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What is best criterion for determining statistical significance?  In psychology, the criterion has 
been   p < .05.  This criterion has been criticized since its inception, and the criticisms have been 
rejuvenated with recent failures to replicate studies published in top psychology journals.  
Several replacement criteria have been suggested including reducing the alpha level to .005 or 
switching to other types of criteria such as Bayes factors or effect sizes.  Here, various decision 
criteria for statistical significance were evaluated using signal detection analysis on the outcomes 
of simulated data.  The signal detection measure of area under the curve (AUC) is a measure of 
discriminability with a value of 1 indicating perfect discriminability and 0.5 indicating chance 
performance.  Applied to criteria for statistical significance, it provides an estimate of the decision 
criterion’s performance in discriminating real effects from null effects.  AUCs were high (M = .96, 
median = .99) for p values, suggesting merit in using p values to discriminate significant effects.  
AUCs can be used to assess methodological questions such as how much improvement will be 
gained with increased sample size, how much discriminability will be lost with questionable 
research practices, and whether it is better to run a single high-powered study or a study plus a 
replication at lower powers.  AUCs were also used to compare performance across p values, Bayes 
factors, and effect size (Cohen’s d).  AUCs were equivalent for p values and Bayes factors and 
were slightly higher for effect size.  Signal detection analysis provides separate measures of 
discriminability and bias.  With respect to bias, the specific thresholds that produced maximally-
optimal utility depended on sample size, although this dependency was particularly notable for 
p values and less so for Bayes factors.  The application of signal detection theory to the issue of 
statistical significance highlights the need to focus on both false alarms and misses, rather than 
false alarms alone. 
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Scientists across many disciplines including 
psychology, biology, and economics use p < .05 as the 
criterion for statistical significance.  This threshold has 
recently been challenged due to numerous failures to 
replicate findings published in top journals (Begley & 
Ellis, 2012; Camerer et al., 2016; Open Science 
Collaboration, 2015).  Changes in the recommendations 
for statistical significance include using a stricter 
criterion for significance (e.g., p < .005; Benjamin et al., 
2017) and minimizing flexibility in decisions around data 
collection and analysis (e.g., Simmons, Nelson, & 
Simonsohn, 2011).  These recommendations were 
designed to increase replicability by decreasing the false 
alarm rates, which is the rate at which null effects are 
incorrectly labeled as significant.  However, the best 
criteria for statistical significance are ones that maximize 
discriminability between real and null effects, not just 
those that minimize false alarms.  One analytic technique 
that is intended to measure the discriminability of a test 
is signal detection theory (Green & Swets, 1966).  Signal 
detection theory has previously been applied to evaluate 
p values (Krueger & Heck, 2017).  Here, the signal 
detection theory measure of area under the curve (AUC) 
is offered as a tool to quantify the effectiveness of various 
measures of statistical effects. 

Signal detection analysis involves categorizing 
outcomes into four categories.  Applied to criteria for 
statistical significance, a hit occurs when there is a true 
effect and the analysis correctly identifies it as significant 
(see Table 1).  A miss occurs when there is a true effect 
but the analysis identifies it as not significant.  A correct 
rejection occurs when there is no effect and the analysis 
correctly identifies it as not significant, and a false alarm 
occurs when there is no effect but the analysis identifies 
it as significant.  In statistics, Type I errors (false alarms) 
and Type II errors (misses) are sometimes considered 
separately, with Type I errors being a function of the 
alpha level and Type II errors being a function of power.  
An advantage of signal detection theory is that it 
combines Type I and Type II errors into a single analysis 
of discriminability and also considers the relative 
distributions of each type of error in the analysis of bias. 

 
 

                                                                    
1 This number was selected somewhat arbitrarily, and the 
results generalized to other numbers.  Larger number of 
repeats reduced the standard deviations of the results 
reported below, but did not affect the means. The decision 

Table 1. Signal detection classification of data based on 
the example criteria p < .05 for a true effect (Cohen’s d 
= 0.50) and a null effect (Cohen’s d = 0). 

 P < .05 P > .05 
“Significant” “Not Significant” 

d = .50 Hit Miss 
d = 0 False Alarm Correct Rejection 

 

Data Simulations for Experiment 1 

Data were simulated for two independent groups of 
64 participants each, which corresponds to 80% power 
at an alpha level of .05 for a two-tailed independent-
samples t-test.  Data for one group was sampled from a 
normal distribution with a mean of 50 and a standard 
deviation of 10 (such as might be found on a memory test 
with a total score of 100).  The data for the other group 
was sampled from a normal distribution with a mean of 
50 (for studies with a null effect) or 45 (for studies with 
an effect size of Cohen’s d = .50) and a standard deviation 
of 10.  The data were submitted to an independent-
samples t-test (all simulations and analyses were 
conducted in R; R Core Team, 2017).  Details of the 
simulation are available in the online supplementary 
materials (https://osf.io/bwqm8/).  This initial 
simulation will be referred to as Experiment 1.  See 
appendix for overview of all of experiments. 

