; 2003), 40 

 A CD A
R

D D A A

1 exp G Gm mr k
m K m K RTχ

  ∆ −∆ ′ = ⋅ ⋅ ⋅ − −  + +   
, (1) 41 

where k is the rate constant (respiration rate per unit biomass, mol⋅g−1⋅s−1), mD and mA are the 42 

molal concentrations of electron donors and acceptors, respectively, KD and KA are the molal 43 

half-saturation constants, ∆GA is the energy available from redox reactions – the negative of the 44 

Gibbs free energy change (J∙mol−1),  ∆GC is the energy conserved by respiration (J∙mol−1), χ is 45 
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the average stoichiometric number, R is the gas constant (8.3145 J∙mol−1∙K−1), and T is the 46 

temperature in Kelvin. They calculate biosynthesis rate r'X – biomass production rate per unit 47 

biomass (s−1) – from respiration rate, 48 

 X X/i i,R Rr Y rν′ ′= ⋅ ⋅  ,  (2) 49 

and calculate microbial growth rate (g⋅kg−1⋅s−1), 50 

 ( )X M
[X] [X]d r r
dt

′ ′= − ⋅  ,  (3) 51 

as the difference between the biosynthesis rate Xr′  and the maintenance/death rate Mr′  (s−1) (Jin 52 

and Roden, 2011; Jin et al., 2013). Here [X] is the biomass concentration in dry weight per unit 53 

water mass (g⋅kg−1), YX/i is the biomass yield per chemical compound i (g⋅mol−1), and νi,R is the 54 

stoichiometric coefficient of compound i in respiration reaction equation. These equations are 55 

simple in implementation and fast in computation, but their application to natural environments 56 

has not always been successful. For instance, their predictions can deviate from field 57 

observations by orders of magnitude (Brown et al., 2000; Chapelle and Lovley, 1990; Murphy 58 

and Schramke, 1998). Previous studies have questioned the applicability of the rate equations, 59 

and ascribed the discrepancies to the differences in growth conditions and microbial metabolisms 60 

between laboratory reactors and natural environments (Jannasch, 1967; Jin and Bethke, 2005; Jin 61 

et al., 2013).  62 

Recently, genome-scale metabolic models have emerged as a solution to address the 63 

challenges of the standard modeling approach (Mahadevan et al., 2011). These models use a 64 

series of stoichiometric equations to describe biochemical reactions of metabolic pathways, from 65 

nutrient uptake, to respiration, and to biosynthesis (Bordbar et al., 2014; Reed and Palsson, 66 

2003). They make possible the integration of metabolic pathways into the prediction of microbial 67 
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kinetics.  68 

For example, dynamic flux balance analysis predicts microbial rates by combining flux 69 

balance analysis (FBA) with the Michaelis-Menten equation (fig 1A) (Mahadevan et al., 2002; 70 

Vargas et al., 2011). The Michaelis-Menten equation calculates cellular fluxes of nutrient uptake 71 

from the environment. FBA is a standard method for analyzing genome-scale metabolic models 72 

(Feist and Palsson, 2008; Orth et al., 2010). It takes one or more uptake fluxes as the input, and 73 

maximizes growth rates by optimizing the rates of biochemical reactions in genome-scale 74 

metabolic models. This method only requires the kinetic parameters for nutrient uptake, and is 75 

especially attractive where critical information, such as enzyme kinetic parameters, is not 76 

available. 77 

Previous studies applied dynamic FBA to both bioreactors and natural environments 78 

(Henson and Hanly, 2014; Meadows et al., 2010; Tartakovsky et al., 2013; Zhao et al., 2011; 79 

Zhuang et al., 2010). However, the method may not be suitable for many environmental 80 

applications. For instance, in order to apply the genome-scale metabolic model of a ferric-iron 81 

respirer – Geobacter sulfurreducens – to an aquifer, the rate predictions had to be scaled down 82 

by an ad hoc factor of 10 (Fang et al., 2011; Scheibe et al., 2009).  83 

Several factors have been proposed to account for the rate overestimation by dynamic 84 

FBA. Specifically, genome-scale metabolic models are under-determined – they have more 85 

metabolite fluxes than biochemical reactions (Herrgård et al., 2006). As a result, their solutions 86 

might be mathematically correct, but physiologically infeasible. In addition, FBA maximizes 87 

microbial growth rates at given nutrient fluxes, which may not work for microbes whose 88 

metabolic performance is suboptimal (Feist and Palsson, 2010; Wintermute et al., 2013). Also 89 

important is the utilization of the standard Michaelis-Menten equation. This equation does not 90 
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consider thermodynamic controls on microbial metabolism, and may not capture the full 91 

complexity of nutrient transport from the environment to the cytoplasm (Button, 1985; Jin and 92 

Bethke, 2007). Furthermore, growth rates and other model predictions are highly sensitive to the 93 

enzyme parameters in the Michaelis-Menten equation, which makes dynamic FBA prone to error 94 

(Klier, 2012).   95 

Here we propose a new method for applying genome-scale metabolic models to microbial 96 

kinetics in natural environments (Jin et al., 2013). This method is a hybrid of FBA and the rate 97 

laws for microbial respiration and nutrient uptake (Jin and Bethke, 2003). It accounts for 98 

microbial energy conservation and the uptake of growth nutrient, and applies FBA independently 99 

to the respiration and biosynthesis pathways of genome-scale metabolic models.  100 

We illustrate the hybrid method using a representative methanogen −Methanosarcina 101 

barkeri. M. barkeri and its relatives live in diverse environments, from surface sediments to 102 

aquifers (Hedderich and Whitman, 2006; Smith et al., 2015). They can make methane from 103 

acetate – a major contributor to global methane production and a key process of biogeochemical 104 

carbon cycling (Ferry, 2010). We apply the hybrid method to simulate the metabolism of M. 105 

barkeri in laboratory reactors, as well as to analyze microbial growth under energy- vs. nutrient- 106 

limiting conditions in pristine and biostimulated aquifers.   107 

2. Methods 108 

2.1. Flux balance analysis 109 

Genome-scale metabolic models represent the biochemical reactions of an entire 110 

metabolism using a stoichiometric matrix, S, of size m×n. Here, n is the number of biochemical 111 

reactions and m is the number of metabolites – chemical compounds consumed and produced by 112 

biochemical reactions. Element Sij is the stoichiometric coefficient of metabolite i in reaction j. 113 
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These biochemical reactions are derived from annotated genomes, and drive respiration, 114 

biosynthesis, detoxification, and other key metabolic functions (Thiele and Palsson, 2010). In 115 

addition, genome-scale metabolic models also contain two hypothetical reactions. One is the 116 

biomass production reaction that produces new cells from amino acids, nucleic acids and other 117 

biomass precursors, and the other is an ATP hydrolysis reaction that accounts for the energy 118 

consumption by cellular maintenance – metabolic processes that maintain the integrity and 119 

function of cell components and structures, but do not contribute to cell reproduction (Hoehler 120 

and Jørgensen, 2013).  121 

FBA assumes that metabolism is at steady state, and applies the principle of mass balance 122 

to metabolite fluxes. The result is a linear algebra equation, 123 

 J = S∙R (4) 124 

where J and R are column vectors; element Ji is the net flux or production rate of metabolite i per 125 

unit dry weight of biomass (mol∙g−1∙s−1), and element Rj is the rate of biochemical reaction j per 126 

unit biomass (mol∙g−1∙s−1).  127 

Different modeling disciplines treat under-determined systems differently. For instance, 128 

geochemical reaction modeling brings under-determined systems to balance using the principle 129 

of mass action (Bethke, 2008). But this approach is not feasible for genome-scale metabolic 130 

models because kinetic parameters are not available for most biochemical reactions. Instead, 131 

FBA takes one or more uptake fluxes of energy sources and growth nutrients as the input, and 132 

optimizes the rates of individual biochemical reactions in order to maximize the rates of growth 133 

(Feist and Palsson, 2010).  134 

2.2. Dynamic FBA 135 

Dynamic FBA applies FBA to simulate microbial metabolisms, assuming that the 136 
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metabolisms are at quasi steady-state (Becker et al., 2007). At each time step, this method 137 

assumes that cell metabolisms are at steady state, and predicts microbial rates and chemical 138 

fluxes in two steps (fig 1A) (Mahadevan et al., 2002). It first applies the classical Michaelis-139 

Menten equation to compute the uptake fluxes of energy sources and growth nutrients. For 140 

example, the uptake flux FN of a nutrient is calculated according to, 141 

 N,env
N max

N,env N,env

m
F V

m K
= ⋅

+
, (5) 142 

where Vmax is the maximum flux (mol⋅g−1⋅s−1), mN,env is the molal concentration of nutrient N in 143 

the environment, and KN,env is the molal Michaelis constant (M). It then takes one or more uptake 144 

fluxes as the input, and applies FBA to genome-scale metabolic models to predict microbial 145 

growth rates and the fluxes of nutrient consumption and waste production by cell metabolisms. 146 

At the end of the time step, the growth rates and chemical fluxes are applied to update the 147 

concentrations of biomass and chemical compounds, respectively.  148 

2.3. Hybrid method  149 

We propose a hybrid method that combines FBA with microbial rate laws. This method 150 

builds on current frameworks of biogeochemical reaction modeling, and accounts for the 151 

availabilities of chemical energy and growth nutrients in the environment (fig 1B).  152 

