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Insights into Criteria for Statistical Significance from Signal
Detection Analysis

Jessica K. Witt
Colorado State University

What is best criterion for determining statistical significance? In psychology, the criterion has
been p <.05. This criterion has been criticized since its inception, and the criticisms have been
rejuvenated with recent failures to replicate studies published in top psychology journals.
Several replacement criteria have been suggested including reducing the alpha level to .005 or
switching to other types of criteria such as Bayes factors or effect sizes. Here, various decision
criteria for statistical significance were evaluated using signal detection analysis on the outcomes
of simulated data. The signal detection measure of area under the curve (AUC) is a measure of
discriminability with a value of 1 indicating perfect discriminability and 0.5 indicating chance
performance. Applied to criteria for statistical significance, it provides an estimate of the decision
criterion’s performance in discriminating real effects from null effects. AUCs were high (M = .96,
median = .99) for p values, suggesting merit in using p values to discriminate significant effects.
AUCs can be used to assess methodological questions such as how much improvement will be
gained with increased sample size, how much discriminability will be lost with questionable
research practices, and whether it is better to run a single high-powered study or a study plus a
replication atlower powers. AUCs were also used to compare performance across p values, Bayes
factors, and effect size (Cohen’s d). AUCs were equivalent for p values and Bayes factors and
were slightly higher for effect size. Signal detection analysis provides separate measures of
discriminability and bias. With respect to bias, the specific thresholds that produced maximally-
optimal utility depended on sample size, although this dependency was particularly notable for
p values and less so for Bayes factors. The application of signal detection theory to the issue of
statistical significance highlights the need to focus on both false alarms and misses, rather than
false alarms alone.
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Scientists across many disciplines including
psychology, biology, and economics use p < .05 as the
criterion for statistical significance. This threshold has
recently been challenged due to numerous failures to
replicate findings published in top journals (Begley &
Ellis, 2012; Camerer et al, 2016; Open Science
Collaboration, 2015). Changes in the recommendations
for statistical significance include using a stricter
criterion for significance (e.g, p < .005; Benjamin et al,,
2017) and minimizing flexibility in decisions around data
collection and analysis (e.g, Simmons, Nelson, &
Simonsohn, 2011). These recommendations were
designed to increase replicability by decreasing the false
alarm rates, which is the rate at which null effects are
incorrectly labeled as significant. However, the best
criteria for statistical significance are ones that maximize
discriminability between real and null effects, not just
those that minimize false alarms. One analytic technique
that is intended to measure the discriminability of a test
is signal detection theory (Green & Swets, 1966). Signal
detection theory has previously been applied to evaluate
p values (Krueger & Heck, 2017). Here, the signal
detection theory measure of area under the curve (AUC)
is offered as a tool to quantify the effectiveness of various
measures of statistical effects.

Signal detection analysis involves categorizing
outcomes into four categories. Applied to criteria for
statistical significance, a Ait occurs when there is a true
effect and the analysis correctly identifies it as significant
(see Table 1). A miss occurs when there is a true effect
but the analysis identifies it as not significant. A correct
rejection occurs when there is no effect and the analysis
correctly identifies it as not significant, and a false alarm
occurs when there is no effect but the analysis identifies
it as significant. In statistics, Type I errors (false alarms)
and Type II errors (misses) are sometimes considered
separately, with Type I errors being a function of the
alpha level and Type Il errors being a function of power.
An advantage of signal detection theory is that it
combines Type I and Type Il errors into a single analysis
of discriminability and also considers the relative
distributions of each type of error in the analysis of bias.

1 This number was selected somewhat arbitrarily, and the
results generalized to other numbers. Larger number of
repeats reduced the standard deviations of the results
reported below, but did not affect the means. The decision

Table 1. Signal detection classification of data based on
the example criteria p < .05 for a true effect (Cohen’s d
= 0.50) and a null effect (Cohen’s d=0).