Data were simulated from 20 studies1, half of which 
had an effect size of 0 and half had a medium effect size 
(Cohen’s d = .50).  The result from each simulated study 
was classified as a hit or miss (for studies modeled as a 
medium effect) or as a correct rejection or false alarm 
(for studies modeled as a null effect).  The classification 
was based on four criteria for statistical significant 
related to p values: p < .10, p < .05, p < .005, and p < 
.001. This process was repeated 100 times1.  The 
outcomes across all studies were summarized into the 
proportions of hits, misses, false alarms, and correct 
rejections for each criterion (see Figure 1).  In addition, 
the hit rates and false alarm rates were calculated for the 
purpose of plotting the receiver operator characteristic 
(ROC) curves (see Figure 2).  The hit rate is the 
proportion of studies for which the simulated effect was 
real and the criterion classified it as significant, and the 
false alarm rate is the proportion of studies for which the 
simulated effect was null but the criterion classified it as 
significant.  To clarify, whereas the proportion of hits (as 

to simulate sets of studies was to allow for multiple 
comparisons across a variety of measures (p values, Bayes 
factors, and effect sizes). 

https://osf.io/bwqm8/
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plotted in Figure 1) is the number of hits divided by the 
total number of studies, the hit rate (plotted in Figure 2) 
is the number of hits divided by the number of studies 

modeled as a real effect.  Bayes factors, which are also 
plotted, are discussed below. 

 
 

 
Figure 1. Proportion of each outcome as a function of the decision criterion for significance. Brighter colors correspond 
to errors and dark colors correspond to correct classifications.  For criteria of Bayes factors greater than 2, 3, or 10, 
studies that produced a Bayes factor less than the criterion but greater than the inverse of the criterion were considered 
inconclusive, which is why the total proportion of outcomes does not equal 1. 
 

 
Figure 2. Mean hit rates are plotted as a function of mean false alarm rates and the decision criterion (see legend) for 
one set of 20 studies (left panel) and averaged across all 100 sets of 20 studies (right panel).  Receiver operator 
characteristic (ROC) curves are plotted for criteria based on p values (thick green line) and Bayes factor (thin blue line).  
The two lines are identical (as was the case for all 100 sets of 20 studies).  Area under the curve (AUC) is the shaded 
area. 
 

In selecting a criterion for statistical significance, 
researchers must select a measure (e.g., p values) and a 
threshold within that measure (e.g., alpha = .05).  A 
measure can be evaluated by assessing its ability to 
discriminate between real and null effects, which can be 
quantified by calculating the area under the ROC curve 
(AUC; Macmillan & Creelman, 2008).  With respect to 
evaluating thresholds for a specific measure (e.g., 
comparing .005 to .05), the location of each threshold on 
the ROC curve can be calculated.  Location on the curve is 

a measure of bias.  Each of these measures will be 
considered in turn. 

To measure discriminability of p values, the AUC was 
computed 100 times, once for each set of 20 studies.  
Unlike the discriminability measure of d’, the 
discriminability measure of AUC makes no assumptions 
regarding the underlying distributions, which is critical 
because distributions of p values are not normally 
distributed.  Higher AUCs indicate better ability to 
discriminate real effects from null effects.  If 
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discrimination were perfect, the curve would follow the 
left and top boundaries in Figure 2, and the AUC would 
equal 1 (i.e. the entire area would be under the curve).  If 
discrimination were at chance, the curve would follow 
the diagonal line in Figure 2, and the AUC would be .5 (i.e. 
only 50% of the area would be under the curve).  As is 
apparent in Figure 2, p values produced curves that were 
closer to 1 (perfect performance) than to .5 (chance 
performance).  The mean AUC was .96 (median = .97, SD 
= .04).  Thus, p values were effective, though not perfect, 
at discriminating between real and null effects.  This 
aligns with conclusions from other valuations of p values 
(e.g., Krueger & Heck, 2017, 2018).  These AUC values 
suggest some benefit in using p values, at least as a 
continuous measure without necessarily having strict 
thresholds for significance (McShane, Gal, Gelman, 
Robert, & Tackett, 2018).  Perhaps alternative methods 
to reduce false alarm rates might be more beneficial than 
to eliminate p values altogether (e.g., Trafimow & Marks, 
2015).  Note that measures of discriminability evaluate p 
values as a measure without consideration of the specific 
alpha value adopted as the criterion.  Specific alpha levels 
relate to bias, and are discussed below. 