2.3.1. Nutrient uptake 153 

A unique feature of the hybrid method is the consideration of cytoplasmic nutrient 154 

accumulation. Microbes can accumulate nutrient in the cytoplasm by releasing proton motive 155 

force or by hydrolyzing ATP – a process called active transport (Tanford, 1983). By coupling to 156 

the release of proton motive force, nutrient transport can be described as 157 

 env H env cyt H cytN H N Hν ν+ ++ + ,  (6) 158 



8 
 

where Nenv and Ncyt are the nutrient in the environment and the cytoplasm, respectively,  and 159 

 are the protons in the environment and the cytoplasm, respectively, and νH is the number of 160 

protons transported together with the nutrient. We calculate the uptake flux FN using the 161 

thermodynamically-consistent Michaelis-Menten equation, 162 

 N,env
N max T

N,env N,env

m
F V F

m K
= ⋅ ⋅

+
,  (7) 163 

in order to account for the feedback inhibition of nutrient accumulation in the cytoplasm (Jin and 164 

Bethke, 2007). Here FT is the thermodynamic factor, 165 

 ( ) ( )N,env N H
T N

N,cyt

1 exp ln 10 pH
a z F p

F z
a RT

ν+ ⋅ ∆ 
= − + ⋅ ⋅∆ 

 
, (8) 166 

where a represents chemical activity – the product of molal concentration and activity 167 

coefficient, zN is the electrical charge of the nutrient, ∆p is the proton motive force (V), ∆pH is 168 

the pH difference between the environment and the cytoplasm, and F is the Faraday constant 169 

(Jin, 2012).  170 

Evaluating the thermodynamic factor (eq 8) requires knowledge of the nutrient 171 

concentration in the cytoplasm – a parameter not available for most microbes. We note that 172 

cytoplasmic nutrient concentration influences not only nutrient transport (eq 8), but also the 173 

activities of cytoplasmic enzymes that consume nutrients. The impact on nutrient consumption 174 

can be quantified using a kinetic factor FK,  175 

 N,cyt
K

N,cyt N,cyt

m
F

m K
=

+
, (9) 176 

where m and K are the molal concentration and Michaelis constant of nutrients, respectively (Jin 177 

and Bethke, 2007).  178 

envH+

cytH+
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From equation 8 and 9, we see that high cytoplasmic concentrations inhibit nutrient 179 

assimilation by lowering the FT value and hence the uptake flux FN. On the other hand, high 180 

concentrations raise the kinetic factor FK and the activities of nutrient-consuming enzymes, 181 

thereby promoting nutrient assimilation. We thus assume that to effectively assimilate nutrients, 182 

microbes need to maximize the product of the thermodynamic factor FT and the kinetic factor 183 

FK,  184 

 ( )T Kmax nF F⋅ . (10) 185 

Here, the exponent n accounts for the likelihood that the thermodynamic and the kinetic factors 186 

may influence nutrient consumption and assimilation to different extents. Solving equation 10 187 

gives the optimum cytoplasmic nutrient concentration, which is then applied to compute the 188 

nutrient uptake flux (eq 7).  189 

2.3.2. Respiration  190 

The hybrid method calculates respiration rate r'R according to the 191 

thermodynamically-consistent Monod equation (eq 1). In evaluating this rate equation, we 192 

calculate the energy ∆GC conserved by respiration, 193 

 C ATP PG Gν∆ = ⋅∆ ,  (11) 194 

as the product of the ATP yield νATP – the number of ATPs produced per respiration reaction – 195 

and the phosphorylation energy ∆GP – the energy required for ATP synthesis from ADP and 196 

phosphate [J·(mol ATP)−1]. We calculate the chemical flux (mol·g−1·s−1) of respiration according 197 

to 198 

 i,R i,R RF rν ′= ⋅  , (12) 199 

where Fi,R is the flux of compound i, and its value is positive for reaction products and negative 200 

for reactants. 201 
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We estimate the ATP yield by applying FBA to the respiration pathways in genome-scale 202 

metabolic models. ATP is an intermediate metabolite produced by respiration pathways, and is 203 

consumed by biosynthesis pathways and maintenance reactions. The steady-state assumption of 204 

FBA dictates that the net flux of ATP is 0. In order to estimate ATP yields, we temporarily 205 

decouple ATP production and consumption by setting the rates of the biosynthesis and 206 

maintenance reactions to 0.  207 

We add a hypothetical reaction of ATP output to the genome-scale metabolic models, and 208 

assume that respiration maximizes the ATP output flux. We carry out FBA using the uptake 209 

fluxes of electron donors D and/or acceptors A as the input. The FBA output includes the fluxes 210 

of ATP output and the production of oxidized electron donors D+ and reduced electron acceptors 211 

A−. The ratios of these fluxes give the stoichiometric equations of respiration, 212 

 D A ATP ATP i ATP cyt ATP ATP 2D A
D A D A

D A ADP P H D A ATP+ H Oν ν ν ν ν ν ν ν ν+ −
+ −

+ + −+ + + + + +∑ ∑ ∑ ∑ , 213 

 (13) 214 

where νD and others are stoichiometric coefficients, and Pi is inorganic phosphate ( 2
4HPO −  ).  215 

2.3.3. Biosynthesis 216 

We apply FBA to the biosynthesis pathways to predict the rates, chemical fluxes, and 217 

yields of biosynthesis. Biosynthesis pathways use ATP to make new biomass from growth 218 

nutrients. As discussed above, because ATP is an intermediate metabolite, we cannot analyze the 219 

effect of ATP supply on biosynthesis by applying FBA directly to genome-scale metabolic 220 

models. Instead, we stop the ATP-producing respiration pathways and the ATP-consuming 221 

maintenance reaction, and prescribe a supply flux of ATP as the input for biosynthesis. In order 222 

to analyze the relative importance of ATP and growth nutrients, we also prescribe nutrient 223 

uptake fluxes as the input.  224 



11 
 

We follow the standard practice of assuming that microbes maximize the rates of 225 

biosynthesis (Feist and Palsson, 2010). The FBA output includes biosynthesis rates  and the 226 

chemical fluxes driven by the biosynthetic reactions, such as nutrient consumption and waste 227 

production. The ratios of these chemical fluxes can be applied to infer the stoichiometric 228 

equation for biosynthesis, and biosynthesis rates are applied to compute the rates of microbial 229 

growth (eq 3). The chemical fluxes are combined with those of respiration to compute the total 230 

chemical fluxes of cell metabolism. For example, the total flux Fi,T of compound i is  231 

 i,T i,R i,XF F F= + , (14) 232 

the sum of the fluxes driven by respiration (Fi,R) and by biosynthesis (Fi,X).  233 

2.4. Application 234 

We apply the hybrid method to the current genome-scale metabolic model of M. barkeri 235 

– model iMG746, a revised version of the original model iAF692 (Feist et al., 2006; Gonnerman 236 

et al., 2013). We update model iMG746 with the following revisions: the Na+/H+ antiporter 237 

translocates one proton per Na+ (Jin, 2012) and the acetate transporter moves one acetate 238 

molecule, together with one proton, across the membrane (Welte et al., 2014). We set the 239 

growth-associated ATP consumption – the ATP requirement by the hypothetical biomass 240 

production reaction – to 109 mmol·g−1 (Kliphuis et al., 2012). We also follow the original model 241 

– iAF692 and remove the sulfite transporter activity, because no gene in M. barkeri genome 242 

codes for a sulfite transporter. 243 

Microbial growth consumes sources of energy, carbon, nitrogen, phosphorous, and other 244 

elements. M. barkeri can fix N2, but prefers ammonium as the source of nitrogen (Kenealy et al., 245 

1982; Kessler et al., 2001), and both pathways are represented in model iMG746. Here we take 246 

ammonium uptake as an example (Boogerd et al., 2011),  247 

Xr′
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 + +
3,env env 3,cyt cytNH H NH H+ + ,  (15) 248 

to illustrate how explicitly accounting for nutrient availability and transport influences the 249 

accuracy of microbial growth rate prediction via the hybrid method.  250 

Before simulating the metabolism of M. barkeri, we apply FBA to the methanogenesis 251 

pathway of model iMG746 to estimate the yield of ATP (fig 1B). We assume that cytoplasmic 252 

ammonium concentrations are at optimum levels for biosynthesis, and solve the optimization 253 

problem (eq 10) at different environmental ammonium concentrations using brute-force search. 254 

We then use the estimated ATP yield and the optimized cytoplasmic ammonium concentrations 255 

to simulate the overall metabolism of M. barkeri. At each time step, we first calculate the rate 256 

and ATP flux of methanogenesis using the thermodynamically-consistent Monod equation (eqs. 257 

1 and 12), and the flux of ammonium uptake using the thermodynamically-consistent Michaelis-258 

Menten equation (eqs. 7 and 8).  We predict the rate and chemical fluxes of biosynthesis by 259 

applying FBA to the biosynthesis pathway, using the fluxes of ATP synthesis and ammonium 260 

uptake as the input. At the end of the time step, we update the concentrations of chemical 261 

compounds and biomass in the environment (eqs. 3 and 14). Applying the hybrid method 262 

requires a series of microbial and enzymatic parameters, which, for the present calculation, are 263 

listed in table 1. 264 

We implement the hybrid method by linking the COBRA toolbox and PHREEQC 265 

software package and by using the Microsoft Component Object Model (COM) Server as a 266 

control and data management source. COM is a Microsoft foundations technology for 267 

exchanging information among software packages of different platforms. COBRA and 268 