P <.05 P> .05
“Significant” “Not Significant”
d=.50 Hit Miss
d=0 False Alarm Correct Rejection

Data Simulations for Experiment 1

Data were simulated for two independent groups of
64 participants each, which corresponds to 80% power
at an alpha level of .05 for a two-tailed independent-
samples #test. Data for one group was sampled from a
normal distribution with a mean of 50 and a standard
deviation of 10 (such as might be found on a memory test
with a total score of 100). The data for the other group
was sampled from a normal distribution with a mean of
50 (for studies with a null effect) or 45 (for studies with
an effect size of Cohen’s d=.50) and a standard deviation
of 10. The data were submitted to an independent-
samples #test (all simulations and analyses were
conducted in R; R Core Team, 2017). Details of the
simulation are available in the online supplementary
materials  (https://osf.io/bwqm8/). This initial
simulation will be referred to as Experiment 1. See
appendix for overview of all of experiments.

Data were simulated from 20 studies?, half of which
had an effect size of 0 and half had a medium effect size
(Cohen’s d=.50). The result from each simulated study
was classified as a hit or miss (for studies modeled as a
medium effect) or as a correct rejection or false alarm
(for studies modeled as a null effect). The classification
was based on four criteria for statistical significant
related to p values: p < .10, p < .05, p <.005, and p <
.001. This process was repeated 100 times!. The
outcomes across all studies were summarized into the
proportions of hits, misses, false alarms, and correct
rejections for each criterion (see Figure 1). In addition,
the hit rates and false alarm rates were calculated for the
purpose of plotting the receiver operator characteristic
(ROC) curves (see Figure 2). The hit rate is the
proportion of studies for which the simulated effect was
real and the criterion classified it as significant, and the
false alarm rate is the proportion of studies for which the
simulated effect was null but the criterion classified it as
significant. To clarify, whereas the proportion of hits (as

to simulate sets of studies was to allow for multiple
comparisons across a variety of measures (p values, Bayes
factors, and effect sizes).
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plotted in Figure 1) is the number of hits divided by the
total number of studies, the hit rate (plotted in Figure 2)
is the number of hits divided by the number of studies
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modeled as a real effect. Bayes factors, which are also
plotted, are discussed below.
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BF>1 BF>2 BF>3 BF>10

Decision Criterion
Figure 1. Proportion of each outcome as a function of the decision criterion for significance. Brighter colors correspond
to errors and dark colors correspond to correct classifications. For criteria of Bayes factors greater than 2, 3, or 10,
studies that produced a Bayes factor less than the criterion but greater than the inverse of the criterion were considered
inconclusive, which is why the total proportion of outcomes does not equal 1.
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Figure 2. Mean hit rates are plotted as a function of mean false alarm rates and the decision criterion (see legend) for
one set of 20 studies (left panel) and averaged across all 100 sets of 20 studies (right panel). Receiver operator
characteristic (ROC) curves are plotted for criteria based on pvalues (thick green line) and Bayes factor (thin blue line).
The two lines are identical (as was the case for all 100 sets of 20 studies). Area under the curve (AUC) is the shaded

area.

In selecting a criterion for statistical significance,
researchers must select a measure (e.g., p values) and a
threshold within that measure (e.g, alpha = .05). A
measure can be evaluated by assessing its ability to
discriminate between real and null effects, which can be
quantified by calculating the area under the ROC curve
(AUC; Macmillan & Creelman, 2008). With respect to
evaluating thresholds for a specific measure (e.g.,
comparing .005 to .05), the location of each threshold on
the ROC curve can be calculated. Location on the curve is

a measure of bias. Each of these measures will be
considered in turn.

To measure discriminability of p values, the AUC was
computed 100 times, once for each set of 20 studies.
Unlike the discriminability measure of d; the
discriminability measure of AUC makes no assumptions
regarding the underlying distributions, which is critical
because distributions of p values are not normally
distributed. Higher AUCs indicate better ability to

discriminate real effects from null effects. If
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discrimination were perfect, the curve would follow the
left and top boundaries in Figure 2, and the AUC would
equal 1 (i.e. the entire area would be under the curve). If
discrimination were at chance, the curve would follow
the diagonal line in Figure 2, and the AUC would be .5 (i.e.
only 50% of the area would be under the curve). As is
apparent in Figure 2, pvalues produced curves that were
closer to 1 (perfect performance) than to .5 (chance
performance). The mean AUC was .96 (median =.97, SD
=.04). Thus, pvalues were effective, though not perfect,
at discriminating between real and null effects. This
aligns with conclusions from other valuations of pvalues
(e.g., Krueger & Heck, 2017, 2018). These AUC values
suggest some benefit in using p values, at least as a
continuous measure without necessarily having strict
thresholds for significance (McShane, Gal, Gelman,
Robert, & Tackett, 2018). Perhaps alternative methods
to reduce false alarm rates might be more beneficial than
to eliminate pvalues altogether (e.g., Trafimow & Marks,
2015). Note that measures of discriminability evaluate p
values as a measure without consideration of the specific
alpha value adopted as the criterion. Specific alphalevels
relate to bias, and are discussed below.