What could improve discriminability when using p 
values as the criterion for statistical significance?  One 
suggestion has been to lower the threshold from .05 to 
.005.  This would not alter the discriminability because 
discriminability relates to p values as a whole, not to 
specific thresholds. Thresholds refer to locations on the 
curve, and these dictate bias, rather than 
discriminability.  Signal detection theory distinguishes 
between discriminability and bias.  As applied to the case 
of criteria for statistical significance, discriminability 
refers to the criterion’s performance at identifying real 
effects versus null effects, and bias refers to whether the 
errors tend to be false alarms or misses. Assessing bias 
can be useful for selecting the appropriate criterion for 
asserting statistical significance.  For example, assume 
that the cost of a miss is equivalent to the cost of a false 
alarm in a particular field. In that case, optimal utility 
would be achieved by setting the criterion in such a way 
that its point on the receiver operator characteristics 
(ROC) curve is the one that falls closest to the upper left 
corner in Figure 2.  The Euclidean distance between each 
point on the ROC curve and the point of perfect 
performance is plotted in Figure 3.  For the scenario that 
was simulated, an alpha level closer to the blue dot, 
which aligns with an alpha level of .10, would come closer 
to achieving that maximum-utility outcome than an alpha 
level of .005.  Lowering the criterion for statistical 
significance to p < .005 would increase the number of 
studies that will replicate by decreasing false alarms, but 
it would do so at the cost of missing real effects (see also 
Krueger & Heck, 2017).  Note the proportion of misses in 

Figure 1 across the various criteria, particularly for the 
criterion of p < .005.  Misses are bad for science (Fiedler, 
Kutzner, & Krueger, 2012; Murayama, Pekrun, & Fiedler, 
2014).  Assuming that null effects are theoretically 
interesting and practically important, it is important to 
determine which null effects are due to a genuine lack of 
difference versus a miss of a true effect.  Is the trade-off 
to increase replicability worth the large increase in 
misses?  Perhaps science can adopt alternative means to 
improve replicability without sacrificing so many missed 
hits, such as increasing incentives for publishing 
statistically- and scientifically-sound significant findings 
and also publishing (statistically- and scientifically-
sound) null results. 

 

 
Figure 3.  Distance to perfection was calculated as the 
Euclidean distance between each point on the ROC curve 
(see Figure 2) and the top-left corner (which 
corresponds to 100% hit rate and 0% false alarm rate) 
across all 100 sets of 20 studies.  A lower distance to 
perfection score indicates better discriminability 
between real and null effects.  Error bars represent 95% 
confidence intervals. 

 
One effective way to improve replicability is to 

increase sample size.  Many studies are underpowered 
(e.g., Etz & Vandekerckhove, 2016; Fraley & Vazire, 2014; 
Ioannidis, 2005; Sedlmeier & Gigerenzer, 1989).  The 
simulations in Experiment 1 showed that at a power of 
80% (at an alpha level of .05), the mean AUC for p values 
was .96.  At a power of 50%, the mean AUC for p values 
was .85 (median = .87; SD = .10).  Increasing power to 
90% produced a mean AUC of .975 (median = .99; SD = 
.03), increasing power to 95% produced a mean AUC of 
.984 (median = 1; SD = .03), and increasing power to 
99% produced a mean AUC of .999 (median = 1; SD = 
.004).  If resources are unlimited, increasing sample size 
to increase power is an effective way of improving 
discriminability of real effects from null effects (Krueger 
& Heck, 2017). 
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Assuming limited resources, one might wonder 
whether it is better to run one high-powered study or a 
study plus a replication that are both at 80% power.  
AUCs can help a researcher make these decisions.  Two 
additional “experiments” (i.e., sets of simulations) were 
conducted.  In Experiment 2, everything was the same as 
in Experiment 1 except the sample size for each group 
was 105 (which corresponds to 95% power at an alpha 
level of .05).  In Experiment 3, everything was the same 
as in Experiment 1 except that for every study that was 
simulated, a second study with the same parameters was 
simulated and the higher p value was retained.  This 
emulates a situation for which a study is conducted and 
results in a significant p value and then a replication fails 
to find a significant effect, so the effect is considered not 
significant.  This is why the higher p value was retained.  

