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Abstract— The impacts of high and low gain controllers on
remote channels in a linear diffusive network model are studied,
from a topological perspective. Specifically, we study how a high
or low gain controller deployed at one point in the network
influences the finite and infinite zero structure of a second
channel. The analysis shows how the network’s graph topology,
the positions of the control channels relative to the topology, and
the specifics of the built controller influence the zero structure.
The analysis yield conditions under which a deployed controller
can induce nonminimum phase behaviors, and also conditions
where minimum-phase dynamics are preserved.

I. INTRODUCTION

Engineered networks such as power and transportation
systems are regulated by multiple control systems, which
act on different network components and at varied spatial
and temporal scales. Today, the paradigm for controlling
such engineered networks is changing, as new sensing and
actuation technologies are deployed, and control systems
are cyber-enabled and networked. At their essence, these
changes are enabling the deployment of many new wide-area
control loops (loops that use geographically-remote sensing
and actuation assets) with sophisticated regulatory functions.
They are also often leading to the democratization of control,
in the sense that different control loops are operated by
different stakeholders, and indeed sometimes are modulated
by the network’s users. The control of large-scale engineered
networks has been extensively studied, and many methods
are available for both centralized and decentralized control
[1]–[3]. However, these studies primarily approach controller
design from a holistic perspective, i.e. the design is achieved
by solving a single multi-input multi-output (centralized or
decentralized) control problem. Theoretically, approaching
controller design from a holistic perspective is appropriate,
since MIMO control can achieve improved performance and
obviate fragilities that are present when SISO controls are
used [4]. However, practical considerations in the control
of engineered networks often dictate that control systems
are deployed piecemeal and operated independently, partic-
ularly when varied stakeholders are involved. Managers of
engineered networks have long been concerned that these
piecemeal-deployed and operated control systems may have
complex interdependencies and adverse impacts on each
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other. These impacts may be exacerbated by the growing
use of wide-area controls, and the involvement of new stake-
holders in the control process. Experimental analysis of such
control-channel interactions after deployment is sometimes
possible, but may be difficult and costly [5]. Thus, network
managers would benefit from systematic analyses of control-
channel interdependencies at design time, and particularly
simple structural or topological rubrics for identifying pos-
sible adverse impacts.

With this motivation in mind, we pursued a preliminary
study of interdependencies or interactions among control
channels in a representative dynamical-network model, with
the aim of gaining graph-theoretic insights into the problem
[6]. While the initial study was concerned with interdepen-
dencies among two SISO control channels, here we also
consider the impact of multi-terminal controllers on a remote
channel. Noting the wide use of low- and/ or high- gain
controller design methodologies in multi-time-scale network
control, we also characterize interdependencies caused by
controllers with low or high gain properties. In short, our
main focus here is to understand the impacts of low- or
high- gain controls deployed in a dynamical network on the
transfer function seen across a second control channel, from
a topological or graph-theoretic perspective.

Low- and/or high- gain controller designs have been
proposed and deployed in various large-scale network ap-
plications, including in managing the fast dynamics of the
power transmission network and in queueing/communication
networks. In many of these networks, multiple controllers are
used, which are designed and deployed in a piecemeal fash-
ion. Traditionally, the low and high gain control designs have
been concerned with shaping the model’s internal dynamics
and the particular control channel’s response. Hence, these
designs do not indicate how a designed controller at one
network location may affect other input-output channels and
consequent behaviors of other control systems. Our focus
here is to understand how low- and high-gain controls in a
network may impact other remote channels [7]–[11], in the
context of a standard linear diffusive network model defined
on a digraph. Specifically, we focus on characterizing the
infinite and finite zero structure of the second channel, which
dictates its input-output behavior, and limits and modulates
control performance [12], [13]. The analysis shows that the
positions of the two control channels relative to the network
graph, as well as the form of the deployed controller, affects
the zero structure.