PHREEQC specialize in FBA and biogeochemical reaction modeling, respectively (Charlton and 269 

Parkhurst, 2011; Schellenberger et al., 2011). We run COBRA using Gruobi version 6.5, a linear 270 
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solver that provides acceptable accuracy at small chemical fluxes. The input files of the 271 

simulations are available in the Supplementary Material.   272 

3. Results  273 

We illustrate the hybrid method using the metabolism of M. barkeri growing on acetate. 274 

We first estimate key parameters, including the ATP yield of methanogenesis, the stoichiometry 275 

of biosynthesis reactions, and the flux of ammonium uptake. We then simulate the metabolism in 276 

laboratory experiments, and predict the growth in aquifers under energy- vs. nutrient- limiting 277 

conditions. 278 

3.1. Model predictions  279 

The hybrid method takes multiple steps to predict the rates of methanogenesis and 280 

biosynthesis in M. barkeri. These steps include applying FBA independently to the 281 

methanogenesis and biosynthesis pathways in model iMG746, as well as the optimization of 282 

cytoplasmic nutrient concentration.   283 

3.1.1. ATP yield 284 

We apply FBA to the methanogenesis pathway of model iMG746 to estimate the ATP 285 

yield of acetoclastic methanogenesis. The results show that M. barkeri makes ATP by 286 

consuming acetate and proton and producing methane and CO2. The ratios of the chemical fluxes 287 

give a yield of 0.75 ATPs per methane, and the following stoichiometric equation of 288 

acetcoclastic methanogenesis,  289 

 i 4 2 2
3 3 3 3 3Acetate ADP P 1 H CH CO ATP+ H O
4 4 4 4 4

++ + + + + . (16) 290 

These ratios remain constant over acetate uptake fluxes of 10−5 mmol·g−1·hr−1, as in oligotrophic 291 

environments (Hoehler and Jørgensen, 2013), to a maximum flux of 7.1 mmol·g−1·hr−1 (table 1). 292 

The FBA-derived ATP yield matches with the value estimated previously for Methanosarcina 293 
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species (Welte and Deppenmeier, 2013). The product of the ATP yield and the maximum acetate 294 

uptake flux gives the maximum flux of ATP production at 5.3 mmol·g−1·hr−1 (eq 12). 295 

3.1.2. Biosynthesis reaction 296 

We apply FBA to the biosynthesis pathway to analyze the effect of microbial energy 297 

conservation on biomass synthesis. Biosynthesis consumes both ATP and nutrients. In order to 298 

focus on ATP supply, we use the flux of ATP as the only input for FBA, assuming that nutrient 299 

uptake is not limiting with respect to biosynthesis, as would be typical in most laboratory 300 

experiments (Whitman et al., 2006). Later we consider nutrient limitation by taking ammonium 301 

as an example (section 3.3.1.).     302 

The FBA results show that the biosynthesis pathway makes new cells by consuming 303 

acetate, ammonium, proton, phosphate, and cysteine. The cysteine requirement is consistent with 304 

the current practice of laboratory culturing: cysteine is an essential nutrient and serves as a 305 

source of sulfur for M. barkeri (Mazumder et al., 1986). The biosynthesis pathway also produces 306 

CO2 and methylsulfide (methanethiol or methyl mercaptan, CH3SH) as waste products. The 307 

methylsulfide production complements previous laboratory observations that the methanogenesis 308 

of M. barkeri can consume methylsulfide as a substrate or produce it as a product (Moran et al., 309 

2008; Zhang et al., 2008). 310 

The rates and chemical fluxes of biosynthesis vary linearly with ATP fluxes. The overall 311 

rate of biosynthesis is given by,  312 

 X X/ATP ATPr Y F′ = ⋅ ,  (17) 313 

where YX/ATP is the biomass yield per ATP, and has a value, 6.1 g·mol−1, that is close to the value 314 

(6.2 g·mol−1) determined using laboratory bioreactors (Jin, 2012). When ATP is supplied at the 315 

maximum production flux, biosynthesis reaches a maximum rate of 3.2×10−2 hr−1, consuming 316 
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ammonium at a maximum flux of 0.35 mmol·g−1·hr−1. The predicted maximum biosynthesis rate 317 

is close to the maximum growth rate of M. barkeri in laboratory reactors (4.1×10−2 hr−1) 318 

(Fukuzaki et al., 1990).  319 

The linear variations of the chemical fluxes also give the following stoichiometric 320 

equation for biosynthesis,  321 

 4 2

2 3 i

1.73Acetate 0.95NH 0.05Cysteine+11.78H O 14.17ATP
X 0.08CO 0.03CH SH 14.17ADP 14.09P 13.29H

+

+

+ + +

→ + + + + +
  (18) 322 

Here X represents biomass with a chemical formula of C3.52H5.42O1.33NP0.08S0.03 (molecular 323 

weight, 86.46). The chemical formula is arrived at on the basis of the cellular composition of 324 

macromolecules and metabolites (Gonnerman et al., 2013); following the common practice, we 325 

set the number of nitrogen atom in the biomass formula at 1. The FBA results show that the 326 

biosynthesis reaction also produces aminobenzoate and glycolaldehyde as waste products.  327 

However, as these compounds have stoichiometric coefficients of only 0.002, they are omitted 328 

from the reaction equation. Also note that ADP and phosphate do not have a 1:1 stoichiometry in 329 

the products, as would be the case if ATP hydrolysis was the sole reaction involving phosphate.  330 

Instead, the smaller quantity of phosphate relative to ADP is due to the consumption of 0.08 mol 331 

phosphate per mol biomass synthesized.   332 

3.1.3. Ammonium transport 333 

Optimizing cytoplasmic ammonium concentration requires a series of parameters, 334 

including the maximum ammonium uptake flux, the Michaelis constant of cytoplasmic 335 

ammonium, and the exponent n (see eqs 8, 9 and 10). We calculate the maximum ammonium 336 

uptake flux, Vmax, of 0.35 mmol·g−1·hr−1, from the maximum biosynthesis rate and the 337 

stoichiometric equation of biosynthesis (eq 18).  The maximum ammonium flux and biosynthesis 338 
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rate are close to those of Geobacter sulfurreducens: Scheibe et al. (2009) estimated that G. 339 

sulfurreducens has a maximum ammonium flux and biosynthesis rate of 0.5 mmol·g−1·hr−1 and 340 

4.7×10−2 hr−1, respectively.  341 

The exponent n in the optimization function (eq 10) determines the magnitude of 342 

ammonium accumulation in the cytoplasm. A large n value favors the accumulation of 343 

cytoplasmic ammonium, while a small value lowers the accumulation. Kadam and Boone (1996) 344 

analyzed ammonium accumulation by Methanolobus bombayensis, Methanolobus taylorii, and 345 

Methanohalophilus zhilinaeae in laboratory reactors where ammonium concentrations are 346 

relatively large, > 10 mM (fig 2A). By trial and error, we found that by taking the exponent n as 347 

2, the optimization solution matches the ammonium accumulation in those three methanogens 348 

(see fig 2A). The exponent n of 2 suggests that these methanogens likely favor ammonium 349 

accumulation in the cytoplasm, which comes at the expense of decreasing the thermodynamic 350 

factor and, hence, the ammonium transport flux (eq 8). This may reflect the need of a relatively 351 

large pool of cytoplasmic ammonium in order to speed up the ammonium-consuming enzymes 352 

with relatively large Michaelis constants. Specifically, in the cytoplasm of M. barkeri, 353 

ammonium-consuming enzymes include glutamine synthetase and glutamate dehydrogenase, and 354 

their Michaelis constants for ammonium can be as large as 2 mM (Boogerd et al., 2011).  355 

Here we assume that for M. barkeri, the exponent n also takes a value of 2 and that the 356 

laboratory observations can be extrapolated to natural environments, where ammonium 357 

concentrations are generally much smaller than 10 mM (fig 2B). Figure 2B and C show the 358 

accumulation of cytoplasmic ammonium and the corresponding fluxes of ammonium uptake, 359 

given these assumptions. Both the accumulation and uptake respond strongly to the availability 360 

of ammonium. With an environmental ammonium concentration of 1 µM, M. barkeri can 361 
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accumulate ammonium in the cytoplasm by a factor of 33, and transport ammonium at a flux of 362 

3.1×10−4 mmol·g−1·hr−1. At 10 mM ammonium, the accumulation reduces to four fold, but the 363 

uptake flux increases to 0.31 mmol·g−1·hr−1, close to the maximum flux.  364 

3.2. Laboratory experiments 365 

Previous laboratory studies have extensively examined the metabolism of M. barkeri 366 

growing on acetate (e.g., Mah et al., 1978; Smith and Mah, 1978; Westermann et al., 1989, and 367 

others). Here we apply the hybrid method to simulate the experiments of Fukuzaki et al. (1990). 368 