The mean AUC for Experiment 2 was .99 (median = 1; SD 
= .01).  The mean AUC for Experiment 3 was .97 (median 
= .99; SD = .04).  This suggests that higher power 
produces better discriminability than replicating a study 
with both the original and replication studies at 80% 
power.  However, the higher-powered study produced 
more false alarms whereas the study plus replication 
produced few false alarms but more misses (see Figure 
4).  Again, researchers will need to decide what trade-offs 
between false alarms and misses make the most sense for 
their science. 

 
 
 
 

 
Figure 4.  Proportion of each outcome as a function of the decision criterion and whether one or two studies were run.  
The left panel shows the outcomes across 100 sets of 20 studies, each with 105 data points per group (which 
corresponds to 95% power at alpha = .05).  The right panel shows the outcomes across 100 sets of 20 studies.  For each 
study, a replication was conducted.  Both the original study and the replication had 64 data points per group (which 
corresponds to 80% power at alpha = .05).  In order for an effect to meet the decision criterion, both the original study 
and the replication had to produce values that exceeded the decision criterion.  For example, for the criterion of p < .05, 
both the study and the replication had to produce p values < .05, otherwise the set of studies was considered not 
significant. 

 
Power, rather than effect size, is more important for 

discriminability.  In Experiment 4, data were simulated 
at 80% power (at an alpha of .05) for each of 8 effect sizes 
ranging from d = .1 - .8.  The AUCs for each were 
approximately the same (M = .95; range of means for 
each effect size = .947 - .961; variations due to chance 
rather than systematic differences).  As shown in Figure 
5, when power was consistent, there were also no 
substantial differences in the rate of the different 
outcomes.  Thus, while studying bigger effects will 
reduce the number of participants needed, it will not 
improve discriminability on its own. 

 

 

 

 

Questionable Research Practices 

Some recommendations to improve replicability 
concern practices to avoid.  These have been labeled 
questionable research practices, and have been 
identified as particularly problematic (Simmons et al., 
2011).  AUCs can be used to assess the degree to which 
doing various questionable research practices reduces 
discriminability.   
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Figure 5.  Proportion of SDT outcomes is plotted as a 
function of effect size for the single criterion for 
statistical significance of p < .05.  Data were all simulated 
at a power of 80% at an alpha of .05. 

 
One recommendation is to designate the number of 

participants to be run ahead of time, rather than use an 
optional stopping rule (Simmons et al., 2011).  In a new 
set of simulations (Experiment 5), each simulated study 
was conducted with 30 participants per group with 
either a Cohen’s d = .50 or d = 0.  A lower sample size 
was used given that published studies tend to be 
underpowered.  As in Experiment 1, 20 studies were 
simulated, and this was repeated this 100 times.  To try 
to mimic typical use of the optional stopping rule, for 
each study, if the p value was between .20 and .05, an 
additional 10 participants were added per group.  After 
this addition, if the p value was less than .05, data 
collection stopped; otherwise the process was repeated 
up to 9 more times.  On average, p-hacking in the form of 
adding more participants occurred 4.3 times in each set 
of 20 studies (SD = 2; Range = 0 – 11).  The optional 
stopping rule produced differences in the AUCs relative 
to the original sample, but the differences were not 
systematic.  Sometimes running additional unplanned 
participants improved discriminability and other times it 
worsened discriminability (see Figure 6).   
 
 

 
Figure 6.  The area under the curve (AUC) for hacked 
studies plotted as a function of the AUC for the original 
studies.  A higher AUC indicates better discrimination 
between real and null effects.  The line is at unity.  Data 
points above the line indicate better discriminability for 
the hacked studies, and data points below the line 
indicate better discriminability for the original studies. 