The remainder of the article is organized as follows. The
model and problem formulation are given in Section II.
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The results from previous work [6] are briefly reviewed,
and then the main results on low- and high- gain control-
channel interactions are presented, in Section III. Due to
space constraints, proofs and some details are excluded, see
[14].

II. MODELING AND PROBLEM FORMULATION

A standard linear diffusive network model defined on a
digraph is enhanced to explicitly represent a built control,
and a second single-input single-output channel of interest.
The formulation generalizes that given in [6].

A network with n components or nodes, labeled as
1, 2, ..., n, is considered. Each node j has associated with it a
scalar state xj(t). The nodes’ states are nominally governed
by a linear dynamical model with diffusive state matrix A,
and are further modulated by an in-built linear feedback
control. Further, a channel of interest (an input-output pair)
is defined. The full model of the system is given by:

ẋ = Ax+P+ eiu (1)
P = eqHc(s)z

Tx

y = eTnx

Here, x =
[
x1 . . . xn

]T
is the full state of the network,

and ei is 0–1 indicator vector with ith entry equal to 1.
The state matrix A is assumed to have nonnegative off-
diagonal entries, while the diagonal entries are negative and
satisfy Al,l ≤ −

∑n
j=1,j 6=l Al,j . This diffusive model form

encompasses many of the canonical models for synchroniza-
tion/consensus, diffusion, and spread in dynamical networks
(e.g., [15], [16]). The in-built feedback control is modeled as
providing an additive input P to the state dynamics. Specifi-
cally, the control vector P is assumed to be determined from
the state vector x according to a Laplace-domain relationship
of the following form: P = eqHc(s)z

Tx, where the vector z
indicates a combination of state variables that is being used in
feedback, eq is 0–1 indicator vector which identifies a single
node q which is being actuated by the in-built controller, and
Hc(s) is the transfer function of the in-built controller. We
alternatively also consider the common circumstance that the
built controller incorporates local proportional controllers at
multiple nodes. In this case, the control vector takes the form
P = −

∑
j∈Vb

ejkjxj , where Vb is a subset of the nodes
in the network. For both cases, our focus here is primarily
on low or high gain controllers: that is, the controller
transfer function (or proportional gain) is assumed to take
the form Hc(s) = kHu(s), where k is either sufficiently
large or small. Finally, a single-input single-output channel
is considered, which is defined by an additive input u at a
single network node i, and an output y which measures the
state at a single node (labeled n without loss of generality).

The goal of this work is to study how the built low- or
high- gain controller affects the input-output characteristics
of the channel of interest, specifically its finite- and infinite-
zero structure. We particularly seek for topological results,
which give an indication of how the network’s connectivity
structure dictates the impact of the built controller. To

develop topological analyses, it is convenient to associate
a graph with the network dynamics. Specifically, a weighted
digraph G with n vertices is defined, where each vertex
l = 1, 2, . . . , n in the graph corresponds to the network node
l. Formally, an arc (directed edge) is drawn from vertex l to
vertex j in the graph (l,j distinct) if and only if Aj,l 6= 0,
and is assigned a weight of Aj,l. The vertices corresponding
to the input and output network nodes are referred to as the
input and output vertices. The state matrix A can be viewed
as a grounded Laplacian matrix associated with the directed
graph. In this paper, the notation dab is used the directed
distance from vertex a to vertex b in the digraph G.

The introduced control problem is relevant to a number
of network applications where multiple stakeholders are
involved in regulation, or controllers are integrated in a piece-
meal fashion. For instance, problems of this type may arise
in the context of distributed-decision-making algorithms, co-
ordination of groups of mobile autonomous vehicles, mobile
sensor networking, infrastructure health monitoring, or price
consensus for commodity markets [17], [18].