They grew M. barkeri at 37 oC in batch reactors of 50 mL of complex growth media and 75 mL 369 

headspace. The media had pH 7.1 and contained 19.7 mM acetate and 9.3 mM ammonium. They 370 

followed closely the progress of acetate consumption, even after acetate reached a constant 371 

concentration of 2.0 mM at day 4 (fig 3A), which provides an opportunity to illustrate the 372 

thermodynamic control on the progress of metabolism. 373 

We simulated the progression of their experiments using an initial biomass concentration 374 

of 30 mg∙kg−1. This value is estimated on the basis of the experimental results of the first two 375 

days (fig 3A). The simulation results match the observations of Fukuzaki et al. (1990). As shown 376 

in figure 3A, at the beginning of the experiments, acetate concentration decreases almost linearly 377 

with time. After two days into the experiments, the decrease slows down. The simulation 378 

predicts that methane and biomass build up in the reactors (fig 3A and B). At the end of the 379 

simulation, acetate concentration decreases to 1.3 mM, and 16.9 mmol methane is produced per 380 

liter of growth media. Note that our simulation partitions methane between the medium and 381 

headspace, with respective volumes as given by Fukuzaki et al. (1990); figure 3 plots only the 382 

dissolved methane concentration. These results give a stoichiometric ratio of methane production 383 

to acetate consumption at 0.92, close to the value of 1 in the reaction equation (eq 16) (Smith and 384 
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Mah, 1978). Biomass concentration increases with time and reaches its maximum value at day 5. 385 

The simulation also predicts notable ammonium consumption – during the experiments, a total of 386 

0.8 mM ammonium is consumed (fig 3A).  387 

We also simulate the experimental progress using dynamic FBA, and an initial biomass 388 

concentration of 0.12 g∙kg−1. Table 1 lists the required parameters and their values for the 389 

simulation. As shown in figure 3A and B, dynamic FBA is only applicable to the first 2.5 days of 390 

the experiments. It predicts well acetate consumption during this period. But after day 2.5, 391 

dynamic FBA fails to return any solution, for reasons described in the discussion below.  392 

The results of the hybrid method agree with previous characterizations of methanogen 393 

metabolisms. For instance, previous studies describe the efficiency of cell metabolism in terms 394 

of the biomass yield per carbon source, YX/C (Roden and Jin, 2011). We can calculate the 395 

biomass yield from the predicted biosynthesis rate Xr′  and the total flux of acetate consumption 396 

FAC,T,  397 

 X
X/C

AC,T

rY
F
′

= . (19) 398 

Substituting equation 14 and applying the simulation results give a YX/C value of 4.0 g·mol−1, 399 

near the upper end of the range of 1.2 to 4.2 g·mol−1 determined in laboratory bioreactors 400 

(Scherer and Sahm, 1981; Sowers et al., 1984).  401 

As a second example, acetate is used by M. barkeri in both methanogenesis (energy-402 

producing) and biosynthesis (carbon-utilizing) reactions. Here the fractions of acetate consumed 403 

by methanogenesis and biosynthesis are denoted as fR and fX, respectively. The simulation 404 

predicts that M. barkeri has fR of 0.92 and fX of 0.08 (fig 3C and D), close to the values of 0.95 405 

and 0.05 suggested previously (Rittmann and McCarty, 2012).  406 
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The simulation results include the rates of individual biochemical reactions, which allow 407 

us to further track the cellular usage of acetate. The biosynthesis pathway of M. barkeri 408 

consumes acetate for two purposes. One is the production of acetyl-CoA and pyruvate – the 409 

central metabolites for the production of amino acids, nucleotides, and other biomass precursors. 410 

The other is the production of reducing power – reduced ferredoxins and cofactor F420, which 411 

are utilized in the synthesis of biomass precursors (Jablonski and Ferry, 1991; Krzycki et al., 412 

1982). To produce the reducing power, acetate is first oxidized to methyl-413 

tertahydrosarcinapterin, and then to CO2. The first oxidation step is driven by the CO 414 

dehydrogenase/acetyl-CoA synthase enzyme complex and the second by the reversal of the CO2 415 

reduction portion of the hydrogenotrophic methanogenesis pathway.  416 

The simulation results predict that, for M. barkeri growing on acetate in laboratory 417 

reactors, the biosynthesis pathway spends 72.7% of the acetate flux on the production of acetyl-418 

CoA and pyruvate and the remaining 27.3% on the production of reducing power. Overall, of the 419 

total acetate consumed by M. barkeri, the fraction used to generate reducing power is 0.02, the 420 

fraction used for production of biomass precursors is 0.06, and the remaining fraction, 0.92, is 421 

consumed by the methanogenesis pathway for ATP production. These values fall into the range 422 

reported previously for Methanosaeta harundinacea strain 6Ac – another methanogen capable of 423 

acetoclastic methanogenesis. Zhou et al. (2015) analyzed the significance of reducing power 424 

production during the growth of strain 6Ac on acetate, and reported that the acetate fraction for 425 

reducing power production ranged from 0.005 to 0.037. 426 

The simulation results indicate that, in typical laboratory culturing media, the growth of 427 

M. barkeri is limited primarily by energy sources (Hespell and Bryant, 1979; Tempest and 428 

Neijssel, 1984). In the simulation, M. barkeri lives in the growth media of about 9 mM 429 
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ammonium, and can transport ammonium at up to 0.31 mmol·g−1·hr−1, fast enough to support the 430 

biosynthesis pathway (fig 3D). In comparison, the energy available to ATP synthesis decreases 431 

with time, thereby decreasing the flux of ATP production and hence the rate of biosynthesis (fig 432 

3C, E, and F).   433 

3.3. Environmental application  434 

Natural environments are often limited in growth nutrients and/or energy sources. But it 435 

has been challenging to experimentally analyze how nutrient availability impacts the kinetics of 436 

microbial metabolism, due to the technical difficulties in differentiating between metabolically 437 

active and dormant cells, in attributing bulk chemical measurements to specific microbial 438 

populations, and in untangling the overlapping effects of energy sources and growth nutrients. 439 

The hybrid method accounts for ATP production and nutrient consumption at the same time, 440 

which offers a computational approach to explore microbial growth under energy- vs nutrient- 441 

deprived conditions.  442 

3.3.1. Ammonium limitation 443 

We first take ammonium consumption as an example, and apply the hybrid method to 444 

predict how nutrient availability influences the kinetics and efficiency of biomass synthesis of M. 445 

barkeri. Ammonium is commonly limiting in natural environments (Knelman et al., 2014; 446 

LeBauer and Treseder, 2008). Its concentrations range from less than 1 µM in oligotrophic 447 

environments to over 1 mM in eutrophic settings (Buss et al., 2004). Figure 4A shows how the 448 

biosynthesis rate varies with acetate concentration in an environment containing 10 µM 449 

ammonium, 1 mM bicarbonate, and 1 to 103 µM methane. At 1 µM methane, where acetate 450 

concentration is less than 30 µM, the biosynthesis is limited by ATP supply, and the biosynthesis 451 

rate increases with acetate concentration. At acetate concentration greater than the threshold of 452 
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30 µM, the biosynthesis is limited by ammonium availability, and proceeds at a maximum rate of 453 

1.9×10−4 hr−1.  454 

Increases in methane concentration increase the threshold acetate concentration for 455 

ammonium limitation. This is because methane accumulation slows down ATP production by 456 

methanogenesis (eqs 1 and 12) and therefore reduces the demand for ammonium in biosynthesis 457 

(eq 18). At 1 mM methane, the threshold acetate concentration increases to 475 µM, one order of 458 

magnitude larger than the acetate threshold at 1 µM methane.  459 

Figure 4B illustrates the transition between energy-limited and N-limited regimes across 460 

ranges of environmentally-meaningful acetate, ammonium, and methane concentrations. 461 

Increases in ammonium concentrations raise maximum biosynthesis rates. Larger ammonium 462 

concentrations enable faster ammonium uptake (eq 7), which in turn supports faster biosynthesis 463 

(eq 18). At 1 mM ammonium, the biosynthesis can reach a maximum value of 1.2×10−2 hr−1, 464 

about two orders of magnitude larger than the maximum rate at 10 µM ammonium.  465 

The efficiency of biosynthesis has been described using different parameters. As 466 

mentioned above, the efficiency of laboratory cultures is characterized using biomass yield YX/C 467 

(eq 19). For natural communities, the efficiency is measured using carbon use efficiency (CUE) 468 

– the portion of total carbon consumed in cell metabolism that is assimilated into new biomass 469 

(Sinsabaugh et al., 2013; Stefano et al., 2012). The two parameters are exchangeable,  470 

 XC AC,X X/CCUE f Yν= ⋅ ⋅ ,  (20) 471 

where fXC is the fraction of acetate flux assimilated into new biomass over the flux driven by 472 

biosynthesis, and AC,Xν  is the number of acetate molecules consumed per unit biomass 473 

synthesized. According to the simulation results, M. barkeri has a fXC value of 0.73 and a AC,Xν  474 

value of 0.02 mol·g−1 (see eq 18). 475 
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Figure 4C and D show according to the predictions (fig 4A and B), how the biomass 476 

yield of M. barkeri varies with the concentrations of acetate, ammonium, and methane. Previous 477 

studies emphasized the atomic ratios of nutrients, such as Redfield ratio, as a controlling factor 478 

of metabolic efficiencies of natural communities (Cleveland and Liptzin, 2007; del Giorgio and 479 