 
How can this questionable research practice have no 
impact the discriminability of real effects from null 
effects?  The reason is that these questionable research 
practices increase the false alarm rate but they also 
increase the hit rate (see Figure 7).  Much of the attention 
on the replication crisis has sought to minimize false 
alarms, but it is also necessary to discuss the 
corresponding increase in the number of misses (i.e. the 
decrease in the number of hits). Discriminability 
between real effects and null effects takes into account 
both the false alarm rate and the hit rate.  A decreased hit 
rate directly corresponds to an increased miss rate.  
Furthermore, the data were simulated so that the studies 
were underpowered.  Although p-hacking increased the 
false alarm rates (see also Ioannidis, 2005), adding 
participants increased power, which is good for 
discriminability.  To be clear, the recommendation is not 
to p-hack by running participants until the effect is 
significant.  Instead, experiments should be run with 
sufficient power or only allow restricted flexibility in 
stopping data collection such as, for example, by 
following the recommendations of Lakens (2014) or 
using sequential Bayes Factor with a minimum and 
maximum N (Schönbrodt & Wagenmakers, 2018).  But 
with respect to interpreting published research, the 
current simulations suggest that flexibility in data 
collection via an optional stopping rule does not 
necessarily void the findings (see also Murayama et al., 
2014; Salomon, 2015).  In these simulations, p-hacking 
increased the hit rate by 28% while only increasing the 
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false alarm rate by 12%.  Note, however, that p-hacking 
via optional stopping rules does not always increase hit 
rates more than false alarm rates.  If power is high (e.g., 
> 99%), simulations showed that hit rates increased 
from 99.9% to 100% but false alarm rates increased from 
5.4% to 9.8%.    

 
 

 
Figure 7. Proportion of hits, false alarms, misses, and 
correct rejections as a function of whether the studies 
were the original sample of 30 data points per group or 
had been p-hacked via an optional stopping rule.  
Outcomes shown only for the decision criterion of p < 
.05.  Note that the seeming benefit for p-hacking is 
dependent on the low power of the simulated study. 

Bayes Factor Versus p values 

An alternative to p values is to use Bayes factors (e.g., 
Dienes, 2011; Kass & Raftery, 1995; Kruschke, 2013; Lee 
& Wagenmakers, 2005; Rouder, Speckman, Sun, Morey, 
& Iverson, 2009).  Bayes factor refers to the ratio of 
likelihoods of the data for the alternative hypothesis 
relative to the null hypothesis. A Bayes factor of 1 
corresponds to equal likelihood for the alternative and 
the null hypotheses, and a Bayes factor greater than 1 is 
evidence for the alternative hypothesis relative to the 
null hypothesis.  Bayes factors quantify how well a 
hypothesis predicts the data relative to a competing 
hypothesis (such as the null hypothesis), and thus is a 
continuous measure for which the focus is on the 
strength of the evidence, rather than a specific cut-off for 
deeming effects significant or not.  However, Bayes 
factors between 1-3 are considered weak or anecdotal 
evidence, so a Bayes factor of 3 could be considered a 
decision criterion akin to a criterion for significance (see 

Table 2), though not everyone agrees with the idea of 
using strict cut-offs (e.g., Morey, 2015). 

 
Table 2. Overview of relationship between Bayes factor 
and conclusion about the evidence being in favor of the 
alternative hypothesis (HA) or the null hypothesis (H0).  
Adapted from Wetzels et al. (2011), Lakens (2016), and 
Jeffreys (1961). 

Bayes factor Interpretation 

>100 Decisive evidence for HA over H0 

30 - 100 
Very strong evidence for HA over 
H0 

10 - 30 Strong evidence for HA over H0 

3 - 10 Substantial evidence for HA over H0 

1-3 Anecdotal evidence for HA over H0 

1 No evidence 

1/3 - 1 Anecdotal evidence for H0 over HA 

1/10 – 1/3 Substantial evidence for H0 over HA 

1/30 – 1/10 Strong evidence for H0 over HA 

1/100 – 1/10 
Very strong evidence for H0 over 
HA 

< 1/100 Decisive evidence for H0 over HA 

To measure discriminability and bias for Bayes 
factors, the studies simulated in Experiment 1 were also 
evaluated using four decision criteria related to Bayes 
factor (BF): BF > 1, BF > 2, BF > 3, and BF > 10.  Studies 
were classified as shown in Table 3.  Note that for Bayes 
factors that fell in between the criterion and its inverse 
(e.g., 1/3 – 3), no classification was made because the 
data were inconclusive.  This is why the outcomes do not 
sum to 1 in Figure 1.  The calculation of the AUCs is a 
function of the Bayes factor itself, rather than 
classifications of outcomes, so even though not all studies 
could be classified into the four SDT outcomes, all studies 
contributed to the AUC calculation. The BayesFactor R 
package (Morey, Rouder, & Jamil, 2014) was used to 
calculate the Bayes factors.  The default Cauchy prior was 
used when calculating Bayes factors, but different priors 
produced the same AUC results.  Changing the prior 
produced shifts along the ROC curve but did not change 
discriminability. 