What could improve discriminability when using p
values as the criterion for statistical significance? One
suggestion has been to lower the threshold from .05 to
.005. This would not alter the discriminability because
discriminability relates to p values as a whole, not to
specific thresholds. Thresholds refer to locations on the
curve, and these dictate bias, rather than
discriminability. Signal detection theory distinguishes
between discriminability and bias. As applied to the case
of criteria for statistical significance, discriminability
refers to the criterion’s performance at identifying real
effects versus null effects, and bias refers to whether the
errors tend to be false alarms or misses. Assessing bias
can be useful for selecting the appropriate criterion for
asserting statistical significance. For example, assume
that the cost of a miss is equivalent to the cost of a false
alarm in a particular field. In that case, optimal utility
would be achieved by setting the criterion in such a way
that its point on the receiver operator characteristics
(ROC) curve is the one that falls closest to the upper left
corner in Figure 2. The Euclidean distance between each
point on the ROC curve and the point of perfect
performance is plotted in Figure 3. For the scenario that
was simulated, an alpha level closer to the blue dot,
which aligns with an alpha level of .10, would come closer
to achieving that maximume-utility outcome than an alpha
level of .005. Lowering the criterion for statistical
significance to p < .005 would increase the number of
studies that will replicate by decreasing false alarms, but
it would do so at the cost of missing real effects (see also
Krueger & Heck, 2017). Note the proportion of misses in

Figure 1 across the various criteria, particularly for the
criterion of p < .005. Misses are bad for science (Fiedler,
Kutzner, & Krueger, 2012; Murayama, Pekrun, & Fiedler,
2014). Assuming that null effects are theoretically
interesting and practically important, it is important to
determine which null effects are due to a genuine lack of
difference versus a miss of a true effect. Is the trade-off
to increase replicability worth the large increase in
misses? Perhaps science can adopt alternative means to
improve replicability without sacrificing so many missed
hits, such as increasing incentives for publishing
statistically- and scientifically-sound significant findings
and also publishing (statistically- and scientifically-
sound) null results.
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Figure 3. Distance to perfection was calculated as the
Euclidean distance between each point on the ROC curve
(see Figure 2) and the top-left corner (which
corresponds to 100% hit rate and 0% false alarm rate)
across all 100 sets of 20 studies. A lower distance to
perfection score indicates better discriminability
between real and null effects. Error bars represent 95%
confidence intervals.

One effective way to improve replicability is to
increase sample size. Many studies are underpowered
(e.g. Etz & Vandekerckhove, 2016; Fraley & Vazire, 2014;
loannidis, 2005; Sedlmeier & Gigerenzer, 1989). The
simulations in Experiment 1 showed that at a power of
80% (atan alpha level of .05), the mean AUC for pvalues
was .96. At a power of 50%, the mean AUC for p values
was .85 (median = .87; SD = .10). Increasing power to
90% produced a mean AUC of .975 (median =.99; SD =
.03), increasing power to 95% produced a mean AUC of
.984 (median = 1; SD = .03), and increasing power to
99% produced a mean AUC of .999 (median = 1; SD =
.004). Ifresources are unlimited, increasing sample size
to increase power is an effective way of improving
discriminability of real effects from null effects (Krueger
& Heck, 2017).
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Assuming limited resources, one might wonder
whether it is better to run one high-powered study or a
study plus a replication that are both at 80% power.
AUCs can help a researcher make these decisions. Two
additional “experiments” (i.e., sets of simulations) were
conducted. In Experiment 2, everything was the same as
in Experiment 1 except the sample size for each group
was 105 (which corresponds to 95% power at an alpha
level of .05). In Experiment 3, everything was the same
as in Experiment 1 except that for every study that was
simulated, a second study with the same parameters was
simulated and the higher p value was retained. This
emulates a situation for which a study is conducted and
results in a significant p value and then a replication fails
to find a significant effect, so the effect is considered not
significant. This is why the higher p value was retained.
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The mean AUC for Experiment 2 was .99 (median = 1; SD
=.01). The mean AUC for Experiment 3 was .97 (median
= .99; SD = .04). This suggests that higher power
produces better discriminability than replicating a study
with both the original and replication studies at 80%
power. However, the higher-powered study produced
more false alarms whereas the study plus replication
produced few false alarms but more misses (see Figure
4). Again, researchers will need to decide what trade-offs
between false alarms and misses make the most sense for