Cole, 1998). Figure 4E and F show how the CUE of M. barkeri changes with C:N ratios – the 480 

atomic ratios of carbon in acetate to nitrogen in ammonium. 481 

The predictions suggest that biosynthesis efficiencies depend on the availability of 482 

acetate and ammonium. Acetate and ammonium concentrations modulate the fluxes of ATP 483 

production and ammonium uptake, respectively (eqs 1 and 7). Where the ATP to ammonium flux 484 

ratio is less than or equal to their stoichiometric ratio in the biosynthesis reaction (eq 18), i.e., 485 

20.9, biosynthesis is limited by the supply of ATP. Under this condition, biosynthesis rate varies 486 

linearly with ATP production flux (or methanogenesis rate) (eq 17), and the metabolic 487 

efficiencies reach their maximum values.  488 

Substituting equation 12, 14, and 17 to 19, we can calculate maximum yield (Ymax), 489 

 ATP X/ATP
max

AC,R ATP AC,X X/ATP

YY
Y

ν
ν ν ν

⋅
=

+ ⋅ ⋅
, (21) 490 

from the stoichiometric coefficients of acetate in methanogenesis and biosynthesis (νAC,R and 491 

νAC,X), the ATP yield νATP, and the biomass yield per ATP, YX/ATP. Equation 20 and 21 suggest 492 

that maximum metabolic efficiencies are intrinsic microbial parameters constrained by the 493 

properties of metabolic pathways, and their values does not vary with environmental conditions. 494 

For M. barkeri, by using the parameter values derived from model iMG746, the maximum yield 495 

Ymax is 4.2 g·(mol acetate)−1 and the maximum CUE (CUEmax) is 6.1% (figs 4C to F).  496 

Where the ratio of ATP to ammonium fluxes surpasses their stoichiometric ratio in the 497 

biosynthesis reaction (eq 18), the biosynthesis rate no longer responds to the changes in acetate 498 
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concentration or methanogenesis rate but, instead, is determined solely by the uptake flux of 499 

ammonium, 500 

 X X/N Nr Y F′ = ⋅  , (22) 501 

where YX/N is the biomass yield per ammonium. The predictions (fig 4B) give a YX/N value of 502 

91.5 g·(mol  )−1 for M. barkeri, which is close to the value of 121 g·(mol  )−1 503 

determined in laboratory for Methanothermobacter thermautotrophicus (Kenealy et al., 1982). 504 

The decoupling of biosynthesis from methanogenesis has been observed for M. barkeri growing 505 

under ammonium-deprived conditions (Kenealy et al., 1982).  506 

Under the conditions of ammonium limitation, metabolic efficiencies are not constant, 507 

but decrease nonlinearly with increasing acetate concentrations or increasing C:N ratios (figs 4C 508 

to F). These predictions agree with the CUE values reported for natural communities. In natural 509 

environments, ammonium concentrations tend to be small and thus likely limit the biosynthesis 510 

of natural communities. Accordingly, the CUE declines nonlinearly with C:N ratios (del Giorgio 511 

and Cole, 1998).   512 

Where acetate concentrations are much larger than the half-saturation constant of acetate 513 

consumption (i.e., 5 mM for M. barkeri, table 1), the efficiencies reach their minimum values 514 

(figs 4C to F). Minimum efficiencies can be calculated from equation 19 and 22 by assuming 515 

that methanogenesis proceeds at its maximum rate. For example,   516 

  X/N N
min

AC,R AC,X X/N N

Y FY
k Y Fν ν

⋅
=

⋅ + ⋅ ⋅
. (23) 517 

According to this equation, the minimum efficiencies depend not only on the properties of 518 

metabolic networks but also on the uptake flux or the availability of ammonium. In natural 519 

environments with ammonium concentrations less than 10 µM, the minimum biomass yields and 520 

4NH+
4NH+
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CUEs can be as low as 0.027 g·(mol acetate)−1 and 0.04%, respectively – two orders of 521 

magnitude smaller than the predicted maximum efficiencies (Ymax and CUEmax). On the other 522 

hand, in laboratory reactors, where ammonium is supplied at concentrations greater than 1 mM 523 

(Whitman et al., 2006), the minimum yields are greater than 1.45 g·(mol acetate)−1, close to the 524 

predicted Ymax value. In other words, the biomass yields determined in laboratory bioreactor 525 

should be close to each other, but the CUEs of natural communities can vary over orders of 526 

magnitude. These predictions are consistent with the results of previous laboratory and field 527 

studies: the biomass yields of M. barkeri in laboratory reactors fall into a relatively narrow range 528 

of 1.2 to 4.2 g·(mol acetate)−1 (Scherer and Sahm, 1981; Sowers et al., 1984), and the CUEs of 529 

natural communities vary more than an order of magnitude (del Giorgio and Cole, 1998).  530 

Combining equation 12, 17, and 22, biosynthesis rates Xr′  can be calculated according to   531 

 ( )X X/ATP ATP R X/N Nmin ,r Y r Y Fν′ ′= ⋅ ⋅ ⋅ . (24) 532 

This equation states that biosynthesis is subject to Liebig's Law of the Minimum (Bader, 1978; 533 

Droop, 1974; Egli, 2013; Zinn et al., 2004), and biosynthesis rate is determined either by ATP 534 

production flux FATP or by ammonium uptake flux FN, depending on which one places a stronger 535 

limitation and whether or not biosynthesis is coupled to methanogenesis.  536 

3.3.2. Growth kinetics 537 

According to the above biosynthesis predictions (fig 4B), ammonium availability in the 538 

environment can place upper limits on the rates of biosynthesis (Kessler et al., 2001; LeBauer 539 

and Treseder, 2008; Ma and Thauer, 1990). These limits may account for the wide range of 540 

doubling time reported for microbes. For example, where the energy sources and growth 541 

nutrients are abundant, the hybrid method predicts that M. barkeri has a maximum biosynthesis 542 

rate of 3.2×10−2 hr−1, which is equivalent to a doubling time of 22 hours. This prediction is close 543 
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to the doubling time of 24 hours determined for M. barkeri in laboratory bioreactors (Peinemann 544 

et al., 1988; Smith and Mah, 1978).  545 

The doubling time of natural microbes is much longer than laboratory cultures. Phelps et 546 

al. (1994a) estimated that, in the sediments of Lake Mendota, a eutrophic lake in Wisconsin, 547 

USA, microbes have a doubling time of 5 to 10 days. At the observed sediment ammonium 548 

concentration of approx. 100 µM (Austin and Lee, 1973), the hybrid method predicts a N-limited 549 

growth rate for M. barkeri of 2.2×10−3 hr−1 (doubling time of 13 days), close to the estimate of 550 

Phelps et al. (1994a).  551 

In the Middendorf aquifer, South Carolina, USA, microbes have an average doubling 552 

time of centuries (Phelps et al., 1994a). In this aquifer, the groundwater has about 1 µM 553 

ammonium (Phelps et al., 1994b). According to the above predictions, M. barkeri growing at 1 554 

µM ammonium has a biosynthesis rate up to 2×10−5 hr−1, a value that is close to microbial 555 

maintenance rate. In natural environments of limited resources, microbes may have maintenance 556 

rates an order of magnitude smaller than laboratory cultures (Schmidt, 1992). Using a 557 

maintenance rate of 1.8×10−5 hr−1 (table 1), M. barkeri would have a growth rate of 2×10−6 hr−1 558 

(eq 3), equivalent to a doubling time of 40 years. Other factors, such as non-optimal temperatures 559 

and pHs and the scarcity of energy sources and other growth nutrients, can also slow down 560 

growth, further extending the doubling time of aquifer microbes (Price and Sowers, 2004).  561 

3.3.3. Pristine aquifer 562 

The potential linkage between the long doubling time of aquifer microbes and the low 563 

ammonium in groundwater suggests that the growth of aquifer microbes might be limited by the 564 

availability of ammonium. Current biogeochemical reaction modeling calculates biosynthesis 565 

rates as a linear function of methanogenesis rates (eq 2), assuming that the growth of natural 566 
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microbes is limited primarily by energy sources (Jin et al., 2013). Here we use M. barkeri as a 567 

model microbe and test in pristine aquifers, whether the ammonium limitation on growth is 568 

applicable to aquifer microbes.  569 

We retrieved groundwater chemistry data from the U.S. Geological Survey (USGS) 570 

National Water Information System (NWIS) database (https://nwis.waterdata.usgs.gov). We 571 

searched the database for samples that were collected from wells (site type) and analyzed for 572 

ammonium (USGS parameter 00608), methane (parameter 76994), and dissolved oxygen 573 

(parameter 00300). We eliminated samples that contained 1 mg/L or more dissolved oxygen, as 574 

likely being inhibitory for methanogenesis. Out of the 21 hydrologic regions in the database, the 575 

Mid-Atlantic region returned the largest number (i.e., 170) of groundwater samples (see 576 

Supplementary Material). These samples were from the siliciclastic aquifers in Pennsylvania, 577 

USA − the aquifers of unconsolidated sediments, sandstones, siltstones, and shale (Ator et al., 578 