 
  



Meta-Psychology, Vol. X, pp 8-X 
Article type: Post-publication Review 
Published under the CC-BY4.0 license 

Pre-print doi: XXXXXXXX.XXXX 
Paper doi: XXXXXX.XXX.XXX 

Reviews doi: XXXXXX.XXX.XXX 

[(Header p 1 - left/mid/right) Charter Roman 7pt] 
Edited by: First Last 

Reviewed by: First Last, First Last 

 

Table 3. Signal detection classification of data based on the example criteria Bayes factor > 3 for a true effect (Cohen’s  
d = 0.50) and a null effect (Cohen’s d = 0). 

 

Bayes factor > 
3 

“Significant” 

Bayes factor < 1/3 

“Not Significant” 

1/3 < Bayes Factor < 3 

“Inconclusive 

d = .50 Hit Miss No classification 

d = 0 False Alarm Correct Rejection No classification 

 
As shown in Figure 2, the AUCs related to Bayes factor 

were also quite high.  In fact, the AUCs for Bayes factor 
corresponded perfectly to the AUCs for p values.  This 
means that for the situation simulated here, Bayes 
factors are not any better (or worse) than p values at 
discriminating real effects from null effects.  In other 
words, Bayes factor incurs no advantage over p values at 
detecting a real effect versus a null effect for the current 
scenario.  This is because Bayes factors are redundant 
with p values for a given sample size.  Both p values and 
Bayes factors can be calculated from the t-statistic and 
the sample size, so it is expected that they would be 
related.  In these simulations, there was a near-perfect 
linear relationship between the (log of the) Bayes factors 
and the (log of the) p values, as has been shown 
previously (Benjamin et al., 2017; Krueger & Heck, 2018; 
Wetzels et al., 2011).  Equivalency in AUCs between 
Bayes factors and p values generalized to other scenarios 
as well including one-sample t-tests and correlations 
(see Figure 8). 

Although the discriminability between p values and 
Bayes factors was equivalent across a variety of 
situations, as revealed by equal AUCs (see Figures 2, 8, 
and 9), the exact relationship between them differed as a 
function of sample size.  In Experiment 6, for 30 different 
sample sizes ranging from 32 to 2000 per group, 100 
simulations of 20 studies were conducted (10 with a 
Cohen’s d modeled at .50 and 10 with a Cohen’s d 
modeled at 0).  For each sample size, a linear regression 
was conducted to predict the log of the Bayes factor from 
the log of the p value.  The results are shown in Figure 9.  
These simulations show near-complete redundancy 
between p values and Bayes factors.  This redundancy 
also supports the conclusion that for the conditions 
simulated, p values and Bayes factors are equally adept 
at distinguishing real effects from null effects. 

 
 

 
Figure 8.  Simulations were run for 20 studies (repeated 
100 times) for 3 effect sizes for 3 power levels (two-
tailed at alpha = .05) for 4 types of statistical tests. AUCs 
for the Bayes factors are plotted as a function of AUCs for 
the p values. They are identical in every case, which is 
consistent with the claims of equal discriminability 
between p values and Bayes factors.  Size of the symbol 
corresponds to effect size, which is Cohen’s d (for two-
sample t-tests), Cohen’s dz (for one-sample t-tests), and 
r*2 (for correlations). For the uneven two-sample t test, 
group 2 had 20% more participants than group 1. The 
plot collapses across all conditions given that the 
patterns were the same regardless of test type, power, or 
effect size.  
 

Despite equivalence in discriminability between p 
values and Bayes factor, these simulations illustrate a 
previously acknowledged discrepancy in the conclusions 
supported by the two types of criteria (Lindley, 1957).  
Specifically, in Figure 9b, all data points to the left of the 
black vertical line that are also below the black 
horizontal line would be classified as significant 
according to the criterion of p < .05 but according to a 
Bayes factor interpretation, the evidence would favor the 
null hypothesis over the alternative.  This illustrates why 
it is possible to get results for which the p value indicates 
a significant finding (i.e. evidence for the alternative 
hypothesis) but the Bayes factor shows evidence for the 
null hypothesis relative to the alternative.  These 
conflicting outcomes occurred in studies for which 
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sample size (or, more precisely, power) was high.  These 
simulations help illustrate the point that for high-
powered studies, a p value of .05 is more evidence for the 
null hypothesis than for the alternative hypothesis 
(Lakens, 2015).  When power is high, researchers using 

p values to determine statistical significance should use 
a lower criterion. 