their science.
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Figure 4. Proportion of each outcome as a function of the decision criterion and whether one or two studies were run.
The left panel shows the outcomes across 100 sets of 20 studies, each with 105 data points per group (which
corresponds to 95% power at alpha =.05). The right panel shows the outcomes across 100 sets of 20 studies. For each
study, a replication was conducted. Both the original study and the replication had 64 data points per group (which
corresponds to 80% power at alpha =.05). In order for an effect to meet the decision criterion, both the original study
and the replication had to produce values that exceeded the decision criterion. For example, for the criterion of p <.05,
both the study and the replication had to produce p values < .05, otherwise the set of studies was considered not

significant.

Power, rather than effect size, is more important for
discriminability. In Experiment 4, data were simulated
at80% power (at an alpha of .05) for each of 8 effect sizes
ranging from 4 = .1 - .8. The AUCs for each were
approximately the same (M = .95; range of means for
each effect size = .947 - .961; variations due to chance
rather than systematic differences). As shown in Figure
5, when power was consistent, there were also no
substantial differences in the rate of the different
outcomes. Thus, while studying bigger effects will
reduce the number of participants needed, it will not
improve discriminability on its own.

Questionable Research Practices

Some recommendations to improve replicability
concern practices to avoid. These have been labeled
questionable research practices, and have been
identified as particularly problematic (Simmons et al,,
2011). AUCs can be used to assess the degree to which
doing various questionable research practices reduces
discriminability.
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Figure 5. Proportion of SDT outcomes is plotted as a
function of effect size for the single criterion for
statistical significance of p <.05. Data were all simulated
at a power of 80% at an alpha of .05.
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One recommendation is to designate the number of
participants to be run ahead of time, rather than use an
optional stopping rule (Simmons et al,, 2011). In a new
set of simulations (Experiment 5), each simulated study
was conducted with 30 participants per group with
either a Cohen’s d= .50 or d= 0. A lower sample size
was used given that published studies tend to be
underpowered. As in Experiment 1, 20 studies were
simulated, and this was repeated this 100 times. To try
to mimic typical use of the optional stopping rule, for
each study, if the p value was between .20 and .05, an
additional 10 participants were added per group. After
this addition, if the p value was less than .05, data
collection stopped; otherwise the process was repeated
up to 9 more times. On average, p-hacking in the form of
adding more participants occurred 4.3 times in each set
of 20 studies (SD = 2; Range = 0 - 11). The optional
stopping rule produced differences in the AUCs relative
to the original sample, but the differences were not
systematic. Sometimes running additional unplanned
participants improved discriminability and other times it
worsened discriminability (see Figure 6).
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Figure 6. The area under the curve (AUC) for hacked
studies plotted as a function of the AUC for the original
studies. A higher AUC indicates better discrimination
between real and null effects. The line is at unity. Data
points above the line indicate better discriminability for
the hacked studies, and data points below the line
indicate better discriminability for the original studies.