2005). They have an average temperature of 12 oC, pH of 7.8, about 0.3 mM bicarbonate, and 4 579 

µM methane. No acetate analysis is available for these samples. But in pristine aquifers, acetate 580 

can reach a concentration of 20 µM (McMahon and Chapelle, 1991a; 1991b).  581 

The hybrid method predicts that M. barkeri in the aquifers has a biosynthesis rate of 582 

6.8×10−5 hr−1. Taking the maintenance rate as 1.8×10−5 hr−1 (table 1), M. barkeri would have a 583 

growth rate of 5.0×10−5 hr−1 (eq 3) or a doubling time of 578 days. If we neglected ammonium 584 

limitation and calculated the biosynthesis rate using the linear biosynthesis equation (eq 2), we 585 

would arrive at a growth rate of 8.5×10−5 hr−1 or 339 days. Considering that we assume a 586 

relatively large acetate concentration (i.e., 20 µM), the difference between the two predictions 587 

might indicate that at least at some locations of the aquifers, microbial growth is limited by 588 

ammonium availability.  589 
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The potential ammonium limitation is consistent with the groundwater chemistry of the 590 

aquifers. Figure 5 compares the concentrations of methane and ammonium in the groundwater. 591 

Methane levels range from below 1 µM to over 100 µM, and correlate moderately with the 592 

concentrations of ammonium (Spearman’s coefficient, 0.495). If the ammonium availability 593 

limits methanogen growth in the aquifers, it would also limit the production of methane gas.   594 

3.3.4. Bioremediation  595 

As a second example, we take M. barkeri as a model methanogen, and apply the hybrid 596 

method to predict the growth of aquifer methanogens during in situ groundwater bioremediation. 597 

Current in situ bioremediation practice removes or immobilizes groundwater contaminants by 598 

injecting solutions of organic compounds into aquifers and by stimulating the metabolisms of 599 

aquifer microbes (Majone et al., 2015).   600 

We focus on a field bioremediation experiment in an alluvial aquifer, Colorado, USA 601 

reported  by Mouser et al. (2009). This experiment injected acetate solution into the aquifer 602 

through a 10-meter-long array of injection wells, and monitored the chemistry and microbiology 603 

in the groundwater from monitoring wells 2.5 meters (well D-02 and 04) to 5 meters (well D-05 604 

and 08) down-gradient from the injection wells. The acetate injection stimulated the metabolisms 605 

of aquifer microbes, including methanogens (Anderson et al., 2003; Komlos et al., 2008; Liang 606 

et al., 2012). We assume that the biostimulation increased microbial metabolic rates, including 607 

maintenance rates (van Bodegom, 2007). As a result, in the biostimulated aquifer, M. barkeri 608 

may have a maintenance rate close to the value of 1.8×10−4 hr−1 determined in laboratory 609 

bioreactors (Wandrey and Aivasidis, 1983).  610 

Figures 6A to D show, during the experiment, how the ATP flux from acetoclastic 611 

methanogenesis varied with time (eqs 1 and 12). The ATP fluxes are predicted from the reported 612 
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acetate concentrations during the experiment (Mouser et al., 2009, their figure 1B), and by taking 613 

pH of the groundwater at 7, bicarbonate at 3.4 mM, and methane at 0.1 µM (Druhan et al., 2014; 614 

Fang et al., 2009).  615 

The variations in ATP fluxes reflected the acetate concentrations in the groundwater. The 616 

acetate injection occurred during the first 10 days and between day 17 and 30 of the experiment 617 

(Mouser et al., 2009). Accordingly, the ATP fluxes increased and then decreased during the first 618 

20 days. Afterwards, the fluxes increased again. Also, the maximum ATP fluxes were larger in 619 

the wells close to the injection wells (well D-02 and 04) than in those away from the injection 620 

(well D-05 and 08). 621 

Figure 6E to H show how the ammonium uptake fluxes varied with time. The ammonium 622 

fluxes reflected the ammonium concentrations in the groundwater, which were different at 623 

different locations. These differences have been attributed to the heterogeneous occurrence of 624 

sedimentary organic matter (Mouser et al., 2009). 625 

Figure 6I to L show the predicted growth rates of M. barkeri. In well D-02, 04, and 05, 626 

the variations follow the trends of ammonium fluxes. In well D-02, the growth rate of M. barkeri 627 

increases with time to 2.3×10−3 hr−1. In well D-04, the growth rate remains relatively constant at 628 

1.1±0.3×10−3 hr−1. In well D-05, the growth rate remains close to 0. In contrast, in well D-08, the 629 

variation in growth rate is similar to that of ATP production flux. These results suggest that in 630 

well D-02, 04, and 05, the biosynthesis of M. barkeri is limited by ammonium availability and 631 

hence is decoupled from methanogenesis. On the other hand, in well D-08, the biosynthesis is 632 

limited by ATP production (or by acetate availability) and is coupled to methanogenesis. 633 

The metabolic decoupling is also evident from the predicted CUEs (figs 6M to P). In well 634 

D-02, 04, and 05, at most sampling time points, the CUEs remain smaller than the maximum 635 
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value of 6.1%, reaching as low as 0.06% in well D-05. However, in well D-08, the CUEs remain 636 

constant at the maximum value throughout the experiments.  637 

The growth rate predictions suggest that methanogens would not be able to flourish 638 

around well D-05, but they could live and develop around well D-02, 04, and 08. In the aquifer, 639 

the main source of ammonium was from the degradation of sedimentary organic matter (Mouser 640 

et al., 2009). This natural nitrogen source was insufficient to support the metabolisms of aquifer 641 

microbes during the biostimulation (fig 6I to P). Thus the addition of acetate, without any source 642 

of nitrogen, might have hindered the stimulation of aquifer microbes. In addition, the 643 

heterogeneous distribution of ammonium can account, at least in part, for the uneven spatial 644 

distribution of microbes in the aquifer and their metabolic activities during biostimulation tests 645 

(Liang et al., 2012). 646 

If we neglected the impact of ammonium and assumed a linear relationship between 647 

biosynthesis and methanogenesis (eq2), as in current practice of biogeochemical reaction 648 

modeling (Li et al., 2009; Yabusaki et al., 2011), we would arrive at growth rates up to an order 649 

of magnitude larger than the values predicted by the hybrid method (see figs 7I to L). These 650 

differences reflect the limiting effect of ammonium in aquifers, and resonate with the previous 651 

notion that current modeling frameworks (eqs 1 to 3) may not capture accurately the rates of 652 

microbial metabolisms in situ (Brown et al., 2000; Murphy and Schramke, 1998; Phelps et al., 653 

1994a).  654 

We can test the occurrence of ammonium limitation on the basis of gene expression. 655 

Specifically, M. barkeri and other prokaryotes accumulate ammonium in the cytoplasm using 656 

ammonium transporter enzyme. Mouser et al. (2009) analyzed the expression of the enzyme by 657 

the aquifer microbes during the field experiment. They enumerated the transcripts of an 658 
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ammonium transporter gene, amtB, using reverse-transcription polymerase chain reaction (RT-659 

PCR), and compared the transcript numbers to those of a housekeeping gene recA (fig 7). A 660 

BLAST search against currently available genome sequences found that their primer sets for 661 

amtB retrieved sequences from diverse microbes, including M. barkeri. Their results thus might 662 

have reflected the response of aquifer microbes in general.  663 

We quantify the significance of ammonium limitation using the ratio of ammonium 664 

concentration menv in groundwater to the concentration mreq required to support the 665 

stoichiometrically-balanced biosynthesis of M. barkeri. Figures 6Q to T compare the ammonium 666 

concentration in the groundwater to the concentrations required by the stoichiometrically-667 

balanced growth. Figure 7 shows that during the field experiments, the expression of amtB gene 668 

correlated with the significance of ammonium limitation (Spearman’s coefficient of −0.852). The 669 

strong negative correlation is consistent with our assessment about the ammonium limitation 670 

around well D-02, 04, and 05.   671 

4. Discussion 672 

We illustrated in this paper how to predict the kinetics of microbial metabolisms by 673 

combining genome-scale metabolic models with thermodynamically-consistent rate laws. We 674 

took methanogenesis as an example and simulated the metabolism of M. barkeri in both 675 

laboratory bioreactors and aquifers. The results show that the new method expands and improves 676 

the predictions of microbial kinetics, and can be applied to diverse environments, from 677 

laboratory bioreactors of optimal growth conditions to natural environments of limited resources. 678 

4.1. Method development   679 

The hybrid method follows dynamic FBA, and uses genome-scale metabolic models to 680 

account for the pathways of cell metabolisms (fig 1). But the two methods differ from each other 681 
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in the treatment of metabolic pathways (fig 1). Dynamic FBA uses standard genome-scale 682 

metabolic models, which lump together the biochemical reactions of catabolic and biosynthetic 683 

pathways. Additionally, they use a hypothetical ATP-consuming reaction to account for the 684 

energy demand by maintenance (Thiele and Palsson, 2010). For this reason, direct applications 685 

of genome-scale metabolic models require that ATP production fluxes from catabolism surpass 686 

ATP hydrolysis rates of maintenance. As a consequence, dynamic FBA always predicts that 687 

microbes are actively growing. But in most subsurface environments, active growth might be 688 

sporadic because of limited energy sources and growth nutrients, and stationary and death phases 689 

can be the common metabolic states (Morita, 1997; Price and Sowers, 2004; Roszak and 690 