 
 

 
Figure 9.  Outcomes from 100 simulations of 20 studies (half simulated as a null effect; half as a medium effect) for each 
of 30 different sample sizes ranging from 32 to 2000.  Color corresponds to sample size.  Panel a shows the area under 
the curve (AUC) for p values and Bayes factors as a function of sample size.  A bigger AUC indicates better discrimination 
between real and null effects.  Panel b shows the relationship between p value and Bayes in the range for which p values 
are highest (the inset shows the relationship for the entire range, and the dotted box shows the area that has been 
expanded in the main figure).  The legend corresponds to sample size.  The black vertical line corresponds to a p value 
of .05, and the black horizontal line corresponds to a Bayes factor of 1.  Panels c and d show the intercepts and slopes 
from linear regressions that predict the log of the Bayes factor from the log of the p values.  The intercept is the p value 
that corresponds to a Bayes factor of 1, so it corresponds to the value of the p value along the horizontal line in panel b.  
The slope, plotted in panel d, corresponds to the steepness of the curves in panel b.

Including Priors 

Whereas Bayes factors do not take into account the 
prior odds of an effect being real, the posterior odds do.  
Posterior odds can be calculated by multiplying the 
Bayes factor by the prior odds (see Equation 1).  
Posterior odds are the probability of the alternative 
hypothesis (M = H1) given the data d over the null 
hypothesis (M = H0) given the data (D).  To evaluate the 
effect of prior odds on discriminability, two additional 
experiments were conducted.  In Experiment 7, the same 
conditions as in Experiment 1 were simulated, but AUCs 

were calculated for posterior odds across three different 
prior odds: 0.1, 1, and 10.  In Experiment 8, everything 
was the same as in Experiment 1 except there were four 
times as many studies with d = 0 (16 studies) than with 
d = .5 (4 studies).  AUCs were calculated for posterior 
odds across three prior odds (.25, 1, 4).  As shown in 
Figure 10, adding information about prior odds to the 
Bayes factor merely shifted the points along the ROC 
curve but did not alter discriminability regardless of the 
accuracy of the prior odds.  In addition, changing the 
proportion of real effects did not have much impact on 
discriminability.  In Experiment 8, the mean AUC was .95 
(median = .97, SD = .07) for all sets of prior odds (as well 
as for p values), which was similar to the mean AUC of .96 
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(median = .98, SD = .04) for all sets of prior odds (and 
for p values) in Experiment 7. 

 

  
Figure 10. Left column shows results from Experiment 7 (equal number of null and real effects) and right column shows 
results from Experiment 8 (four times as many null as real effects).  In the top row, hit rates are plotted as a function of 
false alarm rates and criterion for Experiment 7 (left panel) and Experiment 8 (right panel).  Each point corresponds to 
a different decision criterion related to the posterior odds (BF > 1, 2, 3, and 10, not labeled but for each cluster of 4, the 
points go sequentially from top-right corner to bottom-left corner) as a function of the prior odds (see legend).  The 
receiver operator characteristic (ROC) curves are plotted for three different sets of prior odds for each panel.  The area 
under the curve (AUC) is shown in grey. The curves and AUCs are identical across all prior odds in each panel.  In the 
bottom row, proportion of each outcome (calculated as the number of each outcome divided by the total number of 
studies) across prior odds is shown only for the decision criterion of Bayes factor > 3. 

Except for Experiment 7, all of the simulations 
conducted involved simulating studies for which half had 
a true effect and half had a null effect.  This assumes that 
effects are to be expected half of the time, which is an 
assumption that is unlikely to be true.  The results from 
Experiment 7 show, however, that similar patterns are 
found even when the null hypothesis is likely to be true.  

Unreported simulations show similar patterns even 
when the alternative hypothesis is likely to be true.  Thus, 
the results regarding discriminability (measured with 
AUCs) are independent of specific assumptions 
regarding the likelihood of the null hypothesis.  Put 
another way, the discriminability of p values and Bayes 
factors are high in situations for which real effects are 
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likely and in situations for which real effects are unlikely.  
Obviously, more p values and Bayes factors reach 
thresholds for significance when there are more 
significant effects, so “significant” effects are more for 
‘safe’ studies than ‘risky’ studies (Krueger & Heck, 2018).  
Nevertheless, the diagnosticity of the p value (and of 
Bayes factor) is high regardless of the likelihood of 
finding a real effect. 

Bayes Factor and Bias 

As with p values, we can consider bias related to 
Bayes factors.  As shown in Figure 3, the cut-offs that 
achieved maximize utility assuming equal weights given 
to false alarms and misses was Bayes factor > 1.  This 
contrasts with the typical interpretation of Bayes factor 
(e.g., Table 2) for which Bayes factors between 1-3 are 
considered anecdotal evidence. 