How can this questionable research practice have no
impact the discriminability of real effects from null
effects? The reason is that these questionable research
practices increase the false alarm rate but they also
increase the hit rate (see Figure 7). Much of the attention
on the replication crisis has sought to minimize false
alarms, but it is also necessary to discuss the
corresponding increase in the number of misses (i.e. the
decrease in the number of hits). Discriminability
between real effects and null effects takes into account
both the false alarm rate and the hit rate. A decreased hit
rate directly corresponds to an increased miss rate.
Furthermore, the data were simulated so that the studies
were underpowered. Although p-hacking increased the
false alarm rates (see also loannidis, 2005), adding
participants increased power, which is good for
discriminability. To be clear, the recommendation is not
to p-hack by running participants until the effect is
significant. Instead, experiments should be run with
sufficient power or only allow restricted flexibility in
stopping data collection such as, for example, by
following the recommendations of Lakens (2014) or
using sequential Bayes Factor with a minimum and
maximum N (Schonbrodt & Wagenmakers, 2018). But
with respect to interpreting published research, the
current simulations suggest that flexibility in data
collection via an optional stopping rule does not
necessarily void the findings (see also Murayama et al,,
2014; Salomon, 2015). In these simulations, p-hacking
increased the hit rate by 28% while only increasing the
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false alarm rate by 12%. Note, however, that p-hacking
via optional stopping rules does not always increase hit
rates more than false alarm rates. If power is high (e.g.,
> 99%), simulations showed that hit rates increased
from 99.9% to 100% but false alarm rates increased from
5.4% to 9.8%.

® Hits
Misses
False Alarms

754 B Correct Rejections

Proportion of OQutcomes

Original Hacked
Sample

Figure 7. Proportion of hits, false alarms, misses, and
correct rejections as a function of whether the studies
were the original sample of 30 data points per group or
had been p-hacked via an optional stopping rule.
Outcomes shown only for the decision criterion of p <
.05. Note that the seeming benefit for p-hacking is
dependent on the low power of the simulated study.

Bayes Factor Versus pvalues

An alternative to pvalues is to use Bayes factors (e.g.,
Dienes, 2011; Kass & Raftery, 1995; Kruschke, 2013; Lee
& Wagenmakers, 2005; Rouder, Speckman, Sun, Morey,
& lverson, 2009). Bayes factor refers to the ratio of
likelihoods of the data for the alternative hypothesis
relative to the null hypothesis. A Bayes factor of 1
corresponds to equal likelihood for the alternative and
the null hypotheses, and a Bayes factor greater than 1 is
evidence for the alternative hypothesis relative to the
null hypothesis. Bayes factors quantify how well a
hypothesis predicts the data relative to a competing
hypothesis (such as the null hypothesis), and thus is a
continuous measure for which the focus is on the
strength of the evidence, rather than a specific cut-off for
deeming effects significant or not. However, Bayes
factors between 1-3 are considered weak or anecdotal
evidence, so a Bayes factor of 3 could be considered a
decision criterion akin to a criterion for significance (see

Table 2), though not everyone agrees with the idea of
using strict cut-offs (e.g., Morey, 2015).

Table 2. Overview of relationship between Bayes factor
and conclusion about the evidence being in favor of the
alternative hypothesis (Ha) or the null hypothesis (Ho).
Adapted from Wetzels et al. (2011), Lakens (2016), and
Jeffreys (1961).

Bayes factor

Interpretation

>100 Decisive evidence for Haover Ho

30 -100 Very strong evidence for Ha over
Ho

10-30 Strong evidence for Ha over Ho

3-10 Substantial evidence for Ha over Ho

1-3 Anecdotal evidence for Ha over Ho

1 No evidence

1/3-1 Anecdotal evidence for Ho over Ha

1/10-1/3 Substantial evidence for Ho over Ha

1/30-1/10 Strong evidence for Ho over Ha

1/100 -1/10 ;/Iiry strong evidence for Ho over

<1/100 Decisive evidence for Ho over Ha

To measure discriminability and bias for Bayes
factors, the studies simulated in Experiment 1 were also
evaluated using four decision criteria related to Bayes
factor (BF): BF > 1, BF > 2, BF > 3, and BF > 10. Studies
were classified as shown in Table 3. Note that for Bayes
factors that fell in between the criterion and its inverse
(e.g, 1/3 - 3), no classification was made because the
data were inconclusive. This is why the outcomes do not
sum to 1 in Figure 1. The calculation of the AUCs is a
function of the Bayes factor itself, rather than
classifications of outcomes, so even though not all studies
could be classified into the four SDT outcomes, all studies
contributed to the AUC calculation. The BayesFactor R
package (Morey, Rouder, & Jamil, 2014) was used to
calculate the Bayes factors. The default Cauchy prior was
used when calculating Bayes factors, but different priors
produced the same AUC results. Changing the prior
produced shifts along the ROC curve but did not change
discriminability.
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Table 3. Signal detection classification of data based on the example criteria Bayes factor > 3 for a true effect (Cohen’s

d=0.50) and a null effect (Cohen’s d=0).