Colwell, 1987).  691 

In comparison, the hybrid method applies FBA separately to the catabolic and 692 

biosynthetic pathways in genome-scale metabolic models and, following standard practice in 693 

biogeochemical modeling, accounts for cellular maintenance using negative rates of biosynthesis 694 

(Jin and Roden, 2011; Jin et al., 2013). The separate treatment of catabolic, biosynthetic, and 695 

maintenance pathways enables the application of the hybrid approach to a wider range of 696 

metabolic states, from active growth to stationary and to death phase. For example, in the 697 

simulation of the laboratory experiments, dynamic FBA fails to find a solution after 2.5 days into 698 

the experiments. After this point, the ATP flux from methanogenesis is no longer able to match 699 

the ATP consumption flux by maintenance assumed in model iMG746 (fig 3A, B, and E). On the 700 

other hand, the hybrid method predicts that the metabolism of M. barkeri follows the typical 701 

sequence of exponential and stationary phases (fig 3B).  702 

The hybrid method predicts microbial kinetics by combining genome-scale metabolic 703 

models with rate laws. There are different microbial rate laws on which to potentially build this 704 



32 
 

application (Simkins and Alexander, 1984). The choice of the thermodynamically-consistent 705 

Monod equation (eq 1) reflects the need to consider thermodynamics in predicting the kinetics of 706 

microbes under the conditions that frequently characterize natural systems (Jin and Bethke, 707 

2005). As demonstrated in the example application (figs 3C, D, and F), the hybrid method 708 

captured the response of acetate consumption flux to the changes in the chemical energy of the 709 

environment: the acetate fluxes are larger at larger available energies, and vice versa. If we 710 

applied dynamic FBA without accounting for the thermodynamics of microbial catabolism, we 711 

would not be able to capture the response of acetate fluxes to the thermodynamic conditions of 712 

the environment (fig 3A and F). 713 

Applying the hybrid method requires the evaluation of the thermodynamically-consistent 714 

rate laws and the simulation of biosynthesis using FBA. In the example application to laboratory 715 

experiments (fig 3), we coupled FBA directly to the evaluation of the rate laws. At each iteration, 716 

we use the rate laws to compute the fluxes of ATP synthesis and nutrient uptake, and feed the 717 

fluxes to FBA to obtain biosynthesis rates (fig 1B). The direct coupling ensures a rigorous and 718 

real-time exchange of microbial rates and fluxes between the rate laws and FBA, but running 719 

FBA at every iteration can be computationally expensive – especially in field-scale applications 720 

that repeat FBA at every grid cell and time step.   721 

Alternatively, we can couple FBA and microbial rate laws indirectly by replacing FBA in 722 

the hybrid method with Liebig's Law of the Minimum (eq 24). According to the FBA 723 

predictions, biosynthesis rates are determined by the most limiting fluxes of ATP production and 724 

nutrient uptake, and the relationship can be described according to Liebig's Law of the 725 

Minimum. Thus rather than running the time-consuming FBA at each iteration, we can arrive at 726 

the same results by the simple evaluation of Liebig's Law of the Minimum. Specifically, we first 727 
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apply FBA to biosynthesis pathways to estimate the biomass yields for ATP and for relevant 728 

growth nutrients and to build Liebig's Law of the Minimum for biosynthesis (eq 24). We then 729 

compute metabolic rates by combining the thermodynamically consistent rate laws for 730 

respiration and nutrient uptake and Liebig's Law of the Minimum for growth. 731 

4.2. Methanogenesis 732 

Methanogenesis is a final step of organic matter degradation, and methane fluxes are a 733 

key parameter in predicting future environmental changes (Nisbet et al., 2016; Thauer et al., 734 

2008). Previous studies predicted the metabolic activities of methanogens using dynamic FBA 735 

(Stolyar et al., 2007) and microbial rate laws (Jin and Roden, 2011; Yang and Okos, 1987). Here 736 

we applied the hybrid method and predicted the metabolic rates and chemical fluxes of M. 737 

barkeri in both laboratory reactors and aquifers. 738 

The hybrid method enhances the predictions of microbial carbon fluxes by accounting for 739 

biochemical mechanisms at the enzyme level. By applying FBA to genome-scale metabolic 740 

models, the hybrid method tracks not only the total fluxes of carbon, but also the contribution of 741 

different biochemical pathways. In the application to the laboratory experiments (fig 3), in 742 

addition to acetoclastic methanogenesis, the growth of M. barkeri also consumes acetate using 743 

two different pathways – the reversal of CO2 reduction pathway that generates reducing power 744 

by oxidizing acetate to CO2 and the biosynthesis pathway that assimilates acetate into new 745 

biomass. Specifically, the pathways of methanogenesis, acetate assimilation, and reducing power 746 

production consume 92%, 6%, and 2% of the total acetate fluxes, respectively. These fractions 747 

reflect how M. barkeri allocates acetate to the three pathways in order to meet its needs of ATP, 748 

carbon, and reducing power for biosynthesis.  749 

The hybrid method is organism-specific – its predictions are based on genome-scale 750 
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metabolic models of individual organisms and their kinetic parameters of respiration, 751 

maintenance, and nutrient uptake. But M. barkeri and other methanogens rarely live alone in 752 

natural environments. Instead, they mingle with each other, and partner with diverse fermenting 753 

microbes, sulfate reducers, acetogens, and others of different metabolic functions to build 754 

microbial communities and to carry out organic matter degradation, nutrient cycling, and other 755 

ecological functions (Nielsen et al., 2011; Schimel and Schaeffer, 2012).  756 

Applying the hybrid method to microbial communities is feasible, provided that genome-757 

scale metabolic models of key community members are available. The application assumes that 758 

the metabolisms of community members are at quasi steady state, and applies iterative 759 

procedures to track the progress of community metabolisms (Zhuang et al., 2010). At each time 760 

step of simulation, the hybrid method is applied to individual community members, and the 761 

results are combined to compute the total fluxes of microbial communities, and to update the 762 

abundances of community members and the concentrations of chemical compounds in the 763 

environment. Such applications may hold promise for probing the ecological functions of 764 

microbial communities and their dependence on environmental conditions – for example, the 765 

contribution of different methanogens to methane fluxes and how environmental conditions 766 

dictate the development and function of microbial communities (Keller and Bridgham, 2007; Ye 767 

et al., 2012).   768 

4.3. Microbial growth 769 

The hybrid method can be applied to microbial metabolism under energy- vs. nutrient-770 

limiting conditions. We illustrated this capability by analyzing the growth of M. barkeri across 771 

wide spectra of acetate and ammonium availabilities (fig 4). The results confirm that linear 772 

growth equations (e.g., eqs 2 and 3) are best applied to laboratory bioreactors and eutrophic 773 
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environments, where nutrients are abundant. Under this condition, biosynthesis is limited by 774 

ATP synthesis, and is coupled to respiration (Russell and Cook, 1995; Tempest and Neijssel, 775 

1984). The results also show that in natural environments, biosynthesis rates are determined by 776 

the fluxes of either ATP production or ammonium uptake, depending on which one places a 777 

stronger limitation (eq 24).  778 

The hybrid method is universal, and can also be applied to other growth nutrients by 779 

explicitly accounting for the uptake and consumption of the nutrients. For example, if we expand 780 

the application and consider the availability of phosphate – another limiting nutrient for natural 781 

microbes (Elser et al., 2007), we would arrive at similar results. Specifically, biosynthesis rates 782 

are subject to Liebig’s Law of the Minimum, and are determined by the factors of most 783 

significant limitation, 784 

 ( )X X/ATP ATP R X/N N X/P Pmin , ,r Y r Y F Y Fν′ ′= ⋅ ⋅ ⋅ ⋅ , (25) 785 

where YX/P is the biomass yield per phosphate, and FP is the flux of phosphate uptake. The YX/P 786 

value can be determined from the variations in biosynthesis rate with phosphate uptake flux, and 787 

the value is 1.1×103 g·(mol phosphate)−1. Similar to the above predictions of ammonium 788 

limitation, where phosphorus is limiting, biosynthesis is also decoupled from methanogenesis – a 789 

prediction consistent with laboratory observations (Archer, 1985).  790 

The agreement between the hybrid method and Liebig’s Law of the Minimum arises from 791 

the similar underlying assumptions of the two methods. Liebig’s Law of the Minimum assumes 792 

that the pathways of respiration and nutrient utilization do not interact with each other, and 793 

biosynthesis rates are determined by the more limiting of ATP supply or nutrient uptake fluxes 794 

(Zinn et al., 2004). The hybrid method takes the fluxes as inputs. These fluxes are independent of 795 

each other and meet the energy and element needs of biosynthesis pathways. As a result, the 796 
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most limiting flux determines the rate of biosynthesis (Edwards et al., 1999; Orth et al., 2010).  797 

In addition to the linear growth equation (eqs 2 and 3) and Liebig’s Law of the Minimum 798 

(eqs 3 and 25), other equations have also been applied to predict microbial growth. For instance, 799 

previous studies accounted for growth nutrient limitation using the multiplicative Monod 800 

equation (Bader, 1982; Jin et al., 2013; MeGee et al., 1972). This model quantifies the effect of 801 

nutrient availability using a Monod-type factor, and computes biosynthesis rates according to   802 