III. RESULTS

The results are organized as follows. First, a character-
ization of the zeros of a channel of interest when high-
gain proportional controllers are applied at remote nodes
is reviewed (III.A). The main focus of this work is to
understand when high or low gain controllers (whether static
or dynamic) can make the channel of interest nonminimum
phase (III.B), and when they do not influence the phase
properties of the channel (III.C). The results developed in this
section assume that the network graph is strongly connected
(i.e., there is a directed path between each pair of vertices);
we focus on this case to avoid trivial cases where the built
controller does not have any influence on the channel of
interest. To improve readability, the results are presented in a
concise for here, and the proofs are relegated to an appendix.

A. Control Schemes that Promote Minimum-Phase Dynam-
ics: Review

The following result from our previous work [6] charac-
terizes the zeros of the input-output channel of interest, when
proportional controllers of sufficiently large gain are applied
remotely to the channel. The result is included because it
serves as a basis for further analyses developed here, and
because it relates to the main focus on low- and high- gain
control.

This result, as well as further analyses presented here,
require some further terminology regarding the network
input-output model. The term special input-output path is
used to refer to a path of minimum length (least number
of edges) between the input and output in graph G. As
defined before, the notation din is used for the length of the
special input-output path, i.e. for the distance between the
input vertex i and output vertex n. Additionally, we define a
modified system based on a subgraph of G. Specifically, we
consider the uncontrolled input-output model, with a subset
of vertices deleted. Formally, let us consider a subset of
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vertices Vb ⊂ {1, . . . , n}, which does not include the input
and output vertices (i and n). Let us also define the vectors
e
(Vb)
r as a modified version of the vector er, where the entries

i ∈ Vb are omitted. Similarly, A(Vb) is defined as a submatrix
of A obtained by deleting the rows and columns specified in
Vb. Then, the deletion subsystem is defined as:

ẋ(Vb) = A(Vb)x(Vb) + e
(Vb)
i û (2)

ŷ = e(Vb)
T

nx
(Vb),

where x(Vb), û, and ŷ are the state, input, and output,
respectively. The deletion system (2) is associated with a
weighted directed deletion graph G(Vb) = G − Vb . Also,
we define d

(Vb)
in as the distance between the input and output

vertices (i.e. from vertex i to n) in graph G(Vb).
Here is the result on zeros, see [6] for the proof.
Theorem 1: Consider the network input-output model (1).

Assume that local proportional controllers are applied at
network nodes in the set Vb, i.e. P = −

∑
j∈Vb

ejkj(xj)
where kj > 0. Also, suppose that the input-output channel
is remote from the local controllers (i, n /∈ Vb), and that
d
(Vb)
in = din. When the gains kj (j ∈ Vb) are scaled up, a

subset of the zeros of (1) approach the zeros of the deletion
system (2), while all other zeros are in open left half plane
(OLHP).

The theorem immediately permits us to define local pro-
portional control schemes that make the input-output model
minimum phase. For example, one way to make a system
minimum phase is to put high gain local controllers at all
vertices adjacent to special input-output path.

B. Controls that Cause Nonminimum-Phase Dynamics

In many large-scale networks, there is a significant concern
that the actions of a control authority may make other
regulation and control tasks difficult, or alter properties
of remote input-output channels in undesirable ways. For
instance, operators of the electric power grid have recognized
that newly-integrated fast controls may alter performance of
other controls, or cause unexpected disturbance responses
[11]. These concerns suggest that, while controllers are
typically designed to achieve desirable internal properties,
they may incidentally alter the input-output characteristics of
remote channels in undesirable ways (e.g., cause the channel
to become nonminimum phase, or increase susceptibility to
disturbances). Here, we identify conditions under which the
built control causes the network’s input-output channel to
become non-minimum-phase.

First, we consider the possibility that proportional con-
trollers applied at one or more nodes may result in
nonminimum-phase dynamics for a channel of interest:

Theorem 2: Consider the input-output model (1). Assume
that local proportional controllers are applied at the nodes
in the set Vb, i.e. P = −

∑
j∈Vb

ejkj(xj) where kj > 0.
Consider an input-output channel that is remote from the
local controllers (i.e. i, n /∈ Vb). The input-output model (1)
is non-minimum phase for sufficiently scaled-up gains kj
(j ∈ Vb), if d(Vb)

in ≥ din + 2.