Unlike with p values, the threshold that should be 
used for Bayes factors did not vary as much with changes 
in sample size as did the alpha levels of the p values (see 

Figure 10).  Compare the red points to the green points, 
which correspond to p < .10 and p < .005.  For smaller 
sample sizes, the red points achieve better performance 
than the green points, but for larger sample sizes, the 
relationship flips and the green points achieve better 
performance.  This repeats the point made earlier that at 
larger sample sizes, a lower alpha should be used.  For 
Bayes factors, compare the light blue and purple points, 
which correspond to Bayes factor thresholds of 1 and 3.  
For smaller sample sizes, the light blue points achieved 
better performance, but for larger sample sizes, the 
purple points achieved better performance. However, 
unlike with p values, this reversal was not nearly as 
dramatic, and the decision criterion of Bayes factor > 1 
performed better than or nearly as good as the other 
thresholds across all sample sizes.  It is also worth noting 
that as sample size increases, all Bayes factor criteria 
improved, whereas p values plateaued at their alpha 
levels.  Thus, another advantage of Bayes factors is that 
increasing the amount of evidence increases their ability 
to accurately detect an effect. 

 

 
Figure 11. Distance to perfection was calculated as the Euclidean distance between each point on the ROC curve (see 
Figure 2) and the top-left corner (which corresponds to 100% hit rate and 0% false alarm rate).  Distance to perfection 
scores were calculated for each of 100 sets of 20 studies (half of which were modeled as a null effect and half of which 
were modeled with Cohen’s d = .5) for each sample size.  The data are grouped by sample size, and color corresponds 
to the criterion for statistical significance. Errors bars correspond to 95% confidence intervals. 

 
Signal detection analysis is a tool that scientists can 

use to evaluate relative trade-offs across various decision 
criteria.  This is not to say that scientists should only use 
or always use decision criteria (as opposed to 
estimations of effect size, for example), but that when a 
criterion for statistical significance is adopted, 
consideration should be made for both false alarms and 
misses.  If the goal is to maximize optimal utility, given 
equal weight to hits and correct rejections (or, 
equivalently, equal tolerance for false alarms and 

misses), distance to perfection can be used to assess 
various criteria.  In the case of a medium effect size  
 
with 64 participants per group, the decision criteria of p 
< .10, p < .05, and BF > 1 led to better performance than 
the criteria of p < .005, BF > 3, and BF > 10.  As sample 
size increased, the criteria of p < .005 and all tested 
Bayes factor thresholds led to better performance than p 
< .10.  
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Discriminability with Effect Size 

As a final note, discriminability (as measured using 
AUCs) was as good or better when using effect size (in 
this case, Cohen’s d) than p values or Bayes factors (see 
Figure 14).  Effect size improved discriminability 
because Cohen’s d is signed (i.e. differentiates -.5 from 
.5).  When discriminability was assessed using absolute 
effect size, the AUCs matched those obtained with p 
values and Bayes factors.  The measure of effect size does 
not have the feature of a specific decision criterion for 
statistical significance, so for researchers who want strict 
thresholds for significance, effect size is unlikely to be a 
useful tool.  But for researchers who want to know the 
strength of the evidence or the magnitude of the effect, 
effect size would be useful. 

 

 
Figure 11. Area under the curve (AUC) for Cohen’s d as a 
function of the AUCs for p values and Bayes factors (BF).  
Data are from Experiment 1.  Each point corresponds to 
one set of 20 studies with half modeled with Cohen’s d = 
.5 and half modeled with Cohen’s d = 0. Dotted line is at 
unity. 

Conclusion 

An essential part of science is that it is replicable.  But 
another essential part of science is to uncover new 
discoveries.  Changing the standard criterion for 
statistical significance merely moves the standard along 
the ROC curve.  Any change to this standard such as 
decreasing the required p value or using Bayes factors 
instead will not improve discriminability between real 
and null effects. Rather, a change to be more conservative 
will decrease false alarm rates at the expense of 
increasing miss rates.  False alarm rates should not be 
considered in isolation without also considering miss 
rates.  Rather, researchers should consider the relative 
importance for each in deciding the criterion to adopt. 
This aligns with other recommendations for researchers 

to justify their alphas (Lakens et al., 2018).  In addition, 
given that true null results can be theoretically 
interesting and practically important, a conservative 
criterion can produce critically misleading 
interpretations by labeling real effects as if they were null 
effects.  Moving forward, the recommendation is to 
acknowledge the relationship between false alarms and 
misses, rather than implement standards based solely on 
false alarm rates. 
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