 N,env
X X/i i,R R

N,env N,env

m
r Y r

m K
ν′ ′= ⋅ ⋅ ⋅

+
 . (26) 803 

This model assumes that the pathways of respiration interact with those of growth nutrient 804 

consumption, and should be accounted for at the same time (Zinn et al., 2004).  805 

Previous studies also predicted microbial growth using sigmoidal functions, such as the 806 

logistic equation and the Gompertz equation (Zwietering et al., 1990). These functions focus on 807 

biomass concentrations, and assume a priori that microbial growth follows a sigmoid function. 808 

They calculate biomass concentrations from lag time, maximum growth rate, and maximum 809 

biomass concentration of the environment, and hence offer limited link to respiration pathways 810 

(Mitchell et al., 2004). For this reason, they may not be the best option for biogeochemical 811 

reaction modeling – a modeling discipline that emphasizes the chemical interactions between 812 

microbial metabolisms and natural environments.  813 

In summary, we proposed a hybrid method that combines FBA with rate laws to predict 814 

the kinetics of microbial metabolism in natural environments. This method accounts for the 815 

availability of energy sources and growth nutrients, and applies FBA independently to the 816 

respiration and the biosynthesis pathways of genome-scale metabolic models. The application to 817 

M. barkeri in laboratory experiments shows that the method explicitly tracks cellular fluxes of 818 

energy and carbon, thereby bringing unprecedented metabolic detail to biogeochemical reaction 819 
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modeling. The applications to aquifers show that the growth of natural methanogens is limited 820 

either by energy sources or by the most limiting nutrient, and can be described according to 821 

Liebig’s Law of the Minimum. These predictions are consistent with the decoupling of 822 

biosynthesis from methanogenesis and the slow growth of natural microbes under 823 

nutrient-deprived conditions, the correlation between dissolved methane and ammonium in the 824 

pristine aquifers of Pennsylvania, USA, and the expression of ammonium transporter gene in the 825 

biostimulated alluvial aquifer of Colorado, USA.  826 
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Table 1. Parameters and their values for applying different modeling methods to Methanosarcina barkeri growing on acetate. 1174 

Parameter(a) Value Rate law dynamic FBA Hybrid method 

Respiration parameter     

Rate constant k (mmol∙g−1∙hr−1) 7.1(a,b)    

half-saturation constant KD (mM) 5.0(b,c)    

ATP yield νP 0 ~ 1(d)    

Phosphorylation energy ∆GP (kJ∙mol−1) 40(d)    

Average stoichiometric number χ 2(a,e)    

Proton motive force (V) 0.1(d)    

Growth parameters     

Growth yield YX/R (g∙mol−1) 2.9(d)    

Maintenance rate m (hr−1) 1.8×10−4(f)  (g)  

Acetate uptake     

Maximum rate Vmax (mmol∙g−1∙hr−1) 2.2(h)    

Michaelis constant Kac,out 0.3(h)    

Ammonium uptake     

Maximum rate Vmax (mmol∙g−1∙hr−1) 0.25(i)    
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Michaelis constant for ammonium in the 
environment  (µM) 200(j)    

Michaelis constant for cytoplasmic 
ammonium (µM) 2000(k)    

Exponent n 2(i)    

Total parameters  7 5 9 

 1175 

Note:  1176 

(a). Values expressed for reaction equation 16. 1177 

(b). Smith and Mah (1978). 1178 

(c). Acetate is accounted for as the electron donor in the modified Monod equation (eq 1). 1179 

(d). Jin (2012). 1180 

(e). Jin and Bethke (2009). 1181 

(f). Wandrey and Aivasidis (1983). 1182 

(g). In model iMG746, the hypothetical ATP hydrolysis reaction of maintenance has a rate of 2.0 mmol·g−1·hr−1 (Gonnerman et al., 1183 

2013).   1184 

(h). Button (1998) 1185 

(i). This study.   1186 

N,envK

N,cytK
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(j). Boogerd et al. (2011). 1187 

(k). Chang et al. (2014). 1188 
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Figure Caption 1189 

Figure 1. Comparison of dynamic FBA (A) and the hybrid method of FBA and microbial rate 1190 

law (B). Dynamic FBA calculates uptake fluxes of electron donors, acceptors, and nutrients 1191 

using the Michaelis-Menten equation (eq 5), and applies FBA to entire genome-scale metabolic 1192 

models. The hybrid method applies FBA to the respiration pathways to estimate ATP yields, and 1193 

computes respiration rates and ATP fluxes using the thermodynamically-consistent Monod 1194 

equation (eqs 1 and 12); it estimates nutrient uptake fluxes by optimizing cytoplasmic nutrient 1195 

concentration (eq 10) and by using the thermodynamically-consistent Michaelis-Menten 1196 

equation (eqs 7 and 8), and then applies FBA to the biosynthesis pathways using the fluxes of 1197 

ATP production and nutrient uptake as the input.   1198 

 1199 

Figure 2. Variations in cytoplasmic ammonium accumulation (A and B) and uptake (C) with 1200 

ammonium concentrations in the environment. Panel A and B show ammonium accumulation in 1201 

laboratory reactors and in natural environments, respectively. Data points in panel A are the 1202 

laboratory observations of Methanohalophilus zhilinaeae (), Methanolobus bombay (), and 1203 

Methanolobus taylorii () by Kadam and Boone (1996). The solid lines in panel A and B are the 1204 

optimization results (eq 10). The solid line in panel C is computed according to the 1205 

thermodynamically-consistent Michaelis-Menten equation (eqs 7 and 8) using the parameters in 1206 

table 1, while the dashed line indicates the maximum ammonium uptake flux.  1207 

 1208 

Figure 3. Variations in the concentrations of acetate, methane, and ammonium (A), and biomass 1209 

(B), the fluxes of ATP production and acetate consumption by methanogenesis (C), the fluxes of 1210 

acetate and ammonium consumption by biosynthesis (D), growth rate (E), and the energy ∆GA 1211 
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available from methanogenesis (F) during the growth of M. barkeri on acetate. Data points are 1212 

the experimental results of Fukuzaki et al. (1990); solid lines are the simulation results of the 1213 

hybrid method; the dashed lines in panel A and B are the result of dynamic FBA. The dotted line 1214 

in panel D shows the maximum possible uptake flux of ammonium, and the dotted line in panel 1215 

F shows the energy ∆GC conserved by methanogenesis (eq 11). The lines labeled “FBA 1216 

infeasible” in panel A and B indicate the time point beyond which ATP synthesis rate by 1217 

methanogenesis is smaller than ATP consumption rate by maintenance assumed in model 1218 

iMG746, and dynamic FBA fails to find a solution.  1219 

 1220 

Figure 4. Variations with acetate concentration in biosynthesis rate and generation time (A) and 1221 

biomass yield (C) at 10 µM and at other ammonium concentrations (B and D), and changes in 1222 

carbon use efficiency (CUE) with the atomic ratios of C in acetate and N in ammonium at 10 µM 1223 

(E) and at other ammonium concentrations (F). The solid lines are the predictions of the hybrid 1224 

method by taking temperature at 25 oC, pH at 7, and bicarbonate concentration at 1 mM; the 1225 

dashed lines in panel A and B are the maximum biosynthesis rates at given ammonium 1226 

concentrations; the dashed lines in C and D are the maximum and minimum biomass yields; the 1227 

dashed lines in E and F are the maximum and minimum CUEs; labels in panel A, C, and E show 1228 

the methane concentrations in µM; labels in panel B, D, and F show ammonium concentrations 1229 

in µM. The generation time is computed as the ratio of ln(2) to specific biosynthesis rate. 1230 

Biomass yields and CUEs are calculated according to equation 19 and 20, respectively.  1231 

 1232 

Figure 5. The correlation between ammonium and methane concentrations in the siliciclastic 1233 

aquifers of Pennsylvania, USA.   1234 
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 1235 

Figure 6. Variations with time in the ATP fluxes () from methanogenesis (A to D), the 1236 

ammonium uptake fluxes (, E to H), the growth rates predicted by the hybrid method () and 1237 

by the linear equation (eqs 2 and 3, ∆, I to L), the carbon use efficiencies (CUEs, M to P), 1238 

groundwater ammonium concentrations (), and the ammonium concentrations () required to 1239 

support the stoichiometrically-balanced biosynthesis of methanogens (Q to T) in the groundwater 1240 

from wells D-02, D-04, D-05, and D-08 during the field bioremediation experiments (Mouser et 1241 

al., 2009). The dotted lines in panel I to L indicate no growth.  1242 

 1243 

Figure 7. Variations in the expression of ammonium transporters with the ratio of ammonium 1244 

concentration menv in the environment to the concentration mreq required to support the 1245 

stoichiometrically-balanced biosynthesis of M. barkeri. The expression is measured as the ratio 1246 

in mRNA transcript copy of an ammonium transporter gene amtB to a housekeeping gene recA 1247 

gene in groundwater samples from well D-02 (), 04 (), 05 (), and 08 () by Mouser et al. 1248 

(2009, their figure S4); the shaded area indicates that ammonium in the environment cannot meet 1249 

the requirement of biosynthesis, and hence is limiting growth.  1250 
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