The theorem shows that high-gain proportional control
schemes necessarily incur nonminimum-phase dynamics, if
they disrupt the special input-output path of the channel of
interest. Precisely, nonminimum-phase dynamics result if the
shortest input-output path with the controlled nodes removed
is longer by at least two edges as compared to the original
special input-output path. This result shows that proportional
negative feedback controls, which always improve the inter-
nal stability of the diffusive network model, nevertheless can
cause other channels to become nonminimum phase.

Next, the possibility that a linear dynamic controller
applied at a single node can cause remote channels to
become nonminimum-phase is explored. In the following two
theorems, it is shown that a negative feedback controller
with sufficiently large gain can cause non-minimum phase
behavior if its relative degree is larger than a threshold,
depending on its location in the network. On the other
hand, a controller with sufficiently small gain can cause non-
minimum phase behavior if its relative degree is less than a
threshold, again depending on the controller’s position in the
network. These thresholds depend on the network structure
(i.e. graph G) as well as the locations of the input node,
output node, and control channel in the network. The two
theorems address controllers applied at a single node and
across a link, respectively.

Theorem 3: Consider the input-output model (1). Assume
that the controller P = eqHc(s)xj is applied. Consider any
input-output channel that is either remote from the built
controller (i.e. j 6= i, n and q 6= i, n), or across the built
controller (i.e. j = i and q = n). Assume that the controller
Hc(s) = kHu(s) has relative degree nc. The input-output
model (1) is non-minimum phase for:

• all sufficiently large negative feedback gain k (i.e., for
all k ≤ k̂ for some k̂ < 0) if (dij+dqn+1 = din+dqj)
and (nc = 1− dqj).

• all sufficiently small negative feedback gain k (i.e., for
all 0 > k ≥ k̂ for some k̂ < 0) if (dij+dqn < din+dqj),
(nc ≤ din − dij − dqn − 2), and (nc ≥ −dqj − 2)

Theorem 4: Consider the input-output model (1). Assume
that the controller P = eqHc(s)(xj − xk) is applied.
Consider any input-output channel. Also, assume that the
controller Hc(s) = kHu(s) has relative degree nc. The
input-output model (1) is non-minimum phase for:

• all sufficiently large negative feedback gain k (i.e., for
all k ≤ k̂ for some k̂ < 0) if: (dij < dik), (dij + dqn +
1 = din + dqj), (nc = 1− dqj), and (dqj < dqk).

• all sufficiently small negative feedback gain k (i.e., for
all 0 > k ≥ k̂ for some k̂ < 0) if (dij 6= dik), (dqj 6=
dqk), (min {dij , dik} + dqn < din + min {dqj , dqk}),
(nc ≤ din − min {dij , dik} − dqn − 4), and (nc ≥
−1−min {dqj , dqk})

In addition to the cases that are discussed in Theorems 3
and 4, there are many other cases where high gain or low gain
may cause nonminimum-phase dynamics, however many of
these circumstances are concerned with positive feedback
controls and hence may be of less interest.
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C. Control Schemes that Do Not Alter Channel Phase Char-
acteristics

Often, it is important to ascertain whether a control scheme
can alter a channel’s phase characteristics, and specifically
whether the control will preserve minimum phase dynamics
on the channel. The following theorems identify control
schemes that are guaranteed to maintain minimum-phase
dynamics, i.e. not to change a minimum-phase channel to
a nonminimum-phase channel. For this development, we say
that the phase property of the network input-output model is
maintained, to indicate that the model remains strictly min-
imum phase (respectively strictly nonminimum phase) upon
inclusion of the controller P when the uncontrolled model
is strictly minimum phase (respectively strictly nonminimum
phase).

In the previous work [6], it was shown that low-gain
proportional controllers necessarily only move system eigen-
values, and hence poles of any defined channel, by a small
amount. In contrast, they can introduce/remove zeros or
cause zeros to jump in general. The graph-theoretic condition
in the following Theorem 5 from previous work [6] is
sufficient to guarantee that this does not happen, and hence
that the phase property is maintained.