Bayes factor >

Bayes factor < 1/3

1/3 < Bayes Factor < 3

3
“Significant” Not Significant Inconclusive
d=.50 Hit Miss No classification
d=0 False Alarm Correct Rejection No classification

As shown in Figure 2, the AUCs related to Bayes factor
were also quite high. In fact, the AUCs for Bayes factor
corresponded perfectly to the AUCs for p values. This
means that for the situation simulated here, Bayes
factors are not any better (or worse) than p values at
discriminating real effects from null effects. In other
words, Bayes factor incurs no advantage over pvalues at
detecting a real effect versus a null effect for the current
scenario. This is because Bayes factors are redundant
with pvalues for a given sample size. Both p values and
Bayes factors can be calculated from the ¢statistic and
the sample size, so it is expected that they would be
related. In these simulations, there was a near-perfect
linear relationship between the (log of the) Bayes factors
and the (log of the) p values, as has been shown
previously (Benjamin et al,, 2017; Krueger & Heck, 2018;
Wetzels et al, 2011). Equivalency in AUCs between
Bayes factors and pvalues generalized to other scenarios
as well including one-sample #tests and correlations
(see Figure 8).

Although the discriminability between p values and
Bayes factors was equivalent across a variety of
situations, as revealed by equal AUCs (see Figures 2, 8,
and 9), the exact relationship between them differed as a
function of sample size. In Experiment 6, for 30 different
sample sizes ranging from 32 to 2000 per group, 100
simulations of 20 studies were conducted (10 with a
Cohen’s d modeled at .50 and 10 with a Cohen’s d
modeled at 0). For each sample size, a linear regression
was conducted to predict the log of the Bayes factor from
the log of the pvalue. The results are shown in Figure 9.
These simulations show near-complete redundancy
between p values and Bayes factors. This redundancy
also supports the conclusion that for the conditions
simulated, p values and Bayes factors are equally adept
at distinguishing real effects from null effects.
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Figure 8 Simulations were run for 20 studies (repeated
100 times) for 3 effect sizes for 3 power levels (two-
tailed at alpha =.05) for 4 types of statistical tests. AUCs
for the Bayes factors are plotted as a function of AUCs for
the p values. They are identical in every case, which is
consistent with the claims of equal discriminability
between p values and Bayes factors. Size of the symbol
corresponds to effect size, which is Cohen’s d (for two-
sample #tests), Cohen’s d. (for one-sample #tests), and
r*2 (for correlations). For the uneven two-sample t test,
group 2 had 20% more participants than group 1. The
plot collapses across all conditions given that the
patterns were the same regardless of test type, power, or
effect size.

Despite equivalence in discriminability between p
values and Bayes factor, these simulations illustrate a
previously acknowledged discrepancy in the conclusions
supported by the two types of criteria (Lindley, 1957).
Specifically, in Figure 9b, all data points to the left of the
black vertical line that are also below the black
horizontal line would be classified as significant
according to the criterion of p < .05 but according to a
Bayes factor interpretation, the evidence would favor the
null hypothesis over the alternative. This illustrates why
itis possible to get results for which the pvalue indicates
a significant finding (i.e. evidence for the alternative
hypothesis) but the Bayes factor shows evidence for the
null hypothesis relative to the alternative. These
conflicting outcomes occurred in studies for which
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sample size (or, more precisely, power) was high. These
simulations help illustrate the point that for high-
powered studies, a pvalue of .05 is more evidence for the
null hypothesis than for the alternative hypothesis
(Lakens, 2015). When power is high, researchers using