Theorem 5: Consider the network input-output model (1),
and assume that a controller P = keq (xj − xq) is applied.
Also, consider the network graph G as well as a modified
graph G̃ where the directed edge j → q is added to G.
Consider any input-output channel. If the distance between
the input and output vertices in the original and modified
graphs is identical, then the phase property of the network
input-output model is maintained for any sufficiently small
gain k ( i.e. for all k < f for some threshold f <∞).

The result shows that small-gain controllers acting across
network edges maintain the phase property of the uncon-
trolled system, if they do not introduce any new dependencies
that alter the distance between the input-output distance in
the network graph for the channel of interest.

Remark: The conditions for maintaining the phase prop-
erty in Theorem 5 is necessarily satisfied, if the proportional
controller is local (q = j), or acts across a link that is already
present in the network. Likewise, it is necessarily satisfied if
the channel of interest is local (i = n), or is placed across
an existing network link.

The following two theorems give more general condi-
tions under which a proportional controller of the form
P = keq(xj − xq), or a local proportional controller
P = −kej(xj), does not change the phase property of
the network input-output model. The theorems require some
further graph-theoretic notation for the network input-output
model (1). In particular, let us consider a set of three vertices
Vd = {i, j, n} in the network graph. The vertex r is said to
be a disjointing vertex of the set Vd if following paths pass
through or reach the vertex r: 1) all paths from vertex i to
vertex j, 2) all paths from vertex i to vertex n, 3) all paths
from vertex j to vertex n. We note that the disjointing vertex
may be one of the vertices in the set Vd. The concept of a

disjointing vertex is illustrated in Fig. 1. In this example,
vertex 1 is a disjointing vertex for the set Vd = {1, 3, 15},
vertex 2 is a disjointing vertex for both sets Vd1

= {1, 2, 15}
and Vd2

= {1, 5, 15}.

1 152 7 8

5 6

109
4

3

11

12 13

14

Fig. 1: Graph G with several disjointing vertices.

Theorem 6: Consider the network input-output model
(1). Assume that the local proportional controller P =
−kjej(xj) is applied, and consider any input-output channel
where the input and output are not collocated (i.e. i 6= n).
The phase property of the model is maintained if the network
graph G has at least one disjointing vertex for the set
Vd = {i, j, n}.

Theorem 6 is illustrated in an example. In particular, con-
sider an input-output model (1) with network graph G shown
in Fig. 1, with input at vertex i = 1 and output at vertex
n = 15. The local proportional controller P = −kjej(xj)
does not change the phase property of the input-output model
(1) if j ∈ {1, 2, 3, 4, 5, 6, 7, 11, 12, 13, 14, 15}, because a
disjointing vertex can be found for the set Vd = {i, j, n}
in this case.

Theorem 7: Consider the input-output model (1). Assume
that the proportional controller P = keq(xj−xq) is applied,
and consider an input-output channel where the input and
output are not collocated (i.e. i 6= n). The phase property
of the model is maintained if there is a common disjointing
vertex in the network graph G for the sets Vd1 = {i, j, n}
and Vd2

= {i, q, n}.
Next, conditions under which dynamic controllers main-

tain the phase property of a system are discussed. First, a
special case is identified where the transfer function Hc(s)
does not influence the phase property of the input-output
channel, provided that the controller is stable.

Theorem 8: Consider the input-output model (1). Suppose
that the local controller P = ejHc(s)xj is applied where
the controller transfer function Hc(s) is stable. Consider any
input-output channel that is adjacent to the built control (i.e.
j = i or j = n). The phase property of the input-output
model (1) is maintained.

The following Theorem discusses the case where low
gain controller does not change the phase behavior for the
interested channel.

Theorem 9: Consider the input-output model (1). Assume
that the controller P = eqHc(s)xj is applied. Consider any
input-output channel that is either remote from the built
controller (i.e. j 6= i, n and q 6= i, n), or across the built
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controller (i.e. j = i and q = n). Assume that the controller
transfer function Hc(s) = kHu(s) is stable and has relative
degree nc. The phase property of the model is maintained
for any sufficiently small gain k ( i.e. for all k < f for some
threshold f <∞) if one of the following condition satisfies:
• (dij + dqn > din + dqj) and (nc ≥ −1− dqj).
• (dij + dqn < din + dqj), (nc ≥ din − dij − dqn − 1),

and (nc ≥ −dqj − 2)

IV. EXAMPLES

The graph-theoretic results on control channel interactions
are illustrated and enhanced using three examples. For all of
the examples, we consider an input-output model (1) with 8
nodes, with input and output at nodes 1 and 3, respectively.
A common network graph G is considered for the examples,
as shown in Fig. 2, however we modify the state matrix and
the controller among the examples.

1

2

56

3

4

u y

7 8

Fig. 2: Graph G associated with a network with 8 nodes.

In the examples, we consider the case where local pro-
portional controllers are applied to a subset of network
nodes: P = −

∑
j∈Vb

ejkj(xj) where the kj are positive
(i.e. a negative feedback control is used). Controls of this
form improve stability or damping of the network, in the
sense that the real parts of poles become more negative
as the gains are increased. The analyses developed in the
paper have suggested that such controllers may or may not
move zeros in desirable ways, in the sense that they may
preserve or promote minimum-phase dynamics or may lead
to nonminimum-phase dynamics. In previous work [6], we
showed that for a similar example which was non-minimum
phase, based on Theorem 1, a local proportional controller
at node 7 (P = −e7k7(x7)) with a high-gain controller
promoted minimum-phase dynamics. Here, We consider two
cases where, per the presented theorems, the dynamics may
transition from nonminimum phase to minimum phase or
vice versa.

A. Example 1

For the first example, the state matrix A is the following:

A =



−1.2 0.1 0 0 0 0 1 0
0.1 −0.3 0.1 0 0 0 0 0
0 0.1 −1.2 1 0 0 0 0
0 0 1 −3.1 1 0 0 1
0 0 0 1 −2.1 1 0 0
0 0 0 0 1 −2.1 1 0
1 0 0 0 0 1 −2.1 0
0 0 0 1 0 0 0 −1.1



In this case, the uncontrolled network input-output model
is minimum phase. Now consider a local proportional con-
troller at node 2 (P = −e2k2(x2)). We note here that vertex
2 is on the special input-output path in the network graph.
Per Theorem 2, increasing the controller gain should yield
a nonminimum-phase dynamics. In Fig. 3, the real part of
the dominant zero (i.e. the zero with maximum real part) is
seen to move from negative values to the positive values as
the gain is increased, and so the input-output model become
non-minimum phase.

Fig. 3: The dependences of the dominant zero location (the
largest real part among the zeros) on local controller gain.

B. Example 2

The state matrix A for the second example is the follow-
ing:

A =



−1.64 0.54 0 0 0 0 1 0
0.54 −0.65 0.01 0 0 0 0 0
0 0.1 −1.2 1 0 0 0 0
0 0 1 −3.1 1 0 0 1
0 0 0 1 −2.1 1 0 0
0 0 0 0 1 −2.1 1 0
1 0 0 0 0 1 −2.1 0
0 0 0 1 0 0 0 −1.1



In this case, the uncontrolled input-output model is min-
imum phase. Now consider a local proportional controller
applied at node 8 (P = −e8k8(x8)), We note that vertex 8 is
not on any path from the input vertex to output vertex. In this
case, as the gain of this controller is increased (see Fig. 4),
first the input-output channel becomes non-minimum phase,
and then with further increase it again becomes minimum
phase.

In conclusion, we see that local proportional controllers
might cause minimum phase behavior or non-minimum
phase behavior in other channels.
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