p values to determine statistical significance should use
a lower criterion.
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Figure 9. Outcomes from 100 simulations of 20 studies (half simulated as a null effect; half as a medium effect) for each
of 30 different sample sizes ranging from 32 to 2000. Color corresponds to sample size. Panel a shows the area under
the curve (AUC) for pvalues and Bayes factors as a function of sample size. A bigger AUC indicates better discrimination
between real and null effects. Panel b shows the relationship between pvalue and Bayes in the range for which pvalues
are highest (the inset shows the relationship for the entire range, and the dotted box shows the area that has been
expanded in the main figure). The legend corresponds to sample size. The black vertical line corresponds to a p value
of .05, and the black horizontal line corresponds to a Bayes factor of 1. Panels c and d show the intercepts and slopes
from linear regressions that predict the log of the Bayes factor from the log of the pvalues. The intercept is the pvalue
that corresponds to a Bayes factor of 1, so it corresponds to the value of the pvalue along the horizontal line in panel b.
The slope, plotted in panel d, corresponds to the steepness of the curves in panel b.

Including Priors

Whereas Bayes factors do not take into account the
prior odds of an effect being real, the posterior odds do.
Posterior odds can be calculated by multiplying the
Bayes factor by the prior odds (see Equation 1).
Posterior odds are the probability of the alternative
hypothesis (M = Hi) given the data d over the null
hypothesis (M = Ho) given the data (D). To evaluate the
effect of prior odds on discriminability, two additional
experiments were conducted. In Experiment 7, the same
conditions as in Experiment 1 were simulated, but AUCs

were calculated for posterior odds across three different
prior odds: 0.1, 1, and 10. In Experiment 8, everything
was the same as in Experiment 1 except there were four
times as many studies with d= 0 (16 studies) than with
d = .5 (4 studies). AUCs were calculated for posterior
odds across three prior odds (.25, 1, 4). As shown in
Figure 10, adding information about prior odds to the
Bayes factor merely shifted the points along the ROC
curve but did not alter discriminability regardless of the
accuracy of the prior odds. In addition, changing the
proportion of real effects did not have much impact on
discriminability. In Experiment 8, the mean AUC was .95
(median =.97, SD=.07) for all sets of prior odds (as well
as for pvalues), which was similar to the mean AUC of .96
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(median = .98, SD = .04) for all sets of prior odds (and
for pvalues) in Experiment 7.
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Figure 10. Left column shows results from Experiment 7 (equal number of null and real effects) and right column shows
results from Experiment 8 (four times as many null as real effects). In the top row, hit rates are plotted as a function of
false alarm rates and criterion for Experiment 7 (left panel) and Experiment 8 (right panel). Each point corresponds to
a different decision criterion related to the posterior odds (BF > 1, 2, 3, and 10, not labeled but for each cluster of 4, the
points go sequentially from top-right corner to bottom-left corner) as a function of the prior odds (see legend). The
receiver operator characteristic (ROC) curves are plotted for three different sets of prior odds for each panel. The area
under the curve (AUC) is shown in grey. The curves and AUCs are identical across all prior odds in each panel. In the
bottom row, proportion of each outcome (calculated as the number of each outcome divided by the total number of
studies) across prior odds is shown only for the decision criterion of Bayes factor > 3.

Except for Experiment 7, all of the simulations
conducted involved simulating studies for which half had
a true effect and half had a null effect. This assumes that
effects are to be expected half of the time, which is an
assumption that is unlikely to be true. The results from
Experiment 7 show, however, that similar patterns are
found even when the null hypothesis is likely to be true.

Unreported simulations show similar patterns even
when the alternative hypothesis is likely to be true. Thus,
the results regarding discriminability (measured with
AUCs) are independent of specific assumptions
regarding the likelihood of the null hypothesis. Put
another way, the discriminability of p values and Bayes
factors are high in situations for which real effects are
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likely and in situations for which real effects are unlikely.
Obviously, more p values and Bayes factors reach
thresholds for significance when there are more
significant effects, so “significant” effects are more for
‘safe’ studies than ‘risky’ studies (Krueger & Heck, 2018).
Nevertheless, the diagnosticity of the p value (and of
Bayes factor) is high regardless of the likelihood of
finding a real effect.

Bayes Factor and Bias

As with p values, we can consider bias related to
Bayes factors. As shown in Figure 3, the cut-offs that
achieved maximize utility assuming equal weights given
to false alarms and misses was Bayes factor > 1. This
contrasts with the typical interpretation of Bayes factor
(e.g., Table 2) for which Bayes factors between 1-3 are
considered anecdotal evidence.

Unlike with p values, the threshold that should be
used for Bayes factors did not vary as much with changes
in sample size as did the alpha levels of the p values (see
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Figure 10). Compare the red points to the green points,
which correspond to p < .10 and p < .005. For smaller
sample sizes, the red points achieve better performance
than the green points, but for larger sample sizes, the
relationship flips and the green points achieve better
performance. This repeats the point made earlier that at
larger sample sizes, a lower alpha should be used. For
Bayes factors, compare the light blue and purple points,
which correspond to Bayes factor thresholds of 1 and 3.
For smaller sample sizes, the light blue points achieved
better performance, but for larger sample sizes, the
purple points achieved better performance. However,
unlike with p values, this reversal was not nearly as
dramatic, and the decision criterion of Bayes factor > 1
performed better than or nearly as good as the other
thresholds across all sample sizes. Itis also worth noting
that as sample size increases, all Bayes factor criteria
improved, whereas p values plateaued at their alpha
levels. Thus, another advantage of Bayes factors is that
increasing the amount of evidence increases their ability
to accurately detect an effect.
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Figure 11. Distance to perfection was calculated as the Euclidean distance between each point on the ROC curve (see
Figure 2) and the top-left corner (which corresponds to 100% hit rate and 0% false alarm rate). Distance to perfection
scores were calculated for each of 100 sets of 20 studies (half of which were modeled as a null effect and half of which
were modeled with Cohen’s d=.5) for each sample size. The data are grouped by sample size, and color corresponds
to the criterion for statistical significance. Errors bars correspond to 95% confidence intervals.

Signal detection analysis is a tool that scientists can
use to evaluate relative trade-offs across various decision
criteria. This is not to say that scientists should only use
or always use decision criteria (as opposed to
estimations of effect size, for example), but that when a
criterion for statistical significance is adopted,
consideration should be made for both false alarms and
misses. If the goal is to maximize optimal utility, given
equal weight to hits and correct rejections (or,
equivalently, equal tolerance for false alarms and

misses), distance to perfection can be used to assess
various criteria. In the case of a medium effect size

with 64 participants per group, the decision criteria of p
<.10,p <.05, and BF > 1 led to better performance than
the criteria of p <.005, BF > 3, and BF > 10. As sample
size increased, the criteria of p < .005 and all tested
Bayes factor thresholds led to better performance than p
<.10.
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Discriminability with Effect Size

As a final note, discriminability (as measured using
AUCs) was as good or better when using effect size (in
this case, Cohen’s d) than p values or Bayes factors (see
Figure 14). Effect size improved discriminability
because Cohen’s d is signed (i.e. differentiates -.5 from
.5). When discriminability was assessed using absolute
effect size, the AUCs matched those obtained with p
values and Bayes factors. The measure of effect size does
not have the feature of a specific decision criterion for
statistical significance, so for researchers who want strict
thresholds for significance, effect size is unlikely to be a
useful tool. But for researchers who want to know the
strength of the evidence or the magnitude of the effect,
effect size would be useful.
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Figure 11. Area under the curve (AUC) for Cohen’s das a
function of the AUCs for pvalues and Bayes factors (BF).
Data are from Experiment 1. Each point corresponds to
one set of 20 studies with half modeled with Cohen’s d=
.5 and half modeled with Cohen’s d = 0. Dotted line is at
unity.

Conclusion

An essential part of science is that it is replicable. But
another essential part of science is to uncover new
discoveries. = Changing the standard criterion for
statistical significance merely moves the standard along
the ROC curve. Any change to this standard such as
decreasing the required p value or using Bayes factors
instead will not improve discriminability between real
and null effects. Rather, a change to be more conservative
will decrease false alarm rates at the expense of
increasing miss rates. False alarm rates should not be
considered in isolation without also considering miss
rates. Rather, researchers should consider the relative
importance for each in deciding the criterion to adopt.
This aligns with other recommendations for researchers

to justify their alphas (Lakens et al., 2018). In addition,
given that true null results can be theoretically
interesting and practically important, a conservative
criterion can  produce  critically = misleading
interpretations by labeling real effects as if they were null
effects. Moving forward, the recommendation is to
acknowledge the relationship between false alarms and
misses, rather than implement standards based solely on
false alarm rates.
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